

An exact algorithm for
parallel machine
scheduling with conflicts
Kowalczyk D, Leus R.

KBI_1505

An exact algorithm for parallel machine scheduling
with conflicts

Daniel Kowalczyk, Roel Leus
ORSTAT, Faculty of Economics and Business, KU Leuven, Leuven, Belgium

daniel.kowalczyk@kuleuven.be, roel.leus@kuleuven.be

We consider an extension of classic parallel machine scheduling where a set of jobs is scheduled on identical

parallel machines and an undirected conflict graph is part of the input. Each node in the graph represents a

job and an edge implies that its two jobs are conflicting, meaning that they cannot be scheduled on the same

machine. The goal is to find an assignment of the jobs to the machines such that the maximum completion

time (makespan) is minimized. We present an exact algorithm based on branch and price that combines

methods from bin packing, scheduling and graph coloring, with appropriate modifications. The algorithm

has a good computational performance even for parallel machine scheduling without conflicting jobs.

Key words : scheduling; combinatorial optimization; parallel machines; coloring; branch and price

1. Introduction
We schedule a set J = {1, . . . , n} of n independent jobs on m identical parallel machines

without preemption such that the maximum completion time of the jobs, or makespan, is

minimized. Each job j has an associated processing time pj ∈ N0 and is to be assigned to a

single machine. We assume that the processing times are sorted so that p1 ≥ p2 ≥ · · · ≥ pn.

The machines are gathered in set M = {1, . . . ,m} and each machine can process at most one

job at a time. An undirected graph G = (J,E), subsequently referred to as conflict graph, is

part of the input. If {j, j′} ∈ E then jobs j and j′ are conflicting jobs, and they need to be

assigned to different machines. We call the resulting problem the parallel machine scheduling

problem with conflicts (PMC). This problem is NP-hard because it contains both P ||Cmax

(in the standard three-field notation of Lawler et al. 1982) as well as the vertex coloring

problem (VCP) as special cases. A feasible schedule exists if and only if the conflict graph can

be colored with at most m colors; we will assume m < n to avoid trivial solutions. Moreover,

VCP is hard to approximate, and it can turn out to be hard to quickly find even a feasible

schedule for a given instance. We conclude that PMC combines two very hard problems.

PMC is theoretically important because it generalizes two well-known problems in combi-

natorial optimization, but it also naturally arises as (sub-)problem in a number of practical

1

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 2

applications in multiprocessor scheduling, TV advertisement scheduling and audit schedul-

ing. Concretely, PMC is for instance a subproblem of scheduling computing services on

different machines: see the ROADEF/EURO Challenge 2012 (ROADEF 2011), which was

furnished by Google, and Giblin and Hada (2008) for a problem statement from IBM. More

generally, “separation of duties” in management control refers to assigning the tasks and

associated privileges for a specific business process across multiple functions with the primary

objective of preventing fraud and errors (Botha and Eloff 2001). Giblin and Hada (2008)

illustrate this as follows: “As a simple example, in a purchasing process, the person who

requests a purchase usually is not the same person who approves purchases. Distributing

responsibilities reduces the impact that a single individual can have, requiring collusion to

perpetuate a fraud.” This problem has recently received particular attention in the context

of computerized (especially web-based) order processing (see Sun et al. 2010), and can be

formalized as a parallel-machine scheduling problem with conflicts. Another related prob-

lem stems from Gaur et al. (2009), who schedule television commercials in program breaks,

where insertion of competing commercials into the same break is undesirable. Balachandran

and Zoltners (1981) explicitly mention the desirability of a constraint that “if an auditor

participates in a certain audit engagement, then this auditor should/should not participate

in a similar engagement,” where an audit engagement is a set of audit tasks for the same

client. One other application is resource assignment in workforce planning: Gardi (2009)

describes how the assignment of a set of tasks with known start and end times to employees

can be seen as a coloring problem, with each color representing an employee and with an

interval graph as the conflict graph. Gardi restricts the number of tasks to be assigned to

each employee, whereas we will minimize the maximum workload over all employees. Finally,

in the context of the so-called “traveling purchaser problem,” Manerba and Mansini (2015)

describe that it may be possible that incompatible products cannot be loaded on the same

vehicle, which has an interpretation very similar to our setting.

PMC was already studied by Bodlaender et al. (1994). They obtain a number of hardness

and approximation results for specific graph types, but they do not develop an exact algo-

rithm. Bodlaender et al. present approximation algorithms for the case where a k-coloring of

the conflict graph is known a priori, with k + 1 ≤ m; the worst-case ratio depends only on k

and when m
k

tends to infinity then the worst-case ratio tends to 2. They also prove that,

unless P = NP, no approximation algorithm can improve upon the worst-case ratio of 2.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 3

Informally, problem P ||Cmax can be seen as a “dual” to the bin packing problem (BPP),

where the bin capacities correspond to the makespan and the number of bins corresponds to

the number of parallel machines (see also Dell’Amico et al. 2008). A similar pairing can be

observed between PMC and the bin packing problem with conflicts (BPPC), where the latter

problem consists in packing items in a minimum number of bins of limited capacity while

avoiding joint assignments of items that are in conflict. Clearly, BPPC generalizes both BPP

and VCP. Problem BPPC has recently been studied from a computational point of view

by a number of researchers, see Muritiba et al. (2010), Elhedhli et al. (2011) and Sadykov

and Vanderbeck (2013). The currently best exact algorithm was developed by Sadykov and

Vanderbeck (2013), who used their black-box branch-and-price (B&P) solver BaPCod, which

relies on a generic branching scheme and certain primal heuristics, together with a specific

pricing oracle.

Notice that PMC is intuitively harder than BPPC. From a VCP viewpoint, in PMC there

is a hard constraint on the number of colors that can be used (namely m), while this number

is variable in BPPC. As a result and contrary to PMC, in BPPC there is no feasibility

problem. in PMC one has to assign jobs to m machines in such a way that conflicting jobs

are assigned to different machines and such that the makespan is minimized. Consequently,

for a given PMC instance we first need to verify whether there exists an m-coloring for the

conflict graph: this is a priori not known for a given instance.

The remainder of this article is structured as follows. In Section 2 we describe two linear

formulations for PMC, and our global algorithmic structure is sketched in Section 3; the

details of the algorithm are developed in Sections 4 to 6. The results of a series of computa-

tional experiments are reported in Section 7, where we also test the algorithm on datasets of

the classic problem P ||Cmax (with empty conflict graph). We conclude the article in Section 8.

2. Linear formulations for PMC
We first provide an intuitive linear formulation in Section 2.1, followed by a set-covering

formulation in Section 2.2.

2.1. Intuitive formulation

We formulate a natural mixed-integer programming (MIP) model for PMC, as follows. For

every job j and machine i we introduce a binary variable xij that is equal to 1 if job j is

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 4

assigned to machine i and 0 otherwise. We also introduce a real variable y that will equal
the makespan of the schedule. A possible MIP model for PMC is then given by:

minimize y (1a)

subject to
∑
i∈M

xij = 1 ∀j ∈ J (1b)

xij + xij′ ≤ 1 ∀{j, j′} ∈ E,∀i ∈ M (1c)∑
j∈J

pjxij ≤ y ∀i ∈ M (1d)

xij ∈ {0,1} ∀j ∈ J,∀i ∈ M (1e)

y ∈R. (1f)

The first set of constraints (1b) ensures that every job is scheduled on exactly one machine.
Inequalities (1c) force conflicting jobs to be scheduled on different machines. Constraints (1d)
guarantee that for each machine the makespan y is at least the total processing time con-
sumed on that machine. Although correct, this formulation is quite unpractical. One reason
for the high intractability of the formulation is the inherent symmetry: rearranging the indices
of the machines leads to equivalent solutions. This has undesirable consequences in a branch-
and-bound (B&B) scheme: the number of equivalent solutions is exponential in m and can
lead to a lot of redundant work by a linear solver. One can resort to symmetry-breaking
constraints (SBCs) for reducing the redundant work by a linear solver (see Berghman et al.
2014). The work of Dell’Amico et al. (2008) suggests that the following approach will perform
better. Our findings also indicate (see Section 7 and the Appendix) that including SBCs does
not significantly improve the performance of formulation (1).

Formulation (1) is almost of a form on which Dantzig-Wolfe decomposition can be applied
(see Martin 1999). To elaborate this, we first rewrite (1) in matrix notation, as follows:

minimize y (2a)

subject to
∑
i∈M

Inxi = en (2b) 0

−y

 +

 A

p

 xi ≤

 e|E|

0

 ∀i ∈ M (2c)

xi ∈ {0,1}n ∀i ∈ M (2d)

y ∈R, (2e)

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 5

where xi = (xi1, . . . , xin)′ for each i ∈ M , p = (p1, . . . , pn), A is the edge-node incidence matrix

of the graph G = (J,E), en = (1, . . . ,1)′ ∈ {0,1}n, e|E| = (1, . . . ,1)′ ∈ {0,1}|E| and In is the

unity matrix of size n.

In order to be able to apply Dantzig-Wolfe decomposition we switch to the decision variant

of the optimization problem: we introduce an upper bound C on the value of the objective

function, and we denote the resulting decision problem by P (C,m), which is to determine

whether there exists a feasible schedule without conflicts and with maximum makespan C

on m machines. Variable y then disappears from the constraints and the resulting constraint

matrix has a block-angular structure. PMC can now be solved by determining the smallest C

for which P (C,m) yields a “yes” answer; this will be achieved by a binary search algorithm,

which will be described in Section 3. Since we work with identical machines, P (C,m) can be

reformulated as follows: is it possible to partition the job set J in at most m stable sets of

G = (J,E) such that each stable set corresponds to a machine that consumes at most C time

units? This coincides with the decision variant of BPPC. Throughout this article, we will use

this relationship between PMC and BPPC to develop an exact algorithm for PMC and we

therefore introduce new notation that makes it easier to switch between the two problems:

PMC and BPPC will be denoted by P (·,m) and P (C, ·), respectively. The Dantzig-Wolfe

decomposition can be seen here as a special case of variable redefinition as was presented in

Vanderbeck (2000); this leads to a set-covering formulation for P (C, ·).

2.2. Set-covering formulation

Let SC be the set containing all the inclusion-maximal stable sets S of G = (J,E) with∑
j∈S pj ≤ C. We introduce a binary variable λS for each S ∈ SC such that λS is equal to 1 if

the stable set is chosen and 0 otherwise. The goal is to select a minimum number of stable

sets of G = (J,E) such that each job is contained in one machine schedule:

minimize
∑

S∈SC

λS (3a)

subject to
∑

S∈SC :j∈S

λS ≥ 1 for each j ∈ J (3b)

λS ∈ {0,1} for each S ∈ SC (3c)

Objective function (3a) minimizes the number of machines required, while constraints (3b)

impose that every job has to be executed on a machine. The answer to P (C,m) is “yes”

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 6

if and only if there exists a solution for the constraints (3b)–(3c) for which the value of

the objective function (3a) is not greater than m. This set-covering model for P (C, ·) was

considered by Elhedhli et al. (2011), Muritiba et al. (2010) and Sadykov and Vanderbeck

(2013), where exact algorithms were developed for P (C, ·) based on B&P. A difference with

our setting is that we only need to check whether a partition exists with at most m bins

(machines) and we do not need the optimal objective value.

In what follows we denote the IP model (3) by F (C, ·). This formulation has an exponential

number of variables, so explicitly generating all these variables directly is impractical. Also,

even if we list all the stable sets of G, then the LP relaxation of F (C, ·) would still be very

hard to solve, see for example Mehrotra and Trick (1996). We therefore solve the formulation

with a B&P algorithm, i.e. at each node of a B&B search tree we solve the LP relaxation of

F (C, ·) by means of column generation (Gilmore and Gomory 1961).

3. Overall algorithmic structure for solving PMC
In this section we briefly outline our algorithm for PMC ≡ P (·,m), which is the essential

contribution of this article. First a lower bound L(·,m) and an upper bound (heuristic

solution) U(·,m) on the minimum makespan are computed. We provide more information on

the lower bounds in Section 5.1 and on the upper bounds in Section 5.2. When the heuristics

do not succeed in finding a feasible solution, we invoke a feasibility test in an attempt to

recognize instances with empty solution space; this test is the subject of Section 6. Conversely,

when a feasible solution is found with one of the heuristics of Section 5.2, then this solution

is improved by means of local search; see Section 5.3.

