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Abstract. In inductive databases, there is no conceptual difference be-
tween data and the models describing the data: both can be stored and
queried using some query language. The approach that adheres most
strictly to this philosophy is probably the one proposed by Calders et
al. (2006): in this approach, models are stored in relational tables and
queried using standard SQL. The approach has been described in detail
for association rule discovery. In this work, we study how decision tree
induction can be integrated in this approach. We propose a represen-
tation format for decision trees similar to the format proposed earlier
for association rules, and queryable using standard SQL; and we present
a prototype system in which part of the needed functionality is imple-
mented. In particular, we have developed an exhaustive tree learning
algorithm able to answer a wide range of constrained queries.

1 Introduction

An inductive database (IDB) [11] is a database that contains not only data, but
also generalizations (patterns and models) valid in the data. In an IDB, ordinary
queries can be used to access and manipulate data, while inductive queries can
be used to generate (mine), manipulate, and apply patterns.

Two approaches have been studied to represent and query patterns and mod-
els in IDBs. First, depending on the models that will be stored, a special-purpose
storage and query language can be created. In this context, several researchers
have proposed extensions to the popular relational query language SQL. For ex-
ample, Meo et al. [15] and Imielinski & Virmani [12] present extensions to SQL
specifically designed for mining association rules. Kramer et al. [14] and Han
et al. [10] extend this approach to other models such as classification rules, but
they do not give any details about how to actually store those models in the
IDB. ATLaS [24] defines new table functions and aggregates in SQL, such that
writing data mining algorithms (e.g., decision tree learners) in SQL becomes
convenient. This approach has the closure property due to the use of SQL in the
whole data mining process, but requires a deep understanding of SQL and data
mining algorithm implementation to be used in practice. De Raedt [6] proposes
a query language based on first order logic, which is especially suited for rela-
tional data. Michalski & Kaufman [16] propose to use a knowledge generation



meta-language (KGL) that combines conventional database operators with op-
erators for conducting a large number of inductive inference tasks and operators
for managing knowledge.

The second approach consists of storing the patterns and models in standard
relational database tables, which are provided by any relational database man-
agement system (RDBMS), and using the standard SQL language, to represent,
store, and query the generalizations made on the data. This approach is being
investigated by members of the ADReM group in Antwerp1 for frequent itemset
and association rule mining [4]; we will refer to it in the rest of the paper as
“the ADReM approach”. This approach has a number of advantages over other
approaches with respect to extensibility and flexibility. In this paper, we inves-
tigate how the ADReM approach can be used for learning global models, such
as decision trees, and to which extent its advantages carry over to this new set-
ting. In particular, while support and confidence constraints are obvious when
querying association rules, it is much less clear which constraints are useful for
decision trees. We propose some interesting constraints for decision trees and
show how they can be enforced by means of two different decision tree learning
algorithms.

Section 2 presents the basic ideas behind the ADReM approach and shows
how they apply in the context of association rule discovery. Section 3 extends
the ADReM approach to decision tree learning. We first discuss how a standard
greedy decision tree learner can be used in this context (Section 4.1). Because
this approach has a number of disadvantages, we propose a new decision tree
learning algorithm that employs exhaustive search (Section 4.2). The latter is
more suitable for answering certain inductive queries for decision trees. Section 5
presents the perspectives of this work and Section 6 states the main conclusions.

2 The ADReM Approach to Association Rule Mining

The basic idea behind the ADReM approach is that models are stored in a rela-
tional database in the same way that other information is stored: as a collection
of tuples in relational tables. While applicable to a wide range of models, this
idea has primarily been studied in the context of association rules [1]. Below, we
briefly review the proposed representation for association rules, the conceptual
view on association rule mining that it leads to, and some implementation issues.
More information can be found in [4].

