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Abstract. In many scenarios, a database instance violates a given set of integrity
constraints. In such cases, it is often required to repair the database, that is, to re-
store its consistency. A primary motif behind the repairing approaches is the principle
of minimal change, which is the aspiration to keep the recovered data as faithful as
possible to the original (inconsistent) database. In this paper, we represent this qual-
itative principle quantitatively, in terms of distance functions and some underlying
metrics, and so introduce a general framework for repairing inconsistent databases
by distance-based considerations. The uniform way of representing repairs and their
semantics clarifies the essence behind several approaches to consistency restoration
in database systems, helps to compare the underlying formalisms, and relates them
to existing methods of defining belief revision operators, merging data sets, and inte-
grating information systems.

1 Introduction

Inconsistency of constraint data-sources is a widespread phenomenon. There are many rea-
sons for that, among which are human errors in information handling or understanding,
conflicts between the actual data and external integrity constraints, integration of contra-
dicting data-sources, new constraints that are enforced on pre-existing data, and so forth. In
such cases it is usually required to ‘repair’ the information, that is, restore its consistency.
This task is usually closely related to the principle of minimal change, which is the aspi-
ration to reach consistency by a minimal amount of modifications in the ‘spoiled’ data. To
illustrate this, consider the following simple example:

Example 1. Consider a database with two data facts D = {p, r}, and an integrity constraint
IC = p → q. Under the closed world assumption [42, 43], stating that each atomic formula
that does not appear in D is false, this database is clearly inconsistent, as IC is violated.
Two ways of restoring consistency in this case are by inserting q to D or deleting p from D.
Moreover, assuming that integrity constraints cannot be altered, these are the most compact
ways of repairing this database, in the sense that any other solution requires a larger amount
of changes (i.e., insertions or retractions) in D.

Consistency restoration by minimal change may be traced back to [16] and [49]. In
the context of database systems, this notion was introduced by [1], and then considered
by many others, including [2, 4, 5, 9, 10, 12, 18, 26, 27, 35, 37, 46, 47]. Some implementations
of these methods are reported in [4, 23, 25, 33]. Despite their syntactic and semantic differ-
ences, as well as the different notions of repair used by different consistency maintenance
formalisms, the rationality behind all these methods is of keeping the ‘recovered’ data ‘as
faithful as possible’ to the original (inconsistent) data.

A common way of deriving minimal change is by distance considerations. This approach
is very common, for instance, in belief revision [19, 28, 31, 39, 44], where the belief states



of the reasoner before and after the revision are kept as close to each other as possible.
Closeness is specified in terms of distance semantics, using appropriate metrics. In this
paper, following the same idea, we identify distance-based semantics at the heart of several
repairing methods, and introduce a corresponding framework for data repair. In this respect,
we follow Bertossi’s remark in [7], that

Identifying general properties of the reasonable repair semantics [. . .] is a very im-
portant research direction. Unifying principles seem to be necessary at this stage in
order to have a better understanding of consistent query answering.

Although there are several approaches to database repair that do not involve distance con-
siderations (most notably, those that are based on set inclusion, e.g. [1, 14, 26, 47]), our
framework does capture all the known quantitative methods for database repair, including
those that are based on minimal cardinality and similarity measures induced by tableaux
homomorphism. Moreover, as the same distance-based considerations are also the nucleus
of many approaches for belief revision and data integration, this work is not restricted to
databases only, and can be easily generalized to other paradigms in which reasoning with
inconsistency is involved.

The rest of this paper, which is a revised and extended version of the paper in [3], is
organized as follows: In Section 2 we give a general representation of consistency restoration
in database systems as a distance minimization problem. In Section 3 we consider differ-
ent distance-based approaches to database repairing, and incorporate the notion of optimal
matching (between the spoiled and the recovered data) for generalizing some existing repair-
ing methods and defining several new ones. In Section 4 we show how our framework can
be used also for merging independent data-sources. In Section 5 we consider some related
works on database repairing and in Section 6 we conclude.

2 Database Repair as a Distance Minimization Problem

2.1 Motivation

We begin with an informal description of the problem at hand and how to handle it. For
this, consider the following set of ground facts:{

employee(Alice), salary(Alice, 1000), director(Alice)
employee(Bob), salary(Bob, 1000),

}
,

and two integrity constraints: One says that every employee has a salary, and the other
constraint specifies that a director should earn more money than any other employee. Now,
applying here the closed world assumption, we conclude that Bob is not a director. On the
other hand, Bob earns the same amount of money as Alice, who is a director, so the second
integrity constraint is violated.

One way of restoring the database consistency is by changing Alice’s salary. A compact
way of doing so, assuming that the new salary is unknown, is by updating the set of facts
above, so that salary(Alice, x) will replace salary(Alice, 1000). Implicitly, the variable of
this update is existentially quantified, as it represents a particular but unknown constant in
the language of the problem domain. Note, however, that updates in which the value of x is
less than or equal to 1000 are not useful, as they still violate one of the integrity constraints.
To properly repair the database in this case one has to impose the restriction that x>1000.
This characterization of one way of restoring the database consistency is called a potential
repair of the database.
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Yet, not every potential repair necessarily describes an optimal way of repairing the
database. For instance, another way of repairing the database above is by increasing the
salary of Alice and decreasing the salary of Bob at the same time. Clearly, this potential re-
pair is inferior to the previous one, as it requires additional modifications. Preference among
the potential repairs is performed by a distance semantics that captures the intuition that
the repaired database should be ‘as close as possible’ to the original, inconsistent database.

In what follows, we formalize this process and consider some useful metrics for making
plausible choices among the potential repairs of a given database.

2.2 Repairing inconsistent databases

In the sequel, we denote by L a first-order language consisting of a finite set P of predicate
symbols and a (possibly infinite) set C of constants. P includes the constants t and f,
the binary predicates = and 6=, and the arithmetic predicates <, >, ≤ and ≥. The atomic
formulas in L are constructed from the predicates in P over tuples of variables and constants
from C. We denote this set by Atoms(L), or just Atoms. A formula without variables is called
ground. A ground atomic formula is sometimes called a fact. We denote the set of ground
atoms by GAtoms(L), or just GAtoms. Compound formulas in L are constructed from the
atomic formulas using the standard recursive rules for ¬,∧,∨,∀ and ∃. An L-structure
(interpretation) ν consists of a domain Dom(ν), a domain element for every constant in C,
and an n-ary relation on Dom(ν) for every n-ary predicate symbol in P. The logical symbols
t and f are interpreted, respectively, by true and false; = and 6= by the identity relation
and its negation; and the arithmetic predicates <, >, ≤ and ≥ by their standard arithmetic
meaning. Herbrand interpretations for L are a particular kind of L-structures, where the
domain is equal to C and the interpretation of the elements of C is given by the identity
function. Herbrand models of a set S of formulas in L are Herbrand interpretations for L
that satisfy each formula in S.

Definition 1 (databases). A database DB is a pair (D, IC), where D is a finite set of
ground atomic facts, and IC is a finite and consistent set of formulas in L.

The set D in the definition above is called the database instance of DB. Its meaning is
determined by the least Herbrand model of the conjunction of the facts in D. The formulas in
IC are called integrity constraints. These formulas specify conditions that should be satisfied
by the (least Herbrand model of the) database instance. We denote this by D |= IC. The
set C(DB) of the constants that appear in D and in IC is called the active domain of DB.
Note that as both D and IC are finite sets, C(DB) is a finite subset of C. In what follows
we denote by Atoms(DB) the atomic formulas that are constructed from the predicates in P
over tuples of variables and constants from C(DB). The subset of ground atoms is denoted
GAtoms(DB).

Definition 2 (consistency). A database (D, IC) is consistent if D |= IC.

When a database is not consistent, one or more integrity constraints are violated, and
so it is usually required to ‘repair’ the database, i.e., restore its consistency. We require that
the repaired information would be ‘as close as possible’ to the original one. Implicitly, then,
this criterion involves distance-based considerations and a corresponding metric. Below, we
recall the relevant definition.