If L(·,m) = U(·,m) then an optimal solution has been found, otherwise we start a binary

search to identify the optimal objective function (in line with Dell’Amico et al. 2008). In this

search procedure, we iteratively verify whether a feasible schedule exists with makespan at

most C∗ = ⌊L(·,m)+U(·,m)
2 ⌋; this verification is established by the B&P algorithm of Section 4.

Let LF (C, ·) denote the optimal objective value of the LP relaxation of F (C, ·) (a lower

bound). If LF (C∗, ·) > m then we replace the lower bound L(·,m) by C∗ + 1. Otherwise, if

the solution is integral then U(·,m) is replaced by the makespan of this solution (which is

at most C∗), and if none of the previous two conditions holds then the B&P algorithm will

branch and apply the same tests at lower levels of the search tree.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 7

4. Branch and price
Below we describe all the ingredients of a B&P framework for F (C, ·) that is used to answer
the problem P (C,m), so to evaluate whether a feasible schedule of makespan C exists given
the processing times of the jobs and the conflict graph.

4.1. Column generation

The LP relaxation of F (C, ·) is obtained by relaxing the integrality constraints, and the
constraints λS ≤ 1 can also removed because they are redundant (given a feasible solution
with λS > 1 for some stable set S, one can simply set λS equal to 1). Thus, we solve the LP
defined by the objective function (3a), the constraints (3b), and

λS ≥ 0 for each S ∈ SC . (4)

The dual of this LP formulation is given by:

maximize
∑
j∈J

ξj (5a)

subject to
∑
j∈S

ξj ≤ 1 for each S ∈ SC , (5b)

ξj ≥ 0 for each j ∈ J, (5c)

where ξ1, . . . , ξn are the dual variables associated to the constraints (3b) and the con-
straints (5b) are associated to variables λS.

The LP relaxation of F (C, ·) is solved with column generation. This entails iteratively
solving the restricted master problem (RMP), which contains only a restricted number of
columns, and the pricing problem, which determines whether there exists a column that can
be added to improve the current solution. A column in this case equates with a bounded
stable set with capacity C. At each iteration we check whether one of the constraints (5b) is
violated. If no constraint is violated then we have obtained an optimal solution to the full LP
relaxation; otherwise, we add to RMP a (subset of) λ variable(s) that correspond to violated
constraints (5b). The pricing problem is the following: given a current dual solution ξ∗, does
there exist a bounded stable set S of G for which ∑

j∈S ξ∗
j is greater than 1? The LP relaxation

is typically solved faster if one considers the constraints that are strongly violated; thus it is
of interest to identify a bounded stable set S with most negative reduced cost. This can be
modeled as follows:

maximize
∑
j∈J

ξ∗
j zj (6a)

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 8

subject to
∑
j∈J

pjzj ≤ C (6b)

zj + zj′ ≤ 1 for each {j, j′} ∈ E, (6c)

zj ∈ {0,1} for each j ∈ J. (6d)

Model (6) is an IP formulation for the knapsack problem with conflicts (KPC), which was
studied by Hifi and Otmani (2012) and Pferschy and Schauer (2009), among others. KPC
is clearly NP-hard on general graphs, because it reduces to the maximum weighted stable-
set problem when C ≥ ∑n

j=1 pj. Several algorithms have been proposed in the literature for
solving KPC, see for example Hifi and Otmani (2012), Pferschy and Schauer (2009) and
Sadykov and Vanderbeck (2013); we solve the pricing problem with a dedicated algorithm
that was presented in Sadykov and Vanderbeck (2013), with some minor modifications as
described in Section 4.3. Denote by α(ξ∗) the optimal value of formulation (6). Clearly, for
any ξ with ξj ≥ 0 for all j ∈ J and α(ξ) ≤ 1, the value ∑

j∈J ξj is a lower bound for LF (C, ·).

4.2. Numerically safe lower bound

Held et al. (2012) point out that LP solvers use floating-point representations for all numbers.
Consequently, the dual variables ξj of the LP relaxation of F (C, ·) computed by these solvers
are inexact and so the condition α(ξ) > 1 may be hard to assess. This can lead to premature
termination or to endless loops. This problem was circumvented in Held et al. (2012) by
introducing a numerically safe lower bound in exact integer arithmetic, which was used to
calculate a lower bound for VCP. We will apply the same technique to solve our set-covering
formulation.

We transform the dual variables ξj obtained from the LP solver to integers πj = ⌊Kξj⌋,
i.e., we re-scale the dual variables by a scale factor K. As a result,

ξj − 1
K

<
1
K

πj ≤ ξj. (7)

This leads to a lower n
K

-approximation of ∑
j∈J ξj:∑

j∈J

ξj

 − n

K
<

1
K

∑
j∈J

πj ≤
∑
j∈J

ξj. (8)

For the representation of integers and the choice of K we will follow the choices of Held
et al. (2012). In the KPC problem (6), we replace the dual variables ξj (the profits) by the
integers πj = ⌊Kξj⌋. We add new columns to RMP until α(π) ≤ K; when this holds, the
value K−1 ∑

j∈J πj ≡ LF (C, ·) is a “numerically safe” lower bound for FL(C, ·).

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 9

4.3. Solving KPC

Since the profits and weights of our KPC problem are integers, we can make some minor

adjustments to the recursive enumeration procedure for KPC that was developed by Sadykov

and Vanderbeck (2013). This procedure combines a classic B&B for the 0-1 knapsack problem

with an enumeration algorithm for the maximum clique problem by Carraghan and Pardalos

(1990). Both enumeration procedures follow a depth-first-search strategy. The dual bounds

in the recursive enumeration algorithm of Sadykov and Vanderbeck (2013) are obtained by

simply ignoring the conflicts between the “free” items, which are items that have not yet

been fixed via branching decisions. Denote the set of all free vertices by F and the set of all

vertices that have already been selected into the knapsack by S1.

At each node of the B&B tree we calculate an upper bound via the continuous relaxation

of the residual knapsack problem on set F , ignoring the conflict constraints:

maximize
∑
j∈F

πjzj (9a)

subject to
∑
j∈F

pjzj ≤ C −
∑

j∈S1

pj (9b)

0 ≤ zj ≤ 1 for each j ∈ F. (9c)

The upper bound in the recursive enumeration of Sadykov and Vanderbeck (2013) is the

Dantzig bound for the knapsack problem (see for example Kellerer et al. 2004). In our case,

we can use upper bounds that have been developed specifically for 0-1 knapsack problems

with integer weights and profits; we use the bound of Martello and Toth (1977). The items

of F are sorted according to their efficiency (ratio of profit per weight) and hence the upper

bound for problem (9) can be found in O(n) time using a greedy algorithm. The remainder of

our knapsack algorithm has the same structure as that of Sadykov and Vanderbeck (2013).

4.4. Branching rule

At each node of the B&P tree we solve the LP relaxation of F (C, ·) as described in Section 4.1.

One of the following three cases will occur at every node in the tree:

1. if LF (C, ·) exceeds m then the current node can be pruned immediately;

2. if LF (C, ·) is less than or equal to m and each variable has an integral value, then the

exploration of the search tree is halted and U(·,m) is set equal to the makespan of this

solution (which is at most C);

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 10

3. if LF (C, ·) is less than or equal to m and a λ variable is fractional, then we first attempt
to construct a feasible solution with the primal heuristic that is described in Section 4.5; if
this does not succeed, we branch and create two child nodes (otherwise the exploration is
halted and U(·,m) is updated).

The branching strategy of our B&P algorithm is as follows. We select two items (jobs) j

and j′ with {j, j′} /∈ E and create two new BPPC instances. In the first instance, we enforce
the two jobs j and j′ to be on the same machine, by merging j and j′ to one job with
processing time pj + pj′ , which is conflicting with each job that conflicted with either j or j′.
In the second instance, we ensure that items j and j′ are assigned to different color classes,
by adding a conflict between the jobs j and j′. This branching strategy was first proposed
in Zykov (1949) for graph coloring. Both child nodes inherit the valid stable sets from the
parent node.

For the branching choice, we follow Held et al. (2012). For each pair j, j′ ∈ J , define

q(j, j′) =
∑

S∈S′
C :j,j′∈S λS

1
2(∑

S∈S′
C :j∈S λS + ∑

S∈S′
C :j′∈S λS)

,

where S ′
C is set of all the current columns in the restricted master problem. It can be seen

that q(j, j′) ∈ [0,1], and if q(j, j′) is close to 0 then the current solution assigns different
fractional colors to j and j′. Conversely, if q(j, j′) is close to 1 then the two items are assigned
to nearly equal fractional colors. In both of these cases, the lower bound in one child node
upon branching on {j, j′} will be similar to the lower bound in the parent node, hence we
seek to branch on a pair {j, j′} with q(j, j′) as close as possible to 0.5. The child node in
which j and j′ are assigned to the same machine is explored first; one reason is that this
increases the probability of finding a feasible (integer) solution.

4.5. Primal heuristic

As mentioned before, we do not need to solve P (C, ·) to optimality; we are only trying to
find a partition of J in at most m bins (machines) of capacity C. A primal heuristic can be
very useful in this process. Previous research of Muritiba et al. (2010), Elhedhli et al. (2011)
and Sadykov and Vanderbeck (2013) has indicated that formulation F (C, ·) is a very tight
formulation for BPPC. Moreover, Sadykov and Vanderbeck (2013) show that this formulation
combined with a column-generation-based primal heuristic can be very successful.

At every node of the B&P tree, before branching as described in Section 4.4, we first apply
a generic diving heuristic that is a greedy heuristic search procedure, which was also used

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 11

in Sadykov and Vanderbeck (2013). Iteratively, we solve the LP relaxation of F (C, ·) with

column generation and then we create a smaller problem that results from rounding one of

the λ variables to 1; this variable is selected greedily (fractional variable closest to 1). We

then update the LP relaxation of F (C, ·) by deleting the rows that correspond with the items

that are covered by λ. We re-optimize the updated LP relaxation and repeat the process

either until we find a partition of J in at most m bins (machines) of capacity C, or until the

objective value of the updated LP relaxation exceeds m.

It frequently happens that the optimal value of the updated LP relaxation of F (C, ·) is

greater than the number of machines. It is therefore interesting to check whether fixing

other variables would give better results, and thus further explore the solution space. We

achieve such diversification by means of (limited) backtracking: we construct a different

search tree for which the root node is equal to the B&P price node in which we have just

finished computing the lower bound LF (C, ·). This mechanism was developed by Joncour

et al. (2010) and relies on the concept of limited discrepancy search (LDS) by Harvey and

Ginsberg (1995). LDS essentially prevents the greedy strategy from choosing columns in a

tabu list, which contains columns that were selected in previous branches. The tabu list at

a node is the union of the tabu list of its ancestor and the columns chosen in previous child

nodes of the ancestor. The tabu list at the beginning of the heuristic is empty. We explore

a node that is not the first child of the ancestor if and only if the size of the tabu list is less

than or equal to maxDiscrepancy and its depth does not exceed maxDepth.

5. Lower and upper bounds
In this section we briefly review some results from the literature on lower and upper bounds

for P ||Cmax and VCP and extend some bounds to the case of PMC.

5.1. Lower bounds

Lower bounds for the parallel machine scheduling problem P ||Cmax are immediate lower

bounds for PMC. Good lower bounds for P ||Cmax are:

L0 =
⌈∑n

j=1 pj

m

⌉
, (10)

L1 = max{L0, p1}, (11)

L2 = max{L1, pm + pm+1}. (12)

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 12

Dell’Amico and Martello (1995) prove that the worst-case performance ratio for L2 is equal
to 2

3 for P ||Cmax. This does not necessarily carry over to PMC, however, because for a
given instance it is not even sure whether there exists a feasible solution. The lower bounds
(10)–(12) have the advantage of requiring low computation time, namely O(n).

One can also construct lower bounds that are tailored to the PMC structure, using the
relation between PMC and BPPC. We describe a tight lower bound for P (·,m) with the
help of the LP relaxation of F (C, ·). Suppose that we have constructed a feasible solution
for P (·,m), then set a variable U to be equal to the makespan of this feasible solution, and
another variable L := L2. In a binary search we check whether the optimal value of the LP
relaxation of F (C, ·) with C = L+U

2 is greater than m. If the answer to this question is “yes,”
then we can set L equal to C +1, otherwise we set U equal to C. We repeat this while L < U .
Lower bound L3 is the final value of L; this will be a tight bound, but finding it is quite
time-consuming. We invoke this procedure only if the constructive heuristics of Section 5.2
have already produced five feasible solutions but none these had a makespan equal to the
current lower bound.

