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Abstract. Approximation theory is a fixpoint theory of general (mono-
tone and non-monotone) operators which generalizes all main semantics
of logic programming, default logic and autoepistemic logic. In this pa-
per, we study inductive constructions using operators and show their
confluence to the well-founded fixpoint of the operator. This result is
one argument for the thesis that Approximation theory is the fixpoint
theory of certain generalised forms of (non-monotone) induction. We
also use the result to derive a new, more intuitive definition of the well-
founded semantics of logic programs and the semantics of ID-logic, which
moreover is easier to implement in model generators.

1 Introduction

This paper studies inductive constructions in relation to the well-founded se-
mantics. The study of induction can be defined as the investigation of a class of
effective construction techniques in mathematics. There, sets are frequently de-
fined through a constructive process of iterating some recursive recipe that adds
new elements to the set given that one has established the presence or absence
of other elements in the set. In an inductive definition, this recipe is often rep-
resented as a collection of informal rules representing base cases and inductive
cases. Inductive rules may be monotone or non-monotone. Consider for example
the well-known definition of satisfiability, denoted I |= ¢, by induction on the
structure of (propositional) formulas:

— I = Pif P eI and P is a propositional variable;
—TEYAGIfTEYand I = ¢;
— T E il I |4

The third rule states that I satisfies =) if I does not satisfy . This is a non-
monotone rule, in the sense that it adds a pair (I, =) in absence of the pair
(I,%), and therefore, applying the “recipe” to sets of formulas does not preserve
the order C.

Different forms of inductive constructions have been studied extensively in
mathematical logic. Monotone induction was studied starting with [19], and
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later in landmark studies such as [20, 16, 1]. Also non-monotone forms of induc-
tion have been studied, such as inflationary induction [17] and iterated inductive
definitions [10]. In computational logic, the results of these studies were used in
extensions of logic with fixpoints constructs, such as FO(LFP) (see, e.g., [9]),
pu-calculus and description logics. Inductive definitions are also related to logic
programming. It was argued in [3, 8] that the well-founded semantics of logic
programming [23] correctly formalizes the semantics of different types of defini-
tions that can be found in mathematics, e.g., recursion-free definitions, monotone
inductive definitions, and non-monotone inductive definitions such as inductive
definitions over well-founded orders (e.g., the definition of =) and iterated in-
ductive definitions. The fact that the inability to express inductive definitions is
a well-known weakness of first order logic, has subsequently motivated an exten-
sion of FO with a new construct for representing definitions, whose semantics
is based on the well-founded semantics [2,7,8]. This logic FO(ID), also called
ID-logic, is in some sense an integration of classical logic and logic programming,
and can be viewed equally well as a new member of the family of fixpoint logics
and even as new (very general sort of) description logic. FO(ID) has recently
been proposed as (one of) the underlying language for a constraint programming
framework [15].

The study of inductive definitions is strongly related to fixpoint theory. An
inductive definition corresponds to an algebraic lattice operator, and, in the
monotone case, the object “defined” by such an operator is the least fixpoint. In
this sense, Tarski’s fixpoint theory of monotone operators [21] can be considered
as an entirely abstract algebraic theory of monotone induction. This naturally
raises the question whether this theory can be extended to general (monotone
and non-monotone) operators in a way that matches with different forms of non-
monotone induction. Such extensions are well-known for inflationary induction,
but not for induction over a well-founded order or its generalization, iterated
induction. But there is a promising candidate. Building on Fitting’s work [12] on
semantics of logic programming in bilattices, Denecker, Marek and Truszczynski
showed that all main types of semantics of a logic program can be characterized
algebraically in terms of the three-valued immediate consequence operator of
logic programs[4, 6]. The underlying theory, in [4] called Approzimation theory, is
an algebraic fixpoint theory for (bilattice extensions of) general lattice operators
which defines the so-called Kripke-Kleene, stable and well-founded fixpoints of
an operator. In case of the immediate consequence operator, these fixpoints are
the models of the logic program in the corresponding semantics. This suggests
that the well-founded fixpoint construction in this theory is the missing fixpoint
theory of iterated induction.

