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Abstract: In the domain of crystal engineering, various schemes have been proposed for the
classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In
this study, the aim is to complement these schemes with rules that predict H-bonding in crystals
from 2D structural information only. Modern computational power and the advances in inductive
logic programming (ILP) can now provide computational chemistry with the opportunity for
extracting structure-specific rules from large databases that can be incorporated into expert
systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting
expert system utilizing data in the Cambridge Structural Database of small molecule crystal
structures. A clear increase in performance was observed when the ILP system DMAX was
allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs.
This ability distinguishes ILP from more traditional approaches that build rules on the basis of
global molecular properties.

Keywords: Computer aided drug design; in silico modeling; crystal structure; solubility; hydrogen
bonding; machine learning; inductive logic programming

Introduction
Rules and relationships are one way that knowledge is

encapsulated so that it can be applied to a future situation;
they are usually generalizations that were gleaned from a
body of facts. As such, they often lack the specificity that
may be needed for a particular situation, the statistical
probability for their veracity, and a systematic means for
updating them in the light of new facts. Machine learning
technology, specifically inductive logic programming (ILP),

also known as relational data mining,1,2 offers one way to
overcome some of these deficiencies. The technology will
be applied to hydrogen bonding (H-bonding) in crystals, an
area of noncovalent interactions.

H-bonding interactions are an important attribute of a drug
molecule. In aqueous solutions, the hydration of pendent
H-bonding donor or acceptor groups retards the permeation
of a drug molecule through biological membranes.3-6 In the
crystalline state, H-bonding is one component of a crystal’s
cohesive energy, the net attractive noncovalent lattice
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interactions that bind molecules in a crystal together and
retard dissolution of lattice molecules into aqueous media.
Compounds forming high cohesive energy crystals are often
“discovered” by modern high throughput in vitro screening
(HTS) technologies that are used in the pharmaceutical
industry today, because H-bonding is one of the most
important factors that determine binding of small molecules
to target proteins. However, a paradox often arises. When
compounds with nanomolar potency are found, they are
usually very water insoluble. Such compounds have been
termed high-affinity traps by Stella and Borchardt.6

Rules were developed by Lipinski,7 the Rules of 5, to
address the high-affinity trap paradox. These rules were
gleaned from a retrospective analysis of marketed drugs, the
assumption being that such drugs as an aggregate have the
physicochemical properties that should serve as a baseline
for molecules that are identified by HTSs. Two out of the
four rules deal with H-bonding atoms: N and O. These rules
place limits on these atoms and are general enough to address
both permeability and the H-bonding cohesive component
of high-affinity traps that produces strong lattice energy
crystals. The rules themselves have changed very little over
the past 15 years. This is a testament to their validity but
also to the difficulty for humans to refine and adapt them to
more specific situations. More specific rules regarding
H-bonding have arisen out of the emerging area of crystal
engineering.

A major focus in crystal engineering has been to develop
a system for classifying H-bonding patterns in crystals. For
inorganic crystals, Wells8 used graph theory to describe such
hydrogen-bonding patterns where atoms were represented

as points and hydrogen bonds (HBs) as lines. Kuleshova and
Zorky9 extended this concept to organic molecules and
classified a crystal structure database of 776 molecules.
Further refinements of graph theory have been made by Etter
et al.,10,11 Davis et al.,12 and Grell et al.13 Motherwell14 has
automated the recognition of this type of classification in
RPLUTO.

Etter11 adapted the Cahn-Ingold-Prelog (CIP) rules for
designating the absolute configuration of chiral atoms to
H-bonding systems. The CIP system assigns priorities to
different atoms only as a convention to assign chirality in
an unambiguous way. Similarly, Etter’s adaptation of the
CIP system to H-bonding involves arbitrary rules that only
provide a convention for consistently classifying H-bonding
patterns. However, Etter has also developed some general
and more functional, group-specific H-bonding rules.

The above crystal engineering approachesswhile address-
ing different research goalssare complementary to the rule
discovery techniques presented here. The present study
focuses on the anticipation of crystalline H-bonding, given
only the 2D structure of the molecule. In contrast, the above
approaches aim at the categorization of H-bonding patterns
encountered in known crystal structures (e.g., using graph
sets). The results of this analysis can however be used as
background knowledge by ILP (hence the complementarity).
As will be explained below, some of the group-specific
H-bonding rules by Etter have been used in this manner.

