IQL: A Proposal for an Inductive Query
Language

Siegfried Nijssen and Luc De Raedt

Institut fiir Informatik, Albert-Ludwidgs-Universitét,
Georges-Kohler-Allee, Gebaude 097, D-79110, Freiburg im Breisgau, Germany
Departement Computerwetenschappen, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001, Leuven, Belgium
siegfried.nijssen@cs.kuleuven.be

Abstract. The overall goal of this paper is to devise a flexible and
declarative query language for specifying or describing particular knowl-
edge discovery scenarios. We introduce one such language, called 1QL.
IQL is intended as a general, descriptive, declarative, extendable and
implementable language for inductive querying that supports the min-
ing of both local and global patterns, reasoning about inductive queries
and query processing using logic, as well as the flexible incorporation of
new primitives and solvers. IQL is an extension of the tuple relational
calculus that includes functions as primitives. The language integrates
ideas from several other declarative programming languages, such as pat-
tern matching and function typing. We hope that it will be useful as an
overall specification language for integrating data mining systems and
principles.

1 Introduction

The area of inductive databases [§], inductive query languages, and constraint-
based mining [I] has promised a unifying theory and framework for reasoning
about data mining principles and processes, which should also result in powerful
inductive query languages for supporting complex data mining tasks and scenar-
ios. The key idea is to treat patterns and models as first-class citizens that can
be queried and manipulated. The slogan: “From the user point of view, there
is no such thing as real discovery, just a matter of the expressive power of the
available query language” has been advocated.

There has been a lot of progress in the past few years witnessed by the intro-
duction of several inductive query languages, such as MINE RULE [12], MSQL
[0, DMQL [7] and XMine [3]; Microsoft’s Data Mining Extensions (DMX) of
SQL Server [16]; the algebra of the 3W model [I0]; the query language of the
SINDBAD project [II]; the logic based query languages of MolFEA [I3] and
LDL-Mine [6], which all have contributed new insights: MINE RULE, MSQL,
DMQL and XMine focus on the derivation of either frequent itemsets or associa-
tion rules; notation wise, these languages are extensions of the industry standard
SQL language. Microsoft’s SQL server includes a larger set of algorithms, and

S. Dieroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 189207, 2007.
© Springer-Verlag Berlin Heidelberg 2007

190 S. Nijssen and L. De Raedt

provides an interface for learning, clustering and applying a wider range of data
mining algorithms, including association rules, decision trees and Bayesian net-
works; however, it does not provide a framework for reusing frequent itemsets,
or for specifying additional constraints. Similar to Microsoft’s SQL server, also
SINDBAD provides an extension of SQL, in which data mining algorithms are
included as functions that transform relations into relations, but only little at-
tention is devoted to the use of constraints. The approach of Calders et al. [],
on the other hand, concentrates mainly on the specification of constraints. The
algebra of the 3W model supports association rule discovery as well as learning
rule based classifiers, but focuses more on postprocessing than on the specifica-
tion of constraints. The language of MolFEA allows for the discovery of patterns
under constraints, and is more abstract, but does not integrate classification or
clustering algorithms. LDL-Mine is similar in spirit to our proposal, but takes
Datalog as its starting point and is less focused on the representation of con-
straints. The data mining algebra and the Datalog++ foundations of LDL-Mine
are sufficiently complete to represent data mining algorithms themselves. Rele-
vant is finally also the study of Siebes [I5] concerned with upgrading relational
algebra operators, such as selection and projection, to data mining models.

Despite this plethora of languages, there is still no comprehensive theory of
inductive querying or a unifying query language that is powerful yet simple. In
this paper, we propose the inductive query language IQL, which addresses some
of the limitations of existing approaches, and integrates many of the ideas that
have been proposed in the aforementioned papers, such as the use of data as
a bridge [11], the conception of domains as virtual relations [], and the use of
logic as a query language [I3]. In contrast to earlier work, the overall goal of
this research is to devise a flexible and declarative query language for specifying
KDD scenarios.

We designed IQL with the following goals with in mind:

— to provoke discussion on inductive query languages;

— to encompass a rich variety of data mining tasks, including: local pattern
mining over different domains, clustering, classification, regression as well as
probabilistic modeling;

— to integrate models as first-class citizens of the database;

— to support reasoning about queries, their execution and their optimization;

— to integrate data mining primitives in a database language; as database
language we employ an extension of the tuple relational calculus rather than
SQL because this allows us to focus more on the principles of the language
than on the syntax, but our ideas extend to many other languages;

— to design an extendable language, in which other researchers can describe
and possibly implement their constraints, primitives and approaches; if this
succeeds, IQL might become a unifying description or specification language
for data mining;

— to design an implementable language, even though we wish to stress that —at
this point— we are not concerned with the efficiency of the resulting system
but rather with the underlying principles.

IQL: A Proposal for an Inductive Query Language 191

The final language that we have in mind is very general, and includes for instance
existentially and universally quantified formulas. At this point it is an open
question if this very general language is implementable. For restrictions that
we will point out throughout the paper, we will show that it can indeed be
implemented. IQL under these restrictions will be referred to as simplified IQL
(sIQL).