5.2. Upper bounds

Approximation algorithms for P ||Cmax cannot be used directly as upper bounds for PMC
because these algorithms do not consider the conflict graph, so we will extend such algorithms
to apply for PMC. One of the best-known approximation algorithms for for P ||Cmax is the
LPT (longest processing time) algorithm of Graham (1966, 1969). This algorithm first orders
the jobs by non-increasing processing times and then iteratively assigns each job to a machine
with lowest current maximum completion time. Obviously, due to the conflict graph it may
not always possible to assign a job to the selected machine; in this case we assign the job to
a machine with lowest maximum completion time without conflicting jobs. This procedure
might still break down, however, in case every machine already contains a conflicting job.
If this occurs then the algorithm is interrupted, the jobs are ordered randomly and the
procedure is restarted. We iterate this procedure until a given number of feasible solutions
is found, or until no feasible solution is found for a given number of iterations (since the
instance can be infeasible).

Bodlaender et al. (1994) propose a general heuristic for PMC in the case that we know some
k-coloring a priori for the given conflict graph, with k < m. The makespan produced by this
algorithm is bounded by a constant that depends on k and m, multiplied with the optimum

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 13

makespan. We briefly describe one of these heuristics; the other heuristics are similar and
depend on the relation between k and m (and they were all implemented). Suppose that the
conflict graph has a k-coloring such that m > 2(k − 1). The algorithm assigns to the k color
classes C1, . . . ,Ck of the conflict graph disjoint sets of µi machines, with 1 ≤ i ≤ k. Denote
by Pi the sum of the processing times of all jobs assigned to color class Ci and assign to each
color class µi =

⌈
Pi

2L1

⌉
machines. Bodlaender et al. show that ∑k

i=1 µi ≤ m. Next they assign
each of the jobs of Ci to one of the µi machines of the color class using the LPT algorithm
of Graham. This heuristic has a worst-case performance ratio of 3 − 1

m−k+1 . In preliminary
experiments we have found that ∑k

i=1 µi is often strictly smaller than m. We therefore slightly
modify the algorithm, as follows: we iteratively assign the remaining machines to the color
class Ci for which Pi

µi
is maximal, until all the machines are assigned.

One can only use the algorithm of Bodlaender et al. (1994) when a k-coloring of the
conflict graph is given and hence we have to construct k-colorings such that k ≤ m, which
is of course not always possible. We use the standard greedy algorithms SEQ and DSATUR
(see Johnson et al. (1991) and Brélaz (1979), respectively). SEQ is a simple greedy algorithm
for the VCP. We order the nodes of the conflict graph randomly, and we assign the first
node to the first color class, the second node in the list is assigned to the first color class
that contains no nodes that are adjacent to that node, and so on. DSATUR is very similar
to SEQ, but DSATUR chooses dynamically which node to color first: at each step it assigns
the node that is adjacent to the largest number of distinctly different colored nodes (after a
few randomly colored nodes).

5.3. Local search

Every solution that is obtained by one of the heuristics described in Section 5.2 is improved
with a (k − l)-swap procedure. This procedure swaps groups of jobs between two machines.
Again, we should obviously take the conflict graph into account and check whether a swap
is allowed. Our description is an extension of the procedure of Dell’Amico et al. (2008).
Consider two machines m1 and m2, denote the current completion times of these machines
by C(m1) and C(m2) respectively, and let M1 and M2 be the sets of jobs that are currently
assigned to each of the machines. The swap procedure aims to exchange k jobs currently
assigned to machine m1 and gathered in set K, with l jobs on m2 and gathered in set L,
such that the resulting value max{C(m1),C(m2)} decreases and such that M2 \ L does not
contain any job that conflicts with the k jobs of K, and vice versa.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 14

The procedure is started by creating two lists of machines. The first list contains the
machines for which the completion time is greater than lower bound L3; this list is sorted
by non-increasing maximum completion time. The second list contains all other machines
and is sorted by non-decreasing maximum completion time. For a subset Q of jobs, define
P (Q) = ∑

j∈Q pj. For each machine m1 of the first list, in order, consider the subset K ⊂ M1

of k jobs such that P (K) is maximal and execute the following steps:
1. find a machine m2 in the second list, if any, with a subset L ⊂ M2 with l jobs such that

P (L) < P (K), C(m2) − P (L) + P (M) < C(m1), M2 \ L does not contain any job that is in
conflict with the jobs of K and vice versa, and interchange the sets K and L;

2. if a machine with the above-mentioned properties is not found then take the next largest
subset K of M1, if any, and go to Step 1.
As soon as a feasible exchange is found, it is performed, and the procedure is restarted from
the obtained solution until no feasible exchange is found.

6. Feasibility tests
As noticed earlier, it will be not always possible to quickly construct a k-coloring for a given
conflict graph G = (J,E) such that k ≤ m, or to quickly obtain a feasible solution for a given
PMC instance. The chromatic number of a graph is the lowest number of colors needed to
color the vertices so that no two adjacent vertices share the same color. Obviously, if the
chromatic number of G is greater than the number of the machines m then the instance is
infeasible.

We examine a number of lower bounds for the chromatic number of the conflict graph.
A clique is a set of vertices such that any pair of vertices is adjacent. The clique number
of a graph is the maximum size of a clique in G. Clearly, the size of an arbitrary clique
as well as the clique number are both lower bounds for the chromatic number, because in
any clique all the vertices require different colors. A major disadvantage here is that the
worst-case ratio between the clique number and the chromatic number is arbitrarily bad (see
for instance Hastad 1996) and finding a clique of maximum size is also an NP-hard problem
(Garey and Johnson 1979). Johnson (1973) describes an efficient heuristic for the maximum
clique problem, however, and Österg̊ard (2001) proposes an efficient exact algorithm. We use
these algorithms to quickly find a lower bound for the chromatic number. As soon as the
constructed lower bound exceeds m then we stop and conclude that the instance is infeasible
because the conflict graph is overly restrictive.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 15

We describe another effective and tighter lower bound, which was first considered in Mehro-
tra and Trick (1996), who propose a set-covering model for VCP that is similar in nature
to model F (C, ·). Let S be the set containing all the inclusion-maximal stable sets S of
G = (J,E). With each stable set S we associate a binary variable λS that is equal to 1 if and
only if stable set S is chosen. VCP can be modeled as follows:

minimize
∑
S∈S

λS (13a)

subject to
∑

S∈S:j∈S

λS ≥ 1 for each j ∈ J (13b)

λS ∈ {0,1} for each S ∈ S (13c)

Objective function (13a) minimizes the number of colors required for allowing a feasible solu-
tion. Constraints (13b) impose that every item (job) has to be colored. The constraints (13c)
require variables λS to be binary. Note that if an item j belongs to more than one color
class (machine), it can be removed from all but one of these classes, which leads to a fea-
sible solution with the same objective. Relaxing the integrality constraints (13c) gives the
LP relaxation of the set-covering model for VCP, in which as before we can disregard the
constraints λS ≤ 1. Denote by z∗ an optimal solution to this LP relaxation; ⌈z∗⌉ is a valid
lower bound for the VCP. This model also has an exponential number of variables and hence
the LP relaxation of (13) is solved with column generation, as before. The only difference is
the pricing problem, which is here a maximum weighted stable set problem, in other words,
there is no capacity constraint such as (6b). We solve the pricing problem with Algorithm 1
of Held et al. (2012). We branch until the algorithm finds a k-coloring with k ≤ m, or until we
have shown that there is no feasible m-coloring for the conflict graph. The further algorith-
mic details of the B&P algorithm are similar to the B&P algorithm for F (C, ·). The primal
heuristic of Section 4.5 is used also here in order to quickly find a feasible solution.

7. Computational experiments
In this section we provide details about our experimental setup (Section 7.1), and we report
computational results on datasets containing instances without conflict graph (meaning an
empty graph; in Section 7.2) and with arbitrary conflict graph (Section 7.3). In Section 7.4
we examine the behavior of our algorithm as a function of some of the problem’s parameters
in more detail, and finally thorough comparisons are made with the performance of a stand-
alone linear solver on a compact formulation of PMC in Section 7.5.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 16

7.1. Experimental setup

The algorithms have been implemented in the C programming language and compiled with

gcc version 4.8.2 with full optimization pack -O3. The computational experiments have been

performed on one core of a system with Intel Core i7-3770 processor at 3.4 GHz and 8 GB

of RAM under a Linux OS. We use the following experimental settings for our algorithm.

In the initialization phase, we construct 20 different solutions if this possible; we stop if for

n iterations there is no new or feasible solution. For the local search (k − l)-swap procedure

we choose k ∈ {1,2} and l ∈ {0,1,2}; all these swaps are called in a random order. If the

pricing problem is a KPC problem with d > 0.1 (see below for definition of d) then it is solved

with the algorithm of Section 4.3, otherwise the problem is solved by the general MIP solver

Gurobi 6.0.0. If the pricing problem is a 0/1 knapsack problem then we call Combo (Martello

et al. 1999), which is publicly available from http://www.diku.dk/pisinger/codes.html.

All LPs are solved with Gurobi. In the primal heuristic we set maxDiscrepancy = 2 and

maxDepth = 3. Each run of the algorithm (for one instance) is interrupted after 900 seconds.

The algorithms have been experimentally tested on a large set of PMC instances that

were randomly generated as follows. The number n of jobs is either 10,25,50,75 or 100. The

processing times are integers randomly generated from a uniform distribution in a given range

[a, b]; we consider the ranges [1,10], [1,50] and [1,100]. The conflict graphs are generated

using the Networkx module in Python. The algorithm chooses each of the n(n−1)
2 possible

edges with probability d; we consider values d = 0.1,0.2, 0.3,0.4,0.5. As a result, we obtain

triples (n,d, b) with n ∈ {10,25,50,75,100}, d ∈ {0.1,0.2,0.3,0.4,0.5} and b ∈ {10,50,100}.

For each triple we generate 10 instances. We schedule these instances on m = 5,10,15 and

20 machines.

We have also tested our algorithms on instances of P ||Cmax, in which there are no conflict-

ing jobs. These instances were tested in Dell’Amico et al. (2008), and they consist of two main

groups, referred to as “uniform” and “nonuniform.” The uniform instances have processing

times drawn from a uniform distribution in a range [a, b] and were first proposed by França

et al. (1994). The nonuniform instances are obtained by randomly generating 98% of the

processing times from a uniform distribution on [0.9(b − a), b] and the remaining processing

times using a uniform distribution on [a,0.2(b − a)]; they were generated in Frangioni et al.

(2004). Both the uniform and the nonuniform instance sets contain three different classes,

corresponding to different intervals for the processing times: a = 1 in all three classes but b

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 17

is either 100, 1000 or 10000. Each such class consists of 13 pairs (m,n), with m ∈ {5,10,25},

n ∈ {10,25,100,500,1000} and m < n; there are 10 instances for each pair.

7.2. Computational results on instances without conflicts

We first compare with heuristic procedures (Section 7.2.1) and afterwards with exact proce-

dures for P ||Cmax (Section 7.2.2).

7.2.1. Heuristics for P ||Cmax

We first examine the performance of the part of our exact algorithm that consists of the

constructive approximation algorithms of Section 5.2, the local search improvements of Sec-

tion 5.3 for every constructed solution, the lower bounds of Section 5.1, and the primal

heuristic of Section 4.5 at the root node of the B&P tree for the makespan value equal to the

best lower bound. In other words, we test whether the primal heuristic can find a feasible

solution for a BPP instance at the root node. We call this (heuristic) part of our exact algo-

rithm KL-heur. We compare with two of the best performing (meta-)heuristic procedures

from the literature: AR (Alvim and Ribeiro 2004), which is a binary search algorithm that

invokes tabu search at each iteration to try to find a feasible solution for a BPP instance,

and DIMM-SS (Dell’Amico et al. 2008), which is a meta-heuristic algorithm based on the

scatter search paradigm that optimally solves many benchmark instances.

For each group of instances (uniform and nonuniform), and for each of the three algorithms,

Table 1 reports the number of optimal solutions (#opt) and the average CPU time (sec) in

seconds. Each regular cell in the table contains the values corresponding with 10 instances

of a given class that depends on the number of jobs (n), the number of machines (m) and

the group (uniform or nonuniform). For each group and each range of processing times we

compute also the average over the 130 instances. The overall average is the average over 390

instances of each group. It is to be noted that algorithm AR was run on a machine with a

AMD 2.4 GHz processor, and DIMM-SS was tested on a machine with a Pentium IV 3.0

GHz processor; the results for the algorithms were taken from Dell’Amico et al. (2008).