2.1 The Conceptual View

Consider a set of transactions D. The set is often represented as a table with one
row per transaction and one Boolean attribute per item, but conceptually it can
also be represented as a binary relational table with, for each transaction, a set
of tuples of the form (tid,item), where tid is the transaction identifier and item is

1 {toon.calders,bart.goethals,adriana.prado}@ua.ac.be



Sets

isid item

i1 p3

i1 p5

i1 p6

i2 red

i3 p3

i3 p5

i3 p6

i3 red

. . . . . .

Supports

isid support

i1 10

i2 20

i3 8

. . . . . .

Rules

rid isida isidc isid conf

r1 i1 i2 i3 0.8

r2 i4 i5 i6 0.4

. . . . . . . . . . . . . . .

Fig. 1. Storing association rules in a relational database. For example, the rule
“p3,p5,p6 ⇒ red” is represented by r1.

an item name. The crucial difference between the first and second representation
is that in the second, the item names are values instead of attributes. A query
can therefore return an item name as part of its result set. Note that we are
talking about the conceptual representation here; how the transaction table is
really implemented is not important.

Itemsets can be represented in a similar way. Figure 1 shows the ADReM rep-
resentation of frequent itemsets and association rules. The Sets table represents
all itemsets. A unique identifier (isid) is associated to each itemset IS (isid), and
for each itemset of size n, there are n rows (isid, itemj)1≤j≤n where itemj is the
jth item of IS (isid). The Supports table stores the support of each itemset. The
Rules table stores the computed association rules. For each rule X ⇒ Y , there
is a row (rid, isida, isidc, isid, conf ) in the IDB where rid is the association rule
identifier, isida (resp. isidc) is the identifier of the itemset used in the antecedent
(resp. consequent) of the rule, IS (isid) = IS (isida) ∪ IS (isidc) and conf is the
confidence of the rule.

With this representation, finding association rules subject to certain con-
straints can be done easily using an SQL query. For instance, the query

select rid
from rules r
where r.conf >= 0.8 and

r.isidc in (select isid from sets where item = ‘‘red’’)

finds all association rules with a confidence of at least 0.8 that contain the item
“red” in the consequent of the rule.

2.2 The Implementation

Conceptually, the database has tables that contain all itemsets and all association
rules. But in practice, obviously, the large number of patterns may make it
impractical to explicitly store them all in the database. This problem can be



solved by making these tables virtual. As far as the user is concerned, these tables
or virtual mining views contain all the tuples needed to answer the user query.
In reality, each time such a table is queried, a efficient data mining algorithm is
triggered by the DBMS to populate the views with the tuples that the DBMS
needs to answer the query.

More specifically, the procedure works as follows: given a query, an execution
plan is created; on the highest level this is a regular relational algebra tree with
tables as leaves. Standard query optimization procedures push projection and
selection conditions down this tree as far as possible, thus reducing the size of
intermediate results and making the overall computation more efficient. In the
ADReM approach, the leaves may be the result of a data mining process, and
the projection/selection conditions may be pushed further down into the data
mining algorithm. Calders et al. [4] describe this optimization process in detail.

2.3 Advantages of the Approach

The ADReM approach has several advantages over other approaches to inductive
querying. The main point is that the data mining processes become much more
transparent. From the user’s point of view, tables with itemsets and rules etc.
exist and can be queried like any other table. How these tables are filled (which
data mining algorithm is run, with which parameter values, etc.) is transparent
to the user. The user does not need to know about the many different imple-
mentations that exist and when to use which implementation, nor does she need
to familiarize herself with new special-purpose query languages. The whole ap-
proach is also much more declarative: the user specifies conditions on the models
that should result from the mining process, not on the mining process itself.

In the light of these advantages, it seems useful to try a similar approach
for other data mining tasks as well. In this paper, we focus on decision tree
induction.

3 Integration of Decision Tree Learning

A decision tree classifies instances by sorting them down the tree from the root
to a leaf node that provides the classification of the instance [17] (Figure 2). Each
internal node of the tree specifies a test on the value of one of the attributes of
the instance, and each branch descending from the node corresponds to one of
the possible outcomes of the test. In this paper, for simplicity reasons, we focus
on decision trees with Boolean attributes. Each attribute can then be seen as an
item in a transaction table and transactions are instances to classify.