Although two of Lipinski’s7 four rules address H-bonding,
they do not specifically address H-bonding in crystals, where
close packing constraints and neighboring group effects
would affect the ability for a potential intermolecular or
intramolecular HB to form. Lipinski’s H-bonding rules,
however, do provide a convenient baseline to compare more
structure and context specific rules.

One baseline for the crystalline state would be an “ideal
liquid state” of the substance in which drug molecules are
allowed to form cohesive HBs with all possible H-bonding
atom pairs. This would include both intramolecular and
intermolecular atom pairs. Atom pairs in the molecule that
could participate in H-bonding would be classified as either
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an H-donor or H-acceptor, depending on their role in the
HB. For the crystalline state of matter, the Cambridge
Structural Database15-17 (CSD) of small molecules was used
to obtain atom pairs in molecules that could and actually
did form HBs, based on generally accepted criteria. To
analyze these atom pairs, we used ILP,1 the branch of
machine learning that has the ability to deduce rules from
logical principles and statistics. ILP is one of a number of
artificial intelligence (AI) approaches that have been used
to leverage the power of computers. The use of ILP is best
illustrated by contrasting it with expert systems.

Expert systems capture human knowledge by expressing
rules, that can be gleaned from human experts, in special
AI languages that are designed to process facts (data), rules,
and questions; Prolog is one example of such an AI language.
Use of an expert system involves querying the knowledge
base of rules with questions in the particular domain of
interest. The limitation of expert systems is their need for
rules. Humans are needed to formulate the rules from their
domain of expertise. Lipinski,7 for example, extracted from
the databases of marketed drugs a set of rules that character-
ized their general properties. Any rule, however, is an
abstraction and a generalization that may or may not apply
to a specific situation and may not be in fact consistent with
new data that have inevitably accumulated after its formula-
tion. These limitations are the issues that ILP (and machine
learning in general) attempts to address.

ILP uses the Prolog language to extract rules from
information in databases. As such, it can use the power of
computers to update its knowledge base of rules as more
data are made available. In addition, the language of ILP is
flexible enough to incorporate the specific characteristics of
a particular domain of interest as background knowledge.
And finally, ILP can use and validate human-generated rules
and incorporate such knowledge as part of its background
knowledge. For example, in King et al.,2 an ILP system was
used that “understands” bonds, atoms, and functional groups
on organic molecules.

In the present study, ILP was used to seek rules on
H-bonding from the CSD. More specifically, rules were
sought that differentiate the “ideal liquid state” H-bonding
from the H-bonding in crystals.

Materials and Methods
ILP Technique: Hierarchical Rule Generation with

DMAX. Generation of rules was done with PharmaDM’s
DMAX ILP technology for the generation of hierarchical

rules.18 This technology is derived from the TILDE19 ILP
system and develops Prolog rules in a hierarchical manner
following a recursive partitioning strategy, as shown in
Figure 1. The most general rule (e.g.,query-1in Figure 1)
is the one with the widest range of applicability for the entire
training set. Such a rule forms the basis for two alternatives
or branches, a branch that satisfies this chemical rule and a
branch that does not satisfy it (e.g., theyesandnodatabases
in Figure 1). When looking for splitting rules, DMAX will
select at each step the one that best discriminates between
the three classes: intramolecular HB, intermolecular HB, and
no H-bonding. For instance, in Figure 1,query-1is the rule
selected by DMAX on the basis of the fact that it maximizes
class-purity within the resultingyesandno databases.

For each branch, more specific rules can be induced that
put further constraints on the type of molecules that the rule
governs (e.g.,query-1 and query-2in Figure 1). Further rule
generation for each succeeding branch produces increasingly
more refined rules that only apply to smaller and more class-
pure (i.e., with the majority of examples belonging to one
of three classes) subsets of the training set.

Via a tree structure as shown in Figure 1, the total training
data set at the top of the tree is recursively partitioned. The
leaves of the tree contain data subsets that become associated
with (1) a description that corresponds to the path to that
leaf from the root of the tree (e.g.,query-1 and not query-2
in Figure 1); and (2) a class distribution, i.e., per classinter,
intra, no, to represent the fractions of examples present in
the leaf that form intermolecular, intramolecular, or neither
intermolecular nor intramolecular HBs. To use a tree such
as the one shown in Figure 1 as an expert system, new

(15) Cambridge Structural Database 2002.ConQuest 1.5 User Guide,
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Cambridge, U.K., 2002.
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(18) DMax: http://www.pharmadm.com/dmax.asp.
(19) Blockeel, H.; De Raedt, L. Top-down induction of first-order

logical decision trees.Artif. Intell. 1998, 101 (1-2), 285-297.

