
Cadmium: An Implementation of ACD Term

Rewriting

Gregory J. Duck1, Leslie De Koninck2 ⋆, and Peter J. Stuckey1

1 National ICT Australia (NICTA) ⋆⋆

Department of Computer Science and Software Engineering
University of Melbourne
{gjd,pjs}@cs.mu.oz.au

2 Department of Computer Science, K.U.Leuven, Belgium
Leslie.DeKoninck@cs.kuleuven.be

Abstract. Cadmium is a rule based programming language for com-
piling solver independent constraint models to various solver dependent
back-ends. Cadmium is based on a hybrid between Constraint Handling
Rules (CHR) and term rewriting modulo Associativity, Commutativity
and a restricted form of Distributivity (ACD) called Conjunctive Con-
text (CC). Experience with using Cadmium in the G12 project shows
that CC is a powerful language feature, as local model mapping can de-
pend on some non-local context, such as variable declarations or other
constraints. However, CC significantly complicates the Cadmium nor-
malisation algorithm, since the normal form of a term may depend on
what context it appears in. In this paper we present an implementa-
tion of Cadmium based on classic bottom-up evaluation, but modified to
handle CC matching. We evaluate the performance of the new implemen-
tation compared to earlier prototype normalisation algorithms. We show
that the resulting system is fast enough to run “real-world” Cadmium
applications.

1 Introduction

Cadmium is high-level rule based programming language based on ACD Term
Rewriting (ACDTR) [4] – a generalisation of Constraint Handling Rules (CHR) [5]
and Associative Commutative (AC) term rewriting systems [1]. Cadmium’s main
application is the G12 project [10], where it is used to map high-level models
of satisfaction and optimisation problems to low-level executable models. The
flexibility and expressiveness of Cadmium allows us to map the same high-level
model to different low-level models with very succinct programs (see e.g. [6, 2]).

⋆ Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)

⋆⋆ NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

Associative Commutative (AC) term rewriting allows implicit reordering of
AC operators before applying rules. An AC operator ⊕ satisfies the axioms:

(associativity) (X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z)
(commutativity) X ⊕ Y = Y ⊕ X

For example, the rewrite rule r = (X ∧ ¬X → false) will not match the term
T = ¬a∧a under non-AC term rewriting because the order of the conjunction is
different. However, since ∧ is commutative, T is equivalent to T ′ = a∧¬a. Since
T ≡AC T ′ and T ′ matches r (i.e. AC matching), T can be rewritten to false
under AC term rewriting.

ACD term rewriting [4] extends AC term rewriting with ∧-Distributivity
using the following axiom for all functors f :

(distribution) P ∧ f(Q1, . . . , Qi, . . .Qn) = P ∧ f(Q1, . . . , P ∧ Qi, . . . , Qn)

It represents the fact that if some property P holds in the context of a term
f(Q1, . . . , Qi, . . .Qn) it also holds in the context of all the subterms. We can
then define the conjunctive context (CC)3 of a term T as the conjunction of all
terms that appear conjoined with a parent of that term, i.e. all terms that can
∧-distribute to T .

Example 1. The CC of the boxed occurrence of x in the term

(x = 3) ∧ (x2 > y ∨ (x = 4) ∧ U ∨ V) ∧ W

is (x = 3) ∧ U ∧ W . ⊓⊔

We introduce CC matching rules of the form (C \ H ⇐⇒ B) which say we
can rewrite the term H to B if H appears in a position where its conjunctive
context is C ∧ D for some D. Thus we can match on any term appearing in the
conjunctive context of H .

Example 2. For example, CC matching can be used to specialise constraints
based on variable types.

int(X) ∧ int(Y) \ X ≤ Y ⇐⇒ intleq(X, Y)
real(X) ∧ real(Y) \ X ≤ Y ⇐⇒ realleq(X, Y)

pair (X, A, B) ∧ pair (Y, C, D) \ X ≤ Y ⇐⇒ (A ≤ C ∨ (A = C ∧ B ≤ D))

Given the term x ≤ y ∧ int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) the conjunc-
tive context of x ≤ y is the remainder of the conjunction. Therefore the term
pair (x, a, b)∧pair (y, c, d) appears in the conjunctive context of x ≤ y so the last
rule is applicable. In the resulting term, x ≤ y is replaced by the right hand side
of the rule obtaining:

int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) ∧ (a ≤ c ∨ (a = c ∧ intleq(b, d))

3 We will use CC as shorthand for “conjunctive context” in the rest of the paper.

Now int(b) ∧ int(d) appears in the CC of b ≤ d and hence the first rule applies
to that term:

int(b) ∧ int(d) ∧ pair (x, a, b) ∧ pair (y, c, d) ∧ (a ≤ c ∨ (a = c ∧ intleq(b, d))

This term is now in normal form, i.e. no more rules are applicable. ⊓⊔

One simple normalisation algorithm is strict evaluation, i.e. to normalise a
term f(T1, ..., Tn), we first normalise each T1, ..., Tn to U1, ..., Un, and then test
rules against f(U1, ..., Un). If a rule (f(H1, ..., Hn) ⇐⇒ B) matches f(U1, ..., Un),
then any variable V in H1, ..., Hn must be bound to a normalised term. This is
an important property, since it means V ’s value can be copied to the rule body
without the need for further work.