Contrary to AR and DIMM-SS, our algorithm KL-heur solves all the instances to guar-

anteed optimality. With 0.168 CPU seconds average runtime across all instances, algorithm

KL-heur is also faster than the algorithms DIMM-SS (2.77 CPU seconds) and AR (0.175 CPU

seconds), but the average CPU time for KL-heur on some subsets of nonuniform instances

is clearly far higher than the average CPU time for AR and DIMM-SS. This probably stems

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 18

Table 1 Heuristic algorithms: uniform and nonuniform instances
uniform nonuniform

AR DIMM-SS KL-heur AR DIMM-SS KL-heur
range m n sec #opt sec #opt sec #opt sec #opt sec #opt sec #opt
[1,102] 5 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10

5 50 0.00 10 0.00 10 0.00 10 0.03 10 0.00 10 0.11 10
5 100 0.00 10 0.00 10 0.00 10 0.01 10 0.00 10 0.00 10
5 500 0.00 10 0.00 10 0.00 10 0.01 10 0.04 10 0.00 10
5 1000 0.00 10 0.00 10 0.00 10 0.02 10 0.17 10 0.01 10
10 50 0.00 10 0.00 10 0.00 10 0.31 4 0.00 10 0.04 10
10 100 0.00 10 0.00 10 0.00 10 0.22 8 0.00 10 0.43 10
10 500 0.00 10 0.01 10 0.00 10 0.00 10 0.03 10 0.00 10
10 1000 0.00 10 0.00 10 0.01 10 0.00 10 0.11 10 0.00 10
25 50 0.01 9 3.00 9 0.01 10 0.00 10 0.00 10 0.00 10
25 100 0.00 10 0.00 10 0.00 10 0.55 8 0.00 10 0.10 10
25 500 0.00 10 0.00 10 0.00 10 0.08 10 0.46 10 0.00 10
25 1000 0.00 10 0.00 10 0.01 10 0.18 10 1.02 10 0.01 10

average 0.00 129 0.23 129 0.00 130 0.11 120 0.14 130 0.05 130
[1,103] 5 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10

5 50 0.00 10 0.00 10 0.00 10 0.03 10 0.00 10 0.34 10
5 100 0.00 10 0.00 10 0.00 10 0.02 10 0.00 10 0.00 10
5 500 0.02 10 0.03 10 0.00 10 0.00 10 0.03 10 0.00 10
5 1000 0.05 10 0.11 10 0.04 10 0.02 10 0.18 10 0.01 10
10 50 0.02 8 0.01 10 0.08 10 0.00 10 0.00 10 0.14 10
10 100 0.00 10 0.00 10 0.00 10 0.35 10 0.02 10 1.24 10
10 500 0.01 10 0.02 10 0.00 10 0.07 10 0.03 10 0.00 10
10 1000 0.04 10 0.11 10 0.02 10 0.06 10 0.18 10 0.01 10
25 50 0.02 9 3.00 9 0.02 10 0.00 10 0.00 10 0.00 10
25 100 0.04 8 20.34 9 0.50 10 1.08 8 0.02 10 0.41 10
25 500 0.00 10 0.02 10 0.00 10 0.13 10 0.72 10 0.00 10
25 1000 0.02 10 0.09 10 0.01 10 0.43 10 0.43 10 0.01 10

average 0.02 125 1.82 128 0.05 130 0.17 128 0.12 130 0.17 130
[1,104] 5 10 0.03 8 0.00 9 0.00 10 0.00 10 0.00 10 0.00 10

5 50 0.03 10 0.00 10 0.02 10 0.02 10 0.00 10 1.10 10
5 100 0.00 10 0.00 10 0.00 10 0.01 10 0.02 10 0.01 10
5 500 0.01 10 0.03 10 0.03 10 0.00 10 3.00 10 0.00 10
5 1000 0.14 10 0.21 10 0.01 10 0.03 10 0.18 10 0.04 10
10 50 0.25 0 18.37 6 0.39 10 0.35 8 0.01 10 0.48 10
10 100 0.00 10 0.01 10 0.05 10 0.24 10 0.03 10 4.36 10
10 500 0.01 10 0.02 10 0.02 10 0.01 10 0.05 10 0.01 10
10 1000 0.04 10 0.15 10 0.02 10 0.02 10 0.12 10 0.01 10
25 50 0.03 9 3.00 9 0.00 10 0.00 10 0.00 10 0.01 10
25 100 0.59 0 120.03 0 1.33 10 4.29 3 39.82 7 1.55 10
25 500 0.01 10 0.02 10 0.03 10 3.13 10 1.23 10 0.03 10
25 1000 0.03 10 0.09 10 0.04 10 0.22 10 2.75 10 0.03 10

average 0.09 107 10.92 114 0.15 130 0.64 121 3.40 127 0.59 130
overall average 0.04 361 4.32 371 0.07 390 0.31 369 1.22 387 0.27 390

AR: AMD 2.4 GHz, DIMM-SS: Pentium IV 3 GHz, KL-heur: Intel Core i7-3770 3.4 GHz

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 19

from the calculation of the lower bound for these instances: we calculate a tight lower bound
with the help of the set covering relaxation F (C, ·) of BPP if the constructive heuristics do
not succeed in confirming optimality of the given lower bound. It can be anticipated that
for larger and/or more difficult instances, iteratively calling the primal heuristic more than
once might lead to better solutions, but this turns out not to be necessary here.

7.2.2. Exact algorithms for P ||Cmax

Next we compare our overall algorithm with the best exact algorithms for P ||Cmax from the
literature, namely with DM (Dell’Amico and Martello 1995) and with DIMM (Dell’Amico
et al. 2008). DM is a branch-and-bound algorithm that computes a lower bound at every
node, based on the relation between P ||Cmax and BPP. Some dominance criteria are applied,
and the initialization phase of the algorithm consists of a number of approximation algo-
rithms for P ||Cmax (drawn from the literature). DIMM is an algorithm that consists of two
phases. The first phase is the scatter search algorithm DIMM-SS, which, as mentioned in
Section 7.2.1, already solves many instances to optimality. The second phase of the algorithm
is based on a binary search and a B&P scheme.

We refer to our own algorithm as KL. For the two groups of instances and for each range
of processing times, Table 2 contains the average CPU time (sec), average percentage gap
(%gap) and the number of optimal solutions found (#opt). We provide the same informa-
tion for both groups of instances, uniform and nonuniform, and for all 780 instances. The
algorithms DIMM and KL clearly outperform algorithm DM, in that DM does not produce
optimal solutions for all instances despite the higher average runtimes. Also, the average
CPU time for KL is clearly lower than the average CPU time of DM.

Table 2 Exact algorithms for P ||Cmax

DM DIMM KL
class range %gap sec #opt sec #opt sec #opt

[1,102] 0.0000 0.00 130 0.23 130 0.00 130
uniform [1,103] 0.0019 21.75 127 1.86 130 0.05 130

[1,104] 0.0348 146.98 109 13.5 130 0.15 130
average 0.0122 56.25 366 5.19 390 0.07 390

[1,102] 0.0155 131.56 120 0.14 130 0.05 130
nonuniform [1,103] 0.0169 124.66 112 0.12 130 0.17 130

[1,104] 0.0190 346.32 80 10.99 130 0.59 130
average 0.0171 200.85 312 3.75 390 0.27 390

overall average 0.0147 128.55 678 4.47 780 0.17 780
DM, DIMM: Pentium IV 3 GHz, KL: Intel Core i7-3770 3.4 GHz

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 20

7.3. Computational results on instances with conflicts

In Table 3 we report for each range of processing times, number of machines and num-

ber of jobs the average CPU time (sec) in seconds, the average percentage gap (%gap)

and the number of optimal solutions (#opt), where this last value counts the number of

instances for which we have found a guaranteed optimal solution or proved that the instance

is infeasible. Each regular cell in the table pertains to 50 instances (10 for each value of

d ∈ {0.1,0.2,0.3,0.4,0.5}). We see that the algorithm solves all the instances if the number

of jobs is at most 50. Unsolved instances (with 900 seconds runtime limit) occur with 75 and

100 jobs; the highest runtimes and highest numbers of unsolved instances are found when

the instances “balance” between feasible and infeasible, meaning that the chromatic number

of the conflict graph is close to m. Indeed, in this case it is time-consuming to prove that an

instance is unfeasible, and the feasible instances are quite constrained due to the high density

of the graph, or put differently: this is when the algorithm needs time to decide whether an

instance is feasible or unfeasible. If the number of machines is sufficiently low then it will be

easier to decide that an instance is infeasible, ceteris paribus. For instances with 75 jobs we

observe that a transition (from feasible to infeasible) takes place for 10 machines. The same

can be observed for instances with 100 jobs, but then the transition point can be at 5,10,15

or 20 machines, dependent on the density of the instance. Overall, we solve all instances

in the dataset in an average runtime of 44.721 seconds, with an average optimality gap of

0.276% and we find a guaranteed optimal solution to 2436 out of the 2550 instances in total

(these aggregate figures are not very informative, however).

Table 4 displays the same computational results but now gathered per value of the density

of the conflict graph, the number of machines and the number of jobs. Each class has 30

instances in this table. For n = 100, for example, it can be clearly seen that the most difficult

instances have m = 5 when d = 0.1, m = 10 when d = 0.3, m = 15 when d = 0.4 and m =

15 and 20 when d = 0.5. The absence of “difficult” instances for density d = 0.2 is easily

explained: the hard values for m are especially 7 and 8 here (which we have experimentally

confirmed, but we do not report the values here for brevity of exposition). As explained

above, these distinguishing values for m will typically coincide with the chromatic number

of the conflict graph.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 21

Table 3 Computational results on instances with conflicts in function of range
(a) Range [1,10]

m n sec %gap #opt
5 10 0.001 0.000 50

20 25 0.000 0.000 50
15 25 0.001 0.000 50
10 25 0.002 0.000 50
5 25 0.025 0.000 50

20 50 0.005 0.000 50
15 50 0.008 0.000 50
10 50 0.385 0.000 50
5 50 3.423 0.000 50

20 75 0.037 0.000 50
15 75 0.193 0.000 50
10 75 162.632 1.068 41
5 75 0.334 0.000 50

20 100 0.242 0.000 50
15 100 180.686 1.235 40
10 100 100.781 0.221 45
5 100 52.016 0.246 49

average 29.457 0.281 825

(b) Range [1,50]

m n sec %gap #opt
5 10 0.002 0.000 50

20 25 0.000 0.000 50
15 25 0.001 0.000 50
10 25 0.030 0.000 50
5 25 0.055 0.000 50

20 50 0.107 0.000 50
15 50 0.130 0.000 50
10 50 1.455 0.000 50
5 50 21.564 0.000 50

20 75 0.251 0.000 50
15 75 14.055 0.000 50
10 75 182.456 2.284 40
5 75 0.826 0.000 50

20 100 1.327 0.000 50
15 100 221.026 1.530 38
10 100 181.440 0.413 40
5 100 165.632 0.186 42

average 46.492 0.260 810

(c) Range [1,100]

m n sec %gap #opt
5 10 0.002 0.000 50

20 25 0.000 0.000 50
15 25 0.003 0.000 50
10 25 0.046 0.000 50
5 25 0.067 0.000 50

20 50 0.117 0.000 50
15 50 0.307 0.000 50
10 50 2.618 0.000 50
5 50 45.341 0.000 50

20 75 0.702 0.000 50
15 75 78.777 0.022 48
10 75 201.388 2.505 39
5 75 2.284 0.000 50

20 100 63.991 0.024 47
15 100 244.608 1.701 37
10 100 164.637 0.407 40
5 100 184.755 0.214 40

average 58.214 0.287 801

7.4. Phase transitions

It was suggested above that an easy-hard-easy transition occurs, dependent on the values of

some of the parameters. We now examine this behavior in more detail. Figure 1 displays the

average CPU time (on a logarithmic scale) for solving 10 instances as a function of the density

of the conflict graph (which is on the horizontal axis); the different curves correspond with

different numbers m of machines. The instances were created as follows: each instance has

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 22

Table 4 Computational results on instances with conflicts in function of density
(a) d = 0.1

m n sec %gap #opt
5 10 0.001 0.000 30

20 25 0.000 0.000 30
15 25 0.000 0.000 30
10 25 0.026 0.000 30
5 25 0.001 0.000 30

20 50 0.161 0.000 30
15 50 0.071 0.000 30
10 50 0.011 0.000 30
5 50 0.014 0.000 30

20 75 0.039 0.000 30
15 75 0.001 0.000 30
10 75 0.003 0.000 30
5 75 4.185 0.000 30