Definition 3 (distance functions). A total function d : U×U → R+ is called a pseudo
distance on U if it is symmetric (∀u, v∈U d(u, v) = d(v, u)) and preserves identity (∀u, v∈
U d(u, v) = 0 iff u = v). A distance function on U is a pseudo distance on U that satisfies
the triangular inequality (∀u, v, w∈U d(u, v) ≤ d(u, w) + d(w, v)).
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As we have noted in Section 2.1, a description of database repair can include non-ground
atoms. The intuitive meaning of variables in a tuple is a substitution of faulty values in
the original tuple by correct but unknown new values. The set of valid substitutions is
represented by constraints. This allows us to modify only erroneous fragments of tuples
instead of whole tuples. A constraint is defined as follows:

Definition 4 (constraints). A constraint C (for a database DB) is a finite set of formulas
of the form xΘc or xΘy, where x, y are variables, c is a constant in C(DB), and Θ is a (‘built-
in’) predicate in {<,>,=, 6=,≤,≥} such that for some set of values c̄ of C, all constraint
atoms in C[c̄/x̄] are satisfied. We denote by

∧
C the conjunction of constraints in C.3

Definition 5 (updates). Let d be a pseudo distance function on 2GAtoms. An update of a
database DB = (D, IC) (w.r.t. d) is a pair 〈U [x], C[x]〉, where U [x] is a subset of Atoms(DB)
containing the variables x, and C[x] is a consistent set of constraints over the variables x,
such that for every solution c of C[x], the distance between the original database instance D
and U [c/x] is the same.

In what follows, when we refer to the distance d(D,U [x]) between an original database
D and an update component U [x] of an update 〈U [x], C[x]〉, we mean d(D,U [c/x]), where c
is a solution of C[x].

An update represents a number of possible ways to modify a database (all of which
are equally distant from the original database instance). A particular (ground) update is
obtained by substituting the variables x in U [x] by a solution of C[x] (that is, a substitution
for x that makes

∧
C true).

Note 1. Assuming that there is a global upper bound on the number of variables that may
appear in an update, the number of possible updates is finite. This is so, since the number of
atomic formulas in Atoms(DB) is finite (modulo equivalence), and as the number of variables
in x is globally bounded, both the set of the possible U [x], and the number of the possible
constraints C[x] that can be imposed on the same U [x], are finite.

Note 2. As usual, there is a trade-off between the expressivity of database updates and
their computability. Thus, while one may consider more expressive forms of representing
constraints on updates in a more general or compact way, this may increase the computa-
tional complexity. For instance, by introducing disjunctions and representing constraints in,
e.g., conjunctive normal form, the updates{〈

{P (a, c), P (a, d)}, ∅
〉
,

〈
{P (a, c), P (b, c)}, ∅

〉
,

〈
{P (a, d), P (b, c)}, ∅

〉}
may be also represented, e.g., in either of the following ways, in which disjunctions are used
for expressing constraints:{〈

{P (a, x), P (b, c)}, {x = c ∨ x = d}
〉
,

〈
{P (a, c), P (a, d)}, ∅

〉}
,{〈

{P (x, c), P (a, d)}, {x = a ∨ x = b}
〉
,

〈
{P (a, c), P (b, c)}, ∅

〉}
,{〈

{P (a, x), P (b, c)}, {x = c ∨ x = d}
〉
,

〈
{P (x, c), P (a, d)}, {x = a ∨ x = b}

〉}
.

Thus, superfluous (i.e., equivalent) representations of the same update should be identified
and ruled out to avoid duplicate database repairs (see below).

3 Note that
∧
∅ = t.
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Note that the notion of an update is only loosely related to the specific database DB =
(D, IC) at hand. A more robust link will be obtained through the following two definitions:

– Definition 6 (potential repairs) makes sure that the relevant updates will be only those
in which IC is satisfiable in every solution, and

– Definition 7 (pre-repairs) assures that the potential repairs will be ‘as close as possible’
(in terms of distance functions) to D.

Definition 6 (potential repairs). A potential repair of DB = (D, IC) is an update R =
〈U [x], C[x]〉 of DB such that for every solution c of C[x], it holds that U [c/x] |= IC (in the
sense of Definition 2). The set of all the potential repairs of DB is denoted Potential(DB).

Example 2. Consider again the database DB of Section 2.1. Using abbreviations with the
obvious meanings, the following sets are examples of potential repairs for DB:

R1 = 〈{emp(Alice), emp(Bob), sal(Alice, 1000), sal(Bob, 1000)}, ∅〉,
R2 = 〈{emp(Alice), emp(Bob), dir(Alice), dir(Bob), sal(Alice, 1000), sal(Bob, 1000)}, ∅〉,
R3 = 〈{emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1100), sal(Bob, 1000)}, ∅〉,
R4 = 〈{emp(Alice), emp(Bob), dir(Alice), sal(Alice, x), sal(Bob, 1000)}, {x>1000}〉,
R5 = 〈{emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1000), sal(Bob, x)}, {x<1000}〉.

These potential repairs represent different kinds of updates: R1 is obtained by retracting the
fact that Alice is a director, R2 is obtained by inserting the fact that Bob is also a director,
and R3 – R5 are obtained by modifying particular parts of tuples (namely, the salaries of
Alice and Bob).

For selecting the best potential repairs we require that the repaired information would
be as close as possible to the original one. Thus, given a distance function d on 2GAtoms, the
pre-repairs of a database DB = (D, IC) are the potential repairs of DB that are d-closest
to D:

Definition 7 (pre-repairs). A potential repair 〈U , C〉 of a database DB = (D, IC) is a
pre-repair of DB with respect to a pseudo distance d on 2GAtoms, if for every 〈U ′, C′〉 ∈
Potential(DB) it holds that d(U ,D) ≤ d(U ′,D). The set of all pre-repairs of DB with respect
to d is denoted by Repd(DB).

Pre-repairs describe plausible ways of repairing a given database. Yet, some of the pre-
repairs provide a more faithful representation of a repair of the database. To see this, consider
the following two potential repairs given in Example 2 for the database in Section 2.1:

R3 = 〈{emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1100), sal(Bob, 1000)}, ∅〉,
R4 = 〈{emp(Alice), emp(Bob), dir(Alice), sal(Alice, x), sal(Bob, 1000)}, {x>1000}〉.

Suppose now that both U3 and U4 (the update components of R3 and R4, respectively) are
equally distant from D (this is the case, e.g., when the underlying distance function is either
d1

Σ or d2
Σ , considered in Section 3.4 below). Yet, it is obvious that R4 should be preferred

over R3, since it does not guess the exact salary of Alice, but instead only states that this
value should be bigger than 1000. To make this distinction among pre-repairs explicit, as
well as to considerably reduce the amount of database repairs that should be taken into
consideration, we make further preferences among pre-repairs according to Definition 9.

Definition 8 (models of an update). The models of an update U = 〈U [x], C[x]〉 is a set
mod(U) of the least Herbrand models of the database instances U [c/x] for each solution c
of C[x].
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Definition 9 (redundancy). An update U = 〈U , C〉 is redundant with respect to a set S
of updates, if there is an update U′ = 〈U ′, C′〉 in S such that mod(U) ⊆ mod(U′). A set S of
updates is non-redundant if each of its elements is not redundant with respect to the rest of
the set.

Definition 10 (repairs and repairing sets). A repairing set of a database DB with
respect to a pseudo distance d is a subset ∆d(DB) of Repd(DB) (the pre-repairs of DB) such
that:

– ∆d(DB) is non-redundant, and
– for eachR ∈ Repd(DB)\∆d(DB) there is anR′ ∈ ∆d(DB) such that mod(R) ⊆ mod(R′).

An update is called a repair of DB if it is an element of some repairing set ∆d(DB).

Example 3. Later in this paper (see Section 3.4), we shall consider the pseudo distances
d1

Σ and d2
Σ on 2GAtoms, according to which the potential repairs R3 −R5 in Example 2 are

minimally distant from the database instance of DB. It will follow, then, that these potential
repairs are also pre-repairs of DB. Yet, only R4 and R5 are repairs of DB, while R3 is not
a repair, since the latter is strictly redundant with respect to {R4}.