The main goal of this paper is to explore the link between inductive defini-
tions and Approximation theory. As a point of departure, we observe that an
inductive definition defines a set by describing how to construct it, and as such,
it is essentially a description of a construction process. Informally, such a pro-
cess starts from the empty set, and proceeds by iteratively applying rules of the
definition with a satisfied antecedent, until saturation follows. Of course, as a



specification of such a process, an inductive definition is highly non-deterministic.
Indeed, in the case of monotone induction, at any intermediate stage, many rules
may be applicable. It is a key property of this sort of induction that the order
in which the rules are applied does not matter: all such construction processes
produce the same outcome. For non-monotone induction, on the other hand, the
provided well-founded order must be respected (e.g., applying the third rule to
derive I = —¢ can only be done after it has been established whether I = ¢),
but still, there remain infinitely many ways in which = can be constructed.
The first goal of this paper is to formalize these construction processes and to
study how they relate to the well-founded fixpoint construction of Approxima-
tion theory. We will define the notion of a well-founded induction of a (bilattice
extension of an) operator, and demonstrate that all such inductions converge to
the well-founded fixpoint.

Secondly, we will concretize this notion of a well-founded induction in the
context of ID-logic. This leads to a new, intuitive and much simpler characteri-
zation of the well-founded model of a definition (and of a logic program) which
does not involve fixpoint operators anymore. Our results thus allow to simplify
the definition of the semantics of FO(ID), and of the well-founded semantics of
logic programming.

Thirdly, our study of induction sequences has also computational relevance.
First, the non-deterministic inference processes that we describe here general-
ize various methods of well-founded model computation as presented in e.g.
[13]. Second, in ASP systems such as SModels [18], and in the FO(ID) model
generator MIDL [14], the well-founded model is computed through a kind of
constraint propagation mechanism. These systems do not iterate the immediate
consequence operator, for this is too expensive. Instead, they iteratively perform
inference steps, inferring truth or falsity of an atom with a true, respectively
false body, and inferring falsity of unfounded sets. These computation steps are
exactly the atomic inference steps that make up a well-founded induction. Thus,
our study can give insight in the properties of intermediate objects constructed
during such a constraint propagation proces, and may lead to easier correctness
proofs for such systems.

2 Approximation theory

Our presentation of Approximation theory is based on [4, 6].

A structure (L, <) is a poset if < is a partial order on the set L, i.e., a
reflexive, asymmetric, transitive relation. The relation < is a total order if, in
addition, for each x,y € L,x < y or y < x. A subset S of a poset L is a chain
if < is a total order in S. The structure (L, <) is chain-complete if each of its
chains C has a least upperbound lub<(C), and is a complete lattice if each subset
S C L has a least upperbound {ub<(S) and a greatest lowerbound glb<(S). A
chain complete poset has a least element | and a complete lattice has both a
least element 1 and a greatest element T.

Given a poset (L, <), an operator O : L — L is called <-monotone if O
preserves <, i.e., z < y implies O(z) < O(y). An element x € L is a pre-fixpoint



of O if O(z) < z, a fixpoint if O(x) = x and a post-fixpoint if x < O(zx). The
sets of all such € L are denoted Pre(O), respectively Fiz(O) and Post(O).
A monotone operator in a chain complete poset or a complete lattice has a
least fixpoint which is also its least pre-fixpoint and the limit of the increasing
sequence (Z¢)¢>0, defined by transfinite induction:

-z =1
= @1 = O(wg);
— ) = lub({z¢]€ < A}), for limit ordinals .

In Approximation theory, pairs (z,y) € L? are used to approximate certain
elements of L, namely those in the (possibly empty) interval [z,y] = {z € L | x <
z < y}. Abusing this correspondence between pairs and intervals, we sometimes
write z € (x,y) instead of z € [z,y], to denote that (x,y) approximates z. On
L2, two natural orders can be defined:

the product order: (x,y) < (u,v) fx <wand y<w

the precision order: (z,y) <p(u,v) f z <wandv <y

The precision order is the most important. Indeed, if (x, y) <, (u,v), then [z,y] D
[u,v], i.e., (u,v) approximates fewer elements than (z,y). If L is a complete
lattice, then both these orders are complete lattice orders in L2.

In this paper, the relevant pairs of L? are the consistent pairs. A pair (x,y) €
L? is consistent if x <y (or [z,y] # (), and the subset of L? consisting of such
pairs is denoted L°. The order < is a complete lattice order in L¢, but <, is not,
because L® has no most precise element. However, (L¢, <,) is chain-complete.
Elements (z,z) of L? are called ezact. The set of exact elements forms a natural
embedding of L in L2. They are also the maximally precise elements of L°.