The paper is organized as follows: Section 2l provides an intuitive introduction
to our query language; Section B introduces IQL in more detail. We discuss
how IQL can be implemented in Section @l Within IQL we believe that certain
primitives should be supported. These are provided in Section[Bl We sketch what
kind of reasoning is supported by IQL in Section [6l A scenario is described in
Section[7l A brief investigation of the possibilities to integrate IQL in other query
languages is provided in Section Bl Finally we conclude in Section

Given that IQL is a query language, there are many similarities between IQL
and other languages for writing programs or queries. We choose to point out
these relations throughout the whole paper, instead of including an additional
section for related work.

2 Some Example Queries

The best way to introduce the ingredients of a language, and hence also those of
1IQL, is by providing some examples. IQL is derived from and extends the query
language we introduced earlier [I3]. An example inspired on that language, but
rewritten in IQL is:

create table R as
{< pattern : S, freql : freq(S, D1), freq2 : freq(S,D2) > | S € Sequence N
S<“C—H—-0-n" A freq(S,D1) =0 A freq(S,D2) > 1 }.

This query generates a relation in which the tuples consist of sequential patterns
and their frequency in datasets D1 and Ds. Furthermore, all patterns must occur
at least once in dataset D5, must not occur in D7 and must be more general than
(i.e., a substring of) “C' — H — O —n” . This query thus corresponds to a typical
local pattern mining step. By convention, we write variables and relations with
capitals.

As a second example, consider

create view R’ as { T + < target: apply(D,T) > |
D € DecisionTree|< A : integer, B : integer >, < C' : string >] A
C4.5(D,R)AT € R 1.
This query creates a view R’, which extends the relation R with the attribute

target. The value of target is the prediction made by a decision tree generated
by C4.5 on the projection of R on the attributes A, B and C (as the class

192 S. Nijssen and L. De Raedt

attribute). So, this query does not only generate a decision tree but also applies
it to a data set, which corresponds — in part — to a cross-over operation.
These two examples illustrate the following key ingredients of IQL:

— queries are generating relations of the form { tuple | condition (tuple) };

— IQL is an extension of the relational tuple calculus;

— the result of a query is a relation, hence, the closure property is satisfied;

— the values of the tuples can be complex, e.g. sequences, functions, etc.; we also
allow for operations such as “+” and “-” on tuples, which add, respectively
remove attributes from tuples;

— the logical connectives A, V, = are permitted; (in sIQL, we do not allow V;)

— IQL is able to employ functions; for instance, freq(P, D), which computes
the frequency of the pattern P in the dataset D;

— IQL employs a typing system; for instance, the decision tree D maps tuples
with attributes A and B onto their classes C;

— as in [4] a virtual relation represents a domain, for instance, Decision Tree;

— as in the language by [I3], there are some built-in predicates such as =<,
which denotes generality, and freq(P, D);

— calls to specific algorithms, such as C4.5, can be integrated; this may be
realized using pattern matching, cf. Section

Let us now define these ingredients in a more formal manner.

3 Manipulation of Data

To manipulate data as well as pattern and functions, we shall employ an exten-
sion of the tuple relational calculus. The tuple relational calculus is a standard
theoretical query language for relational databases [5I4]. By using the relational
calculus, we keep the desirable closure property: the result of each query is a re-
lation. Furthermore, the relational calculus is based on logic and is therefore
declarative.

Essential in the relational model is that data is stored in relations, each of
which consists of a set of tuples. A tuple is an expression of the form < nj :
V1,...,NE : Vp > where n; is an attribute, and v; a value out of the domain D;
of the attribute n;, e.g. the tuple < a : 0, b : 1 >. For reasons of convenience,
we allow tuples to be joined or subtracted using the + and — symbols [. The
schema of a tuple is denoted by < ni : D1,...,ng : Dy >. For instance, in the
above example, this is < a : boolean,b : boolean >. A relation is then a set of
tuples over a particular schema, e.g. R={ <a:0,b:1><a:1, b:0> }.
We will also say that the type of a relation is {< ny : Dy,...,ng : Dy >}. In
tuple relational calculus, variables range over tuples in relations.

The syntaz of the tuple relational calculus is then defined as follows. A query
is an expression of the form {T|q}, where T is a tuple and ¢ is a formula.

! For simplicity we shall assume that no clashes occurs (as e.g. in < temp : 5 >+ <
temp : 6 >).

IQL: A Proposal for an Inductive Query Language 193

A formula is usually built from the traditional connectives A, V and -, and
contains variables that can be quantified using the 3 and V quantifiers. In sIQL,
we restrict ourselves to formulas without the V quantifier and V connective. The
following atoms are allowed:

— atoms of the form ejfes, where 0 € {>,<,>,<,=,#} and e; is a term.
Constants, attributes a of tuples T' (denoted by T.a) and tuples with one
attribute can be used as terms;

— T € R, where T is a tuple variable, and R is a relation.