Example 3. Consider the rule (f(X) ⇐⇒ g(X)). To ensure the body g(X) is
normalised it is sufficient to only check the rules for g/1, rather than normalise
X first. Under strict evaluation X must already be in normal form. ⊓⊔

A normalisation algorithm for Cadmium is more complex because of CC
matching. It is possible that terms matched in the CC are not in normal form.

Example 4. Consider the following Cadmium program consisting of three rules:

X = Y \ X <=> var(X) | Y. pass <=> true. eq(X,Y) <=> X = Y.

This is an example of actual Cadmium code. Cadmium term syntax follows
Prolog term syntax: any name starting with a capital letter represents a variable.
The first rule implements substitution using CC matching – i.e. given an X where
X=Y holds, then substitute X with Y. Like Prolog, Cadmium allows variables to
appear in the goal. We will examine distinct problems with two different goals.

Early Application : Consider the goal G1 = (A ∧ A=pass). Under left-to-right
strict evaluation, conjunct A with A=pass in its CC will be normalised first. Since
A=pass can be rewritten to A=true, the CC is not in normal form. If we apply
the first rule to A, and copy variables from the matching to the body as per
Example 3, then the result is the unnormalised term pass. This is called early
application since the result is unnormalised because a rule was applied with an
unnormalised CC.

Early Failure : Consider the goal G2 = (A ∧ eq(A,true)). Conjunct A with
eq(A,true) in its CC is normalised first. Again, the CC is unnormalised, since
eq(A,true) can be rewritten to A=true. In this case the first rule does not match,
since the substitution rule expects a =-term, not an eq-term. If eq(A,true) was
normalised first, then the rule would match. This is called early failure since a
rule failed to match because the CC was unnormalised. ⊓⊔

So why not simply normalise the CC before it is used? In general it is im-
possible to force the CC to be normalised before it is used.

Example 5. Consider the program from Example 4 and the goal X=Y ∧ Y=X.
Under the ACDTR semantics, only two rule applications are possible:

1. variable Y (inside conjunct X=Y) with CC Y=X rewrites to X; or
2. variable X (inside conjunct Y=X) with CC X=Y rewrites to Y.

The CC for (1) is unnormalised, because by (2) we have that Y=X can be rewritten
to Y=Y. Likewise the CC for (2) is unnormalised because of (1). Either way a
rule is applied with unnormalised CC. Therefore, in general it is impossible to
guarantee a normalised CC. ⊓⊔

A prototype basic normalisation algorithm that accounts for unnormalised
CC first appeared in [4]. The main contributions of this paper are:

– we show that the basic normalisation algorithm, whilst simple to implement,
is too inefficient to be practical on some “real-world” applications;

– we analyse the causes for incomplete normalisation (e.g. Example 4) and
show how the basic algorithm handles these cases;

– we use this information to derive a more efficient normalisation algorithm
used in the G12 Cadmium implementation of ACDTR;

– we also show how the information can be used to compile the bodies of rules
into more efficient executable code.

2 Preliminaries

The syntax of Cadmium closely resembles that of Constraint Handling Rules [5].
There are two4 types of rules; they have the following form:

(simplification) H ⇐⇒ g | B
(simpagation) C \ H ⇐⇒ g | B

where head H , conjunctive context C, guard g, and body B are arbitrary terms.
A program P is a set of rules. Essentially a rule works as follows: given a term
t[h] and matching substitution θ where h = Hθ such that gθ is true, and Cθ
appears in the conjunctive context of h, then we obtain the term t[Bθ]. ACDTR
rules can be applied to any subterm of the goal, unlike in CHR.

For space reasons, we refer the reader to [4] for details about the declarative
and operational semantics of Cadmium. A general understanding of term rewrit-
ing is sufficient to follow the paper, all important differences w.r.t. standard term
rewriting are illustrated by examples.

2.1 Basic Normalisation with Conjunctive Context

In this section we present a version of the basic normalisation algorithm for
ACDTR that first appeared in [4]. The basic algorithm is shown in Figure 1.
The function normalise acdtr(T ,CC) normalises some term T with respect to
the current CC and some compiled version of the program. For the initial goal
CC = ∧, i.e. an empty conjunction. Normalisation works in two parts: the first
part handles conjunction and the second part handles all other terms.