In this section, we discuss the motivations for integrating decision trees into
an IDB and propose a representation for decision trees that will enable the user
to pose queries supporting several types of useful constraints.



3.1 Motivation

To see the motivation behind using the ADReM approach for decision tree learn-
ing, consider the current practice in decision tree induction. Given a data set,
one runs a decision tree learning algorithm, e.g., C4.5 [20], and obtains one par-
ticular decision tree. It is difficult to characterize this decision tree in any other
way than by describing the algorithm. The tree is generally not the most accu-
rate tree on the training set, nor the smallest one, nor the one most likely to
generalize well according to some criterion; all one can say is that the learning
algorithm tends to produce relatively small trees with relatively high accuracy.
The algorithm usually has a number of parameters, the meaning of which can
be described quite precisely in terms of how the algorithm works, but not in
terms of the results it yields. To summarize, it is difficult to describe exactly
what conditions the output of a decision tree learner fulfills without referring to
the algorithm.

This situation differs from the discovery of association rules, where the user
imposes constraints on the rules to be found (typically constraints on the confi-
dence and support) and the algorithm yields the set of all rules satisfying these
conditions. A precise mathematical description of the result set is easy to give,
whereas a similar mathematical description of the tree returned by a decision
tree learner is quite difficult to give.

Are people using decision tree learners interested in having a precise specifi-
cation of the properties of the tree they obtain? Aren’t they only interested in
finding a tree that generalizes the training instances well, without being inter-
ested in exactly how this is defined? This may often be the case, but certainly
not always. Many special versions of decision tree learners have been developed:
some use a cost function on attributes and try to find trees that combine a high
accuracy with a low cost of the attributes they contain [22]; some take different
misclassification costs into account while building the tree [7]; some do not aim
for the highest accuracy but for balanced precision-recall [25]; etc. The fact that
researchers have developed such learning algorithms shows that users sometimes
do have more specific desiderata than just high predictive accuracy.

By integrating decision tree learning into inductive databases, we hope to
arrive at an approach for decision tree learning that is just as precise as asso-
ciation rule learning: the user specifies what kind of trees she wants, and the
system returns such trees.

Here are some queries the user might be interested in:

1. find {T |size(T ) < 8 ∧ acc(T ) > 0.8 ∧ cost(T ) < 70}
2. find one element in {T |size(t) < 8 ∧ acc(t) > 0.8 ∧ cost(t) < 70}
3. find {T |size(T ) < 8 ∧ (∀T ′|size(T ′) < 8 ⇒ acc(T ′) < acc(T ))}
4. find {T |T = (t(X, t(Y, l(+), l(−)), t(Z, l(C1), l(C2)),

X ∈ [A,B,C], Y ∈ [D,E], acc(T ) > 0.8}

In the first query, the user asks for all decision trees T with a size smaller than
8 nodes, a global accuracy greater than 0.8 and a cost less than 70 (assuming
that each item has a given cost). To describe the tree of interest, other criteria



such as the number of misclassified examples (error), the accuracy computed
for a particular class, the precision, the recall, or the area under the ROC curve
(AUC ) might also be interesting.

Since the user is interested in all the trees that fulfill the given criteria, the
query cannot be answered by triggering a standard greedy decision tree learning
algorithm. Instead, a decision tree learner is needed that can search the space of
all possible trees exhaustively for trees that satisfy the constraints. The number
of such trees might be huge and as a result executing the query might not be
tractable. Note that without constraints, the number of decision trees that can
be constructed from a database with d attributes and a possible values for each
attribute is lower-bounded by

∏d−1
i=0 (d − 1)ai

. As in the association rule case
presented in Section 2, we assume that the queries are sufficiently constrained so
that a realistic number of trees is returned and stored. Which kind of constraints
are adequate here is still an open question.