Given a database DB and a distance function d, its repairing set is not necessarily unique,
since different sets may have interchangeable elements (that is, elements that may replace
each other in the sets). For instance, a pre-repair of the form 〈{P (x)}, {x = c}〉 for some
constant c, is interchangeable with 〈{P (c)}, ∅〉. Note, however, that interchangeable pre-
repairs are equivalent, and so they have the same models. Moreover, modulo interchangeable
pre-repairs, the repairing set ∆d(DB) of DB is uniquely determined.

Proposition 1. Let ∆1
d(DB) and ∆2

d(DB) be two repairing sets of the same database (with
respect to the same distance). Then there is a one-to-one correspondence between repairs
R1∈∆1

d(DB) and repairs R2∈∆2
d(DB) such that R1 and R2 have the same models.

Proof. For a repair R1 ∈ ∆1
d(DB), there is a repair R2 ∈ ∆2

d(DB) such that mod(R1) ⊆
mod(R2), and, in turn, there is a repair R3 ∈ ∆1

d(DB) such that mod(R2) ⊆ mod(R3).
It follows immediately that mod(R1) ⊆ mod(R2) ⊆ mod(R3), and hence R1 = R3 and
mod(R1) = mod(R2). Since a repairing set does not contain two repairs with the same
models, this must be a one-to-one correspondence. 2

This leads us to the following notions of query answering:

Definition 11 (query answering). A query Q(x1, . . . , xn) is a first-order formula with
free variables x1, . . . , xn. Denote by Q[c1/x1, . . . , cn/xn] the simultaneous substitution in Q
of the variables xi by the constants ci (i = 1, . . . , n), respectively. Now, let d be a pseudo
distance on 2GAtoms and Q(x1, . . . , xn) a query on DB.

– A tuple 〈c1, . . . , cn〉 is a credulous answer for Q if there exists an element R ∈ ∆d(DB)
such that R |= Q[c1/x1, . . . , cn/xn] (i.e., each model of R satisfies Q[c1/x1, . . . , cn/xn]).

– A tuple 〈c1, . . . , cn〉 is a conservative answer (alternatively, a consistent query answer)
for Q if R |= Q[c1/x1, . . . , cn/xn] for every R ∈ ∆d(DB).

Example 4. Consider again Example 1. Here there are eight possible updates for D, six
of which are potential repairs: Potential(DB) = {{}, {q}, {r}, {p, q}, {q, r}, {p, q, r}}. Note
that here we identify (potential and pre-) repairs with their update components, as in the
propositional case the constraint components are always empty. For choosing the repairs
(which are also the pre-repairs in this case), let’s have the cardinality of the symmetric
difference between sets as the distance function d at hand (that is, d(A,B) = |A\B|+|B\A|).
This leaves us with two (optimal) repairs: ∆d(DB) = Repd(DB) = {{p, q, r}, {r}}. It follows
that, in this case, r is the only atomic formula that conservatively follows from DB.
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3 Distance Semantics for Database Repair

3.1 Distance functions

The choice of the distance function (and so the metric at hand) plays a crucial role in the
repairing process. There are many possibilities to measure distances between the spoiled
database instance and its potential repairs. Below, we recall two common definitions of such
distances. An exposition of distance functions for simple expressions can be found in [40,
Section 3.5].

Example 5. Let d be a distance function on a finite set S. For A,B ∈ 2S , define:

– The Hausdorff distance [20]:

d(A,B) = max
(

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
)
.

– Eiter and Mannila’s distance [22]:

d(A,B) =
1
2

( ∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(a, b)
)
.

It is known that the Hausdorff distance is a distance function on 2S and Eiter–Mannila’s
distance is a pseudo distance on 2S .

In what follows, we consider pseudo distances that are defined by matching functions
(between the elements of the original database instance and the elements of a potential
repair) and by aggregation functions that evaluate the quality of those matchings.

Definition 12 (aggregation functions). Let f be a total function that accepts a multiset
of real numbers and returns a real number.

– f is called a numeric aggregation function if it is non-decreasing in the values of its
argument,4 f({x1, . . . , xn}) = 0 if x1 = . . . xn = 0, and ∀x ∈ R f({x}) = x.

– A numeric aggregation function f such that f({x1, . . . , xn}) = 0 only if x1 = . . . xn = 0
is called strict .

Aggregation functions are, e.g., a summation or the average of the distances, the maxi-
mum value among those distances (which yields a worst case analysis), a median value (for
mean case analysis), and so forth. Such functions are common in data integration systems
(see also Section 4 below). Note, also, that with the exception of the median value, all the
functions mentioned above are strict.

Definition 13 (optimal matchings and df). Let A,B ⊆ GAtoms, d a pseudo distance
on GAtoms, and f a numeric aggregation function.

a) A matching m between A and B is a subset of A×B such that for every (a1, b1), (a2, b2) ∈
m, a1 = a2 iff b1 = b2.

4 That is, the function value is non-decreasing when an element in the multiset is replaced by a
larger element.
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b) For a matching m between A and B, let m(A) = {b | ∃(a, b) ∈ m} and m−1(B) = {a |
∃(a, b) ∈ m}. Denote:

df (m,A, B) = f

({
d(a, b) | (a, b) ∈ m

} ⋃
{

d(a,B) | a ∈ A \m−1(B)
} ⋃ {

d(b, A) | b ∈ B \m(A)
})

,

where, for every element e and set S, d(e,S) = 1
2 max{d(p, q) | p, q ∈ GAtoms}. 5

That is, df is obtained by applying f on the distances among matched elements and on
the distances among non-matched elements and the other set.

c) A matching m between sets A and B is called {d, f}-optimal if for every matching m′

between A and B, df (m,A, B) ≤ df (m′, A, B).

d) Denote df (A,B) = df (m,A, B), where m is a {d, f}-optimal matching between A and
B.6

Example 6. Consider again the database of Example 1, together with the summation func-
tion f and the drastic distance du, defined as follows:

du(x, y) = 0 if x = y and du(x, y) = 1 otherwise.

It is easy to verify that du is indeed a distance function on GAtoms. Now, as noted in
Example 4, both P = {p, q, r} and P ′ = {p, q} are (among others) potential repairs of
D = {p, r}. An optimal matching between D and P relates p and r in D to the same atoms
in P and leaves q unmatched. Thus, du

f (D,P) = 0 + 0 + 1
2 = 1

2 . Similarly, du
f (D,P ′) = 1,

as an optimal matching between D and P ′ either leaves q and r unmatched (in which
case the distance is 0 + 1

2 + 1
2 ) or connects both of them (and so the distance is equal to

du(p, p) + du(r, q) = 0 + 1). The fact that du
f (D,P) < du

f (D,P ′) is explained by the need to
make only one modification for repairing D by P, while P ′ requires two modifications in D
(see also Example 7 below).

Proposition 2. Let d be a pseudo distance on GAtoms and f a strict aggregation function.
Then the function df introduced in Definition 13(d) is a pseudo distance on 2GAtoms.

Proof. Since d is symmetric, m is a {d, f}-optimal matching between A and B iff m−1 is a
{d, f}-optimal matching between B and A. In this case, df (m,A, B) = df (m−1, B,A), and
so df (A,B) = df (B,A). For identity preservation, note that the optimal matching between
a set A and itself is the identity function I on A, and so df (A,A) = df (I,A, A) = f({d(a, a) |
a ∈ A}) = 0. In case that A 6= B, for every matching m between A and B we have that
df (m,A, B) > 0 (this is so since at least one distance between matched elements is strictly
positive, and as f is strict, its value in this case must be strictly positive as well). Thus,
df (A,B) > 0 whenever A 6= B, and so df (A,B) = 0 iff A = B. 2

3.2 Aggregation-based repairs

Proposition 2 induces a particular yet useful way to obtain database repairs. Distance func-
tions on 2GAtoms can be defined by a combination of aggregation functions and distance
functions on GAtoms.
5 Alternatively, one could define, for a nonempty set S, d(e, S) = 1

2
max{d(e, s) | s ∈ S}. We

shall use the former definition, which is independent of x and S, as a uniform handling of the
unmatched elements will simplify the computations in what follows.