Figure 1. A decision tree resulting from hierarchical rule
generation.
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examples are sorted down the tree, where the query in each
node determines which branch the example will follow. As
the example arrives in a leaf of the tree, the distribution
associated with that leaf is used to assign a score between 0
and 1 per classinter, intra, no. The path from the root to
the leaf then corresponds to an explanation of why a
particular example has been associated with these three
scores.

A score of 0 (i.e., 0%) for a particular class indicates that,
in the training data, this class was not represented in the
leaf and therefore the expert system predicts that examples
sorted to this leaf do not belong to this class. At the other
extreme, a score of 1 (i.e., 100%) for a particular class
indicates all training data in that leaf belong to that class,
which supports the prediction that new examples sorted to
the same leaf also belong to that class. In practice, after
pruning away those branches of the decision tree that degrade
predictive accuracy, most of the class distributions found in
the leaves of the decision tree are not uniform, such that
most of the predicted scores for classesinter, intra, noare
somewhere between 0 and 1. This allows us to rank the
predictions per class, putting those cases where the expert
system is most confident (i.e., the scores toward 1) at the
top. To evaluate the quality of predictions per class, one can
locate the true positive cases in the ranking. The best ranking
will put all those true positives on top. More details on the
evaluation procedure are given below in the Results section.

Preprocessing Data from the Cambridge Structural
Database.All ILP analyses were conducted on molecules
and atom pairs from the CSD version 5.24 (November
2002).15-17 A training and validation set was selected for
HB data mining in five steps as shown in Figure 2.

Step 1.Search substructure [ONS,ONS] with constraints:

(We use [ONS,ONS] to denote a substructure with two
atoms that can be either O, N, or S.)

Step 2. Search substructure [ONS-H] with constraints:

(Substructure [ONS-H] refers to a hydrogen bound to either
O, N, or S.)

Step 3.Search intra- (respectively inter-) molecular HBs
with constraints:

Step 4.Select atom pairs that may form a HB. For that
purpose, the [ONS,ONS] substructures resulting from step

Figure 2. CSD data preparation steps 1-5.

all CSD filters on (CSD filters: 3D records, Rfactor < 0.05, not dis-
ordered, no errors, not polymeric, no ions, only organics); and

all atoms in the molecule are in set {C,N,O,F,P,S,Cl,Br} (this
eliminates organic molecules containing Si or Mg); and

one molecule in unit cell (Z′ )1); and
the hydrogens are attached; and
CSD option “Normalize terminal H positions for C,N,O Defaults”
Result: 316 031 substructures [ONS,ONS] in 23 077 molecules.

all constraints of step 1; and
the distance between ONS and H is defined
Result: 17 906 substructures [ONS-H].

all constraints of step 1; and
limit to intra- (respectively inter-) molecular bonds; and
the distance between the donor and acceptor in the pair is less

than or equal to the sum of the van der Waals radii of donor
and acceptor plus 0.5 Å (van der Waals radii of H, O, N, and S
were taken as 1.2, 1.52, 1.55, and 1.8 Å, respectively); and

the distance between the H and the acceptor is less than or equal
to the van der Waals radius of the acceptor minus 0.12 Å; and

the angle donor-H-acceptor is between 100° and 180°
Result: 5044 intramolecular and 14 823 intermolecular HBs.
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1 that share at least one atom with a [ONS-H] substructure
resulting from step 2 are selected.

Step 5.Remove “malformed” substructures

In step 5, item 2, we drop cases where CSD returns only
one of two possible HBs. To detect these so-called “local
symmetries”, we first look for atom pairs (atom1, atom2a)
and (atom1, atom2b) such that in CSDatom2a but not
atom2bforms a HB andatom2aandatom2bhave the same
atom symbol (O, N, or S); see also Figure 3. If the structural
contexts ofatom2aandatom2bare identical, we conclude

that there is local symmetry betweenatom2aand atom2b
and drop both atom pairs (atom1, atom2a) and (atom1,
atom2b) from the dataset.