In the second query, the user asks for one tree that fulfills some criteria. This
tree can normally be computed by a regular greedy tree learner. Note, however,
that for greedy learners, given that at least one tree satisfying the constraints
exists in the search space, there is usually no guarantee that the learner will find
one.

With the third query, the user looks for the set of trees of size smaller than 8
nodes with maximal accuracy. Again, this means that the search space of trees
smaller than 8 nodes must be searched exhaustively to ensure that the accuracy
of the returned trees are maximal.

In the last query, the user provides syntactic constraints on the shape of the
tree and provides some attributes that must appear in it.

More generally, we are interested in queries of the form {t ∈ T |C(t)} where
C(t) is “any conjunction of constraints on a particular tree”. This does not
include the whole range of possible queries. In particular, queries that specify
constraints on a set of trees such as “find the k best trees as different as possible
that fulfill some constraints” [13] are out of the scope of this paper.

3.2 Representing Trees in a Relational Database

The virtual mining view that holds the predictive models should be precise
enough to enable the user to ask SQL queries as easily as possible without
having to design new keywords for the SQL language. We use the same data
representation (transactions) as in Section 2, and assume that each transaction
contains either the ‘+’ item or the ‘-’ item, which indicate the class of the
transaction. We further assume that all the data-dependent measures (such as
accuracy) are referring to these transactions.

Note that due to the well-known correspondence between trees and rule sets,
a tree can be represented as a set of association rules: each leaf corresponds to
one association rule, with as antecedent the conditions on the path from the root
to that leaf and as consequent the class label of that leaf. However, while the
representation with one rule per leaf is interesting for prediction purposes, the
structure of the tree gives more information: e.g., the higher an attribute occurs
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treeID size error accuracy AUC cost ...

T1 7 . . . . . . . . . . . . . . .

T2 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

Tree sets

isid item sign

i0 ∅ 1

i1 A 1

i2 A 1

i2 B 1

L1 A 1

L1 B 1

L1 + 1

i3 A 1

i3 B 0

L2 A 1

L2 B 0

L2 - 1

. . . . . . . . .

All trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

. . . . . . . . .

T1 L2 1

. . . . . . . . .

T1 L3 1

. . . . . . . . .

T1 L4 1

T2 . . . . . .

T3 . . . . . .

. . . . . . . . .

Greedy trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

. . . . . . . . .

T1 L2 1

. . . . . . . . .

T1 L3 1

. . . . . . . . .

T1 L4 1

Fig. 2. Storing decision trees in a relational database.

in the tree, the more informative it is for the prediction. Such information is lost
if we represent a tree as a set of association rules. We therefore choose a slightly
different representation.

The decision trees generated from the data D can be stored in the same
database as D and the association rules computed from D, by using the following
schema (Figure 2):

1. The Tree sets table is inspired by the Sets table used for representing asso-
ciation rules. We choose to represent a node of a tree by the itemset that
characterizes the examples that belong to the node. For instance, if the
itemset is AB, the examples in this node must fulfill the criteria A=true
and B=false. In association rules, only the presence of certain items is indi-
cated: there is no condition that specifies the absence of an item. To cope
with association rules derived from trees such as the one corresponding to
leaf L2 of the tree in Figure 2 (AB ⇒ −), we add a sign attribute to the
Tree sets table indicating whether the presence (1) or the absence (0) of the
item is required.
As in the Sets table, a unique identifier (isid) is associated to each itemset
and, for each itemset of size n, there are n rows (isid, itemj , signj)1≤j≤n



where itemj is the jth item of the itemset identified by isid and signj is its
sign. i0 stands for the empty itemset.