From a data mining perspective, a dataset is conceived as a set of tuples, each
of which contains information about an example. One crucial aspect of IQL is
that we allow for arbitrary domains. For instance, we shall consider the domain
of graphs, sequences, . .. For such domains, there will typically be special built-in
operators such as for instance the generality or covers relation =< stressed by [13].
Similarly, we can conceive a pattern set as a set of tuples, each of which contains
a pattern.

Even though we assume that the inductive database conceptually deals with
domains such as graphs or sequences, this does not mean that we claim that
an inductive database should be able to store such structures entirely in an
attribute. For instance, an attribute in the graph domain could also be imple-
mented as an identifier pointing to another relation storing the real graphs. At
this point, we abstract from implementation details, such as how objects are
incorporated or implemented, and essentially only assume that they can be ma-
nipulated and passed on using IQL calculus.

A crucial extension is that we allow for functions. To achieve this, we propose
the use of a typing system which includes the following types:

— basic types;
Examples: integer, float, boolean

— complex types;
Examples: decisionTree, itemset

— a tuple type <>, which is taken on by every tuple. We can specialize this
type; if 7,..., 7, are types, and A1,... A, are identifiers,

<>\11T1,...,An17’n>

specifies tuples that contain at least the given attributes; so, we constrain
tuples to a certain schema;
Examples: < pattern:itemset,support:integer >, < tree:decisiontree,
acc : float >

— if 7 is the type of a tuple, then

{7}

is the type of a relation of tuples of this type;
Examples: {<>}, {< pattern:itemset,support:integer >}

— a schema type, which allows one to pass on a list of attribute identifiers to
a function; so, the expression < A : integer, B : integer > is of type schema.
Example: schema

194 S. Nijssen and L. De Raedt

— if 7 is a complex type and 64, ...,6, are tuple types, then
T[917...79n}

is a parameterized type; in contrast to functional programming languages,
the parameter types are not intended to allow for generic programming;
01, ...,0, are intended to associate to a model the schema of the data it was
learned from, which could be used later on to constrain the applications of
the model;

Example: decisionTree[< A:integer,B:integer >, < C:string >]

In this example, < A:integer,B:integer > is the set of attributes that are
used to perform predictions by the decision tree, and < C:string > is the
attribute that is predicted by the tree.

Using these types, we can now specify what the signature of a function is:
(01,...,0n) — 0,

where o; is an input parameter type and 6 is a return value type. In addition
to the <> type, we will also allow variables in signatures, denoted by «, 3,
These variables represent the type <>, but take on the schema of the tuple or
relation that is passed to the function. The idea is that they can be used to
express further constraints on the schemas of relations that are passed on to a
function.

Examples

— apply : (decisionTree|a, (5],7v) — integer (a C)
This signature defines a function that applies a decision tree to a tuple in a
relation. The variables o, § and «y in this signature, which are used in stead
of the general <> type, can be used to express additional constraints. In
this case, it is required that the input attributes of the decision tree should
occur in the relation to which it is applied.

— join: ({a}, {8}, schemaly]) — {a+ B} (v Sy C)
This signature defines a function that takes two relations as input, and a
set of attribute identifiers that are common to both relations, and produces
a relation in which tuples are joined on these common attributes. In this
notation, v takes on the tuple schema that is passed as parameter to the
function.

As we allow for functions, we can also easily deal with predicates, by conceiv-
ing predicates as functions with boolean return type. Functions and predicates
are incorporated in IQL by allowing expressions of the form f(eq,...,e,) where
f is a function and the e; are expressions with types that should satisfy the con-
straints specified in the signature of the function. These expressions can occur
in atoms, as well as in tuples, as they denote particular values.

IQL: A Proposal for an Inductive Query Language 195

As illustrated by the join function, the inclusion of functions in IQL means
that many common operations of the relational algebra can be implemented.
IQL is however more powerful than the traditional relational algebra to which
additional operators are added. A query which can be expressed in IQL is

{D+T|De RAT € f(D)},

for some relation R and function f that returns a relation. In this query, we
iterate over one relation, and apply an operator on each tuple in the relation,
resulting in a relation for that particular tuple.

The final elements of IQL are:

— in addition to types, we also allow for the definition of type classes, which are
similar to those found, for instance, in the functional programming language
Haskell. Concretely, a type class specifies a set of function headers in which
the class is a parameter. A type can only be an instance of a class iff all
these functions are implemented for the type.

Examples: For the class classifier, we can require that the function apply :
(classifier|a, 8], v) — integer

exists. The classifier type can be used for instance for relations containing
multiple types of classifiers; still, we can apply the common operation apply
to all of them.

— we introduce a virtual relation of schema {< element:7 >} for every complex
type 7 (similar to [4]). These relations are necessary to define the pattern
type or model type of interest;

Example: {T|T € Itemset A freq(T, D) > 10}
Here, the schema of Itemset is {< element:itemset >}. Observe that we
capitalize the first letter of the type name when used as a relation.