6 As all the optimal matchings have the same df -value, df (A, B) is well-defined.
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Definition 14. The pre-repairs of a database DB = (D, IC) with respect to a pseudo
distance d on GAtoms and a numeric aggregation function f , are the elements of the set

Repd,f (DB) = Repdf
(DB) ={

R = 〈U , C〉 ∈ Potential(DB) | ∀〈U ′, C′〉 ∈ Potential(DB) df (U ,D) ≤ df (U ′,D)
}
.

Accordingly, the repairing set of DB with respect to d and f is the maximal subset ∆d,f (DB)
of Repd,f (DB) that is non-redundant with respect to Repd,f (DB); that is: ∆d,f (DB) =
∆df

(DB).

Clearly, Definition 14 is a particular case of Definition 7, since df , obtained from d and
f by Definition 13(d), is a pseudo distance (Proposition 2).

The advantage of the aggregation-based presentation of repairs is that it allows to express,
in a natural way, distances between sets in terms of distances between the elements of those
sets. As we shall see, this allows to encode within the distance function many practical
considerations in the context of database systems (e.g., whether the matched elements are
parts of a primary key, etc.).

Example 7. Consider again the database DB = ({p, r}, {p → q}) of Example 1 together with
the drastic distance (d = du; see Example 6) and the summation aggregation (f = Σ). The
(updates of the) six potential repairs of DB and their distances from D = {p, r} are given
in the table below (the optimal matchings are computed just as illustrated in Example 6).

No. Potential Repair du
Σ(·,D) Actions

1 {p, q, r} 1
2 insert q

2 {p, q} 1 insert q, delete r

3 {q, r} 1 insert q, delete p

4 {q} 1 1
2 insert q, delete p and r

5 {r} 1
2 delete p

6 {} 1 delete p and r

It follows, then, that the repairs in this case are R1 = 〈{p, q, r}, ∅〉 and R5 = 〈{r}, ∅〉.
Among the potential repairs, these repairs require a minimal amount of modifications in D.
As Proposition 4 below shows, this is not a coincidence. Note also that du

Σ is in fact the
symmetric distance between sets, so there is no wonder that R1 and R5 are exactly the same
repairs as those obtained in Example 4. Again, we have that, e.g., r conservatively (and so
credulously) follows from DB, while p as well as q credulously (but not conservatively) follow
from DB.

The next proposition shows that, as expected, there is nothing to repair in consistent
databases.

Proposition 3. If DB = (D, IC) is a consistent database and f is a strict aggregation
function, then for every pseudo distance d, ∆d,f (DB) = {〈D, ∅〉}.

Proof. If DB is consistent, then 〈D, ∅〉 is obviously a potential repair. Moreover, for every dis-
tance function d and aggregation function f , the identity function I on D is a {d, f}-optimal
matching, as df (I,D,D) = 0 (by the identity preservation of pseudo distance functions and
the second condition in Definition 12), and so df (D,D) = 0. For every other set A ∈ 2GAtoms,
it clearly holds that, for each matching m between D and A, df (m,D, A) > 0, and hence,
for each pre-repair 〈U , C〉 not equivalent to 〈D, ∅〉, d(D,U) > 0. It follows that {〈D, ∅〉} is a
repairing set. 2
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3.3 Repairs independent of the domain of discourse

The distance-aggregation function du
Σ , obtained by a summation of the drastic distances du

between matched elements, is frequently used for repairing databases (see also Example 7).
These functions are ‘blind’ to the domain of discourse at hand, in the sense that both du and
du

Σ refer, respectively, to the elements of GAtoms and of 2GAtoms in a uniform way. Indeed,
as it is shown below (Proposition 4), du

Σ(A,B) is determined only by the cardinality of the
symmetric distance between A and B rather by the particular meaning or the properties
of the elements in those sets. We call such distances (and the repairs that are obtained by
them) domain independent . In this section we consider such distances and repairs.

First, we show that the metric that is obtained by du
Σ corresponds to the Hamming

distance between sets of formulae (also known as the symmetric distance, or the Dalal
distance [16]).

Proposition 4. Let |S| be the size of S. Then du
Σ(A,B) = 1

2 (|A \B|+ |B \A|).

Proof. Note first that, as already noted, the summation Σ is an aggregation function and
du is a distance function on GAtoms. Now, let x∈(A∪B) \ (A∩B). If x is linked to another
element y, then as du(x, y) = 1, the ‘contribution’ of x to du

Σ(A,B) is 1
2 (y contributes the

other half). Otherwise, x is not linked to any element of the other set S ∈ {A,B}, and so
d(x, S) = 1

2 . In any case, every element outside the intersection of A and B contributes 1
2

to du
Σ(A,B). Also, for any matching m that maps the elements in A ∩ B to themselves,

du
Σ(m,A, B) = du

Σ(m,A\B,B\A), since du(x, x) = 0. It follows, then, that a matching m
of A and B that is the identity on A ∩B, is optimal in this case, and df (m,A, B) = 1

2 |{x |
x ∈ (A ∪B) \A ∩B}|. For such an m, df (A,B) = df (m,A, B), and so we are done. 2

The distance function du
Σ corresponds to the following cardinality-based repair, consid-

ered e.g. in [2, 4, 6, 37]

Definition 15. A pairwise7 repair of DB = (D, IC) is a pair (Insert,Retract) of two sets of
ground atomic facts, such that: 1. Insert∩D=∅, 2. Retract ⊆ D, 3. (D ∪ Insert \Retract, IC)
is a consistent database, 4. (Insert,Retract) is minimal in its cardinality: there is no pair
(Insert′,Retract′) that satisfies conditions 1–3 and for which it holds that |Insert′∪Retract′| <
|Insert ∪ Retract|.

Note 3. A different way of repairing databases is obtained by exchanging the cardinality-
based requirement in item 4 by a set inclusion criterion. This is the basic idea behind
the method introduced in [1], which inspires many other works on (domain independent)
database repair and consistent query answering (see, e.g., [2, 5, 9, 10, 27, 26, 33]). Clearly,
every pairwise repair that is obtained by Definition 15 is also a repair according to the set
inclusion approach, but the converse is not necessarily true. Comparative studies of the two
repair methods appear in [6, 37].

Proposition 5. Consider a database DB = (D, IC) together with the drastic distance
function du and the summation aggregation function Σ. Then (Insert,Retract) is a pairwise
repair of DB iff there is a pre-repair R = 〈U , ∅〉 ∈ Repdu

Σ
(DB), such that Insert = U \ D and

Retract = D \ U .

Proof. Given a pairwise repair (Insert,Retract) of (D, IC), let R = 〈U , ∅〉, where U = (D ∪
Insert) \ Retract. By condition (3) of Definition 15 it is clear that R is a potential repair,
and by condition (4) of the same definition it follows that the Hamming distance between
U and D is minimal among the distances between the other updates of the potential repairs
7 This adjective is added to distinguish this kind of repairs from repairs in our sense.
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of DB and D (otherwise, if there is a potential repair R′ = 〈U ′, C′〉 with a smaller Hamming
distance to D, the pair (Insert′,Retract′) = (U ′ \ D,D \ U ′) satisfies conditions (1)–(3) of
Definition 15 and |Insert′ ∪ Retract′| < |Insert ∪ Retract|, which is a contradiction to the
assumption that (Insert,Retract) is a pairwise repair of DB). By Proposition 4, du

Σ(U ,D) is
minimal in {du

Σ(U ′,D) | 〈U ′, C′〉 is a potential repair of DB}, thus R is a pre-repair of DB.
Conversely, for a pre-repair R = 〈U , ∅〉 ∈ Repdu

Σ
(DB) such that U ⊆ Atoms(DB), let

(Insert,Retract) = (U \ D,D \ U). This pair clearly satisfy conditions (1) and (2) of Defini-
tion 15. Condition (3) is met as well because in our case, (D∪ Insert\Retract, IC) = (U , IC),
and this is a consistent database since R is a potential repair of DB (and so it satisfies IC).
Finally, similar considerations as above show that the pair (Insert,Retract) is minimal in the
sense of condition (4). Thus, (Insert,Retract) is a pairwise repair of DB. 2

Note 4. As Proposition 5 shows, pairwise repairs correspond to pre-repairs rather than to
repairs. The reason for this is that in our framework repairs are represented by arbitrary
(i.e, not necessarily ground) atomic formulas. This induces a compact way of representing
database modifications, in which several pre-repairs can be captured simultaneously, and so
particular pairwise repairs may be redundant. To see this, consider the following database:

DB =
({

mother(Jane)
}
,

{
∀x

(
mother(x) → ∃n(num childs(x, n) ∧ 1≤n≤20)

)})
.