20 100 0.002 0.000 30
15 100 0.001 0.000 30
10 100 0.002 0.000 30
5 100 653.826 1.077 11

average 38.726 0.063 491

(b) d = 0.2

m n sec %gap #opt
5 10 0.001 0.000 30

20 25 0.000 0.000 30
15 25 0.001 0.000 30
10 25 0.012 0.000 30
5 25 0.055 0.000 30

20 50 0.026 0.000 30
15 50 0.035 0.000 30
10 50 0.052 0.000 30
5 50 117.112 0.000 30

20 75 0.064 0.000 30
15 75 0.140 0.000 30
10 75 0.406 0.000 30
5 75 1.376 0.000 30

20 100 0.232 0.000 30
15 100 0.343 0.000 30
10 100 5.280 0.000 30
5 100 16.781 0.000 30

average 8.348 0.000 510

(c) d = 0.3

m n sec %gap #opt
5 10 0.002 0.000 30

20 25 0.000 0.000 30
15 25 0.001 0.000 30
10 25 0.021 0.000 30
5 25 0.086 0.000 30

20 50 0.066 0.000 30
15 50 0.095 0.000 30
10 50 0.243 0.000 30
5 50 0.077 0.000 30

20 75 0.165 0.000 30
15 75 0.392 0.000 30
10 75 36.370 0.008 29
5 75 0.159 0.000 30

20 100 0.706 0.000 30
15 100 2.142 0.000 30
10 100 737.994 1.735 5
5 100 0.015 0.000 30

average 45.796 0.103 484

(d) d = 0.4

m n sec %gap #opt
5 10 0.002 0.000 30

20 25 0.000 0.000 30
15 25 0.005 0.000 30
10 25 0.031 0.000 30
5 25 0.103 0.000 30

20 50 0.042 0.000 30
15 50 0.170 0.000 30
10 50 2.379 0.000 30
5 50 0.006 0.000 30

20 75 0.406 0.000 30
15 75 1.192 0.000 30
10 75 873.899 9.754 1
5 75 0.009 0.000 30

20 100 1.898 0.000 30
15 100 174.292 0.069 25
10 100 1.057 0.000 30
5 100 0.021 0.000 30

average 62.089 0.578 476

(e) d = 0.5

m n sec %gap #opt
5 10 0.002 0.000 30

20 25 0.000 0.000 30
15 25 0.002 0.000 30
10 25 0.040 0.000 30
5 25 0.001 0.000 30

20 50 0.086 0.000 30
15 50 0.371 0.000 30
10 50 4.744 0.000 30
5 50 0.004 0.000 30

20 75 0.977 0.000 30
15 75 153.315 0.036 28
10 75 0.117 0.000 30
5 75 0.011 0.000 30

20 100 106.429 0.040 27
15 100 900.422 7.375 0
10 100 0.431 0.000 30
5 100 0.028 0.000 30

average 68.646 0.438 475

50 jobs with processing times drawn from interval [1,100]. Starting with an empty conflict

graph, we stepwise randomly add edges until the density of the graph has increased by at

least 5 percent, and this until the density of the graph reaches at least 90 percent. In this

way we obtain 190 instances, with 10 instances for each value in {0.0,0.05,0.10, . . . ,0.90}.

The peak average runtime occurs for higher densities as the number of machines rises; for

m = 5, for instance, the highest runtimes are observed when d = 0.20. These instances are

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 23

Figure 1 Average CPU time on a logarithmic scale (smoothed curve)

Figure 2 CPU time for one instance as a function of the number of machines

hard to color and the lower bound of Section 5.1 is not very tight anymore. As m goes up, the

curves become lower and also flatter, indicating that there is less variability in the empirical

hardness of instances. For densities above those with the highest runtime, the instances

are typically infeasible, but the runtimes are still not always drastically lower because the

algorithm sometimes calculates a lower bound on the chromatic number with the help of

the formulation (13) after it has tried to find a clique with sufficient jobs. When the density

becomes large enough then the construction of a clique will suffice to show infeasibility.

We have also looked into the effect on runtimes of the number of machines for a given

graph. For one instance of our dataset with n = 50, b = 100 and d = 0.5 (the first instance with

these settings, instance name pmc50 0.5 100 0.txt), Figure 2 shows the CPU time needed

with different m-values (CPU time is on the vertical axis, m on the horizontal axis). The

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 24

first feasible solution is obtained with 9 machines; for m close to but less than 9 the runtime
to show infeasibility is higher than for lower m because the construction of the clique takes
longer or we have to compute a lower bound for the number of colors with the help of
formulation (13), which can be time-consuming. The algorithm needs more time for m = 10
than for m = 9 because some parts of the search tree will require more effort to confirm
infeasible makespan values. Beyond m = 10, it becomes easier to find an optimal solution.

7.5. Comparison with Gurobi

Since this is the first paper in which an exact algorithm for PMC is developed, we turn to
the MIP solver Gurobi 6.0.0 with the compact formulation (1) for a benchmark comparison.
Contrary to the foregoing sections, Gurobi uses four cores here. We have also tested this
formulation with various SBCs, but without obtaining better solutions. The computational
results for the extensions with SBCs can be consulted in the Appendix.

For Gurobi, Table 5 contains similar information as Table 3; we include an extra column
that counts the number of instances (#no) for which the MIP solver could not decide whether
the instance was feasible or infeasible after 900 seconds runtime. The average CPU time in
every cell is computed over all the instances and the average gap in every cell is computed
over all the instances for which we have at least one feasible solution or have proved that
the instance is infeasible.

We observe that the MIP solver already experiences problems when n = 50 and with a
high number m of machines, but that it gives very good results for instances with low m,
so instances with a high number of jobs per machine. In such instances, the number of
equivalent solutions is much smaller and symmetry is not a large issue for the MIP solver.
Gurobi is better than our algorithm for the setting m = 5, n = 100, which is the lowest line
in each of the three subtables of Table 5: it is faster and solves more instances to optimality.
For all other settings, our algorithm is dominant. Our difficulty with m = 5 and n = 100
can be explained by the fact that the lower bound of Section 5.1 is not very tight anymore
and the B&P algorithm has to explore many nodes in the B&P search tree in order to
decide feasibility. Moreover, the primal heuristic, which is applied at every node, can be very
time-consuming here, and it will not always be able to “grab” a feasible solution quickly
because the columns of the set-covering formulation (3) contain many jobs and choosing
good columns is difficult. The convergence of the column generation is also slow because the
pricing oracle requires more time: the search tree is larger, with more branches and more

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 25

Table 5 Computational results for Gurobi in function of range
(a) Range [1,10]

m n sec %gap #no #opt
5 10 0.008 0.000 0 50

20 25 0.050 0.000 0 50
15 25 54.488 0.364 0 48
10 25 0.866 0.000 0 50
5 25 0.069 0.000 0 50

20 50 0.598 0.000 0 50
15 50 0.580 0.000 0 50
10 50 37.524 0.000 0 50
5 50 0.805 0.000 0 50

20 75 8.132 0.000 0 50
15 75 132.560 0.432 0 44
10 75 319.943 1.167 12 33
5 75 1.920 0.000 0 50

20 100 137.775 0.418 0 44
15 100 266.362 0.546 9 36
10 100 540.919 1.714 21 20
5 100 3.164 0.000 0 50

average 88.574 0.219 42 775

(b) Range [1,50]

m n sec %gap #no #opt
5 10 0.009 0.000 0 50

20 25 0.054 0.000 0 50
15 25 0.111 0.000 0 50
10 25 0.424 0.000 0 50
5 25 0.141 0.000 0 50

20 50 221.291 0.318 0 40
15 50 192.571 0.205 0 42
10 50 242.597 0.266 0 40
5 50 2.757 0.000 0 50

20 75 341.912 0.497 0 32
15 75 398.747 0.977 0 29
10 75 460.440 1.932 11 27
5 75 2.623 0.000 0 50

20 100 424.927 0.865 0 29
15 100 467.564 0.765 10 27
10 100 607.572 1.267 22 18
5 100 7.125 0.000 0 50

average 198.286 0.369 43 684

(c) Range [1,100]

m n sec %gap #no #opt
5 10 0.009 0.000 0 50

20 25 0.054 0.000 0 50
15 25 0.114 0.000 0 50
10 25 0.328 0.000 0 50
5 25 0.229 0.000 0 50

20 50 405.162 0.430 0 30
15 50 400.285 0.353 0 30
10 50 363.594 0.318 0 34
5 50 3.944 0.000 0 50

20 75 674.408 0.742 0 16
15 75 590.521 1.026 0 20
10 75 587.332 0.883 14 20
5 75 4.118 0.000 0 50

20 100 683.167 1.198 0 15
15 100 574.979 0.921 10 20
10 100 708.439 1.245 22 12
5 100 33.759 0.002 0 49

average 295.908 0.382 46 596

backtracking. As mentioned in Sections 7.3 and 7.4, the highest runtime occurs when the

chromatic number is equal to or close to m, i.e., it is not easy to color the graph with m

colors. Overall we conclude that our algorithm outperforms Gurobi unless the ratio n/m is

very high: our algorithm is better in finding feasible and optimal solutions, and in showing

that a given instance is infeasible.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 26

In Table 6 we report the same computational results for Gurobi but now in function of

the density of the conflict graph (following the same structure as Table 4). We observe the

same phase transitions as in Table 4, but in the most difficult settings Gurobi is not able to

identify a feasible solution or even to prove that the instance is infeasible.

7.6. Suggestions for future work

Based on the foregoing, we conclude that it would be interesting to develop a (meta-)heuristic

for PMC that is capable of solving or of decreasing the gap for instances with high ratio n/m

and where m is close to the chromatic number of the conflict graph. One option might be to

extend the scatter search algorithm of Dell’Amico et al. (2008), but it should be noted that

it is not always easy to find sufficient feasible solutions in order to run such an algorithm; one

way to overcome this issue would be to allow infeasible solutions into the reference set. One

can also extend the tabu search algorithm of Alvim and Ribeiro (2004) for PMC; Table 1

shows that this algorithm performs very well on instances that have a high number of jobs

on a machine. Initializing this algorithm might be easier since only one feasible solution is

needed. To this respect, we mention that the primal heuristic is very good in finding feasible

solutions for the instances under consideration, while the MIP solver encounters difficulties.

8. Conclusion
In this paper we have introduced an exact algorithm for parallel machine scheduling with a

conflict graph. The algorithm is based on a binary search for the lowest makespan, using a

B&P framework and a primal heuristic, and combines methods from bin packing, scheduling

and graph coloring (with appropriate modifications), and we use a numerically safe bound

(introduced in Held et al. (2012)), which leads to integer-valued profits in the pricing prob-

lems (knapsack and KPC), and which avoids floating-point representations of the numbers

output by the LP solver, thus avoiding difficulties in assessing the termination condition of

the column generation.

The algorithm solves all the benchmark instances of P ||Cmax with very low average CPU

times. For a newly generated dataset with conflict graphs, we have examined the difficulty

of the instances as a function of the number of machines and the density of the graph. It

turns out that the most difficult instances are those where the number of machines is close

to the chromatic number of the graph.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 27

References
Alvim, A.C.F., C.C. Ribeiro. 2004. A hybrid bin-packing heuristic to multiprocessor scheduling. Experimental

and Efficient Algorithms. Proceedings of the Third International Workshop WEA 2004, Angra dos Reis,

Brazil, May 25-28 .

Balachandran, B.V., A.A. Zoltners. 1981. An interactive audit-staff scheduling decision support system. The

Accounting Review 56 801–812.

Berghman, L., R. Leus, F.C.R. Spieksma. 2014. Optimal solutions for a dock assignment problem with trailer

transportation. Annals of Operations Research 213 3–25.

Bodlaender, H.L., K. Jansen, G.J. Woeginger. 1994. Scheduling with incompatible jobs. Discrete Applied

Mathematics 55 219–232.

Botha, R.A., J.H.P. Eloff. 2001. Separation of duties for access control enforcement in workflow environments.

IBM Systems Journal 40 666–682.

Brélaz, D. 1979. New methods to color the vertices of a graph. Communications of the ACM 22 251–256.

Carraghan, R., P.M. Pardalos. 1990. An exact algorithm for the maximum clique problem. Operations

Research Letters 9 375–382.

Dell’Amico, M., M. Iori, S. Martello, M. Monaci. 2008. Heuristic and exact algorithms for the identical

parallel machine scheduling problem. INFORMS Journal on Computing 20 333–344.