— we allow new relations to be created that contain the result of a query, and
we allow for the definition of functions; views are special functions without
arguments.

Examples
create function f(id:Int)as {t —<id> |t€ DAtid=1id}
create table F as { < pattern: S,id: V.id, freq: freq(S, f(V.id)) > |

V €IDAS € Sequence A freq(S, f(V.id)) > 10 };
Here ID and D are relations in the database.

4 Evaluation of Queries

Given that our language supports statements such as ‘create table’ that modify
the state of the inductive database, our language can be considered imperative.
Still, the queries themselves are more declarative in nature, and the question
rises as to how we can evaluate them. An important property of our language
is that it supports both declarative and procedural mechanisms for specifying

196 S. Nijssen and L. De Raedt

queries. Assume that we have an algorithm for learning decision treesE7 then we
can represent this using a function

dtLearner: ({a}, schemal(], schemaly]) — {< tree : decisionTree[3,~] >}
(B < a,yCa);

the decision tree learner takes as input the relation for which a decision tree is to
be learned, and furthermore, the identifiers of attributes that are used as inputs
and class attribute, respectively. It produces a relation containing decision trees
(in most cases, only one decision tree). This function can be used in a query such
as

create table T as dtLearner(R,< A : integer >, < B : string >)
Alternatively, we could also define a function
isLearnedTree : ({a}, decisionTree|3,~]) — boolean (B Ca,vCa),

which succeeds if a decision tree has been learned from certain data by an algo-
rithm. This function can be used to allow for the query

create table T as
{T|T €DecisionTree[< A : integer >, < B : string >|NisLearnedTree(D,T')}.

The main idea behind the evaluation of our query language is to rewrite the
declarative query into its procedural form, not unlike the way that relational
calculus is rewritten in relational algebra. We can achieve this through the pat-
tern matching principle that is common in many declarative programming lan-
guages, such as Prolog and Haskell, but clearly, the pattern matching system of
IQL must be more powerful than the systems used in these languages. It is an
open question as to how powerful the pattern matching system for (full) IQL
should be, but to illustrate that evaluation by pattern matching is possible, we
will show this for the simplified IQL in the remainder of this section.

In sIQL, we propose to drive the pattern matching system by declarations of
the following form:

where ¢ is a conjunctive formula of the form ¢ = {T}y € Ry A... AT, € R, Aa1 A
...Nam}; Ry,..., R, are relations and ay,...,a,, are atoms; on the righthand
side of the declaration a function call f is given. As an example, we can have
the following declaration:

{T|T € decisionTree[B, G|, isLearnedTree(D,T)} = dtLearner(D, B,G), (1)

In this declaration, some variables are underlined. These variables are substitutable.
A substitution for apatternisaset 0 = {V; /17, ..., V,/T}}; when the substitution

2 For reasons of simplicity, we assume that this algorithm does not have additional
parameters.

IQL: A Proposal for an Inductive Query Language 197

is applied to the pattern, all substitutable variables V; are simultaneously replaced
with corresponding new terms 7 as defined in the substitution set 6.

The declarations are used to guide the rewriting of queries. If the formula ¢
of a pattern equals part of a query after a substitution, the matched atoms in
the query are replaced with the righthand side of the declaration that matched.

For instance, for the query:

{C|C € decisionTree[< a : integer >, < b : integer >|A
isLearnedTree(R, C') A acc(C, R) > 10},

we can apply substitution § ={T'/C, B/ < a : integer >, G/ < b : integer >, D/R}
to the formula of Equation[Ilto obtain a match.

The rewriting proceeds as follows. First, we compute the atoms that were
not matched with the pattern, ¢ — ¢, to make sure that they reoccur in the
rewritten query. Then, we add a new atom (T € f0) to this set of atoms, which
ranges over the result of a function call as defined by the righthand side of
the matched declaration (we abort the pattern matching if we detect a type
mismatch). Finally, we have to make sure that all variables that ranged over
relations that disappeared in the new query, range over the result of the function
call. This can be achieved by applying a final substitutior.

In our example, after applying substitution 6, we can rewrite the query into

{T|T € dtLearner(R,< a : integer >,< b : integer >) A acc(T, R) > 10}.

For a query that does not contain virtual relations, and for which all functions
are implemented, we can use a straightforward evaluation method, similar to the
evaluation of list comprehensions in programming languages such as Haskell or
Python: first, the atoms are ordered. Then, for every atom T € R (‘generator
expressions’), if R is function call, it is evaluated; for every possible value in
the resulting relation, the remainder of the atoms is evaluated. Other atoms
(‘guard expressions’) are evaluated by performing the necessary function calls
first, and testing the results of the function calls. The lefthand side of the query
is evaluated for every combination of tuples that survives all guards.

5 Primitives and Extensions

In this section, we study a list of possible queries, and investigate how they can
be represented in our language. In this discussion, we will point out whether the
queries are already supported by the sIQL or if the full IQL is required.