2. The All trees and Greedy trees tables give a precise description of each tree
in terms of the itemsets from Tree sets. Each tree has a unique identifier
treeID and each itemset corresponding to one of its nodes is associated with
this treeID. A Boolean attribute leaf distinguishes the internal nodes of the
tree (leaf = 0) from its leaves (leaf = 1). The nodes at level k of the tree,
are defined in terms of k-itemsets. The All trees table holds all possible
trees, whereas the Greedy trees table can be queried for an implementation-
dependent subset of all trees (the trees that may be found by a greedy learner
under certain conditions and constraints).

3. The Trees charac table lists all the tree characteristics where the user might
be interested in. The table contains for each tree identified by treeID, a row
with all characteristics (size, error, accuracy, cost, AUC) computed for the
tree (see Section 3.1).

The All trees and Greedy trees tables correspond, as discussed before, to the
ideal approach and the current and practically feasible approach to compute
decision trees. Both tables are thus relevant in our framework.

Note that the semantics of the SELECT operator applied to the Greedy trees
table is different from the standard relational algebra definition of this operator.
For example, querying the Greedy trees table for a tree will yield a particular
decision tree as result. If we subsequently add a certain constraint to the query,
then the system will return a different tree (a tree satisfying this constraint).
This is different from what happens when querying a regular database table
because the answer set of the query with the additional constraint is not a
subset of the answer to the original query. In our framework, the SELECT
operator applied to the Greedy trees table only outputs a single tree that fulfills
the user’s constraints.

3.3 Querying Decision Trees using Virtual Views

The database schema of Section 3.2 is sufficient to be able to answer interesting
queries, provided that the data mining algorithms connected to the database
compute the different characteristics of the trees that hold in the IDB. We con-
tinue by presenting a number of example queries.

SELECT trees_charac.* FROM trees_charac, all_trees
WHERE trees_charac.treeID = all_trees.treeID AND
accuracy >= 0.8 and size <= 8;

This query selects the characteristics of all trees that can be computed from the
database, that have an accuracy of at least 0.80, and that contain at most 8
nodes.

SELECT treeID FROM trees_charac, greedy_trees
WHERE trees_charac.treeID = greedy_trees.treeID
and trees_charac.error < 10;



This query selects a tree constructed with a greedy algorithm that misclassifies
fewer than 10 instances.

SELECT trees_charac.* FROM trees_charac, all_trees
WHERE trees_charac.treeID = all_trees.treeID
AND accuracy = (select max(accuracy) from trees_charac);

This query selects the characteristics of the most accurate tree(s).

SELECT treeID FROM greedy_trees, tree_sets
WHERE greedy_trees.isid = tree_sets.isid
AND (tree_sets.isid

IN (select isid from tree_sets where item = ‘‘A’’));

This query selects a tree constructed with a greedy algorithm that contains the
item “A”.

3.4 User Defined Virtual Views

The framework is flexible enough to allow queries with constraints on metrics
that were not included in the virtual view from the beginning. The user can
create his own virtual mining view using information such as the support of the
itemsets. We illustrate this by providing definitions for “accuracy” and “size”.

The accuracy of a specific leaf in the tree can be computed from the support
of the itemsets that belong to the leaf [19] as follows (for the tree in Figure 2):

acc(L1) =
support(+AB)
support(AB)

, acc(L2) =
support(−AB)
support(AB)

, . . .

The global accuracy of the tree is the weighted mean of the accuracies of its
leaves. This can be computed without any information on the actual structure
of the tree as follows:

acc(T ) = acc(L1) · support(AB)
support(∅)

+ acc(L2) · support(AB)
support(∅)

+ . . .

=
support(+AB) + support(−AB) + . . .

support(∅)
.

Itemsets that include a “negative” item usually do not have their support com-
puted. In this case, formulas based on the inclusion-exclusion principle, such
as:

support(AB−) = support(A−)− support(AB−)

can be used to compute the support of all itemsets from the support of the
“positive” itemsets [3].