Approximation theory studies fixpoints of lattice operators O : L — L
through the use of approximations of O. We define that an operator A : L? — L?
is a approzimator if it is <,-monotone. An approximator is consistent if it maps
consistent pairs to consistent pairs. An approximator A approzimates an operator
O: L — L (is an approzimation of O) if for each x € L, O(x) € A(x,z). Such an
operator A provides approximate information on O. Indeed, when z € (z,y), then
<p-monotonicity gives us O(z) € A(z,z) C A(z,y). Or, O(z) is approximated
by A(z,y), and, abusing the duality of pairs and intervals, O([z,y]) C A(x,y).
It is easy to see that when A approximates an operator O, then A is consistent.
For this reason, below we only consider consistent approximators. An approxi-
mator A is exact if it preserves exactness, i.e., if for all x € L, A(z, x) is exact.
In general, an approximator A approximates a collection of lattice operators O,
but when A is exact, then the only approximated operator is the operator which
maps each z € L to A(x,z); (= A(x,x)2). An approximator A is symmetric
if for all (z,y) € L?, if A(z,y) = (2',9') then A(y,z) = (/,2'). A symmetric
approximator is exact.

For an approximator A on L? and lattice elements z,y € L, the operators
Az.A(z,y)1 and Az.A(z,2)2 on L will be denoted A(-,y)1, respectively A(z, ).
These operators are monotone. We define an operator (-)4! on L, called the



downward revision operator of A, as yA' = Ifp(A(-,y)), for each y € L. We
also define the upward revision operator (-)A1 of A as x4 = Ifp(A(x,-)s) for
every © € L. Note that if A is symmetric, both operators are identical. We
define the stable operator Sta : L? — L? of A by Sta(z,y) = (yA},247). It can
easily be seen that both ()4} and (-)AT are anti-monotone. It follows that St
is <p-monotone.

An approximator A defines a number of different fixpoints: the <,-least fix-
point of A, denoted k(A), is called its Kripke-Kleene fizpoint, fixpoints of its
stable operator Sta are stable fizpoints and the <j-least fixpoint of Sty, de-
noted w(A), is called the well-founded fixpoint of A. In [4,5], it was shown that
all main semantics of logic programming, autoepistemic logic and default logic
can be characterized in terms of the different types of fixpoints of approximation
operators associated to theories in these logics. For example, in the context of
logic programming, the four-valued van Emden-Kowalski operator 7p of a logic
program P is a symmetric approximation of the two-valued van Emden-Kowalski
operator. The downward revision operator of 7p (which is equal to the upward
one, since 7p is symmetric) coincides with the Gelfond-Lifschitz stable operator
P. The Kripke-Kleene, well-founded, stable and exact stable fixpoints of 7p co-
incide with, respectively, the Kripke-Kleene model, the well-founded model, the
four-valued stable models and the stable models of the logic program P.

Given an approximator A on L2, we denote by A€ its restriction to L°.
Conversely, any approximator A on L€, i.e., a <,-monotone L¢-operator, can be
extended to an approximator on L?, in many ways. When A is exact then A can
be extended to a symmetric approximator on L?, in many ways. It was shown in
[6], that all symmetric extensions of A have the same consistent stable fixpoints,
the same well-founded fixpoint and the same exact stable fixpoints. This suggests
that consistent stable fixpoints can also be algebraically characterized in terms
of A°. As shown in [6], this is indeed the case but the alternative characterization
is slightly more more tedious, mainly because the revision operators (-)4T and
()4} are only partial functions, since A(-,y); and A(x, ), are not operators on
L, but only functions from [L,y], respectively [z, T], to L. Consequently, they
may have no least fixpoint.

A lattice operator O can have multiple approximations. This raises the ques-
tion of how the different types of fixpoints of these approximators relate to
each other. By point-wise extension of the precision order <, on L¢, we ob-
tain a precision order between L¢-approximators. When A <, B, then any op-
erator O approximated by B is also approximated by A and k(A) <, k(B),
w(A) <, w(B), and the set of exact stable fixpoints of A is a subset of that
of B. Also, a lattice operator O has a most precise L¢-approximator, called the
ultimate approximation. This operator, denoted Up, maps any tuple (z,y) to
(gib(O([z,y])), lwb(O([z,y]))). Because it is the most precise, its Kripke-Kleene
and well-founded fixpoints are the most precise of all approximations of O, and
the set of its exact stable fixpoints comprises the exact stable fixpoints of all
approximations of O.