Condensed representations. We have seen already that frequent pattern miners
in general can be represented by introducing a type class pattern. Algorithms

3 For reasons of simplicity, we assume there are no name clashes between the attributes
of relations; we assume that the function that is called, returns a tuple that contains
all attributes of the matched relations.

198 S. Nijssen and L. De Raedt

for mining using condensed representations, such as closed itemsets, can be rep-
resented by including functions

isClosed : (itemset, {itemset}) — boolean,
which checks if an itemset is closed within a certain database, and
closedMiner : ({itemset}, integer) — {itemset},

which returns the set of frequent closed itemsets for a given database and support
threshold. These functions are used in the declaration

{I|I € Itemset, freq(I,R) > T,isClosed(I, R)} = closedMiner(R,T).

This procedure can be repeated for every kind of condensed representation and
type of pattern. Observe that if the isClosed function is implemented separately,
we have two different ways to evaluate a closed itemset mining query: one option
is to call a closed itemset miner; another option is to call a frequent itemset miner,
and to postprocess the results. It is a matter of optimization which of these two
options is chosen.

A useful feature of IQL could be to introduce templates. It can then be speci-
fied that for a condensed representation, the above mentioned set of two functions
types and one declaration should be provided.

Miners under multiple constraints. Some data mining algorithms are able to
deal with conjunctions of constraints of arbitrary size, for instance, the MolFEA
algorithm [I3]. It is obvious that such algorithms are straightforwardly repre-
sented in IQL. Evaluation within the sIQL setting is however difficult, as every
pattern in the pattern matching system has a fixed size. Both a more complicated
pattern matching system and a more complicated typing system are required to
pass variable numbers of constraints to an algorithm.

Top-k pattern miners. A recent branch of research involves that of mining top
k patterns, where the top k patterns are determined according to some convex
measure, such as the x2 test. One way that a user could specify such a query is

create view V = {< itemset : I, value : x*(I, D) > |I € Itemset}
{I|I € Itemset A rank(I,V) < 10}.
Here, x? is a function with signature
X? : (itemset, {< itemset : itemset, class : string >}) — float;

this function computes the correlation of an itemset in a dataset that contains at
least an itemset attribute and a class attribute. The rank function has signature

rank : (itemset, {< itemset : itemset, value : float >}) — integer

IQL: A Proposal for an Inductive Query Language 199

and returns the position of an itemset in a set of itemsets that is sorted according
to associated floating point values.

The link between a top k£ pattern miner and a declarative query is formalized
by the declaration

{I|I € Itemset, rank(I,V) < T} = TopKChi2Miner(D,T)

under the constraint that V' is a view of the form {< itemset : I,value :
xX2(I, D) > |I € Itemset}.

A variation of this approach, which allows us to deal with a larger number of
convex measures, is to replace the y? function with a general function

applyconver : (measure, itemset, { < itemset : itemset, class : string >}) — float.

A benefit of using views, is that it is easy to incorporate additional constraints
on top k patterns. For instance, if we are interested in the top k free itemsets,
this can be expressed by modifying the view into

create view V =
{< itemset : I,value : x*(I, D) > |I € Itemset A isFree(I, D)}

As soon as the user introduces a minimum frequency constraint in the view,

create view V =
{< itemset : I,value : x*(I, D) > |I € Itemset A freq(I, D) > 10},

a different query evaluation plan can emerge in which the view is first material-
ized; the end result can be obtained by postprocessing the materialized view.

Classification algorithms. We have already seen how a decision tree can be in-
tegrated in IQL. It is easy deal to with further constraints on decision trees.
For instance, if we define the function size : decisiontree[a, 5] — integer, this
function can be used in a declaration:

{T|T € DecisionTree|B,G], isLearnedTree(D,T), size(T) < M} =
dtMazLearner(D, B, G, M)},

for an appropriate decision tree learner dtMazLearner.
Observe that if we have two decision tree learners, this query may be evaluated
in two ways:

— the specialized decision tree learner can be used;
— a general decision tree learner can be used, whose output is postprocessed.

In the second approach, the result of the query may be empty if by default
a heuristic decision tree learner is used, and this algorithm finds a tree that
is too large. It is an essential property of many data mining algorithms that
their output is not defined otherwise than through the implementation of the
algorithm itself, while in ordinary databases, the outcome of a query does not
depend on the evaluation strategy (see, for instance, also [I5] about this issue). If

200 S. Nijssen and L. De Raedt

one believes that deterministic behavior is also desirable in inductive databases,
there are several possible solutions:

— we can disallow predicates and declarations that could lead to alternative
query execution plans for heuristic algorithms; for instance, in the case of
decision trees, we could forbid the use of predicates such as isLearned Tree in
favor of predicates such as C4.5;

— if multiple query evaluation plans exist within the database, we execute them
all; the result of the query is the union of all executions.

Our query language also shows that for several kinds of queries on classifica-
tion models currently no solvers exist, for instance:

create view V = {< model : T, value : accuracy(T, D), value2 : size(T) > |
T € DecisionTree[< A : integer, B : integer >]Aleafsup(T, D) > 2}

{T\T € VA rank(T,V) < 2}.