In this case, for every constant 1 ≤ i ≤ 20, we have that ({num childs(Jane, i)}, ∅) is a
pairwise repair of DB, and so, by Proposition 5, it is also a pre-repair of DB (with respect
to du

Σ). However, each one of those 20 pre-repairs is redundant with respect to (the repair)
〈{mother(Jane), num childs(Jane, x)}, {x ≥ 1, x ≤ 20}〉.

Note 5. From Proposition 5 and the fact that the unique pairwise repair of a consistent
database is (∅, ∅), it follows that for a consistent database DB, ∆du,Σ(DB) = {〈D, ∅〉} (which
is a particular case of Proposition 3).

It is also interesting to check the distance-based functions of Example 5 when the domain
independent distance du is taken as the basic distance function. In this case the Hausdorff
distance is reduced to 0 if A=B and 1 otherwise. While this is still a distance function, it
is clearly useless for making subtle preferences among potential repairs. The Eiter–Mannila
distance, on the other hand, is more appropriate in this case and, as in Proposition 5, it is
related to pairwise repairing. Indeed, for du, the Eiter–Mannila distance between the original
database D and its repair 〈D ∪ Insert \ Retract, C〉 is 1

2 (|Insert| + |Retract|). In this case we
get the Ramon–Bruynooghe matching-based distance [41], which is a distance function (and
not only a pseudo distance, cf. Example 5).

3.4 Repairs dependent on the domain of discourse

Consider again the potential repairs considered in Example 2 (regarding the database of
Section 2.1). If we repair the database using e.g. du

Σ as the underlying distance function,
we get that R1 and R2 are strictly preferred over the other three potential repairs. Indeed,
du

Σ(U1,D) = du
Σ(U2,D) = 1

2 , since the cost of the optimal matching between the original
database instance D and the repaired database that is obtained by R1 (respectively, by R2)
is the cost of the retracted (respectively, inserted) fact dir(Alice) (respectively, dir(Bob))
that cannot be matched to any element in the original database. On the other hand, the
optimal matching between the original database and the repaired database that is obtained
by R5 for instance, links each one of emp(Alice), emp(Bob), sal(Alice, 1000) and dir(Alice)
to the same facts in the repaired database, and relates sal(Bob, 1000) to sal(Bob, x) (for
some x < 1000). The resulting distance is therefore du

Σ(U5,D) = 0 + 0 + 0 + 0 + 1 = 1, and
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similarly du
Σ(U3,D) = du

Σ(U4,D) = 1. However, in this case, the potential repairs R3, R4,
and R5, that require salary changes, seem more plausible than the potential repairs R1 and
R2 that require removal or insertion of database facts, as it is more realistic here to assume
that the problem is due to a typographic error in the salary information. Moreover, R1

and R2 are more drastic then the other potential repairs, as they either cause information
loss (there is no data about the directors of the company, in the case of R1) or reduce the
information reliability (due to the introduction of unfaithful facts, in the case of R2). It
is clear, then, that simple cardinality considerations are not useful here, and more delicate
considerations are required, in which each one of R3, R4, and R5 will be preferred over R1

and R2.
This simple example demonstrates a common phenomenon in many inconsistent first-

order databases: A specific tuple may contain both correct and erroneous components. In
such cases, deleting or inserting entire tuples would not properly solve the problem. Indeed,
the need to rectify an error within a tuple without deleting the whole tuple has been ac-
knowledged in [5] (see Example 6.2 of that paper), and is also the main motivation behind
the work in [8] on fixing (numerical) attributes and in [46, 47] on database repairing by
updates; See also Section 5 below.

A more subtle preference criterion is obtained by the distance function, defined in [38]:

d1
(
P (t1, . . . , tm), Q(s1, . . . , sn)

)
=


1 if P 6= Q,

1
2m

m∑
i=1

du(ti, si) otherwise.

Here, for different predicate symbols the distance d1 is maximal. However, when the predicate
symbols are the same, the distance linearly increases with the number of arguments that
have different values, and is at most 1

2 . The intuition behind this is that longer tuples are
more error-prone and that multiple errors in the same tuple are less likely.

Proposition 6. d1 is a distance function (in the sense of Definition 3), which is bounded
by 1.

Proof. Easily verified (see also [38, Theorem 5]). 2

According to d1 together with a summation as the distance aggregation function, the
distance between the database instance D of Example 2 and (the update component of) R1

is still 1
2 , and so is the distance between D and (the update component of) R2. On the other

hand, the distance between D and U5 (the update component of R5) is the same as the
distance between salary(Bob, 1000) and salary(Bob, x), which is 1

4 (0 + 1) = 1
4 . Similarly,

d1
Σ(U3,D) = d1

Σ(U4,D) = 1
4 . It follows, then, that now the potential repairs that modify

information within tuples are preferred over potential repairs that remove or insert complete
tuples, as intuitively expected.

Nienhuys-Cheng’s distance d1 can be further refined to reveal other considerations. For
instance, under the assumption that primary keys are less error-prone, one may consider the
following variation of d1:

Definition 16. Below we denote primary key values by underscores, and assume, without
loss of generality, that they precede the non-key values. Define:

d2
(
P (t1, . . . , tk, tk+1, . . . , tm), Q(s1, . . . , sl, tl+1, . . . , tn)

)
=

1 if P 6= Q or ∃1 ≤ i ≤ k s.t. ti 6= si,

1
2m

m∑
i=k+1

du(ti, si) otherwise.
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Example 8. Consider again the database DB of Section 2.1. There are five options regarding
the fact salary(Alice, 1000): Keeping it unchanged, changing the first argument (employee-
name), changing the second argument (salary), changing the whole tuple, or deleting it
altogether. Assuming that employee-name is the primary key for the salary relation, we
have that according to d2, the costs of these options are 0, 1, 1

4 , 1, and 1
2 , respectively. Note,

also, that in this case, according to the aggregation-based repair with d2 and Σ, the two
repairs of the database are the following:

〈
{
emp(Alice), emp(Bob), dir(Alice), sal(Alice, v1), sal(Bob, 1000)

}
, {v1 > 1000}〉,

〈
{
emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1000), sal(Bob, v2)

}
, {v2 < 1000}〉.

That is, consistency restoration is obtained here by salary corrections.

3.5 Linking instead of matching

The notion of (optimal) matching between the elements of a database instance and the
elements of its repair may be weakened. Instead of relating each database fact with at most
one atomic formula of a repair and vice versa, it is possible to associate a database fact with
several atoms of a repair. This is called linking . Optimal linking and the induced distance
between sets are defined just as in Definition 13.

Example 9. Consider a database instance D = {teaches(John,DB)} and integrity con-
straints that no-one teaches DB (since, e.g., this course is cancelled), and that a lecturer
must give at least two courses. Here, a repair with respect to d1

Σ could be

R = 〈U , C〉 = 〈{teaches(John, x1), teaches(John, x2)}, {x1 6= x2, x1 6= DB,x2 6= DB}〉.

Each one of the two optimal matchings in this case relates the database fact to one of the
two elements in U , leaving the other one unmatched. In the notations of the previous section,
then, d1

Σ(D,U) = 1
2 + 1

4 . If linking is used instead of matching, there is only one optimal
linking between D and U , which associates the two new facts in U with the old one in D,
hence in this case d1

Σ(D,U) = 1
4 + 1

4 .