These formulas can be translated into the SQL language to compute all the
characteristics in the Tree charac table. As in Section 2, we assume that we have
a Supports table that contains the support of all itemsets.



acc(T1)= SELECT SUM(Supports.support) /
(SELECT Supports.support
FROM Supports WHERE Supports.isid = ‘‘I0’’)
as accuracy

FROM Supports, all_trees
WHERE Supports.isid = all_trees.isid
AND all_trees.treeID = T1
GROUP BY all_trees.treeID

size(T1) = SELECT COUNT(*) FROM all_trees
WHERE all_trees.treeID = T1

4 Implementation

The ADReM group connected an Apriori-like algorithm for association rule min-
ing to a standard Oracle database. The resulting system can answer inductive
queries for association rules including constraints on the support of the itemsets
and the confidence of the rules, and constraints requiring the presence or ab-
sence of some item in the resulting rules. We extend this system by interfacing
it to a decision tree learner named Clus2. Clus is a predictive clustering tree
[2] learner that uses a standard greedy recursive top-down induction algorithm
to construct decision trees. Clus can be used to answer queries with regard to
the Greedy trees table. To support queries on the All trees table, we propose
a new algorithm Clus-EX that performs an exhaustive search for all decision
trees satisfying a set of constraints. We first discuss in more detail queries on
the Greedy trees table (Section 4.1) and then present Clus-EX (Section 4.2).

4.1 Greedy Tree Learning

For this task we use the standard implementation of Clus, which is a greedy
recursive top-down induction algorithm similar to C4.5 [20]. First, a large tree
is built based on the training data and subsequently this tree is pruned such
that the constraints in the query are satisfied. Following the precursor work by
Garofalakis et al. [8], a number of constraints were implemented in Clus [21].
It currently supports constraints on the size of the tree (i.e., an upper-bound
on the number of nodes), on the error of the tree, and on the syntax of the
tree. The error measure used for classification tree learning is the proportion of
misclassified examples (i.e., 1.0-accuracy). The syntactic constraints allow the
user to introduce expert knowledge in the tree. This expert knowledge takes the
form of a partial tree (including the root) that must appear in the resulting tree.
Essentially, this subtree specifies the important attributes in the domain. Other
constraints discussed in Section 3.1 still have to be implemented in the system.
Currently, queries such as the following can be used:

2 http://www.cs.kuleuven.be/~dtai/clus/



SQL> select * from trees_charac c, greedy_trees g

where c.tree_id = g.tree_id and c.err <= 0.2 and c.sz= 9;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

0 9 0.02 0.98 1 rows selected.

SQL> select * from trees_charac c, greedy_trees g

where c.tree_id = g.tree_id and c.err <= 0.2 and c.sz <= 8;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

1 7 0.027 0.973 1 rows selected.

SQL> select * from trees_charac c, greedy_trees g

where c.tree_id = g.tree_id and c.sz< 4;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

2 3 0.333 0.667 1 rows selected.

The trees computed for the different queries can be stored in a “log” table
that can be queried just as easily. After the session above, this table would
contain:

TREE_ID SZ ERROR ACCURACY

------- ----- ------- ----------

0 9 0.02 0.98

1 7 0.027 0.973

2 3 0.333 0.667

4.2 Exhaustive Tree Learning

This section proposes the exhaustive tree learner Clus-EX. Clus-EX searches
the space of all possible trees of at most MaxSize (a parameter) nodes in a
depth-first fashion. Basically, a queue of trees is kept; a search step consists of
taking the first tree of the queue, computing refinements for it, and adding those
refinements to the front of the queue. A refinement consists of splitting one leaf
of the tree according to one of the available attributes. Generating all possible
refinements in this way is not optimal because the same tree may be generated
multiple times. To avoid identical trees from being generated, it is sufficient to
restrict the refinements as follows. Clus-EX only splits leaves that are below
or to the right of the last node on the right-most path of internal nodes (or,
more formally: the ones that come after the last internal node of the current
tree when it is written in pre-order notation). In the example in Figure 3.a, only
the dark gray leaves will be refined. The completeness and optimality of this
method follow from a result by Chi et al. [5].
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Fig. 3. (a) Example tree being refined by Clus-EX. The right-most path of internal
nodes is A, B, C. Only the leaves below or to the right of C are refined (indicated in
dark gray). (b) An illustration of exploiting constraints on both the size and the error
of the tree.