The precision order can be further extended to L2?-approximators, by defining
A<, Bif A° <, B° (or, equivalently, A(z,y) <, B(z,y), for each (x,y) € L).

3 Monotone and well-founded inductions

Let (L, <) be a complete lattice and O a monotone operator on L.

Definition 1. A monotone induction of O is a (possibly transfinite) sequence
(¢)e<a such that

— Xy = J_,'
— xe < ep1 < O(ag), for every £ < a;
— zx = lwb({ze|§ < A}), for every limit ordinal A < a.

A monotone induction (x¢)e<q s terminal if it cannot be extended, i.e., there
is n0 Tay1 such that (Te)e<at1 s @ monotone induction.

Clearly, a monotone induction is an increasing sequence and x,, is its limit.
Note that the standard construction of the least fixpoint Ifp(O) is a terminal
monotone induction. All terminal monotone inductions are confluent, i.e., have
the same limit, namely Ifp(O).

Proposition 1. The limit of each terminal monotone induction of O is lfp(O).

There are many ways in which a set, defined by monotone induction, can be
constructed. E.g., the transitive closure T of a graph R can be constructed by
an arbitrary process of (non-deterministically) selecting an edge (a,b) from R
and adding it to T, or finding a pair (a,b), (b,c) of edges in the current set T’
and extending this set with (a, ¢). All these processes lead to the same outcome,
namely the transitive closure of R. Proposition 1 formalizes this property.

Let us now investigate the case of arbitrary lattice-operators O. Assume
that we have an approximation A of O on L?. First, note that A is a <p-
monotone operator, so we can construct monotone inductions with A. Each
terminal monotone induction of A constructs the Kripke-Kleene fixpoint k(A).

Observe that a monotone induction of a consistent approximator A consists
only of consistent pairs. Therefore, a monotone induction of such an A is also
a monotone induction of any more precise operator B, because for any z¢y; in
such a sequence, z¢1 <, A(z¢) then implies that also z¢41 <, B(x¢) . It follows
from this that k(A4) <, k(B), as claimed earlier.

The weakness of the Kripke-Kleene fixpoint construction surfaces when we
consider the case that O is monotone. Since k(A) approximates all fixpoints of
O, we have k(A) <,(Ifp(O), gfp(O)). We therefore need to consider more precise
constructions.

We call a pair (z',y") € L? an A-refinement of (z,y) € L? if:

= (z,y) <p (&',¥') <p Az, y); or
—2'=zand y <yand A(x,y' )2 <y



Note that the second case is equivalent to saying that 3’ must be a pre-fixpoint
of A(x,-)2. Tt follows that if 247 < g, then taking ¢/ = x4 gives us the least
value for which (z,y’) is an A-refinement by the second rule.

Definition 2. A well-founded induction of A in (z,y) is a sequence ((x¢, Ye))e<a
such that

- (‘T()vy()) = (J-a T)7
— (Ze41,Yer1) s an A-refinement of (xe,ye), for each & < a;
— (x,yn) = Wb({(ze,ye): € < A}), for limit ordinal X < a.

A well-founded induction is terminal if its limit (x4, Yo ) has no A-refinement.

A well-founded induction is a <,-increasing sequence of pairs with limit (24, ¥a)-
The main task now is to prove that well-founded inductions are confluent and
produce the well-founded fixpoint. This is the main technical contribution of this
paper.

The proof of the convergence of all well-founded inductions is based on an
invariance analysis. We will show that all pairs constructed during a well-founded
induction satisfy certain invariants and that there is exactly one pair that satisfies
these invariants and has no A-refinement. Hence, all well-founded inductions
must converge to this pair.

The first invariant is A-contractingness. Recall that all elements in a mono-
tone induction are post-fixpoints. A post-fixpoint (a,b) of A has the interesting
property that O([a,b]) C A(a,b) C (a,b). Therefore, the operator O is internal
in [a,b]. In fact, it is contracting in [a,b] since (a,b) 2 A(a,b) D A%(a,b) D ....
This property is our motivation for calling a post-fixpoint of A an A-contracting
pairt.

Proposition 2. Each pair in a well-founded induction of A is A-contracting.