Dell’Amico, M., S. Martello. 1995. Optimal scheduling of tasks on identical parallel processors. ORSA

Journal on Computing 7 191–200.

Elhedhli, S., L. Li, M. Gzara, J. Naoum-Sawaya. 2011. A branch-and-price algorithm for the bin packing

problem with conflicts. INFORMS Journal on Computing 23 404–415.

França, P.M., M. Gendreau, G. Laporte, F.M. Müller. 1994. A composite heuristic for the identical parallel

machine scheduling problem with minimum makespan objective. Computers & Operations Research

21 205–210.

Frangioni, A., E. Necciari, M.G. Scutella. 2004. A multi-exchange neighborhood for minimum makespan

parallel machine scheduling problems. Journal of Combinatorial Optimization 8 195–220.

Gardi, F. 2009. Mutual exclusion scheduling with interval graphs or related classes, part I. Discrete Applied

Mathematics 157 19 – 35.

Garey, M.R., D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness.

WH Freeman and Company, New York.

Gaur, D.R., R. Krishnamurti, R. Kohli. 2009. Conflict resolution in the scheduling of television commercials.

Operations Research 57 1098–1105.

Giblin, C., S. Hada. 2008. Towards seperation of duties for services. The 6th International Workshop on

SOA & Web Services Best Practices Committee. OOPSLA, Nashville, October 19.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 28

Gilmore, P.C., R.E. Gomory. 1961. A linear programming approach to the cutting-stock problem. Operations

Research 9 849–859.

Graham, R.L. 1966. Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45

1563–1581.

Graham, R.L. 1969. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics

17 416–429.

Harvey, W.D., M.L. Ginsberg. 1995. Limited discrepancy search. Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence. Morgan Kaufmann, 607–615.

Hastad, J. 1996. Clique is hard to approximate within n1−ϵ. Proceedings of the 37th Annual Symposium on

Foundations of Computer Science. IEEE, 627–636.

Held, S., W. Cook, E.C. Sewell. 2012. Maximum-weight stable sets and safe lower bounds for graph coloring.

Mathematical Programming Computation 4 363–381.

Hifi, M., N. Otmani. 2012. An algorithm for the disjunctively constrained knapsack problem. International

Journal of Operational Research 13 22–43.

Jans, R. 2009. Solving lot-sizing problems on parallel identical machines using symmetry-breaking con-

straints. INFORMS Journal on Computing 21 123–136.

Johnson, D.S. 1973. Approximation algorithms for combinatorial problems. Proceedings of the Fifth Annual

ACM Symposium on Theory of Computing. ACM, 38–49.

Johnson, D.S., C.R. Aragon, L.A. McGeoch, C. Schevon. 1991. Optimization by simulated annealing: an

experimental evaluation; part II, graph coloring and number partitioning. Operations Research 39

378–406.

Joncour, C., S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck. 2010. Column generation based primal

heuristics. Electronic Notes in Discrete Mathematics 36 695–702.

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack problems. Springer.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan. 1982. Recent developments in deterministic sequencing and

scheduling: A survey. M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan, eds., Deterministic and

Stochastic Scheduling, NATO Advanced Study Institutes Series, vol. 84. Springer Netherlands, 35–73.

Liberti, L. 2012. Symmetry in mathematical programming. J. Lee, S. Leyffer, eds., Mixed Integer Nonlinear

Programming. The IMA Volumes in Mathematics and its Applications 154 . Springer, 263–283.

Manerba, D., R. Mansini. 2015. A branch-and-cut algorithm for the multi-vehicle traveling purchaser problem

with pairwise incompatibility constraints. Networks 65 139–154.

Margot, F. 2010. Symmetry in integer linear programming. M. Jünger, T. Liebling, D. Naddef, G. Nemhauser,

W. Pulleyblank, G. Reinelt, G. Rinaldi, L. Wolsey, eds., 50 Years of Integer Programming 1958-2008 ,

chap. 17.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 29

Martello, S., D. Pisinger, P. Toth. 1999. Dynamic programming and strong bounds for the 0-1 knapsack

problem. Management Science 45 414–424.

Martello, S., P. Toth. 1977. An upper bound for the zero-one knapsack problem and a branch and bound

algorithm. European Journal of Operational Research 1 169–175.

Martin, R.K. 1999. Large Scale Linear and Integer Optimization: A Unified Approach. Springer.

Mehrotra, A., M. Trick. 1996. A column generation approach for graph coloring. INFORMS Journal on

Computing 8 344–354.

Muritiba, A.E.F., M. Iori, E. Malaguti, P. Toth. 2010. Algorithms for the bin packing problem with conflicts.

INFORMS Journal on Computing 22 401–415.

Österg̊ard, P.R.J. 2001. A new algorithm for the maximum-weight clique problem. Nordic Journal of

Computing 8 424–436.

Pferschy, U., J. Schauer. 2009. The knapsack problem with conflict graphs. Journal of Graph Algorithms

and Applications 13 233–249.

ROADEF. 2011. Google ROADEF/EURO challenge 2012: Machine reassignment. Available online at http:

//challenge.roadef.org/2012/files/problem_definition_v1.pdf.

Sadykov, R., F. Vanderbeck. 2013. Bin packing with conflicts: a generic branch-and-price algorithm.

INFORMS Journal on Computing 25 244–255.

Sherali, H.D., J.C. Smith. 2001. Improving discrete model representations via symmetry considerations.

Management Science 47 1396–1407.

Sun, H.Y., W.L. Zhao, J. Yang. 2010. Managing conflict of interest in service composition. Lecture Notes in

Computer Science 6426 273–290.

Vanderbeck, F. 2000. On Dantzig-Wolfe decomposition in integer programming and ways to perform branch-

ing in a branch-and-price algorithm. Operations Research 48 111–128.

Zykov, A.A. 1949. On some properties of linear complexes. Matematicheskii Sbornik 66 163–188.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 30

Appendix. Symmetry breaking
With symmetry breaking constraints (SBCs) we try to exclude isomorphic solutions in the exploration of the

solution space scanned by a MIP solver. Symmetry is an important problem for such solvers, because many

subproblems encountered in the B&B tree can be equivalent and this results in duplication of computational

effort. For a survey paper on symmetry in integer programming we refer to Margot (2010) and Liberti (2012).

For some applications of SBCs to scheduling and other problems we mention Berghman et al. (2014), Jans

(2009) and Sherali and Smith (2001).

The intuitive formulation (1) for PMC assigns jobs to identical machines and thus many alternative

(sub-)optimal solutions can be constructed simply by interchanging machines. In this appendix we present

several SBCs from the literature that can be applied to formulation (1) (for PMC, and thus also for P ||Cmax).

For all these SBCs we provide extensive computational results.

The first class of SBCs that we consider enforces that the number of jobs that is scheduled on machine i

is at least as high as the number of jobs on machine i + 1. This can be stated as follows:∑
j∈J

xij ≥
∑
j∈J

xi+1,j ∀i ∈ M \ {m}. (14)

The next class of SBCs is based on Jans (2009). For each set S of jobs scheduled on a machine a unique

number
∑

j∈S 2j is assigned. The machines are then ordered by decreasing value of this number. This leads

to the following set of constraints:∑
j∈J

2jxij ≥
∑
j∈J

2j
i+1,j ∀i ∈ M \ {m}. (15)

The third type of symmetry breaking that we have considered, is based on the reasoning that every job is

scheduled on the machine with lowest index, giving priority to the lowest-indexed jobs. This means that a

job j can only be scheduled on a specific machine i if at least one of the jobs of set {1, . . . , j − 1} is planned

on machine i − 1. We formulate this as follows:

xij ≤
j−1∑
k=1

xi−1,k i ∈ M \ {1},∀j ∈ J \ {1} (16)

The last class of SBCs that we have examined, enforces that the first m jobs have to be scheduled on a

specific subset of machines. Concretely, we demand that job j, with j ≤ m, be assigned to a machine in the

subset {1, . . . , j}:
j∑

i=1

xij = 1 ∀j ∈ {1, . . . ,m}. (17)

We refer to these constraint sets as SBC1, SBC2, SBC3 and SBC4, respectively. It can be seen that SBC2

and SBC3 eliminate all symmetry in the formulation, whereas SBC1 and SBC4 might still allow multiple

equivalent solutions. We have tested these SBCs on the instances with conflict graphs. For each range of pro-

cessing times, number of machines and number of jobs we provide in Tables 7–10 the average CPU time (sec)

in seconds, the average percentage gap (%gap) and the number of optimal solutions (#opt). Tables 11–14

contain the same information but now in function of the density of the conflict graph. These results can be

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 31

compared with Tables 3 and 4, respectively (which show the results without symmetry breaking). Overall,

none of the constraint sets has a major impact on the performance of the formulation; SBC2 and SBC4 seem

to be best, with minor improvements compared to the formulations without SBCs in the duration range

[1,100] and for low graph densities, but the differences are not really significant.

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 32

Table 6 Computational results for Gurobi in function of density
(a) d = 0.1

m n sec %gap #no #opt
5 10 0.007 0.000 0 30

20 25 0.036 0.000 0 30
15 25 30.197 0.303 0 29
10 25 1.535 0.000 0 30
5 25 0.061 0.000 0 30

20 50 221.447 0.281 0 23
15 50 13.998 0.000 0 30
10 50 4.020 0.000 0 30
5 50 0.263 0.000 0 30

20 75 135.717 0.083 0 26
15 75 33.266 0.013 0 29
10 75 1.669 0.000 0 30
5 75 1.451 0.000 0 30

20 100 34.656 0.013 0 29
15 100 2.665 0.000 0 30
10 100 1.721 0.000 0 30
5 100 61.618 0.003 0 29

average 32.019 0.041 0 495

(b) d = 0.2

m n sec %gap #no #opt
5 10 0.007 0.000 0 30

20 25 0.048 0.000 0 30
15 25 30.081 0.303 0 29
10 25 0.166 0.000 0 30
5 25 0.155 0.000 0 30

20 50 227.181 0.255 0 23
15 50 16.275 0.000 0 30
10 50 12.635 0.000 0 30
5 50 10.886 0.000 0 30

20 75 178.438 0.082 0 26
15 75 143.335 0.049 0 26
10 75 121.505 0.026 0 27
5 75 11.256 0.000 0 30

20 100 260.230 0.103 0 23
15 100 63.962 0.011 0 29
10 100 393.254 0.097 0 20
5 100 11.095 0.000 0 30

average 87.089 0.054 0 473

(c) d = 0.3

m n sec %gap #no #opt
5 10 0.009 0.000 0 30

20 25 0.054 0.000 0 30
15 25 2.830 0.000 0 30
10 25 0.541 0.000 0 30
5 25 0.310 0.000 0 30

20 50 217.918 0.235 0 24
15 50 92.932 0.055 0 28
10 50 124.639 0.040 0 27
5 50 1.141 0.000 0 30

20 75 308.212 0.186 0 21
15 75 273.129 0.104 0 24
10 75 550.883 0.388 0 13
5 75 1.503 0.000 0 30

20 100 374.377 0.190 0 21
15 100 472.808 0.250 0 18
10 100 899.907 4.685 5 0
5 100 0.236 0.000 0 30

average 195.378 0.318 5 416

(d) d = 0.4

m n sec %gap #no #opt
5 10 0.010 0.000 0 30

20 25 0.061 0.000 0 30
15 25 25.745 0.000 0 30
10 25 0.191 0.000 0 30
5 25 0.137 0.000 0 30

20 50 186.126 0.196 0 25
15 50 356.777 0.286 0 19
10 50 559.160 0.484 0 12
5 50 0.180 0.000 0 30

20 75 472.976 0.585 0 15
15 75 603.134 0.760 0 10
10 75 899.972 10.699 17 0
5 75 0.119 0.000 0 30

20 100 589.059 0.856 0 11
15 100 742.077 2.328 0 6
10 100 900.000 — 30 0
5 100 0.240 0.000 0 30

average 313.880 0.656 47 338

(e) d = 0.5

m n sec %gap #no #opt
5 10 0.011 0.000 0 30

20 25 0.065 0.000 0 30
15 25 2.335 0.000 0 30
10 25 0.263 0.000 0 30
5 25 0.069 0.000 0 30

20 50 192.412 0.278 0 25
15 50 509.078 0.589 0 15
10 50 372.403 0.449 0 25
5 50 0.041 0.000 0 30

20 75 612.077 1.128 0 10
15 75 816.849 3.132 0 4
10 75 705.496 0.000 20 10
5 75 0.105 0.000 0 30