As discussed in Section 3.1, finding all possible trees that can be constructed
on a data set is intractable in the general case. However, if the user specifies suf-
ficiently restrictive constraints, and these constraints can be used for pruning,
then the search becomes practically feasible. (This is similar to itemset mining,
where a sufficiently high support threshold must be set so that the search be-
comes tractable.) In our case, including a size constraint in the inductive query
is crucial to prune the search, that is, the search can stop as soon as the given
size limit is reached. But a combination of size and error constraints can also
be exploited for pruning. Assume that the constraints state that there can be at
most Emax misclassified examples and that the size of the tree (internal nodes
plus leaves) can be at most S. Take a tree of size S′. Splitting a leaf increases the
size of the tree by at least 2, so at most m = (S−S′)/2 (integer division) leaves
of the current tree can be split before the maximum size is reached. Observe that
the greatest error reduction occurs when the leaves with the largest number of
errors (i.e., number of examples not belonging to the majority class in the leaf)
are split, and all these splits yield pure leaves. Assume that the current tree
has E0 errors in leaves that cannot be split anymore by the optimal refinement
operator, and k leaves Li that still can be split (the gray leaves in Figure 3.a).
Assume further that the Li are sorted such that e1 ≥ e2 ≥ . . . ≥ ek, with ei the
number of errors of Li. Then any valid extension of this tree has a total error of
at least E0 +

∑k
i=m+1 ei. If this sum is greater than Emax, then we can safely

prune the search at this point.
Consider the example in Figure 3.b, and assume that the five leaves have

(from left to right) 2, 1, 5, 3, and 4 errors. Let MaxSize = 11. The current size is
9, so we can do at most one more split. Given the refinement strategy described
above, we know that only the two right-most leaves can be split in the current
situation (the two leaves below node D). Therefore, E0 = 2 + 1 + 5 = 8 errors,
and the best possible split occurs when the leaf with 4 errors is replaced by two
pure leaves. The lower bound on the error is therefore 3 + 8 = 11.



Table 1. The performance of Clus-EX on UCI data sets. We consider for each data
set different values for the MaxSize and MaxError constraints. For each constraint pair,
the size of the search space (number of trees searched) without and with error based
pruning is reported together with the reduction factor due to pruning (Red.). The last
column is the number of trees that satisfy the constraints.

Search space (# trees searched)
Data set MaxSize MaxError No pruning Pruning Red. # Result

soybean 7 0.3 177977 86821 2.0 0
soybean 9 0.3 8143901 4053299 2.0 0
soybean 7 0.6 177977 125055 1.4 848

zoo 7 0.2 13776 9218 1.5 214
zoo 7 0.3 13776 11908 1.2 2342
zoo 9 0.3 345388 276190 1.3 95299
zoo 11 0.2 7871768 4296549 1.8 708026
zoo 11 0.1 7871768 1637934 4.8 16636

audiology 7 0.3 415704 380739 1.1 0
audiology 7 0.5 415704 406290 1.0 2326

Table 1 presents the results of Clus-EX on different symbolic UCI [18] data
sets. The third and the fourth columns show the number of nodes evaluated
during the search, i.e, they give an idea of the size of the search space and of
the efficiency of the pruning method. The table shows that when the maximum
error (resp. minimum accuracy) is sufficiently low (resp. high) compared to the
size constraint, the combination of the constraints can be used to efficiently
prune the search space. The table shows that restrictive constraints are crucial
to restrict the search space and the number of resulting trees. The soybean and
the audiology data sets contain many classes, therefore, the combination of strict
error and size constraints can easily lead to an empty result set.