The second invariant aims to express that the lower bound of a pair in an well-
founded induction cannot grow too large. For example, if O is monotone, then
the pair (gfp(O), T) could be contracting w.r.t. some approximation A. Unless
Ifp(O) = g¢fp(O), this pair would never occur during a well-founded induction
because gfp(O) is too large.

Definition 3. A pair (a,b) is A-prudent if a < x for every x € L such that
A(z,b)1 < z.

Equivalently, (a,b) is A-prudent if a is less than each pre-fixpoint x of A(:,b),
or, more compactly, if a < b4}, This definition extends the notion of A-prudence
of Lé-approximators in [6] to the case of L2-approximators.

When O is a monotone operator, then for each symmetric ultimate approxi-
mation Up of O on L2, for every pair (z,y), Uo(z,y)1 = O(x). Consequently, a
pair (a,b) is Up-prudent if a is less than each pre-fixpoint of O or equivalently,

if a < ifp(0).

! In [6], A-contracting pairs were called A-reliable.



Clearly, the least precise pair (L, T) is A-prudent. Since taking A-refinements
and taking limits of A-prudent sequences both preserve A-prudence, we obtain
a second invariant.

Proposition 3. FEach pair in a well-founded induction of A is A-prudent.

The third invariant is consistency. To obtain this, however, we need to impose
an additional condition on A.

Definition 4. We say that an approximator A gracefully degrades if for all
(z,y) € L?, Ay, 2)1 < A(z,y)2.

The intuition behind this definition is that the behaviour of such an operator on
inconsistent pairs is constrained by its behaviour on consistent pairs. It cannot,
for example, map all inconsistent pairs to the most precise pair (T, L). Clearly,
a symmetric approximator gracefully degrades.

Lemma 1. Assume that A degrades gracefully. If (a,b) is A-prudent and con-
sistent, then a < a?T.

Proposition 4. Fach pair in a well-founded induction of a gracefully degrading
approzimator A is consistent.

As mentioned in Section 2, all symmetric approximators extending an exact
L¢-approximator A have the same consistent stable fixpoints. A more general
condition that guarantees this is graceful degradation.

Corollary 1. Two gracefully degrading L*-approzimators A, B for which A¢ =
B¢, have the same consistent stable fizpoints (and hence, w(A) = w(B)).

A fourth invariant is that each element in a well-founded induction is less
than each stable fixpoint. Recall that a stable fixpoint (c,d) satisfies ¢ = d4!
and d = ¢A7.

Proposition 5. Let (c,d) be a stable fizpoint of A. If (a,b) <y(c,d), then for
each (u,v) such that (a,b) <, (u,v) <, A(a,bd), (u,v) <y(c,d). If (a b) <p(c,d)
then for each y < b such that A(a,y)g <y, (a,y) <p(c, d)

Clearly, (L, T) approximates all stable fixpoints of A. This property is pre-
served by taking A-refinements and by taking limits of sequences of increasing
precision. From this, we obtain the fourth invariant of well-founded inductions.

Proposition 6. For each pair (x,y) in a well-founded induction of A and each
stable fixpoint of (c,d) of A, (z,y) <, (z,d).

We have now identified four main invariants. It follows that the limit (z,y)
of a well-founded induction is contracting, prudent, less precise than each stable
fixpoint of A and, if A gracefully degrades, consistent. In addition, we know that
(z,y) has no A-refinement. What can be concluded from this?



Proposition 7. Let (a,b) be an A-contracting, A-prudent pair such that (a,b)
has no A-refinement. Then (a,b) is a stable fixpoint of A.

Theorem 1. There exists a least precise stable fixpoint of A, and it is the limit
of each terminal well-founded induction of A. If A is gracefully degrading, then
this least precise stable fixpoint is consistent.

This theorem shows that all terminal well-founded inductions indeed reach
the same limit and, moreover, that this limit is precisely the well-founded model.

Proposition 8. Let A, B be gracefully degrading approximators on L? such that
A<, B. A well-founded induction of A is a well-founded induction of B.

In [6], it was proven that w(A) <, w(B), which is also a corollary of the above
proposition.

Another theorem links monotone inductions with well-founded inductions.
One of the symmetric ultimate approximations of a monotone lattice operator
O : L — L is the operator Up : L? — L? which maps (x,y) to (O(z),0(y)) [6].

Theorem 2. For any terminal monotone induction (x¢)e<q of O, the sequence

((ze, ye))e<atr with ye = T for every £ < a and xat1 = Yat1 = Ufp(0), is a
terminal well-founded induction of Uo.