4 The original ACDTR [4] semantics also included a generalisation of propagation

rules. However, these are not implemented in Cadmium.

normalise acdtr(T ,CC)
if T = ∧(. . .) /* Conjunction */

Acc := T

repeat

let Acc = ∧(T1, . . . , Tn)
Acc := ∧
rulefired := false

forall 1 ≤ i ≤ n

CC′ := flatten(∧(Acc, Ti+1, . . . , Tn, CC))
Ui := normalise acdtr(Ti,CC′)
if (Ui 6= Ti) rulefired := true

Acc := flatten(Acc ∧ Ui)
until not rulefired

return call ∧(Acc, CC)
if T = f(T1, . . . , Tn) /* Other terms */

forall 1 ≤ i ≤ n

Ui := normalise acdtr(Ti,CC)
if isAC(f)

U := flatten(f(U1, . . . , Un))
return call f(U, CC)

else return call f(U1, . . . , Un, CC)
else

return T

Fig. 1. Basic ACDTR normalisation algorithm.

To begin with, let us consider the second part, which implements basic nor-
malisation for AC term rewriting using a strict evaluation strategy. To normalise
a (non-conjunction) term T = f(T1, . . . , Tn), we first normalise each argument
T1, . . . , Tn to U1, . . . , Un respectively, and then normalise U = f(U1, . . . , Un) by
calling a compiled procedure call f that applies any rule that matches f/n terms,
or returns U if no such rule exists. Details about the compiled procedures can
be found in Section 4.

The calling conventions for AC and non-AC operators are different. For
the AC case, the term U = f(U1, . . . , Un) must be created and flattened be-
fore the procedure call f is called. The idea behind flattening is to represent a
nested binary AC expression as a “flat” n-ary term. For example, the equiv-
alent AC terms (1 + 2) + 3 and 1 + (2 + 3) are represented as +(1, 2, 3) in
flattened form. As with the binary-+, the n-ary + is also commutative, i.e.
+(. . . , Ui, . . . , Uj , . . .) ≡ +(. . . , Uj, . . . , Ui, . . .). The motivation for flattening is
to simplify the AC matching implementation (see [8] for a more detailed discus-
sion). For the rest of the paper, we may switch between binary and flattened
notation for AC terms whenever convenient.

Conjunction is normalised differently from other (AC) terms. A conjunction
T = ∧(T1, ..., Tn) is normalised over several passes by the repeat loop, which
works as follows. The let matching is assumed to return all conjuncts T1,. . . ,Tn

of Acc, where Acc is initially set to T (the input conjunction), and to the accu-

mulated result from the previous pass of the repeat loop in all further passes.
For each pass, this may be a different set. Next Acc and rulefired are initialised,
followed by the forall loop, which normalises each conjunct Ti of T with respect
to CC′, which is CC extended by all other conjuncts of T excluding Ti. The new
conjuncts Ui are accumulated into variable Acc. One complication is that each Ui

may itself be a conjunction, so flatten is used to ensure Acc remains in flattened
form. We also compare the old Ti against its normalised version Ui. If there is
a difference, then a rule has fired, and rulefired is set to true, which ensures
another pass of the repeat loop. Note that the Cadmium implementation tracks
rule firings explicitly rather than actually comparing (potentially large) terms.
Finally, once Acc has reached a fixed point, i.e. ¬rulefired holds, the procedure
call ∧ is run. Each pass of the repeat-loop is referred to as a conjunction pass.

The intuition behind the normalise acdtr algorithm is as follows. If a Ti

changes to a Ui, then the CC of all Tj where j 6= i has also changed – i.e.
the CC contained Ti but now contains Ui. The next pass of the repeat loop
ensures each Tj is woken-up with respect to the up-to-date CC containing Ui.
Here, the terminology wake-up means a conjunct is renormalised with a new CC
in the next conjunction pass.

Example 6 (Early Application). Consider the program and goal G1 from Exam-
ple 4. The first pass of the normalise acdtr algorithm is (1) A with CC A=pass

is rewritten to pass (early application), then (2) A=pass (with CC pass) is
rewritten to A=true. After the first pass the conjunction Acc is pass ∧ A=true.

Since a rule has fired, the conjunction is normalised again. This time (3) pass
(with CC A=true) is rewritten to true, then (4) A=true (with CC true) remains
unchanged. After the second pass the conjunction Acc is true ∧ A=true. Since
again a rule has fired, the conjunction is renormalised once more. This time no
rule fires, since the conjunction is already in normal form. The ¬rulefired test
succeeds, and true ∧ A=true is ultimately returned. ⊓⊔

Example 7 (Early Failure). Consider the program and goal G2 from Example 4.
The normalise acdtr algorithm works as follows: (1) A with CC eq(A,true) re-
mains unchanged (early failure), then (2) eq(A,true) (with CC A) is rewritten
to A=true. After the first pass the conjunction Acc is A ∧ A=true.