20 100 818.127 2.973 0 4
15 100 899.996 12.195 29 0
10 100 900.000 — 30 0
5 100 0.223 0.000 0 30

average 342.915 0.623 79 333

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 33

Table 7 Computational results for SBC1 in function of range
(a) Range [1,10]

m n sec %gap #no #opt
5 10 0.019 0.000 0 50

20 25 0.192 0.000 0 50
15 25 87.264 0.682 0 47
10 25 0.215 0.000 0 50
5 25 80.035 0.493 0 46

20 50 76.935 0.535 0 46
15 50 7.972 0.000 0 50
10 50 195.306 1.590 0 40
5 50 13.013 0.000 0 50

20 75 46.145 0.095 0 49
15 75 191.588 0.759 0 40
10 75 426.738 0.229 20 27
5 75 107.257 0.000 5 45

20 100 241.699 0.894 0 39
15 100 371.169 0.000 10 31
10 100 544.833 1.631 25 20
5 100 50.311 0.000 1 49

average 143.570 0.380 61 729

(b) Range [1,50]

m n sec %gap #no #opt
5 10 0.026 0.000 0 50

20 25 0.210 0.000 0 50
15 25 3.668 0.000 0 50
10 25 3.435 0.000 0 50
5 25 294.583 0.597 0 37

20 50 719.770 1.815 0 11
15 50 426.279 0.861 0 29
10 50 412.864 2.056 0 28
5 50 77.586 0.009 0 49

20 75 630.704 1.434 0 18
15 75 586.455 1.645 0 19
10 75 605.727 0.479 20 18
5 75 95.370 0.000 4 46

20 100 668.875 1.992 0 16
15 100 642.352 1.677 10 17
10 100 698.277 1.453 25 12
5 100 94.056 0.004 3 46

average 350.602 0.810 62 546

(c) Range [1,100]

m n sec %gap #no #opt
5 10 0.028 0.000 0 50

20 25 0.225 0.000 0 50
15 25 43.628 0.040 0 48
10 25 3.632 0.000 0 50
5 25 614.044 1.125 0 23

20 50 760.023 1.895 0 9
15 50 721.581 1.288 0 15
10 50 681.766 2.217 0 15
5 50 101.846 0.027 0 46

20 75 855.913 1.895 0 4
15 75 796.704 1.720 0 8
10 75 702.574 0.531 20 13
5 75 125.243 0.000 6 44

20 100 804.542 2.286 0 8
15 100 785.366 1.795 10 8
10 100 735.425 1.265 27 10
5 100 100.239 0.004 2 46

average 460.752 0.945 65 447

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 34

Table 8 Computational results for SBC2 in function of range
(a) Range [1,10]

m n sec %gap #no #opt
5 10 0.004 0.000 0 50

20 25 0.036 0.000 0 50
15 25 0.035 0.000 0 50
10 25 0.054 0.000 0 50
5 25 0.054 0.000 0 50

20 50 0.469 0.000 0 50
15 50 0.920 0.000 0 50
10 50 137.547 0.456 0 45
5 50 1.314 0.000 0 50

20 75 8.481 0.000 0 50
15 75 175.127 0.565 0 42
10 75 367.521 1.838 17 30
5 75 3.701 0.000 0 50

20 100 162.272 0.482 0 43
15 100 310.296 0.316 10 36
10 100 542.259 2.170 21 21
5 100 3.593 0.000 0 50

average 100.805 0.264 48 767

(b) Range [1,50]

m n sec %gap #no #opt
5 10 0.004 0.000 0 50

20 25 0.039 0.000 0 50
15 25 0.037 0.000 0 50
10 25 0.074 0.000 0 50
5 25 0.122 0.000 0 50

20 50 39.424 0.029 0 49
15 50 150.686 0.158 0 43
10 50 358.964 1.274 0 31
5 50 4.664 0.000 0 50

20 75 357.698 0.441 0 32
15 75 410.330 0.862 0 28
10 75 526.709 1.547 17 21
5 75 3.282 0.000 0 50

20 100 451.491 1.080 0 28
15 100 472.008 0.781 10 26
10 100 601.215 1.739 23 17
5 100 9.958 0.000 0 50

average 199.218 0.402 50 675

(c) Range [1,100]

m n sec %gap #no #opt
5 10 0.005 0.000 0 50

20 25 0.040 0.000 0 50
15 25 0.041 0.000 0 50
10 25 0.111 0.000 0 50
5 25 0.245 0.000 0 50

20 50 41.952 0.000 0 49
15 50 402.627 0.003 0 32
10 50 424.402 0.012 0 30
5 50 5.458 0.000 0 50

20 75 708.680 0.007 0 14
15 75 544.797 0.009 0 24
10 75 595.998 0.002 20 18
5 75 5.874 0.000 0 50

20 100 649.550 0.010 0 17
15 100 561.225 0.010 10 20
10 100 685.913 0.017 23 13
5 100 30.214 0.000 0 49

average 273.949 0.374 53 616

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 35

Table 9 Computational results for SBC3 in function of range
(a) Range [1,10]

m n sec %gap #no #opt
5 10 0.016 0.000 0 50

20 25 0.688 0.000 0 50
15 25 7.760 0.000 0 50
10 25 19.050 0.125 0 49
5 25 0.164 0.000 0 50

20 50 21.830 0.000 0 50
15 50 4.052 0.000 0 50
10 50 182.084 1.197 0 40
5 50 8.353 0.000 0 50

20 75 24.674 0.000 0 50
15 75 164.866 0.488 0 43
10 75 382.845 0.390 19 29
5 75 34.174 0.000 1 49

20 100 178.777 0.489 0 43
15 100 277.558 0.191 10 37
10 100 543.976 1.453 24 20
5 100 25.491 0.000 0 50

average 110.374 0.217 54 760

(b) Range [1,50]

m n sec %gap #no #opt
5 10 0.019 0.000 0 50

20 25 0.743 0.000 0 50
15 25 5.587 0.000 0 50
10 25 57.080 0.049 0 48
5 25 0.935 0.000 0 50

20 50 551.813 1.005 0 20
15 50 264.712 0.383 0 36
10 50 360.740 1.583 0 31
5 50 18.010 0.000 0 50

20 75 396.190 0.516 0 30
15 75 452.256 0.971 0 26
10 75 541.224 0.580 19 21
5 75 30.043 0.000 0 50

20 100 503.697 1.014 0 24
15 100 507.660 0.786 10 24
10 100 629.576 1.440 25 16
5 100 33.945 0.000 0 50

average 256.131 0.454 54 626

(c) Range [1,100]

m n sec %gap #no #opt
5 10 0.021 0.000 0 50

20 25 0.874 0.000 0 50
15 25 6.582 0.000 0 50
10 25 116.837 0.106 0 46
5 25 1.488 0.000 0 50

20 50 705.801 1.333 0 12
15 50 517.094 0.498 0 24
10 50 452.998 1.435 0 27
5 50 52.863 0.008 0 49

20 75 767.133 0.826 0 9
15 75 673.068 1.131 0 15
10 75 648.597 1.996 16 15
5 75 38.961 0.000 0 50

20 100 658.827 1.125 0 17
15 100 627.882 1.022 10 18
10 100 713.029 2.950 23 11
5 100 77.283 0.002 0 49

average 356.432 0.639 49 542

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 36

Table 10 Computational results for SBC4 in function of range
(a) Range [1,10]

m n sec %gap #no #opt
5 10 0.003 0.000 0 50

20 25 0.015 0.000 0 50
15 25 0.023 0.000 0 50
10 25 0.101 0.000 0 50
5 25 0.047 0.000 0 50

20 50 0.347 0.000 0 50
15 50 0.513 0.000 0 50
10 50 180.700 1.038 0 40
5 50 1.482 0.000 0 50

20 75 2.601 0.000 0 50
15 75 85.157 0.288 0 46
10 75 369.570 1.358 15 30
5 75 4.626 0.000 0 50

20 100 135.204 0.489 0 43
15 100 247.495 0.191 10 37
10 100 540.881 1.712 21 21
5 100 3.773 0.000 0 50

average 92.502 0.243 46 767

(b) Range [1,50]

m n sec %gap #no #opt
5 10 0.003 0.000 0 50

20 25 0.016 0.000 0 50
15 25 0.026 0.000 0 50
10 25 0.075 0.000 0 50
5 25 0.150 0.000 0 50

20 50 66.098 0.058 0 48
15 50 146.371 0.198 0 43
10 50 365.787 1.402 0 31
5 50 7.132 0.000 0 50

20 75 299.306 0.439 0 35
15 75 416.351 0.805 0 29
10 75 535.101 1.539 15 22
5 75 3.648 0.000 0 50

20 100 430.767 0.893 0 28
15 100 470.334 0.567 10 27
10 100 577.723 1.174 22 19
5 100 9.354 0.000 0 50

average 195.779 0.373 47 682

(c) Range [1,100]

m n sec %gap #no #opt
5 10 0.003 0.000 0 50

20 25 0.017 0.000 0 50
15 25 0.028 0.000 0 50
10 25 0.129 0.000 0 50
5 25 0.452 0.000 0 50

20 50 72.995 0.014 0 49
15 50 460.466 0.430 0 26
10 50 422.857 1.465 0 28
5 50 11.434 0.000 0 50

20 75 616.180 0.620 0 19
15 75 515.174 0.998 0 25
10 75 612.086 1.074 17 17
5 75 9.223 0.000 0 50

20 100 625.385 1.076 0 18
15 100 547.835 0.767 10 21
10 100 697.570 1.805 21 12
5 100 17.410 0.000 0 50

average 271.132 0.435 48 615

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 37

Table 11 Computational results for SBC1 in function of density
(a) d = 0.1

m n sec %gap #no #opt
5 10 0.019 0.000 0 30

20 25 0.113 0.000 0 30
15 25 73.173 0.336 0 28
10 25 0.163 0.000 0 30
5 25 401.560 1.147 0 17

20 50 430.962 0.779 0 17
15 50 149.652 0.075 0 27
10 50 10.098 0.000 0 30
5 50 0.584 0.000 0 30

20 75 294.453 0.188 0 23
15 75 133.767 0.027 0 28
10 75 23.740 0.000 0 30
5 75 8.638 0.000 0 30

20 100 163.120 0.026 0 28
15 100 114.855 0.020 0 28
10 100 28.844 0.000 0 30
5 100 141.790 0.013 0 27

average 116.208 0.154 0 463

(b) d = 0.2

m n sec %gap #no #opt
5 10 0.023 0.000 0 30

20 25 0.174 0.000 0 30
15 25 13.053 0.000 0 30
10 25 2.789 0.000 0 30
5 25 165.309 0.158 0 27

20 50 399.285 1.018 0 17
15 50 254.554 0.226 0 24
10 50 238.010 0.064 0 25
5 50 311.803 0.060 0 25

20 75 414.507 0.488 0 17
15 75 373.425 0.191 0 19
10 75 357.777 0.134 0 21
5 75 535.088 0.000 15 15

20 100 534.905 0.512 0 13
15 100 469.983 0.287 0 17
10 100 568.764 0.278 0 12
5 100 265.144 0.000 6 24

average 288.506 0.210 21 376

(c) d = 0.3

m n sec %gap #no #opt
5 10 0.025 0.000 0 30

20 25 0.231 0.000 0 30
15 25 41.897 0.278 0 29
10 25 8.386 0.000 0 30
5 25 342.464 0.511 0 22

20 50 574.253 1.414 0 11
15 50 359.977 0.341 0 21
10 50 377.486 0.230 0 18
5 50 8.104 0.000 0 30

20 75 575.105 0.786 0 12
15 75 604.074 0.686 0 10
10 75 710.214 1.106 0 7
5 75 2.467 0.000 0 30

20 100 574.795 0.830 0 13
15 100 639.208 0.753 0 10
10 100 899.950 7.526 17 0
5 100 0.243 0.000 0 30

average 336.405 0.620 17 333

(d) d = 0.4

m n sec %gap #no #opt
5 10 0.028 0.000 0 30

20 25 0.230 0.000 0 30
15 25 32.686 0.034 0 29
10 25 0.684 0.000 0 30
5 25 280.503 0.547 0 22

20 50 554.801 1.641 0 12
15 50 552.063 1.122 0 12
10 50 624.315 1.075 0 10
5 50 0.200 0.000 0 30

20 75 617.598 1.535 0 10
15 75 613.438 1.284 0 10
10 75 900.000 — 30 0
5 75 0.134 0.000 0 30