Currently, queries such as the following can be used with the prototype:

SQL> select c.tree-id,sz,accuracy,err from trees_charac c, all_trees a

where c.tree_id = a.tree_id and sz <= 7 and accuracy > 0.8’);

TREE_ID SZ ERR ACCURACY

---------- ---------- ---------- ----------

0 7 0.125 0.875

1 7 0.125 0.875

2 7 0.125 0.875

3 7 0.125 0.875

4 7 0.125 0.875

5 7 0.125 0.875

6 7 0.125 0.875

7 7 0.125 0.875

8 5 0 1

9 5 0 1



SQL> select * from all_trees a, trees_sets t

where a.set_id = t.set_id and tree_id = 0;

TREE_ID SET_ID NODE SET_ID ITEM SIGN

---------- ---------- ---------- ---------- -------- ----

0 0 1 0 null 1

0 1 1 1 null 1

0 1 1 1 B = F 1

0 2 1 2 null 1

0 2 1 2 B = F 1

0 2 1 2 A = F 1

0 3 0 3 null 1

.... .... .... .... .... ...

5 Perspectives

There are many open problems related to the proposed approach. For instance,
for efficiency reasons, the system should be able to look at the “log” table that
contains the previously computed trees to check if the answer of the current query
has not already been computed, before triggering a data mining algorithm. If
the user asks for all trees of size smaller than 8, and later for all trees of size
smaller than 6, the results computed from the first query should be reusable
for the second query. The “log” table should also contain the previous queries
together with the computed trees, which raises the question of how to store the
queries themselves in the database. This entire problem, called interactive mining
because it refers to the reutilisation of queries posed within the same working
session, has been investigated for association rules [9], but not for decision tree
learning.

If the database is modified between two queries, then it might be interesting
to reuse the previously computed predictive models to more efficiently compute
new predictive models for the modified database. This problem known has in-
cremental learning has already been studied for decision trees [23] when a new
example is added to the database.

These functionalities have to be integrated into the prototype along with the
extension of the framework to multi-valued attributes.

Because predictive models ultimately aim at predicting the class of new ex-
amples, it would be interesting to include that possibility in the IDB. This is
currently non-trivial in our approach; it requires complicated queries. More gen-
erally, the limitations of our approach with respect to what can be expressed,
and how difficult it is to express it, require further investigation.

Another perspective is the integration of other predictive models such as
Bayesian Networks in the same IDB framework already designed for association
rule and decision tree mining. The user might be interested in queries such
as “find the Bayesian network of size 10 with maximal likelihood”. Again, a
structure to store Bayesian networks has to be designed and an algorithm that
can build Bayesian networks under constraints has to be implemented.



6 Conclusion

In this paper we have studied how decision tree induction can be integrated in
inductive databases following the ADReM approach. Considering only Boolean
attributes, the representation of trees in a relational database is quite similar to
that of association rules, with this difference that the conjunctions describing
nodes may have negated literals whereas itemsets only contain positive literals.
A more important difference is that a decision tree learner typically returns one
tree that is “optimal” in some “not very precisely” defined way, whereas the
IDB approach lends itself more easily to mining approaches that return all re-
sults fulfilling certain well-defined conditions. It is therefore useful to introduce
both a Greedy trees table and an All trees table, where queries to Greedy trees
trigger the execution of a standard tree learner and queries to All trees trig-
ger the execution of an exhaustive tree learner. We have described a number
of example queries that could be used, and proposed a new algorithm that is
able to exhaustively search for decision trees under constraints. We presented a
preliminary implementation of this algorithm, and discussed open questions and
perspectives of this work.

The approach presented in this paper focused on the representation of the
models, the querying mechanism and the constrained based mining of the models.
We believe that the simplicity of this approach makes it easier to be included as
a brick in a larger system able to support the whole KDD process, which is the
ultimate aim of an inductive database.
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