Since a rule has fired, the conjunction is normalised again. This time (3) A

with CC A=true is rewritten to true, then (4) A=true (with CC true) remains
unchanged. After the second pass the conjunction Acc is true ∧ A=true. An-
other pass is tried, but since the conjunction is already in normal form, no more
rewrites take place, and true ∧ A=true is returned. ⊓⊔

3 Improved Normalisation

Algorithm normalise acdtr is relatively simple and was used in earlier versions of
the Cadmium implementation. However, the algorithm is still very “coarse” in
the sense that any change of a conjunct results in the entire conjunction being
processed again. Clearly this is sub-optimal, as it is probable that some changes

in the CC do not affect the normalisation status of other conjuncts. An extreme
example of this situation occurs when all rules in a program are simplification
rules, and thus do not depend on the CC at all. In this case, conjunction can
be treated the same as any other AC functor, hence only one pass is required to
ensure a normal form.

Even if the program contains simpagation rules, the number of conjuncts
that need to be woken-up per pass can often be reduced.

Example 8 (Early Failure). For example, consider the following rule that sim-
plifies less-than constraints if the negation greater-than is present in the CC.

X > Y \ X < Y <=> false.

Suppose that the goal is A<B ∧ f(A,B). Clearly the normal form of the A<B

conjunct only depends on the presence/absence of A>B in its CC.

During the initial conjunction pass of normalise acdtr, conjunct A<B will not
be rewritten because A>B does not appear in the CC (i.e. early failure). Then
A<B will only need to wake-up iff a A>B term is subsequently added to the CC.
Any other change to the CC can be safely ignored, since this would not affect
the applicability of the above rule. ⊓⊔

By definition, early failure means a conjunct C is not rewritten because some
term T was not in its CC. Thus, we only need to wake-up C if a suitable T is
subsequently added to C’s CC. Likewise, a wake-up for early application is
sometimes not necessary.

Example 9 (Early Application). Consider the following rules for Zinc expression
manipulation in Cadmium.

decl(T,X) /\ decl(T,Y) /\ decl(T,Z) \ X*(Y+Z) <=> X*Y+X*Z.

int <=> float.

Here, decl(T,V) encodes a Zinc variable declaration, where T is the type and
V is the variable. Consider the goal

A*(B+C) ∧ decl(int,A) ∧ decl(int,B) ∧ decl(int,C)

During the first conjunction pass, conjunct A*(B+C) is rewritten to A*B+A*Cwith
the reaminder of the goal as CC. The CC is not in normal form since subterm(s)
int are not in normal form, hence this is a case of early application.

However, A*B+A*C is in normal form and therefore does not need to be woken-
up again. This is because the rule body depended only on program variables also
appearing in the rule head, i.e. X, Y, and Z, but not T. Therefore if X, Y, and Z

are in normal form, the new term A*B+A*C will also be in normal form. ⊓⊔

The basic idea of the refined algorithm is to only wake up conjuncts if there
is actually a need to do so.

normalise cadmium(T ,Curr,CC)
if T = ∧(. . .)

Acc := T

repeat

let Acc = ∧(T1, . . . , Tn)
Acc := ∧
Prev := Curr ∪ {redo}
Curr := ∅
forall 1 ≤ i ≤ n

if wakeup conds(Ti) ∩ Prev 6= ∅
CC′ := flatten(∧(Acc, Ti+1, . . . , Tn, CC))
Ui := normalise cadmium(Ti,∅,CC′)
if (Ui 6= Ti) Curr := createtop(Ui) ∪ Curr

Acc := flatten(Acc ∧ Ui)
else Acc := flatten(Acc ∧ Ti)

until Curr = ∅
return call ∧(Acc, CC)

if T = f(T1, . . . , Tn) . . . /* As in Figure 1 */

Fig. 2. Improved normalisation algorithm from the Cadmium implementation.

Events and wake-up conditions Wake-up conditions are conditions associ-
ated to conjuncts in conjunctions. An event declares that a wake-up condition
has become satisfied. During normalisation, if an event occurs satisfying a wake-
up condition, then any associated conjunct will be woken-up during the next
conjunction pass.

The Cadmium implementation uses the following wake-up conditions:

Case Condition/Event
Early Application redo

Early Failure create(f/a)

Condition redo means that the conjunct is always to be woken-up during the
next pass. It will be associated to a conjunct C if C is not in normal form due to
early application. Early application does not always result in a redo condition,
as was the case in Example 9. Condition create(f/a) means that the conjunct
will be woken-up if some term with functor/arity f/a is added to the CC. This
condition is useful for early failure. For example, in Example 8, the conjunct A<B
needs to be woken up if a A>B term is added to its CC. We can approximate this
precise condition with a create(>/2)wake-up condition. In general, determining
the precise conditions is undecidable, so some approximation is always required.