Application of ILP. The collection of labeled substruc-
tures being used as a starting point, rules were derived, tested,
and deployed in four steps, as shown in Figure 4.

Step 6. Randomly split the set of labeled substructures
into

Step 7.Training. Apply DMAX (see previous section) to
the training set with varying sets of background knowledge
activated, and add discovered rules to the expert system.
Details on the background knowledge modules that were
used are given below.

Step 8.Validation. Use the expert system automatically
extended in the previous step to predict H-bonding for the
atom pairs in the validation set. The quality of the extended
knowledge was assessed via a comparison of predicted scores
per class and the actual class labels.

Step 9.Deployment. Use the expert system automatically
extended in step 7 to predict H-bonding labels of new
substructures (i.e., substructures from molecules not in the
training or validation set).

Background Knowledge Modules. Next to the data
described above, background knowledge has a major impact
on rules produced by DMAX. Richer and more relevant
background knowledge will typically allow DMAX to con-
struct higher quality rules. We have tested the capability of
DMAX to take advantage of superior background knowledge
by running experiments with increasingly sophisticated
background knowledge (BK): from BK-level-0 to BK-level-
2.

(A) BK-Level-0. With BK-level-0 active, DMAX has
access to the presence and frequency of 95 elementary
molecular substructures (rings and functional groups): ring,

Figure 3. Detection of local symmetry during data prepro-
cessing.

Figure 4. Application of ILP, steps 6-9.

Result: 66 530 substructures [ONS,ONS] where at least 1 side is
bound to hydrogen.

belonging to molecules consisting of multiple parts; or
having local symmetry; or
due to errors in the structure files produced with CSD (Some sub-

structures generated by CSD have an unexpected * or ‘
character after the atom identifier, or have an atom code
that cannot be mapped to an atom identifier. In both cases
the substructure is ignored.)

Result: 62 781 substructures labeled either “inter” (i.e., represents
an intermolecular HB), “intra” (i.e., represents an intramolecular
HB), or “no” (i.e., represents no HB).

training set (75%): used for derivation of rules in step 7
validation set (25%): used for evaluation of rules in step 8
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aromatic ring, hetero-aromatic ring, non-hetero-aromatic ring,
benzene ring, non-aromatic ring, hetero-non-aromatic ring,
non-hetero-non-aromatic ring, pyrrole ring, furan ring,
thiophene ring, pyrazole ring, imidazole ring, pyridine ring,
pyridazine ring, pyrimidine ring, pyrazine ring, methyl group,
phosphate group, phosphonate group, phosphinate group,
miscellaneous phosphor group, acylhalide, halide, carboxylic
ester, thio-O-carboxylic ester, methoxygroup, ether, car-
boxylic acid, thio-O-carboxylic acid, alcohol, conjugated base
of a carboxylic acid, conjugated base of a thio-O-carboxylic
acid, oxide, ketone, aldehyde, diazo group, azide, nitro group,
nitrile, iminium ion, amide, thioamide, sulfonamide, sulfin-
amide, oxime, thioxime, imine, hydroxylamine, thiohydrox-
ylamine, amine,n-hydroxyamide, n-sulfanylamide, hy-
droxyammonium, sulfanylammonium, ammonium ion, nitroso
group, thio-S-carboxylic ester, dithiocarboxylic ester, thio-
ether, thio-S-carboxylic acid, dithiocarboxylic acid, thiol
group, conjugated base of a thio-S-carboxylic acid, conju-
gated base of a dithiocarboxylic acid, sulfide,n-hydroxy-
thioamide, n-sulfanylthioamide, sulfoxide, sulfinic acid,
sulfinic ester, conjugated base of a sulfinic acid, sulfonic
acid, sulfonic ester, conjugated base of a sulfonic acid,
sulfone, metal ion, counterion, heteroatoms, aliphatic chain,
general functional group, general nonammonium acid, gen-
eral ester, general non-amine base, general ether, general -ol
group, general -on group, general amide, general amine,
general ammonium, and general oxime.

Extra moieties that are considered to be “good” donors or
acceptors according to Etter20 were added: phenol, aniline,
urea, and imide.