20 100 685.853 2.036 0 9
15 100 874.101 4.502 0 1
10 100 900.000 — 30 0
5 100 0.271 0.000 0 30

average 390.406 0.918 60 295

(e) d = 0.5

m n sec %gap #no #opt
5 10 0.028 0.000 0 30

20 25 0.297 0.000 0 30
15 25 63.457 0.556 0 29
10 25 0.114 0.000 0 30
5 25 457.934 1.328 0 18

20 50 635.244 2.225 0 9
15 50 610.139 1.818 0 10
10 50 899.984 8.402 0 0
5 50 0.049 0.000 0 30

20 75 652.940 2.711 0 9
15 75 899.874 4.687 0 0
10 75 900.000 — 30 0
5 75 0.125 0.000 0 30

20 100 899.852 5.214 0 0
15 100 900.000 0.000 30 0
10 100 900.000 — 30 0
5 100 0.229 0.000 0 30

average 460.016 1.924 90 255

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 38

Table 12 Computational results for SBC2 in function of density
(a) d = 0.1

m n sec %gap #no #opt
5 10 0.004 0.000 0 30

20 25 0.025 0.000 0 30
15 25 0.025 0.000 0 30
10 25 0.070 0.000 0 30
5 25 0.068 0.000 0 30

20 50 84.948 0.048 0 29
15 50 15.324 0.000 0 30
10 50 0.831 0.000 0 30
5 50 0.310 0.000 0 30

20 75 133.475 0.069 0 26
15 75 3.755 0.000 0 30
10 75 4.451 0.000 0 30
5 75 1.732 0.000 0 30

20 100 31.918 0.000 0 30
15 100 4.611 0.000 0 30
10 100 1.847 0.000 0 30
5 100 56.113 0.003 0 29

average 19.971 0.007 0 504

(b) d = 0.2

m n sec %gap #no #opt
5 10 0.004 0.000 0 30

20 25 0.030 0.000 0 30
15 25 0.030 0.000 0 30
10 25 0.061 0.000 0 30
5 25 0.208 0.000 0 30

20 50 5.835 0.000 0 30
15 50 25.798 0.000 0 30
10 50 17.019 0.000 0 30
5 50 17.999 0.000 0 30

20 75 185.973 0.067 0 26
15 75 134.262 0.037 0 27
10 75 95.343 0.016 0 28
5 75 19.362 0.000 0 30

20 100 233.378 0.065 0 25
15 100 46.658 0.000 0 30
10 100 369.270 0.122 0 19
5 100 16.368 0.000 0 30

average 68.682 0.018 0 485

(c) d = 0.3

m n sec %gap #no #opt
5 10 0.004 0.000 0 30

20 25 0.037 0.000 0 30
15 25 0.037 0.000 0 30
10 25 0.078 0.000 0 30
5 25 0.319 0.000 0 30

20 50 34.710 0.023 0 29
15 50 111.314 0.056 0 27
10 50 103.215 0.013 0 29
5 50 0.688 0.000 0 30

20 75 331.811 0.190 0 21
15 75 277.968 0.113 0 24
10 75 583.932 0.447 0 11
5 75 0.173 0.000 0 30

20 100 401.317 0.217 0 19
15 100 480.400 0.299 0 16
10 100 899.927 7.221 9 0
5 100 0.190 0.000 0 30

average 189.772 0.384 9 416

(d) d = 0.4

m n sec %gap #no #opt
5 10 0.004 0.000 0 30

20 25 0.046 0.000 0 30
15 25 0.044 0.000 0 30
10 25 0.079 0.000 0 30
5 25 0.098 0.000 0 30

20 50 4.386 0.000 0 30
15 50 288.333 0.191 0 22
10 50 593.802 0.533 0 11
5 50 0.038 0.000 0 30

20 75 533.253 0.535 0 13
15 75 582.908 0.651 0 11
10 75 899.988 17.540 24 0
5 75 0.094 0.000 0 30

20 100 605.392 0.805 0 11
15 100 807.546 2.439 0 6
10 100 900.000 — 30 0
5 100 0.156 0.000 0 30

average 306.833 0.570 54 344

(e) d = 0.5

m n sec %gap #no #opt
5 10 0.004 0.000 0 30

20 25 0.053 0.000 0 30
15 25 0.052 0.000 0 30
10 25 0.110 0.000 0 30
5 25 0.009 0.000 0 30

20 50 6.527 0.000 0 30
15 50 482.951 0.526 0 16
10 50 819.988 4.327 0 6
5 50 0.024 0.000 0 30

20 75 606.919 0.993 0 10
15 75 884.865 3.155 0 2
10 75 900.000 — 30 0
5 75 0.067 0.000 0 30

20 100 833.516 3.184 0 3
15 100 900.000 — 30 0
10 100 877.934 0.000 28 2
5 100 0.115 0.000 0 30

average 371.361 0.866 88 309

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 39

Table 13 Computational results for SBC3 in function of density
(a) d = 0.1

m n sec %gap #no #opt
5 10 0.015 0.000 0 30

20 25 0.618 0.000 0 30
15 25 2.511 0.000 0 30
10 25 88.919 0.255 0 28
5 25 0.086 0.000 0 30

20 50 315.274 0.505 0 20
15 50 29.372 0.000 0 30
10 50 2.138 0.000 0 30
5 50 0.628 0.000 0 30

20 75 205.724 0.149 0 24
15 75 40.720 0.013 0 29
10 75 16.524 0.000 0 30
5 75 5.680 0.000 0 30

20 100 25.632 0.000 0 30
15 100 11.609 0.000 0 30
10 100 5.510 0.000 0 30
5 100 119.301 0.003 0 29

average 51.192 0.054 0 490

(b) d = 0.2

m n sec %gap #no #opt
5 10 0.016 0.000 0 30

20 25 0.663 0.000 0 30
15 25 1.902 0.000 0 30
10 25 44.761 0.046 0 29
5 25 1.228 0.000 0 30

20 50 365.821 0.599 0 19
15 50 86.290 0.019 0 29
10 50 20.497 0.000 0 30
5 50 126.253 0.014 0 29

20 75 249.016 0.150 0 23
15 75 193.195 0.074 0 25
10 75 176.639 0.042 0 25
5 75 162.401 0.000 1 29

20 100 282.746 0.115 0 24
15 100 157.943 0.020 0 28
10 100 438.844 0.111 0 17
5 100 107.502 0.000 0 30

average 142.101 0.070 1 457

(c) d = 0.3

m n sec %gap #no #opt
5 10 0.019 0.000 0 30

20 25 0.752 0.000 0 30
15 25 7.583 0.000 0 30
10 25 93.494 0.109 0 28
5 25 2.427 0.000 0 30

20 50 424.382 0.747 0 16
15 50 164.478 0.097 0 25
10 50 152.156 0.037 0 27
5 50 4.812 0.000 0 30

20 75 360.833 0.256 0 19
15 75 448.363 0.256 0 17
10 75 627.963 0.528 0 10
5 75 3.462 0.000 0 30

20 100 450.098 0.333 0 17
15 100 541.828 0.338 0 14
10 100 899.947 8.339 12 0
5 100 0.322 0.000 0 30

average 246.054 0.464 12 383

(d) d = 0.4

m n sec %gap #no #opt
5 10 0.022 0.000 0 30

20 25 0.900 0.000 0 30
15 25 5.989 0.000 0 30
10 25 47.104 0.039 0 29
5 25 0.449 0.000 0 30

20 50 510.470 0.968 0 14
15 50 426.329 0.442 0 16
10 50 584.950 0.599 0 11
5 50 0.264 0.000 0 30

20 75 544.307 0.514 0 13
15 75 610.628 0.763 0 10
10 75 899.985 13.479 24 0
5 75 0.212 0.000 0 30

20 100 641.274 0.920 0 10
15 100 743.788 2.307 0 7
10 100 900.000 — 30 0
5 100 0.361 0.000 0 30

average 348.061 0.608 54 320

(e) d = 0.5

m n sec %gap #no #opt
5 10 0.020 0.000 0 30

20 25 0.908 0.000 0 30
15 25 15.227 0.000 0 30
10 25 47.334 0.019 0 29
5 25 0.122 0.000 0 30

20 50 516.460 1.079 0 13
15 50 603.294 0.910 0 10
10 50 899.964 6.389 0 0
5 50 0.085 0.000 0 30

20 75 620.115 1.167 0 10
15 75 857.410 3.212 0 3
10 75 900.000 — 30 0
5 75 0.209 0.000 0 30

20 100 835.752 3.012 0 3
15 100 900.000 — 30 0
10 100 900.000 0.000 30 0
5 100 0.378 0.000 0 30

average 417.487 1.128 90 278

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 40

Table 14 Computational results for SBC4 in function of density
(a) d = 0.1

m n sec %gap #no #opt
5 10 0.003 0.000 0 30

20 25 0.009 0.000 0 30
15 25 0.019 0.000 0 30
10 25 0.185 0.000 0 30
5 25 0.050 0.000 0 30

20 50 102.412 0.048 0 29
15 50 37.570 0.019 0 29
10 50 0.949 0.000 0 30
5 50 0.276 0.000 0 30

20 75 66.329 0.016 0 29
15 75 34.133 0.013 0 29
10 75 1.917 0.000 0 30
5 75 1.424 0.000 0 30

20 100 35.621 0.013 0 29
15 100 3.711 0.000 0 30
10 100 1.258 0.000 0 30
5 100 34.458 0.000 0 30

average 18.843 0.006 0 505

(b) d = 0.2

m n sec %gap #no #opt
5 10 0.003 0.000 0 30

20 25 0.012 0.000 0 30
15 25 0.021 0.000 0 30
10 25 0.059 0.000 0 30
5 25 0.228 0.000 0 30

20 50 63.224 0.048 0 29
15 50 23.458 0.000 0 30
10 50 9.231 0.000 0 30
5 50 31.740 0.000 0 30

20 75 175.621 0.114 0 25
15 75 51.352 0.000 0 30
10 75 124.044 0.024 0 27
5 75 27.326 0.000 0 30

20 100 160.573 0.039 0 27
15 100 40.482 0.000 0 30
10 100 366.456 0.098 0 20
5 100 15.851 0.000 0 30

average 64.099 0.019 0 488

(c) d = 0.3

m n sec %gap #no #opt
5 10 0.003 0.000 0 30

20 25 0.016 0.000 0 30
15 25 0.023 0.000 0 30
10 25 0.068 0.000 0 30
5 25 0.691 0.000 0 30

20 50 53.540 0.023 0 29
15 50 108.569 0.060 0 27
10 50 104.545 0.026 0 28
5 50 1.318 0.000 0 30

20 75 238.886 0.118 0 24
15 75 268.166 0.088 0 25
10 75 601.994 0.344 0 12
5 75 0.226 0.000 0 30

20 100 387.741 0.297 0 19
15 100 455.352 0.221 0 18
10 100 899.917 5.497 6 0
5 100 0.236 0.000 0 30

average 183.605 0.332 6 422

(d) d = 0.4

m n sec %gap #no #opt
5 10 0.003 0.000 0 30

20 25 0.020 0.000 0 30
15 25 0.030 0.000 0 30
10 25 0.077 0.000 0 30
5 25 0.104 0.000 0 30

20 50 5.471 0.000 0 30
15 50 364.080 0.306 0 18
10 50 600.817 0.534 0 11
5 50 0.048 0.000 0 30

20 75 446.872 0.499 0 16
15 75 601.829 0.628 0 10
10 75 899.976 9.674 17 0
5 75 0.100 0.000 0 30

20 100 585.295 0.820 0 11
15 100 709.894 1.813 0 7
10 100 900.000 — 30 0
5 100 0.202 0.000 0 30

average 300.872 0.570 47 343

(e) d = 0.5

m n sec %gap #no #opt
5 10 0.003 0.000 0 30

20 25 0.022 0.000 0 30
15 25 0.034 0.000 0 30
10 25 0.119 0.000 0 30
5 25 0.010 0.000 0 30

20 50 7.752 0.000 0 30
15 50 478.573 0.661 0 15
10 50 900.031 5.948 0 0
5 50 0.030 0.000 0 30

20 75 602.437 1.017 0 10
15 75 738.990 2.756 0 6
10 75 900.000 — 30 0
5 75 0.085 0.000 0 30

20 100 816.365 2.928 0 3
15 100 900.000 — 30 0
10 100 859.326 0.000 28 2
5 100 0.148 0.000 0 30

average 364.937 0.946 88 306

Kowalczyk and Leus: An exact algorithm for parallel machine scheduling with conflicts 41

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1505
	KowalczykLeus 17-2-workingpaperKUL