The improved algorithm is described in Figure 2. This version is called nor-

malise cadmium because it is the actual normalisation algorithm used by the
Cadmium implementation. The main difference between this version and the
previous algorithm is the tracking of events and wake-up conditions. Prev and
Curr are sets of events. Prev contains all events that occurred during the previ-
ous pass and a redo event. Each new pass generates this event. Curr accumulates

the events that occur during the current pass. Note that initially Curr is an ar-
gument to normalise cadmium. For now, we can assume that the value passed in
through Curr is always the empty set. This will change later in Section 4.

The function wakeup conds(Ti) returns the set of wake-up conditions asso-
ciated to a given conjunct Ti. If Ti has not been normalised yet (i.e. in the
initial pass), then its set of wake-up conditions is assumed to be {redo}. If Ti is
subsequently normalised to Ui, then the wake-up conditions for Ui are roughly
determined as follows:

1. Early Application: If an early application resulted in an unnormalised sub-
term of Ui, then redo ∈ wakeup conds(Ui).

2. Early Failure: If a simpagation rule (C\H ⇐⇒ G|B) failed to fire on some
subterm S of Ti, and S also appears in Ui, then

{create(f1/a1), . . . , create(fn/an)} ⊆ wakeup conds(Ui)

where the fi/ai are the functor/arity pairs of the conjuncts in C.

Note that wake-up conditions propagate upwards, i.e. if the normalisation of
some subterm S of Ti generates a wake-up condition C, then C is propagated
upwards and attached to Ui. For nested conjunctions, C will be propagated
upwards to every conjunct S appeared in. The exact mechanism for generating
wakeup conditions is the role of the Cadmium compiled code, i.e. in the call f

procedures. This will explained in Section 4.2.
Wake-up conditions are used to prevent unnecessary renormalisation during

the second or later conjunction passes. Conjunct Ti will only wake-up if there
exists an event in Prev that is also present in wakeup conds(Ti). Otherwise, the
conjunct is already in normal form, and the old value can be used.

If a conjunct Ti is renormalised to Ui where Ti 6= Ui, the call createtop(Ui)
will generate an appropriate set of create events. If Ui = ∧(V1, . . . , Vn), then
createtop(Ui) generates {create(f1/a1), . . . , create(fn/an)}, where f1/a1, . . . ,
fn/an are the functor/arities of V1, . . . , Vn. Otherwise, if Ui = g(W1, . . . , Wn)
where g 6= ∧, then createtop(Ui) generates the singleton set {create(g/n)}.
The generated events are accumulated into Curr and used as Prev during the
next pass.

Example 10. Consider the following three rule program.

(1) X > Y \ X < Y <=> false.

(2) gt(X,Y) <=> X > Y.

(3) h() \ f(X) <=> g(X).

Rule (1) is the rule from Example 8. Rule (2) rewrites an auxiliary term into a
>/2 term. Rule (3) is an artificial rule which depends on the CC.

Consider the execution of the goal term: h(1) ∧ wrap(f(x<y) ∧ gt(x,y)).
There are two levels of nested conjunction, with the inner conjunction inside the
wrap/1 term. Assume execution proceeds from left-to-right. First h(1) is nor-
malised and remains unchanged. Next the wrap/1 term and the inner conjunction
are normalised. The inner conjunct f(x<y) is normalised first. As normalisation
proceeds bottom-up, the following wake-up conditions are generated:

1. Subterm x<y could potentially fire Rule (1), given a x>y term in the CC.
Thus a create(>/2) waking condition is generated for this term.

2. Term f(x<y) fires rule (3) to give g(x<y). Since the body is independent of
the CC, no redo waking condition needs to be generated for this term.

Thus, the set of waking conditions attached to the first inner conjunct g(x<y)

is {create(>/2)}.
Next, the second inner conjunct gt(x,y) is normalised to x>y. This generates

a create(>/2) event, which is recorded in Curr, but no wake-up conditions are
recorded for this term. The intermediate result after the first pass is: h(1) ∧
wrap(g(x<y) ∧ x>y).

In the second pass, the inner conjunct g(x<y) is renormalised to g(false),
since the attached wake-up condition create(>/2) matches an event that oc-
curred during the previous pass. The second inner conjunct, x>y, will not be
woken up since it has no wake-up conditions. Normalisation proceeds without
any more rule applications, thus the final result is: h(1) ∧ wrap(g(false) ∧
x > y). ⊓⊔

4 Implementation

In this section we discuss some details about the Cadmium implementation.
The current Cadmium implementation compiles rules of the form (C \ H ⇐⇒

B) into a low-level byte-code for a simple virtual machine. There are two parts
to compilation: compiling the matching (C \ H), and compiling the body B.