This BK level does not require ILP. The training data can
be converted to a single table, with one row per candidate
HB and a column for each of the moieties considered. The
cells of that table would contain the frequency of that moiety
in the molecule where the candidate HB was found. This
table associated with BK-level-0 can be processed with any
machine learning method. This is not the case for the BK-
levels> 0.

(B) BK-Level-1. With BK-level-1 active, DMAX can
detect the 95 moieties listed above (cf., BK-level-0), plus
relationships between those moieties (e.g., connected, fused,
or linked by aliphatic chain), plus relationships between those
moieties and the candidate donor and acceptor.

This BK-level (and the next one) requires ILP. The
relationships cannot be expressed with a non-ILP machine
learning technique. At this level also the difference from
traditional structure-activity-relationship (SAR) approaches
shows. These typically rely on a set of global molecular
descriptors (e.g., fingerprints or physicochemical properties).
In contrast, an ILP system such as DMAX can also build
rules that refer to the local context of the candidate donor
and acceptor. It thus becomes possible to distinguish between
donor-acceptor pairs within the same molecule that do and
those that do not form an HB. Such a distinction is not

possible with a method that can only refer to global molecular
properties: in such a method atom pairs taken from that
molecule will receive the same vector of global descriptors,
even if the pairs belong to different H-bonding classes.

(C) BK-Level-2. For this highest BK levelswhich in-
cludes BK-level-0 and BK-level-1ssome concepts were
added that were estimated to be particularly relevant for
H-bonding:

Results
Data Processing.Table 1 shows that, out of the 62 781

“ideal liquid state” atom pairs, only about 28% could be
classified as “intra” and/or “inter”. The remaining 72% of
the potential atom pairs did not take part in crystalline
H-bonding. Notice that exceptionallysin 1% of the casess
a single atom pair receives both “intra” and “inter” labels.
This occurs when, according to CSD, the two atoms in the
pair meet the distance and angle constraints (see step 3 for
details) not only when the search is limited to intramolecular
bonds but also when the search is limited to intermolecular
bonds. Since rules for “intra” and “inter” were learned
separately, the 1% doubles was added to both sets. In total,
the data set for learning “inter” and “intra” rules consisted
of 8% and 21% positive examples, respectively.

The total data set was randomly split into

Inductive Logic Programming. (A) Overall Perfor-
mance of the Generated Expert System.A set of hierar-
chical rules was constructed from the 47 086 examples in
the training set. These rules were then applied to the 15 695
cases in the validation set, such that each of these cases
received a score between 0 and 1 for each the three classes
inter, intra, andno. Per class, the examples were sorted (in
descending order, see Materials and Methods section above),
and for each positionn in the resulting ranking, the number
of true positives in the topn was counted. The corresponding
cumulative response curves are shown in Figure 5.

(20) Etter, M. C. Hydrogen bonds as design elements in organic
chemistry.J. Phys. Chem.1991, 95, 4601-4610.

Table 1. Data Preprocessing Statistics

HB label no. of atom pairs % of total

only intra 4 230 6.74
only inter 12 700 20.23
both intra and inter 601 0.96
none 45 250 72.08

total 62 781 100

conjugated paths to groups that donate or accept electrons; and
the number of moieties (from the list of 95 shown above) within

a specified distance (in terms of bonds); and
a description of the shortest path (via covalent bonds) between

donor and acceptor or from donor/acceptor to moiety (from
the list of 95 shown above):

distance (in bonds) of path; and
whether the path is part of a moiety, how many

atoms it shares with that moiety, and
number of single, double, or aromatic bonds on the path

training set: 47 086 atom pairs (75% of total)
validation set: 15 695 atom pairs (25% of total)
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On the basis of the experimental data summarized in
Figure 5, we can draw the following conclusions:

(1) Whatever the level of background knowledge used,
the expert system generated with DMAX using 2D structural
information only always significantly outperformed the “ideal
liquid state” model that classifies all examples as both intra-
and intermolecular: see BK-level-0 versus baseline in Figure
5a,b. Recall that in BK-level-0 only global molecular
descriptors were used. Apparently these descriptors, even if
they do not refer to the particular context of the atom pair,
do carry information that is relevant for predicting HBs.

(2) In both the intra- and intermolecular HB cases, the
quality of predictions significantly improves by using
background knowledge that requires ILP: see BK-level-1
versus BK-level-0 in Figure 5a,b.