This query asks for all decision trees for which the accuracy is maximal and
ties are cut by taking the smallest possible tree. The search space is restricted
to those trees in which each leaf contains at least two examples of the training
data. Similar queries can also be posed for other types of models.

Probabilistic Models. In contrast to classifiers, probabilistic models do not output
a single class, but a probability distribution over a set of target attributes. The
type of the apply function is

apply : (probmodel|a, B],v) — {< string, float >} (e C~,8C v >),

and reflects that for every example, a distribution over the class attributes is
returned. The approach for learning probabilistic models is similar to that for
classification models.

Clustering. Clustering algorithm do not target a specific class attribute, but
rather try to find meaningful groups within the data, and can easily be integrated
in IQL. For instance, assume that we have a k-means clustering algorithm that
puts examples into multiple clusters and assigns a degree of membership for each
cluster (for example, according to the distance to the cluster centre). Then the
following declaration formalizes such an algorithm:

{T+L+C|C e KMeansClustering[X],
isClustering(C, R), size(C') = N,T € R, L € apply(C,T)} =
kMeansLearner(T, N, X),

where we assume the following function types:

isClustering : (kMeansClustering[a], {5}) — boolean (o C [3)
size : (kMeansClustering|a]) — integer
apply : (kMeansClustering[a], 3) —
0 U < cluster: integer, membership : float > (o C f3)

IQL: A Proposal for an Inductive Query Language 201

This query attaches to every example the clusters that it is part of, and the
degree of this membership. Observe that in this pattern, learning and prediction
are combined. For many clustering algorithms, it is difficult to separate these
operations. However, if a clustering algorithm generates a model for assigning
clusters to unseen examples, then it can be handled as a classifier or a proba-
bilistic model.

Feature Construction. Once a set of local patterns has been mined, a common
operation is to use the patterns for creating new features for a set of examples.
For instance, for a frequent itemset {A, B} in a relation R, one could add an
attribute AB to R which is true for every tuple that contains {A, B}, and false
otherwise.

To support this operation, we require that two types of functions are supported
by the inductive database. First, a function

name : (type) — string,

is required for every type, which assigns names to data mining objects. We leave

it unspecified whether this name should be interpretable; important is that it if

two objects are not equivalent, they should never be given the same name.
Then, a function

transpose: ({a}, boolean) — {a— B} (=< name: string, value : boolean>, 3 C «)

is required. This function groups all tuples in the input relation according to all
attributes other than name and value, and creates a new relation in which new
attributes are added for every name, of which the values are obtained from the
value fields; if no value is available, the default value is used that is a parameter
of the function. An example of the application of the transpose function is given
below.

Id Name Value
1 A true Id A B
1 B true = 1 true true
2 A true 2 true false
2 B false

Only after a table is created using this function, and the query is finished, its
schema is known.
To be able to create a binary value from a pattern, we assume that a function

covers : (pattern, pattern) — boolean

is provided for patterns. Alternatively, the “C” symbol can be used in an infix
notation.

202 S. Nijssen and L. De Raedt

6 Reasoning

IQL allows one to reason about queries, as [I3]. For instance, consider the
sequence:

create table R as { < pattern : S, freq: freq(S, union(Dy, D2)) > |
S € Sequence A freq(S, union(Dy, D2)) > 5 };

create table R’ as {< pattern : S, freq: freq(S,Dy) > |
S € Sequence A freq(S,Dy) > 5};

and assume that the queries are posed sequentially. If the inductive querying
system has the following background knowledge,

Dy C union(Dy, Do)
Dy C union(Dy, Do)
Dy C Dy = VT : freq(T, D1) < freq(T, D2)

Then one can actually see that the answer to the first query is a superset of that
of the second one. Therefore, rather than calling the frequent pattern miner
again for the second query, one might simply go through the result of the first
one to verify which patterns satisfy the second frequency constraint. Examples
of this kind of reasoning, and a deeper discussion of these issues, is provided in
[13]. Observe, however, that the frequencies of all frequent sequences have to be
computed to finally answer the second query, as the frequencies in the second
query may be smaller than in the first.

In IQL, this type of reasoning can be extended to constraints on other do-
mains. For instance, a decision tree with minimum accuracy 0.9 on a dataset R
is also a decision tree with minimum accuracy 0.8 on the same dataset.

Due to its close connection to relational calculus, there are similar optimiza-
tion possibilities in IQL as in relational calculus. For instance, consider this
query:

{T+ < prediction : apply(C,T) > |
T € RAC € DecisionTree[< A : Int>, < B : Int>|AisLearnedTree(C, R)};

to evaluate this query, the query optimizer should first construct the decision
tree, and then apply it to all examples; it should not choose to construct the
decision tree repeatedly for every example again.

We already pointed out that there can be multiple execution plans if multiple
matching patterns and algorithms are provided. It is possible to perform query
optimization by comparing execution plans.