4 Well-founded semantics of ID-logic definitions

We assume familiarity with classical logic. A vocabulary X' consists of a set of
predicate and function symbols. Propositional symbols and constants are O-ary
predicate symbols, respectively function symbols. Terms and FO formulas are
defined as usual, and are built inductively from variables, constant and function
symbols and logical connectives and quantifiers.

A definition is a set of rules of the form

vE  (P(t) < ¢)

where ¢ is a FO formula over X' and ¢ is a tuple of terms over X such that the
free variables of ¢ and the variables of # all occur in T. We call P(t) the head
of the rule, and ¢ the body. The connective « is called definitional implication
and is to be distinguished from material implication D. A predicate appearing in
the head of a rule of a definition A is called a defined predicate of A | any other
symbol is called an open symbol of A. The sets of defined predicates, respectively
open symbols of A are denoted Def(A), respectively Open(A) = X'\ Def(A).
For simplicity, we assume that every rule is of the form VzZ (P(Z) < ¢). Every
rule VZ (P(t) < ¢) can be transformed in an equivalent rule of that form.
An FO(ID) (or ID-logic) formula is a boolean combination of FO formulas and
definitions. An FO(ID) theory is a set of FO-ID formulas without free variables.

The semantics of the FO(ID) is an integration of standard two-valued FO
semantics with the well-founded semantics of definitions. For technical reasons,



we need to introduce some concepts from three-valued logic. Consider the set
THREE = {f,u,t}. The truth order < on this set is induced by f < u < t;
the precision order <, is induced by u <, f and u <, t. Define f~! = t, ul =
u,t !l =f.

Given a domain D, a value for a n-ary function symbol is a function from D"
to D. A value for an n-ary predicate symbol is a function from D" to THREE.
A X-interpretation I consists of a domain D?, and a value ¢! for each symbol
o € X. A two-valued interpretation is one in which predicates have range {f,t}.
For each interpretation F for the function symbols of X', both truth and precision
order have a pointwize extension to an order on all Y-interpretations extending
F.

A domain atom of I is a tuple of a predicate P € X' and a tuple (a1, ...,a,) €
D"; it will be denoted P(ay,...,a,), or more compactly, P(a).

For a given Y-interpretation I, symbol ¢ and a value v for o, we denote by
I[o/v] the X' U {o}-interpretation, that assigns to all symbols the same value as
I, except that ¢!l7/*] = . Likewise, for a domain atom P (@) and a truth value
v € THREE, we define I[P(a)/v] as the interpretation I’ identical to I except
that P(a)" = P! (@) = v. Similarly, for any set U of domain atoms, I[U/v] is
identical to I except that all atoms in U have value v.

When all symbols of term ¢ are interpreted in I, we define its value t/ using
the standard induction. The truth value ¢! of an FO sentence ¢ in I is defined
by induction on the subformula order:

— P(ty, ..., ty) =PIt .. th);

= (W A@) = Min< (', ¢7);

- (=)= ()7

~ Gz ) = Maz<({p'"/ | d € D}).

We now define the semantics of definitions. Let A be a definition over X' and O
a two-valued Open(A)-interpretation. Consider the collection V3 of three-valued
Y-structures extending O. On this set, we define the three-valued immediate
consequence operator WAO7 also called the Fitting operator, which maps any I €
V5 to the O-extension J such that for each defined domain atom P(a),

P(a)” = Maz<({p(a)” [Vx(P(x) < ¢) € A}).

The Fitting operator [11] is the extension of the van Emden-Kowalski operator
to three-valued structures.

Let L be the lattice of two-valued X-structures extending O. As shown in
[6], V& is isomorphic with L¢ and the correspondence is between three-valued
interpretations K and tuples of two-valued interpretations (I, .J) such that for
each domain atom P(a),

P(@)X =t and P(a)! =t
P(@)X =u and P(a)! =f,P(a)’ = t;
P(a)¥ =f and P(a)! =f

I



We denote the two components of a three-valued K by K; and Ks. In this
view, the Fitting operator is an exact L°-approximation of the van Emden-
Kowalski operator, and has a well-founded fixpoint, denoted I2. This is, in
general, a three-valued structure. We extend the truth valuation function ¢! to
all FO(ID) formulas by extending the above recursive rules with a new base case
for definitions. For a given three-valued structure I and definition A, we define
Al =t if I = (Ilopen(a))®, and AT = f otherwise.