(3) HB-specific background knowledge leads to superior
quality predictions of intramolecular HBs (see BK-level-2
versus BK-level-1 in Figure 5a). This is not the case for
intermolecular HBs (see overlapping curves for BK-level-2
versus BK-level-1 in Figure 5b). Although the prediction of
intermolecular HBs clearly benefits from the use of ILP (cf.
previous item), it does not benefit from the HB specific
background knowledge of BK-level-2. This observation is
consistent with the intuition that intermolecular phenomena
are inherently harder to predict from structural properties
than intramolecular ones.

(4) The ILP system DMAX does take advantage of
increasingly more sophisticated background knowledge. For
instance, for intramolecular HB prediction (Figure 5a), with
BK-level-2 the top 10% of the ranking contains about 3 times
more true intramolecular HBs than with BK-level-0. This
phenomenon is further illustrated in the next paragraph.

(B) Examples of Superior Predictions with Increasing
Levels of Background Knowledge.As shown in Figure 5,
DMAX is able to assign higher scores to true inter- and
intramolecular HBs when it has access to higher levels of
background knowledge. Below are some examplessall taken
from the validation setsof such corrections obtained by

moving from BK-level-0 to BK-level-1 and from BK-level-1
to BK-level-2. It will become clear from the DMAX-generated
rules underlying the predictions that the extra knowledge
available at BK-level-1 and BK-level-2 is indeed crucial for
achieving the superior classification.

(1) Step 1: From BK-Level-0 to BK-Level-1.With BK-
level-0 the two intramolecular HBs in Figure 6 get low scores
(5% and 6%), such that they end up at the bottom of the
ranking. In contrast, with BK-level-1 they get the maximum
score (100%) and thus contribute to the lift of the BK-level-1
curve in Figure 5a. The BK-level-1 rule that assigns this
maximum score to both examples in Figure 6 is as follows:

Figure 5. Cumulative response curves showing performance of expert system with varying background knowledge (BK-level-0
to -2) on two tasks: (a) intramolecular HB prediction and (b) intermolecular HB prediction. Baseline is a trivial expert system
that models the “ideal liquid state” and classifies all examples as both intra- and intermolecular.

Figure 6. Two examples (with CSD identifiers YIZROO and
ZAYQAR) of intramolecular HBs with higher scores on BK-
level-1 (with ILP) than on BK-level-0 (without ILP). The HB is
marked with a hatched line between the hydrogen and the
nitrogen.

If the HB donor is an oxygen that is part of a
phenol ring;

and an imine containing the HB acceptor is
connected by a single bond to the phenol
ring in ortho position with respect to the
alcohol containing the HB donor;

and the HB acceptor is not part of a non-aromatic
ring;

and the compound contains fewer than 7 general
functional groups and at least 16 atoms;

then there is an intramolecular HB in 100% of the
cases.

(Rule coverage: 42 cases in training set, 96 cases in total
dataset.)
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Notice that the above rule relies heavily on the extra
relational knowledge available from BK-level-1 onward. The
phrases generated by DMAX to establish relationships
between moieties, HB donor and HB acceptor, are shown
in italics. In a non-ILP approach such phrases are absent,
which explains the inferior performance of BK-level-0.

Figure 7 shows two intermolecular HBs that benefit from
the additional BK-level-1 knowledge: in both cases the
assigned score increases by 86% (from 14% to 100%). The
DMAX-generated rule responsible for this improvement is
as follows (ILP specific phrases are again shown in italics):

The examples in Figure 6 and Figure 7 illustrate that intra-
and intermolecular HB cases, respectively, move up in the
ranking when BK-level-1 is used. A third way to improve
performance is to assign lowerintra and inter scores to the
cases that do not represent a HB, i.e., cases belonging to
classno. An example that gets a higher score forno will
have lowerintra and inter scores (sum of three scores is 1
for each example) and tend to move to the bottom of the
“inter” and “intra” rankings. Two such examples are
presented in Figure 8.

The rule covering both examples in Figure 8 can be
interpreted as a constraint on HB formation:

(2) Step 2: From BK-Level-1 to BK-Level-2. The
above examples mainly illustrate the advantages of the
ILP setting compared to the non-ILP setting (BK-level-0).
In this paragraph, we further show the benefits of addi-
tional, HB-specific background knowledge using exam-
ples that get more correct scores on BK-level-2 than on
BK-level-1.