7 Scenario

IQL should support the description of scenarios [2]. In this section we will demon-
strate a typical scenario, in which a pattern miner is used to find frequent pat-
terns, these frequent patterns are then used to create features, and finally a
classification model is learned.

IQL: A Proposal for an Inductive Query Language 203

The first step in this scenario is easily described. Assume that we have a
database of molecules HIV, and we are looking for subgraphs with a high sup-
port in active molecules, but a low support in the inactive molecules:

create function hiv(d : string) as
{T- < activity > | T € HIVAT.activity = d }

create table R as
{ S| S € Graph A freq(S, hiv(“active”)) > 10 A freq(S, hiv(“inactive”)) < 10 }

Next, we use the local patterns to create features.

create function f(Data : {< id : integer, graph : graph, activity : string >}) as

transpose(

{< id : T.id, activity : T.activity, name : name(QG), value : covers(G,T.graph) > |
T € Data A G € R}, false)

create table Features as f(HIV)

The result of this query is a relation in which columns denote whether a graph
contains a certain subgraph or not. We can build a decision tree for this relation.

create table R’ as
{D|D € DecisionTree[schema(Features)—< id, activity >, < activity : boolean >|
N isLearnedTree(D, Features)}.

Here, schema returns the schema of relation Features; the classifier should use
the features in this relation, excluding the id and activity attributes. Finally, we
can use this decision tree to predict the activity of molecules in a dataset HIV .

create table HIVPredictions as
{T'+ < pred : apply(D,T) > |T € f(HIV’)/\D € RAT € HIV AT.id = T’.id}.

This query shows how using traditional data manipulation operations, we can
associate the prediction of a molecule to its original representation, instead of
its binary feature representation.

8 Extensions of Other Query Languages

In this paper we concentrated on an extension of the tuple relational calculus.
The tuple relational calculus has the advantage that, when writing queries, we do
not need to be concerned with the exact schema of relations. An open question
is to what extent the principles of the IQL can be integrated in other query
languages. In this section, we preliminarily investigate the issues that rise if
we extend other query languages to obtain the same expressive power as the
simplified version of the IQL.

204 S. Nijssen and L. De Raedt

Domain Relational Calculus. In domain relational calculus, the variables do not
range over tuples in relations, but over values of attributes. Furthermore, it is
common that attributes are identified by their position in tuples, and not by their
names. Our example query for learning a decision tree would be formulated in
domain relational calculus as follows:

create view R’ as { < Xy, Xo, X3, apply(D, < X1, X1, X35 >) > |
< D >€ DecisionTree[{1,2},{3}] A
C4.5(< D >, RN < X1,X2, X5 >€R }.

We do not expect many problems to extend sIQL towards domain relational
calculus. More complications can be expected when additional quantifiers and
negations are allowed.

Datalog and Prolog. Datalog differs from domain relational calculus in several
aspects. First, notation wise, the infix predicate € is not used. Second, more
importantly, queries can define new relations recursively. Datalog is therefore
more expressive than either tuple or domain relational calculus.

Our most important extension of the tuple relational calculus consists of
adding functions. One might therefore think that our query language is very
similar to Prolog. Our functions play however a slightly different role than the
functions in Prolog. The functions in our language act as predicates in Prolog,
and transform input into output. Furthermore, our functions can take relations
as input and produce new relations as output. The main point of our pattern
matching mechanism is to rewrite queries such that they use functions that
are implemented in an arbitrary language. In Prolog, this behavior can only be
achieved through the use of meta-predicates (such as call) that can be used to
emulate higher order logics. To illustrate this issue, consider the query which
creates a new table through a function:

create function f(id: Int)as {t —<id> |t€ DAtid=1d }
create table F as { < pattern: S,id : V.id, freq : freq(S, f(V.id)) > |
V eIDAS € SequenceA freq(S, f(V.id)) > 10 };

This function repeatedly creates a temporary relation that is passed to another
predicate. A Prolog freq predicate would have to take a formula (query) as
argument and materialize this formula in order to compute the frequency.

Overall, it is already feasible to integrate principles of sIQL in Datalog, but
additional research is required to make this integration smoother.

Algebra. To give relational algebra the same expressive power as sIQL, we face
similar problems as with Datalog. The most obvious way to integrate functions
into the algebra, is to conceive functions as additional operators in the algebra;
after all, we have already pointed out that queries expressed in relational algebra
can be conceived as repeated applications of functions in sIQL. Still, we need
additional formalisms to deal with functions that do not act on relations, or
functions that are repeatedly applied to relations created by another function.