Matching Matching in Cadmium is similar to matching in any other declarative
programming language, such as Prolog. For example, the rule (f(g(X,Y),h) <=>

...) can be compiled directly into a Prolog clause (call f(g(X,Y),h) :- !, ...)
that uses Prolog unification for matching. The cut is necessary since Cadmium
rules are committed choice.

Compiling AC matching is somewhat more complicated, as it involves non-
deterministically trying combinations of matchings – i.e. the different permu-
tations of the arguments of an AC term. This can be implemented in Prolog
as backtracking search. CC matching is essentially the same as AC matching,
except we match against the accumulated CC rather than a term matching the
rule head.

Body The simplest version of rule body compilation is to call the Cadmium nor-
malisation procedure. For example, given (f(X,Y,Z) <=> g(h(X,Y),a(1,Z)))
then the compiled rule in Prolog is

call f(X,Y,Z,Ret) :- !, normalise(g(h(X,Y),a(1,Z)),Ret)

where normalise implements the Cadmium normalisation algorithm. This will
cause each term matching X, Y, Z to be renormalised again, which is inefficient.

A better (and more standard) approach is to eliminate all calls to the nor-
malise procedure by iteratively unfolding its application, and to substitute match-
ing variables directly rather than renormalising them. For example, after one
unfolding step we have:

normalise(g(h(X,Y),a(1,Z))) ≡ call g(normalise(h(X,Y)),normalise(a(1,Z)))

After completely unfolding normalise, the rule code becomes:

call f(X,Y,Z,Ret) :- !, call h(X,Y,RH), call a(1,Z,RA), call g(RH,RA,Ret).

4.1 Compiling Conjunction in the Body

Compiling conjunction in the rule body is the same as before, i.e. iterative un-
folding of the call to the normalise procedure. However, because of CC, the
normalise procedure cannot be unfolded any deeper than any top-most con-
junction appearing in the rule body. For example, consider the rule:

f(X,Y) <=> g(X) /\ f(Y).

According to the Cadmium normalisation algorithm, g(X) and all of its subterms
must be (re)normalised with f(Y) in the CC, and vice versa. Therefore, unfolding
normalise directly will not work, i.e.,

normalise(g(X)∧f(Y)) 6≡ call ∧(normalise(g(X)),normalise(f(Y)))

since the latter does not handle CC correctly.
The basic approach for handling conjunctions is to unfold normalise as much

as possible, but stopping at the top-most conjunction. This conjunction is simply
constructed, then passed to normalise to be executed as if it were a fresh goal.
For example, the compiled version of the above rule is:

call f(X,Y,Ret) :- !, C1 = g(X), C2 = f(Y), wakeup on(redo,C1),

wakeup on(redo,C2), normalise(C1 /\ C2,Ret).

This clause constructs g(X) /\ f(Y) and passes it to normalise. The built-in
wakeup on/2 attaches a redo wake-up condition to each conjunct to force nor-
malisation via wake-up. Without the redo, normalise will skip each conjunct.

Conjunction collector optimisation Under the basic approach, each con-
junct in a rule body is completely (re)normalised again, which in some cases is
inefficient. However, sometimes we can avoid wake-up in a rule body. Consider
the following rule from the MiniZinc to FlatZinc mapping [6, 2]:

cons(X) /\ cons(Y) /\ Z <=> cons(X /\ Y) /\ Z.

Here cons(X) represents a Zinc constraint item (constraint X). The body of
the rule contains two conjuncts: cons(X /\ Y) and Z. In this rule, Z will always
match a conjunction – i.e. the “rest” of the conjunction matching the rule head
minus cons(X) and cons(Y). Furthermore, thanks to bottom-up evaluation, Z

must already be normalised, so each conjunct in Z already has a set of wake-up
conditions attached to it. We can use these tighter wake-up conditions instead
of attaching a redo condition as was the case above. This can potentially avoid
a lot of unnecessary renormalisation.

Example 11. Consider the constraint item collection rule from above. When this
rule is applied, the CC of the conjuncts in Z remains unchanged save for the
removal/addition of some cons/1 terms. Therefore, only the conjuncts with a
create(cons/1) wake-up condition need be renormalised.

The optimised code of the constraint item collection rule is:

call /\(Conj,Ret) :- /* Code for matching */ !,

C1 = cons(X /\ Y), wakeup on(redo,C1),

normalise(C1 /\ Z,[create(cons/1)],Ret).