The cases shown in Figure 9 are covered by the rule below.
As before, the phrases not available at the previous back-
ground knowledge level are in italics: for instance, informa-
tion on the path between donor and acceptor and on
conjugated systems is included in BK-level-2, but not in
BK-level-1.

Notice that, as before, the additionalsin this case HB
specificsbackground knowledge is predominant in rules that
improve classification of intramolecular HBs.

The rule that corresponds to the examples in Figure 10 is
as follows:

The first condition in the rule above, i.e., whether the HB
acceptor is electron donating as part of a conjugated system,
is the first split criterion selected by DMAX. This criterion
holds for 3404 examples in the validation set, 90% of which
belong to class “no”. Recall that the expected fraction of
“no” cases in a randomly drawn sample is 72% (cf. Table
1). A binomial test reveals that the probability of finding
90% or more “no” cases in a sample of size 3404 is
extremely low (<10-159), so from a statistical perspective
the following hypothesis can be accepted: the fact that a
candidate HB acceptor is electron donating as part of a
conjugated system has a negative influence on its ability to
participate in a HB.

If the HB acceptor is part of an amine that is fused
to a non-aromatic ring;

and on the non-aromatic ring there is a ring type
substituent in para position with respect to
the amine;

and the HB donor is an oxygen;
and the HB donor is not part of a ring with the above

non-aromatic ring fused at distance 3;
and apart from the amine, no other functional group

is fused to the non-aromatic ring;
and the compound contains at most one alcohol,

fewer than 8 general functional groups, and at
most 53 atoms;

then there is an intermolecular HB in 100% of the
cases.

(Rule coverage: 13 cases in training set, 27 cases in total dataset.)

If the candidate HB acceptor is an oxygen that is
part of a general ether connected by a single
bond to an aromatic 6-ring which is not a
phenol;

and the candidate HB acceptor is not part of a non-
aromatic ring;

and the general ether is not in ortho position with a
ring type substituent;

and the general ether is not linked to a ketone via an
aliphatic chain;

then there is no HB involving the candidate HB
acceptor in 90% of the cases.

(Rule coverage: 319 cases in training set, 607 cases in total
dataset.)

If the path between HB donor and HB acceptor
shares 2 atoms with a non-hetero-aromatic ring;

and that path contains at most 2 single bonds and
exactly 1 double bond;

and the HB acceptor is not electron donating as part
of a conjugated system;

and there is no thioamide that shares 2 or fewer
atoms with the above path;

and there is no phosphorus group that shares no
atoms with the above path;

and the HB acceptor is not an oxygen, nor part of a
general ether, nor part of an iminium ion;

then there is an intramolecular HB in 100% of the
cases.

(Rule coverage: 66 cases in training set, 214 cases in total
dataset.)

If the HB acceptor is electron donating as part of a
conjugated system;

and the HB acceptor is part of a general non-amine
base that is not linked via an aliphatic chain
to a general -ol group;

and there is no aliphatic chain or general ammonium
that shares no atoms with the path between
the HB donor and the HB acceptor;

and there is no 5-ring that shares exactly 2 atoms with
the above path;

and there is no iminium ion that shares fewer than 2
atoms with the above path;

and the covalent bond distance between HB donor
and HB acceptor differs from 9;

and the compound contains fewer than 9 general
functional groups;

then there is an intermolecular HB in 98% of the cases.
(Rule coverage: 51 cases in training set, 105 cases in total

dataset.)
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This general constraint also makes sense chemically since
HBs form between hydrogens that have a positive partial
charge, due to their polarized covalent bond to an electro-
negative atom, and an H-acceptor bearing a partial negative

charge (typically due to a lone pair). If the H-acceptor
donates electrons as part of a conjugated system, this will
tend to shift away (lone pair) electrons and make the
H-acceptor less negatively charged, thus making it less likely
to form a (strong) HB (less likely, but not impossible as can
be seen in Figure 10 and the corresponding rule). The
“general non-amine base” mentioned as the second condition
in this rule pertains mostly to carboxyl groups as acceptors.
The carboxylate anion can be viewed as a resonance hybrid
of the two anionic structures, or as a conjugated system of
three interacting p-orbitals containing four electrons. Since
COO- is the (non-amine) base of the corresponding acid
COOH, and the CdO double bond and the negative C-O-

charge are delocalized, both oxygens may be able to function
as acceptors (all the more so because free rotation is typically
possible around the carbon bond connecting the carboxylate
group to the rest of the molecule). This resonance may offset
the otherwise unfavorable decrease in the negative charge
on the oxygen atom, allowing an intermolecular HB to be
formed.