We are now ready to define the semantics of FO(ID). A structure I satisfies a
FO(ID) sentence ¢ (is a model of ¢) if I is two-valued and ¢! = t. As usual, this
is denoted I |= ¢. I satisfies a FO(ID) theory T if I satisfies every ¢ € T. Note
that the semantics is two-valued and extends the semantics of classical logic.
The restriction to consider only two-valued well-founded models boils down to
the requirement that a definition A should be total, i.e., should define the truth
of all defined domain atoms (see [8]).

We now apply the results of the previous section to derive an alternative
definition of the well-founded model, which is simpler, more intuitive and more
flexible than the one above. We first generalize the well-known concept of an
unfounded set [23].

Definition 5. Given a definition A and a three-valued X -structure I, an un-
founded set of A in I is a non-empty set U of defined domain atoms such that
each P(a) € U is unknown in I and for each rule ¥Z (P(Z) «— ¢(T)) € A,
¢(a)V/f = .

When U is an unfounded set in an interpretation I which corresponds to
a pair (J, K), then I[U/f] corresponds to (J, K[U/f]). If, in addition, I is ¥§-
contracting, then it is easy to see that each domain atom P(a), false in I[U/f], is
false in WS (I[U/f]), or, equivalently, ¥Q (I[U/f])s < I[U/f]2 = K[U/f]. Hence,
I[U/f] is a w§Q-refinement of I.

Definition 6. We define a well-founded induction of a definition A in an Open(A)-
interpretation O as a sequence (I%)¢<q of three-valued X-structures extending O
such that:

— for every defined predicate symbol P, PI° s the constant function u,
— for each limit ordinal A < a, I* = lub< ({I* | £ < A}), and
— for every ordinal £, I€t1 relates to I¢ in one of the following ways.
o [t .= [¢[P(a)/t], for some domain atom P(a), unknown in I¢, such
that for some rule ¥z (P(Z) «— ¢(Z)) € A, d)((‘z)ls =t;
o [t = [S[U/f], where U is an unfounded set of A in I¢.

A well-founded induction is terminal if it cannot be extended anymore.

We will call an interpretation I[P(a)/t] or I[U/f] satisfying the conditions in
the above definition a A-refinement of I in O.

In such a sequence, for each £ < q, it either holds that I¢ <p 6 =
I8[P(a)/t] <, W] (I%), or I¢T1 = IS[U/f] with U an unfounded set. It follows



that I¢t! is a Q/(A)—reﬁnement. Hence, each well-founded induction of A in O
is a well-founded induction of ¥Q. The inverse is clearly not the case (in an
induction of Wg, many atoms can be made true at the same time). Still, a
terminal well-founded induction of A with limit I* is a terminal induction of
¥Q. Indeed, suppose I has a ¥{-refinement J. Then either it must be that I*
has an unfounded set U, or 1% <, WQ(I%) which implies that for at least one
domain atom P(a), P(a)! = u while P(@)?8U") =t or P(a)?SU") = f. In the
latter case, {P(a)} is an unfounded set. In all cases, I¢ has a A-refinement.

Proposition 9. A (terminal) well-founded induction of definition A in O is a
(terminal) well-founded induction of the approximator Wg,

Therefore, the results of the previous section now directly yield following
theorem, which gives us a characterization of the well-founded model as the
limit of any well-founded induction.

Theorem 3. There exist terminal well-founded inductions of A in O. Each well-
founded induction of A in O is strictly increasing in precision. The limit of every
terminal well-founded induction of A in O is the well-founded model O4.

5 Conclusion

Approximation theory is an extension of Tarski’s least-fixpoint theorem of mono-
tone lattice operators [21] to the case of arbitrary ones. The claim has been made
that this theory is the (missing) fixpoint theory of generalized non-monotone
forms of induction such as induction over a well-founded order and iterated in-
duction. In this paper, we gave an argument for this, by investigating a natural
class of constructive processes and showing that these are confluent, all having
the well-founded model as their limit. This result allowed us to derive a new,
simpler and more elegant definition of the well-founded semantics of rule sets,
that does not rely on the immediate consequence operator. It would also allow to
derive new, simpler constructive characterisations of the well-founded semantics
of default logic and auto-epistemic logic. As we have argued in the introduc-
tion, this definition also provides a better model of what happens in current
implementations of the well-founded semantics.
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