Notice that (1) there is no redo wake-up condition attached to Z, and (2) we
now pass the initial event create(cons/1) to the normalise procedure, since
a new cons/1 term was added to the conjunction. This will cause any conjunct
with a create(cons/1) in Z to be renormalised as expected. ⊓⊔

4.2 Generating Wake-up Conditions

In this section we explain how wake-up conditions are generated in the compiled
code. This depends on the type of condition being generated.

Wake-up condition redo: The normalise cadmium algorithm returns either
a normalised term, or an unnormalised term because of early application. In
the latter case, a redo wake-up condition must be generated to ensure overall
completeness after subsequent passes of the super conjunctions.5 A redo wake-
up condition is therefore needed when the body B from a rule (C\H ⇐⇒ G|B)
contains a variable X such that X is also in C, but not in H . Note that if X
also appears in H , then because X was processed before its super term H , we
can assume X is in normal form, or redo has already been generated.

Example 12. Consider the following rules:

X > Y \ X < Y <=> false.

X = Y \ X <=> var(X) | Y.

decl(T,X) /\ decl(T,Y) /\ decl(T,Z) \ X*(Y+Z) <=> X*Y+X*Z.

from Examples 8, 4, and 9 respectively. The body of the first rule does not
contain any variables, thus is independent of the CC. The body of the second
rule does depend on the CC through variable Y. The body of the third rule
shares variables X, Y, and Z with the CC; however these variables also appear
in the rule head. Therefore, only the second rule is required to generate a redo

wake-up condition. The code for the second rule is therefore:

5 Early application implies there is at least one super conjunction, since otherwise the
CC will be empty.

call var(X,Ret) :- /* Matching */, !, wakeup lift([redo]), Ret = Y.

Here, the call wakeup lift(C) lifts wake-up conditions C to any conjunct con-
taining the term matching X. ⊓⊔

Wake-up condition create: The create wake-up conditions are generated
after all rules for a particular term fail to match. The compiler assumes that any
simpagation rule matching failure is caused by early failure.

Example 13. Consider the following program which contains two rules for f/2.

g(X) \ f(X,Y) <=> i(Y). g(Y) /\ h(Y,Y) \ f(1,Y) <=> Y.

Consider the compiled version of this program, where procedure call f checks
these rules. If both rules fail to match, then call f will simply construct the
f/2 term, but will also generate the appropriate create wake-up conditions:

· · · /* Code for rules 1-2. */

call f(X,Y,Ret) :- !, wakeup lift([create(g/1),create(h/2)]), Ret = f(X,Y).

In general this approach is an over-approximation. For example, call f(2,Y)

will never apply the second rule. However the compiler still assumes early failure
has occurred, and generates a create(h/2) wake-up condition accordingly. This
may result in some unnecessary wake-ups.

5 Experiments

Cadmium is part of the G12 project [10]. Its main application is mapping Zinc
models, represented as terms, into various solver-dependent back-ends and/or to
FlatZinc [6].

Two sets of benchmarks are tested.6 The first set in Figure 3(a) compare
Cadmium versus the Maude 2.3 system [3]. The second set in Figure 3(b) com-
pare the Cadmium implementation using normalisation with/without events. All
timings are an average over 10 runs on an Intel E8400 clocked at 3.6GHz.

The benchmarks from Figure 3(a) originate from the second Rewriting En-
gines Competition [7]. Note that the remaining examples from [7] could not be
used for various reasons, e.g. running too fast/slow on both systems, or test-
ing confluence (not supported in Cadmium). The benchmarks show that Cad-
mium is competitive compared to an established implementation on pure (AC)
term rewriting problems. The exception is taut hard, where Cadmium is slower
than Maude, because of differences in the implementation of AC indexing. The
taut hard causes worst-case behaviour for Cadmium’s AC index structures. For
the perm benchmark, which also uses AC matching, Cadmium improves upon
Maude. Note that none of these benchmarks use CC matching, hence the CC
optimisations shown in Figure 3(b) are not applicable here.

6 Benchmarks are available at http://www.cs.mu.oz.au/˜gjd/download/iclp2008.tar.gz

Bench. Maude Cadmium

qsort(216) 1.12s 1.20s
qsort(343) 6.37s 6.74s
msort(729) 4.27s 4.28s
msort(1000) 12.56s 11.64s
bsort(240) 1.65s 1.78s
bsort(360) 7.67s 8.52s
rev 0.83s 1.25s
taut hard(2) 0.13s 3.84s
taut hard(3) 0.36s 37.82s
perm(8) 0.38s 0.27s
perm(9) 6.79s 3.71s

(a) Maude vs. Cadmium

Bench. −events +events

queens(8) 2.61s 2.74s
queens(9) 40.70s 43.69s
cnf conversion(19) 11.07s 9.36s
cnf conversion(20) 15.42s 12.97s
substitution(22) 1.54s 0.92s
substitution(23) 3.13s 2.04s

warehouses.mzn 5.14s 0.57s
langford.mzn >300s 33.42s
packing.mzn 0.96s 0.23s
timetabling.mzn 9.19s 0.76s
radiation.mzn 37.58s 2.47s

Geom. mean7 6.57s 36.76%

(b) Cadmium ±events

Fig. 3. Experiments comparing the run-time performance of Cadmium.