Figure 7. Two examples (with CSD identifiers JOYYIF and GARHAI10) of intermolecular HBs with higher scores on BK-level-1
(with ILP) than on BK-level-0 (without ILP).

Figure 8. Two examples (with CSD identifiers EFATIO and
TEBFIP) where there are no HBs (cf. the crossed out inter-
and intramolecular HBs in the drawing) and that get higher
scores for class no on BK-level-1 (with ILP) than on BK-level-0
(without ILP).

Figure 9. Two examples (with CSD identifiers BUHRUR and
XINHAD) of intramolecular HBs with higher scores on BK-
level-2 than on BK-level-1.

Figure 10. Two examples (with CSD identifiers BELCUQ and
JUTKAK01) of intermolecular HBs with higher scores on BK-
level-2 than on BK-level-1.

DiscoVering H-Bonding Rules in Crystals articles

VOL. 3, NO. 6 MOLECULAR PHARMACEUTICS 673



To conclude this section on illustrations of BK-level
impact, we present in Figure 11 two “no” cases that are better
classified due to the background knowledge about conjugated
systems (cf. discussion above).

The DMAX-generated rule that covers the examples in
Figure 11 is as follows:

Conclusion
Almost all modern computational chemistry techniques are

based on the analysis of molecular properties. Such applica-
tions include multiple regression, artificial neural networks,
and support vector machines. Very few address the interac-
tions between different parts of the molecule and the
interactions of molecules with one another. In this study,
we have demonstrated that ILP rules that characterize
H-bonding in crystals can be induced from properly prepro-
cessed 2D structural data.

Atom pair information on H-bonding was extracted from
the CSD, and the strongest rules that govern these data were
induced in a hierarchy from the most general to more
specific. Because these rules are induced from data with
minimal human interaction, they can be readily updated as
new data accumulate and are thus much more adaptable than
human rules obtained by laborious reflection. Moreover, ILP
has the ability to analyze massive amounts of data consis-
tently. It also has the ability to incorporate information in a
variety of formats into background knowledge. In this
respect, it offers superior flexibility over other machine
learning techniques such as support vector machines. Finally,
expert systems that use ILP hierarchies provide a much finer
degree of prediction because a given molecule can be
analyzed for the specific rules that may apply to it alone.
Thus ILP expert systems would be expected to outperform
expert systems that rely on global molecular properties.

Recently,21 the concept of incorporating ILP into an
artificial scientist, which can analyze data, postulate hypoth-
eses, and design experiments in a recursive fashion, has been
demonstrated. Such applications of machine learning are a
small step in using computational machines to expand our
knowledge base and codify knowledge and information into
rules that can be continuously updated.

MP060034Z

(21) King, R. D.; Whelan, K. E.; Jones, F. M.; Reiser, P. G. K.; Bryant,
C. H.; Muggleton, S. H.; Kell, D. B.; Oliver, S. G. Functional
genomic hypothesis generation and experimentation by a robot
scientist.Nature2004, 427, 247-252.

Figure 11. Two examples (with CSD identifiers NMALAM and
WOVVUY) where there are no HBs (cf. the crossed out inter-
and intramolecular HBs in the drawing) and that get higher
scores for class no on BK-level-2 than on BK-level-1.

If both the candidate HB acceptor and donor are
electron donating as part of a conjugated
system;

and the candidate HB acceptor is not part of a general
non-amine base, general ester, ring, or oxide;

and the covalent bond distance between candidate
HB donor and acceptor differs from 3;

and there is no aniline, aromatic ring, or hetero-non-
aromatic 6-ring that shares two atoms with the
path between candidate HB donor and
acceptor;

and there is no thio-S-carboxylic ester or thioether that
shares no atoms with the above path;

and there is no furan ring that shares 3 atoms with
above path;

then there is no HB involving the candidate HB
acceptor and donor in 98% of the cases.

(Rule coverage: 649 cases in training set, 1298 cases in total
dataset.)
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