3.6 Complexity

Computing all the repairs of a given database is not tractable, as even for propositional
databases the number of repairs of a database could be exponential in the database’s size. In-
deed, the database ({p1, . . . , pn}, {pi → qi}n

i=1) has 2n repairs when d = du and f = Σ. These
repairs correspond to all the combinations of inserting qi or removing pi, for i = 1, . . . , n. In
an attempt to overcome this problem, most of the existing algorithms for query answering
do not compute the repairs themselves, but make inferences using rewriting techniques [1],
logic programming paradigms [2, 21, 25–27], (hyper-)graph computations [14, 15], and proof
theoretic methods, such as analytic tableaux [10]. In the general case, however, these tech-
niques are not tractable. For instance, the approach in [2, 26] of specifying database repairs
as stable models of disjunctive logic programs is ΠP

2 -complete (see [17]). This is also the
case for the query answering computations with (signed) quantified Boolean formulas, con-
sidered in [5]. Tractability of query evaluation for inconsistent databases is usually reached
only for restricted syntactical forms of the integrity constraints. For instance, the rewriting
process in [1], which is a tractable way of evaluating queries with respect to the set-inclusion
semantics (see Note 3), is limited to binary universal constraints.

The next proposition shows that intractability retains in our case as well:
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Proposition 7. [37] Let DB = (D, IC) be a database with denial constraints,8 and let Q
be a query that is a conjunction of ground literals. Then conservative query answering for
Q with respect to the du

Σ-distance semantics is PNP(log(n))-complete.9

Proof. By [37, Theorem 4] and the fact that du
Σ-semantics corresponds to pairwise repairs

(Proposition 5). 2

Another interesting property of the du
Σ-distance semantics explored in [37] is that for

databases with denial constraints, conservative query answering and credulous query an-
swering (Definition 11) are polynomially reducible.10

As in the case of inclusion-based semantics, also in the cardinality-based semantics ob-
tained by the du

Σ-distance, conservative query answering may be undecidable unless restric-
tions are imposed on the syntactical form of the integrity constraints. This can be shown in
a similar way as that of [11] (in which decidability is considered with respect to set inclu-
sion semantics), where, intuitively, undecidability stems from the possible presence of cycles
among inclusion dependencies of the form ∀x∃y(P (x) → Q(x′, y)) for x′ ⊆ x, and from the
possibility of using arbitrary elements from the (infinite) set C, as constants in the repaired
database.

Undecidability results for domain dependent repairs are also easily obtained for suffi-
ciently expressible integrity constraints. See, for instance, [8, Theorem 1] for one example in
the context of database repair by fixing numerical attributes (see also Section 5 below).

We note, finally, that in general, the distance functions themselves do not add extra com-
putational complexity to the problem. This is demonstrated, for instance, by the following
results:

Proposition 8. [41] Computing du
Σ(A,B) is polynomial in the size of A and B.

Proposition 9. Computing d1
Σ(A,B) and d2

Σ(A,B) is polynomial in the sizes of A, B, and
the maximal arity of the predicates in A and B.

Proof. Follows from the fact that if the time to compute d(x, y) is bounded by T for every
x∈A, y∈B, then the time to compute dΣ(A,B) is bounded by a polynom in |A|, |B|, and
T (see [41]). 2

The main computational difficulty of database repairs remains, therefore, the large
amount of potential repairs at hand. Extensive surveys on the computational complexity
of existing approaches to database repair and consistent query answering appear in [6, 11,
13, 14, 37] (see also [47] for complexity results regarding update-based repairing).

4 Integration of Constraint Data-Sources

Integration of autonomous data-sources under global integrity constraints (see [30]) is closely
related to database repair. The main differences between the two problems is that, in contrast
to database instances, data-sources may contain negative facts and not only positive ones.
Also, the closed world assumption is no longer assumed. In this section we show how our
framework may be used for defining operators for the merging problem as well.
8 I.e., IC consists of closed formulae of the form ∀x1 . . . xn ¬

(
R1(x1)∧ . . .∧Rn(xn)∧φ(x1 . . . xn)

)
,

where φ is a Boolean expression consisting of atomic formulas and built-in predicates.
9 That is, the decision problem can be solved by a polynomial-time algorithm that makes O(log(n))

calls to an NP-oracle, where n is the size of D.
10 This is not the case when repair by set-inclusion is involved, as in that case conservative answering

with denial constraints is NP-complete, while credulous answering is in P; see [15].
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Example 10. [30] Four flat co-owners discuss the construction of a swimming pool (s), a
tennis-court (t) and a private car-park (p). Building two or more items will increase the rent
(r), otherwise the rent will not be changed.

The owners’ opinions are represented by the following four data-sources: D1 = D2 =
{s, t, p}, D3 = {¬s,¬t,¬p,¬r}, D4 = {t, p,¬r}. The impact on the rent may be represented
by the constraint IC = {r ↔

(
(s∧ t)∨ (s∧ p)∨ (t∧ p)

)
}. Here, q ∈ Di denotes that owner i

supports q, and ¬q ∈ Di denotes that owner i is against q. If q,¬q 6∈ Di, i does not have an
opinion about q. Note that although the opinion of owner 4 violates the integrity constraint
(while the solution must preserve the constraint), it is still taken into account.

In situations such as that of Example 10 it is often required to find a solution that
will satisfy the global integrity constraints and will be as close as possible to each data
source. This implies that, under the following observations, our framework is adequate for
the merging problem as well. Denote by D the set of the sources to be merged. Then:

– Instead of database instances, which are sets of atomic facts, data sources are sets of
literals (that is, atomic formulas or their negation). So, instead of Atoms we refer now
to LIT = {P (t) | P (t) ∈ Atoms} ∪ {¬P (t) | P (t) ∈ Atoms}. As before, an update is
a pair 〈U , C〉, where U is a consistent set of elements in LIT (i.e., U is a set without
complementary literals), and C is a set of constraints. The set Merge(D, IC) of the
potential merging of D under IC consists of the updates that satisfy all the integrity
constraints in IC.

– A merging of data-sources D = {D1, . . . ,Dn} with respect to the integrity constraints
IC is a straightforward generalization of the notion of database repair (cf. Definitions 13
and 14):

• A merging context is a triple M = 〈d, f, g〉, where d is a pseudo distance function,
and f, g are aggregation functions (referring, respectively, to the distances inside a
source and among the sources).

• For a merging context M = 〈d, f, g〉, a set D = {D1, . . . ,Dn} of data-sources, and a
potential merging M∈ Merge(D, IC), let

dg,f (M,D) = g
(
{df (M,D1), . . . , df (M,Dn)}

)
.

• The pre-mergings of the data-sources in D under the integrity constraints in IC, and
with respect to the merging context M = 〈d, f, g〉, are the elements of the set{

M∈ Merge(D, IC) | ∀M′ ∈ Merge(D, IC) dg,f (M,D) ≤ dg,f (M′,D)
}
.

• The merging of the data-sources in D under the integrity constraints in IC, and
with respect to the merging context M = 〈d, f, g〉, are the maximal non-redundant
pre-mergings of D. This set is denoted by ∆M(DB).