To test CC normalisation with/without events the benchmarks are as follows:
Benchmark queens(n) finds all solutions to the n-queens problem. Benchmark
cnf conversion(n) converts the following Boolean formula into conjunctive
normal form

∧n

i=1

∨n

j=i+1
xi ⊕ xj . using a generic CNF conversion algorithm.

Benchmark substitution(n) applies the substitution rule (Example 4) to the
conjunction:

∧n

i=1
Xi = [Xi+1,...,Xn] /\ f(Xi). Finally, the ∗.mzn benchmarks

test MiniZinc to FlatZinc flattening in Cadmium [6]. These benchmarks are the
most important, since they are a “real-world” Cadmium application doing what
Cadmium was intended to do – i.e. rewrite (Mini)Zinc models. Note that the
mapping used is further developed than earlier versions appearing in [6, 2].

Figure 3(b) compares Cadmium normalisation without events (−events) ver-
sus with events (+events). Overall, normalisation with events is significantly
better, with a 63% improvement.7 The MiniZinc flattening benchmarks showed
the largest gains. This is especially true for langford.mzn, where the −events
version is too slow to be practical. On the other hand, the queens benchmarks
were better off without events. In this case, the +events version avoided almost
no wake-ups, so the extra overhead of tracking events causes a slow-down.

6 Related Work and Conclusions

Cadmium is a powerful rewriting language that implements rewriting based on
non-local information in the form of Conjunctive Context. However, CC com-
plicates any potential Cadmium normalisation algorithm, since the CC must
be distributed to everywhere it is used. Furthermore, there are no guarantees
the context itself is normalised, so traditional bottom-up evaluation strategies

7 excluding langford.mzn.

do not work. We have presented a normalisation algorithm based on waking-up
conjuncts whose context may have changed in a way that affects rule appli-
cation. By tracking wake-up conditions and events, renormalisation because of
context changes can be significantly decreased. Experiments show speed-ups in
real-world Cadmium applications such as Zinc model flattening.

There exist several other implementations of term rewriting, such as Maude [3],
and others. Like Cadmium, matching modulo AC is a standard feature. The main
difference between Cadmium and other implementations is the native support
for CC normalisation.

Unification (and therefore matching) modulo distribution, i.e. x ∗ (y + z) =
x∗y+x∗z, has also been studied, e.g. in [9]. However, this work is not relevant to
CC-distribution, which is based on a different axiom, e.g. x∧f(y) = x∧f(x∧y).

For future work we intend to further improve the performance of Cadmium.
We believe it is possible to refine the normalisation algorithm further, i.e. to avoid
even more wake-ups by refining events, and to specialise the renormalisation that
occurs during wake-up.

References

1. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Univ. Press,
1998.

2. S. Brand, G. J. Duck, J. Puchinger, and P. J. Stuckey. Flexible, Rule-based Con-
straint Model Linearisation. In 10th Intl. Symp. on Practical Aspects of Declarative

Languages, LNCS 4902, pages 68–83. Springer, 2008.
3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-

cott. The Maude 2.0 System. In 14th Intl. Conf. on Rewriting Techniques and

Applications, LNCS 2706, pages 76–87. Springer, 2003.
4. G. J. Duck, P. J. Stuckey, and S. Brand. ACD Term Rewriting. In 22nd Intl.

Conf. on Logic Programming, LNCS 4079, pages 117–131. Springer, 2006.
5. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic

Programming, 37:95–138, 1998.
6. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.

MiniZinc: Towards a Standard CP Modelling Language. In 13th Intl. Conf. on

Principles and Practice of Constraint Programming, LNCS 4741, pages 529–543.
Springer, 2007.

7. Rewriting Engines Competition.
http://www.lcc.uma.es/˜duran/rewriting competition/.

8. S. M. Eker. Associative-Commutative Matching Via Bipartite Graph Matching.
Computer Journal, 38(5):381–399, 1995.

9. M. Schmidt-Schauß. Decidability of Unification in the Theory of One-Sided Dis-
tributivity and a Multiplicative Unit. Journal of Symbolic Computation, 22(3):315–
344, 1997.

10. P. J. Stuckey, M. Garćıa de la Banda, M. Maher, K. Marriott, J. Slaney, Z. Somogyi,
M. Wallace, and T. Walsh. The G12 project: Mapping solver independent models
to efficient solutions. In 21st Intl. Conf. on Logic Programming, LNCS 3668, pages
9–13. Springer, 2005.