IQL: A Proposal for an Inductive Query Language 205

One way to address this problem is to add a loop operator ¢ to the relational
algebra. Given a function f(o1,09,...,0,), we can define that

operator t¢(Ro, R1,...,Ry) ¢
Let < Ay :71,..., A : Ty > be the schema of Ry
R =10
for each T € Ry do
for 1 <i<ndo
select tuples from R; such that R;. A1 = T A\ A... AR Ay = T Ay,
for those attributes of T' that also occur in R;
project A1,..., A\, away from the selected tuples
store the resulting relation in z;
Let o' = f(x1,...,25)
R =R U(T xa')
return R’

The main idea behind this loop operator is that Ry contains the values of an
iterator, and the relations R; (¢ > 1) contain the parameters with which the
function is called for each value of the iterator. For each value of the iterator a
call is performed; the result is stored. If a relation R; contains multiple rows for
the same iterator value, a relation with multiple tuples is passed to the function.

Given the function f which selects tuples based on their class attribute, we
can now formulate the following query:

O freq>10(Lfreq(Sequence x ID, I(Sequence), ¢ (ID,V))),

In this query ¢y (1D, V') creates a relation which for every identifier in I.D, stores
the selected part of the dataset V. Relation I(Sequence) is the relation that
associates every sequence with itself. Next ¢, associates to every combination
of a sequence and an identifier the corresponding frequency. Only those sequences
with a frequency greater than 10 end up in the resulting relation. As this relation
cannot be evaluated due to the infinity of Sequence, it would have to be rewritten
into
LfrequentSequenceMiner (ID, 107 Lf(ID7 V))

How such rewriting can be achieved, and if there is an automatic way of rewriting
sIQL in a well-specified relational algebera, is an open question which we will
not address further in this paper.

9 Conclusions

We presented a relational calculus for data mining. A key ingredient was the
inclusion of functions. This allowed us to integrate a large set of algorithms into
IQL, including classification algorithms and clustering algorithms.

The inclusion of functions in the calculus has major other consequences. Com-
mon operators in relational algebra, such as join and project, can also be con-
ceived as functions. We have seen that our language is more powerful than a
relational algebra to which functions are added.

206 S. Nijssen and L. De Raedt

To evaluate queries, we proposed the use of pattern matching, which is common
in many other declarative programming languages. We investigated how several
common data mining operations can be expressed as queries in our calculus, and
found that most algorithms can be integrated by making the pattern matching
language more powerful. One could argue that the power of the declarative
languages is determined by the power of its pattern matching language. We
provided a concrete evaluation strategy for a simplified version of the IQL.

Even though IQL was presented in a rather informal way, we believe that IQL
can already be used as a description language and interface to a wide variety of
data mining algorithms and techniques in a uniform and theoretically appealing
way. The authors would also like to herewith invite other groups interested in the
development of inductive query languages to describe their favorite constraint
based mining tools within IQL.

Acknowledgments. This work was supported by the EU FET IST project 1Q
(“Inductive Querying”), contract number FP6-516169. The authors would like
to thank John Lloyd for interesting discussions, and visitors of the workshop for
their comments.

References

1. Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, Springer, Heidel-
berg (2006)

2. Boulicaut, J.-F.,; De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006)

3. Braga, D., Campi, A., Ceri, A., Lanzi, S., Klemetinen, M.: Mining association rules
from XML data. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK
2002. LNCS, vol. 2454, Springer, Heidelberg (2002)

4. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational
databases. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, Springer, Heidelberg (2006)

5. Date, C.J.: An introduction to database systems. Addison-Wesley, Reading (2000)

6. Giannotti, F., Manco, G., Turini, F.: Specifying mining algorithms with iterative
user-defined aggregates. IEEE Transactions Knowledge and Data Engineering ,
1232-1246 (2004)

7. Han, J., Fu, Y., Koperski, K., Wang, W., Zaiane, O.: DMQL: A data mining query
language for relational databases. In: Proceedings of the ACM SIGMOD Workshop
on research issues on data mining and knowledge discovery, ACM Press, New York
(1996)

8. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58-64 (1996)

9. Imielinski, T., Virmani, A.: MSQL: A query language for database mining. Data
Mining and Knowledge Discovery 2(4), 373-408 (1999)

10. Johnson, T., Lakshmanan, L.V., Ng, R.: The 3w model and algebra for unified
data mining. In: Proc. VLDB Int. Conf. Very Large Data Bases, pp. 21-32 (2000)

11.

12.

13.

14.

15.

16.

IQL: A Proposal for an Inductive Query Language 207

Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
124-138. Springer, Heidelberg (2006)

Meo, R., Psaila, G., Ceri, S.: An extension to SQL for mining association rules.
Data Mining and Knowledge Discovery 2(2), 195-224 (1998)

De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69-77 (2003)

Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New
York (2004)

Siebes, A.: Data mining in inductive databases. In: Bonchi, F., Boulicaut, J-F.
(eds.) KDID 2005. LNCS, vol. 3933, Springer, Heidelberg (2006)

Tang, Z., MacLennan, J.: Data Mining with SQL Server 2005. Wiley, Chichester
(2005)

	IQL: A Proposal for an Inductive Query Language
	Introduction
	Some Example Queries
	Manipulation of Data
	Evaluation of Queries
	Primitives and Extensions
	Reasoning
	Scenario
	Extensions of Other Query Languages
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