Example 11. Consider again Example 10 and two merging contexts: M1 = 〈du, Σ,Σ〉, M2 =
〈du, Σ,max〉. According to M1 the summation of the distances to the source is minimized,
and in M2 minimization of maximal distances is used for choosing optimal solutions. The
potential mergings in this case are listed in the table below.
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No. Potential merge du
Σ(·,D1) du

Σ(·,D2) du
Σ(·,D3) du

Σ(·,D4) du
Σ,Σ(·, D) du

max,Σ(·, D)

M1 {s, t, p, r} 1
2

1
2 4 1 1

2 6 1
2 4

M2 {s, t,¬p, r} 1 1
2 1 1

2 3 2 1
2 8 1

2 3
M3 {s,¬t, p, r} 1 1

2 1 1
2 3 2 1

2 8 1
2 3

M4 {s,¬t,¬p,¬r} 2 1
2 2 1

2 1 2 1
2 8 1

2 2 1
2

M5 {¬s, t, p, r} 1 1
2 1 1

2 3 1 1
2 7 1

2 3
M6 {¬s, t,¬p,¬r} 2 1

2 2 1
2 1 1 1

2 7 1
2 2 1

2

M7 {¬s,¬t, p,¬r} 2 1
2 2 1

2 1 1 1
2 7 1

2 2 1
2

M8 {¬s,¬t,¬p,¬r} 3 1
2 3 1

2 0 2 1
2 9 1

2 3 1
2

The optimal merging in each context is determined by the minimal values in the two right-
most columns. According to M1, M1 is the best potential merging, and so the owners decide
to build all the three facilities. As a result, the rent increases. According to M2, however,
M4, M6 and M7 are the optimal mergings, which implies that only one out of the three
facilities will be built, and so the rent will remain the same.11 Thus, e.g., r is a consistent
query answer with respect to M1 while ¬r is a consistent answer with respect to M2.

The last example demonstrates the application of merging strategies among equally im-
portant sources. However, there are situations in which certain sources are preferred over
other sources (for instance, because of differences in reliability of the sources). Our frame-
work supports such cases as well by a proper choice of the components of the merging
context. We demonstrate this in the next example.

Example 12. Consider the distributed system described in Examples 10 and 11, but this
time in the context of speculations on the stock exchange. An investor (represented by the
mediator system) consults four financial experts about their opinion regarding four different
shares, denoted t, p, s, r. The opinion of expert i is represented by Di (see Example 10). For
instance, in our case expert 4 suggests to buy shares t and p, doesn’t recommend to buy share
r, and doesn’t have a particular opinion about share s. The integrity constraint in our case
may be interpreted as the investor’s own policy of buying shares. (For instance, the integrity
constraint in Example 10 may be intuitively understood by the risk of buying share r that
should be ‘balanced’ by purchasing at least two out of the three shares t, p, s). Clearly, the
experts could have different reputations, and this may affect the investor’s decision, which
is embodied in the distance function. This is expressible by a weighted average distance
function, in which the distance to each source is multiplied by a different certainty factor
(smaller factors are attached to more reliable sources). This yields distance functions such
as

d
(
M, {D1, . . . , D4}

)
=

4∑
i=1

ci · du
Σ(M, Di).

Now, the investment policy among the eight possible policies that are shown in the table of
Example 11 is determined by the minimal value of the distance function, and this depends
on the actual values of the preference factors ci.

Note 6 (Schema integration of multiple sources). In the context of integration systems of
multiple sources, inconsistencies may occur not only because of contradictory information
among the sources, but also by the need to relate different terminologies and concepts used by
the sources. This is done by mediator-based systems [32] that integrate independent sources

11 The decision which facility to choose requires further preference criteria. Summation of distances,
e.g., prefers M6 and M7 over M4, thus t and p are preferred over s.
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containing information about a common domain using different schemas. Such mediators
consist of an alphabet, called the global schema (representing the global information), and a
set of rules that link the information of the sources with the global schema. This frequently
requires appropriate definitions, in which the relations of one schema are expressed in terms
of another schema. There are two common methods to define these relations: One, called
global-as-view [45], expresses the relations of the global schema in terms of those of the
sources. The other method, called local-as-view [34], defines each source relation in terms of
the relations of the global schema. This process of schema integration (or ontology integra-
tion) is also vital for data exchange, where data is shipped from a source database in order
to populate a target schema.

A great deal of work is done in the context of schema integration (see [32]). As the next
example shows, distance-based considerations may be incorporated for this purpose as well.

Example 13. Suppose that the database considered in Section 2.1 is distributed over two sites
that store data about employees in different locations (say, New-York and New-Jersey). In
this case, the information may be divided as follows:

source1 : empNY(Alice), sal(Alice, 1000), director(Alice)
source2 : empNJ(Bob), sal(Bob, 1000)

Also, using a global-as-view approach, we have a rule for relating the local vocabularies:

∀x (empNY(x) ∨ empNJ(x) → emp(x))

and the same integrity constraint as before (specified in the global language):

∀x∀y∀z1∀z2

(
sal(x, z1) ∧ sal(y, z2) ∧ director(x) ∧ ¬director(y)

)
→ z1 > z2

Taking the last two rules as the set of global integrity constraints (IC) together with d2 as
the distance function and Σ as the aggregation function, we get – in terms of the global
language – the same optimal repairs as those in Example 8. Thus, for instance, conservative
answers to the queries emp(x) and sal(Alice, 1000) are {Alice,Bob} and ’no’, respectively.

Merging strategies of constraint belief-bases like those mentioned in this section, as well
as some related complexity results, are discussed in detail in [29, 30].

5 Related Works

Distance minimization is a primary principle behind many systems for information han-
dling. Back in the 1980’s distance-based approaches have been considered e.g., by Dalal [16],
Winslett [49], and others, in the context of belief revision. In the database systems point of
view, a notion coinciding with Winslett’s revision model was first introduced in the seminal
paper of Arenas, Bertossi, and Chomicki [1], who presented a model theoretic definition of
consistent answers to a query posed to an inconsistent database. Following this work, many
other proposals for database repair and consistent query answering have emerged. Most
of the proposals are based on the idea that the set of database tuples either inserted to-
or deleted from the database instance in order to restore its consistency has to be made
minimal under set inclusion [1, 2, 9, 10, 14, 18, 27] or cardinality [2, 4, 5, 35]. Clearly, these are
domain independent considerations, in the sense that they are applied to every database
regardless of the nature of its information. Representing cardinality-based considerations in
our framework is discussed in Section 3.3. Corresponding computations by disjunctive logic
programs and stable model semantics are reported in [2, 5].

In contrast to cardinality-based distance semantics, the following definition and proposi-
tion show that even in the propositional case, set inclusion considerations deviate from our
framework:
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Definition 17. LetDB = (D, IC) be a propositional database, and let A,B ∈ Potential(DB).
As DB is propositional, the constraint components of A and B are empty, so we identify A
and B with their (variable-free) update components.

– A is inclusion-preferred over B (A≺DB), if
(
(A \ D) ∪ (D \A)

)
⊂

(
(B \ D) ∪ (D \B)

)
.

– The ≺D-minimal elements of Potential(DB) are called inclusion-optimal .

As a distance function d induces a total order on Potential(DB) (determined for each
A ∈ Potential(DB) by d(A,D)), while ≺D is only a partial order on Potential(DB), it is quite
obvious that preferences based on set inclusion cannot be simulated by distance functions.
Moreover,

Proposition 10. There is no distance function of the form df , obtained by a pseudo dis-
tance d and an aggregation function f as in Definition 13(d), such that the inclusion-optimal
solutions of a propositional database DB = (D, IC) are those that are df -closest to D.

Proof. Consider the database DB = ({p, q, r}, {p → ¬q, p → ¬r}). Here, Potential(DB) =
{{p}, {q}, {r}, {q, r}}, and so the inclusion-optimal potential repairs ofDB are {p} and {q, r}.
Now, let m = max{d(p, q) | p, q ∈ GAtoms}. Then: df ({p}, {p, q, r}) = df ({r}, {p, q, r}) =
f({ 1

2m, 1
2m}), thus {p} and {r} are equally distant from the original database D = {p, q, r}.

It follows that either both {p} and {r} are df -closest to D (in which case they are repairs of
DB) or neither of them is df -closest to D. But {r} is not inclusion-optimal while {p} is. 2

Domain independent repairs may be extended in various ways to make them domain
dependent. For instance, the distance function du

Σ , considered in Section 3.3 in the context
of pairwise (cardinality-based) repairs, may by generalized by attaching different weights
to different predicates, expressing the idea that for restoring consistency it may be more
costly to insert or remove tuples of a certain predicate than to change tuples of other
predicates. This yields a generalized Hamming distance, defined by the sum of the weights
of the elements in the symmetric difference of the relevant sets. This kind of distance-based
repairing is considered, e.g., in [36].

As noted in Section 3.4, our framework can also capture other domain dependent tech-
niques for database repair, recently considered, e.g., in [8, 24, 46, 47]. Below, we describe the
relations to some of these methods in greater details. For this, we briefly recall the basic
definitions behind Wijsen’s approach [46, 47] of repairing by value modifications. For sim-
plicity, assume that the language L consists of one predicate with arity n, i.e., a fixed schema
〈A1, . . . , An〉 of distinct attributes. A tableaux is a finite set T of tuples 〈t1, . . . , tm〉, where
each ti is a term.12 A tableau is called linear if no variable occurs in it more than once; it
is called a relation if all its terms are ground (i.e., without variables). Wijsen’s approach is
based on tableaux homomorphisms. Given two tableaux T1 and T2, a homomorphism from
T1 to T2 is a variable substitution θ on the variables of T1, such that θ(T1) ⊆ T2. Such a
homomorphism is called one-to-one if it does not identify distinct tuples of T1. Now, given a
relation P and a set IC of integrity constraints, a fix of P under IC is a maximal tableaux
P ′ for which (1) there is a one-to-one homomorphism to P , and (2) there is a (not neces-
sarily one-to-one) homomorphism to some relation R that satisfies IC. If such a relation R
is minimal under set inclusion, it is a repair of P in the sense of Wijsen (an uprepair, in his
terms).

The correspondence between Wijsen’s approach and ours is straightforward: In our sense,
a tableau T is the first component of a database update (referring to a single relation),
and the second component of an update, namely the constraint set, represents tableau

12 As the language is function-free, these terms must be atomic, i.e., constants or variables.
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homomorphisms on T . If a tableau is homomorphic to a consistent relation then, in our
terminology, it is a potential repair. In this respect, Wijsen’s fixes may be viewed as compact
representations of potential repairs.

The main difference between the two methods is that Wijsen uses set inclusion as the un-
derlying preference criterion, while in our framework distance functions are used for choosing
the optimal repairs. A variant of Wijsen’s approach, which defines uprepairs by cardinality
minimization rather than by set inclusion minimization, is easily simulated in our framework
by taking, e.g., d1 and Σ as the underlying distance and aggregation functions, respectively.

Incidentally, domain-dependent repairs with minimal cardinality and set-minimal repairs
have also been considered in the closely related construct introduced in [24] (see [48] for a
discussion on the similarities and differences between the repair methods). In this case as
well, our methods offer a considerable flexibility in the determination of the repair strategy,
by allowing to incorporate domain-specific considerations (such as those in the definition of
d2 above).

Another domain dependent approach for restoring database consistency, based on tuple
updates, is presented in [8]. This time, the tableaux homomorphisms approach is traded by
a quantitative attitude that is based on the values of the attributes. We demonstrate this
by the following example:

Example 14. [8, Examples 1,4] Consider the following database of traffic network.

Traffic

Time LinkName Type Flow

9:00am a 0 1100
9:00am b 1 900
9:30am b 1 850

Suppose that the maximum capacities of links of type 0 and 1 are 1000 and 1500, respectively.
The database above is not consistent with respect to these constraints, as they are not obeyed
by the first tuple.

According to [8], the distance between two tuples is determined by the (weighted sum
of the squares of the) differences between their numerical values. Thus, e.g., the difference
between the tuples (9:00am,a,0,1100) and (9:00am,a,1,1000) is c1 · 12 + c2 · 1002 for some
fixed coefficients c1 and c2. Using our terminology, the distance between the original database
instance and a potential repair of it is equal to the weighted sum of the differences between
the tuples in those sets, having the same key values. Now, repairs are the potential repairs
with minimal distance to the original database. In Example 14, then, two potential repairs
are:

Traffic′

Time LinkName Type Flow

9:00am a 1 1100
9:00am b 1 900
9:30am b 1 850

Traffic′′

Time LinkName Type Flow

9:00am a 0 1000
9:00am b 1 900
9:30am b 1 850

where Traffic′ changes the type of link ’a’ to 1, and Traffic′′ reduces its flow capacity
to 1000. For c1 = 1 and c2 = 10−5 the distances from Traffic are 1 · 12 and 10−5 · 1002,
respectively, so in this case Traffic′′ is preferred over Traffic′.

Clearly, the approach of [8] is represented in our framework, where minimal distances
correspond to least square values. The tuple matching according to [8] is done by key values,
and this is a plausible matching criterion, as in [8] key attributes are not updateable. Note,

19



however, that in our framework updates are not limited to numerical values only. More
substantially, our framework permits more general repairs. In Example 14, for instance, the
d2

Σ-semantics (in which changes of key attributes are more expensive than other changes)
will change (9:00am,a,0,1100) to either (9:00am,a,x,1100) for some x 6= 0 (which corresponds
to Traffic′ above), or to (9:00am,a,0,y) for some y ≤ 1000. The latter is clearly a more
general repair than Traffic′′, as it is not committed to a specific flow capacity of link ’a’
(i.e., 1000 in case of Traffic′′). 13

6 Conclusion and Future Work

Data processing by distance considerations is not a new idea, and it has been used mainly
in the context of query answering [2, 6, 37] integration of constraint belief-sets [29, 30] and
operators for belief revision [19, 31, 39, 44]. In this paper, we introduced a uniform frame-
work for representing, comparing and implementing different approaches for these contexts.
Another advantage of our approach is that it opens the door to many new methods that are
induced by known distance definitions. This is particularly useful in the context of database
repairing, where so far most of the formalisms in the literature that involve distance-based
semantics are domain independent, while in many practical cases domain dependent repairs
are more adequate. Typical cases for this are census, demographic, and experimental data,
where faulty information need to be altered (rather than removed altogether) in order to
meet certain integrity constraints. The new forms of repairs offered by our framework pro-
vide a step forward towards more intuitive solutions to such cases, mainly as the notion of
closeness can be captured in more subtle ways, and erroneous components of the data can
be detected and updated without violating the valid fragment of the information.

The message of this paper is, therefore, that it is useful to think in terms of distances
to express preferences among repairs and that different choices of distances lead to different
preferences that can be applied in different scenarios. Having this said, it seems that distance
semantics per-se is not strong enough for handling many practical cases. This is so not only
because of the considerable amount of repairs that are usually induced by it, but also due
to the fact that, in many cases, distance considerations cannot completely capture every
aspect of the underlying database information, and so different repairs may have different
likelihood. To see this, suppose that the following information is part of a household data,
associated to a census:

Person

Name Age Marital Status

David 71 Married
Ann 6 Married
Tom 20 Bachelor

Here, the second tuple violates a constraint that people under 16 cannot be married. The
common domain independent repairs, applying set inclusion or minimal cardinality of inser-
tions/retractions, will remove the problematic tuple. However, this does not seem to be an
appropriate solution in this case, as all the information about Ann will be lost. By using the
distance-based techniques for repairing by attribute modifications, we will get, according to
d1

Σ (as well as by d2
Σ), the following two repairs:

13 See also the discussion in the paragraph below Definition 7.
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Person′

Name Age Marital Status

David 71 Married
Ann x Married
Tom 20 Bachelor

Person′′

Name Age Marital Status

David 71 Married
Ann 6 y
Tom 20 Bachelor

In the repair on the left-hand side the problem is fixed by changing the age of Ann to some
x ≥ 16, and according to the repair in the right-hand side, Ann’s marital status is changed to
some y other than ‘Married’ (or any other status that requires marriage, such as ‘Divorced’
or ‘Widower’).

While the distance functions considered above imply that Person′ and Person′′ are
equally good repairs, additional information may help to conclude that one repair is more
plausible than the other. For instance, information about assets or hobbies usually pro-
vides some indication whether the underlying person is an adult or a child. As this kind
of information cannot make an exclusive discrimination between the two options, integrity
constraints are not useful here. Extending the distance functions by probability factors looks
somewhat ‘ad-hoc’ and cumbersome. More promising approaches for resolving this problem
are to adopt learning techniques for ‘pulling out’ the most plausible repairs, or to incorporate
declarative theories that give further indications on ‘how to repair’. Using such methods in
our framework is a subject for a future research.
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