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Abstract

This technical report describes first experiences in applying evo-

lutionary game theory to a case of smart grid coordination. The use

of evolutionary game theory to model population dynamics has been

e↵ectively used in domains such as biology and economics but appli-

cations to cases of smart grid coordination have not been widespread.

In this work, we explicitly model a population consisting of clients

of demandside flexibility aggregators and demonstrate a proof of

concept analysis of the relationship between an aggregator‘s market

share, its e�ciency and the payment rate toward its self-interested

clients. Simulations are used to provide expected payo↵ values as

input for the evolutionary game theoretic analysis. Preliminary re-

sults show that the payment rate towards clients has a significant

influence on the ability to maintain a market share when competing

aggregators are present and that evolutionary game theory provides

interesting tools for analyzing such cases of strategic interaction be-

tween self-interested clients.
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Abstract. This technical report describes first experiences in applying
evolutionary game theory to a case of smart grid coordination. The use
of evolutionary game theory to model population dynamics has been
e↵ectively used in domains such as biology and economics but applications
to cases of smart grid coordination have not been widespread. In this
work, we explicitly model a population consisting of clients of demandside
flexibility aggregators and demonstrate a proof of concept analysis of the
relationship between an aggregator’s market share, its e�ciency and the
payment rate toward its self-interested clients. Simulations are used to
provide expected payo↵ values as input for the evolutionary game theoretic
analysis. Preliminary results show that the payment rate towards clients
has a significant influence on the ability to maintain a market share when
competing aggregators are present and that evolutionary game theory
provides interesting tools for analyzing such cases of strategic interaction
between self-interested clients.

1 Introduction

Demand-side flexibility is a commodity that transmission system operators (TSO)
are willing to pay for in order to maintain production-consumption balances in
the electrical grid. This flexibility can be found in industrial sites capable of
fine-tuning their processes in order to consume less or more power when asked
for [7]. There are a number of ways these sites can be coordinated to help balance
the electrical grid [16]. Sites can sign strict contracts with the TSO guaranteeing
at all times, the availability of this power flexibility. These guarantees are often
hard to provide and as such, numerous sites with less predictable power flexibility
are dissuaded from signing such contracts with the TSO directly and can benefit
more from doing business with demand-side aggregators. These aggregators
spread the risk of non-compliance to a TSO’s request for curtailment or increased
uptake of energy over a wide portfolio of customers. In turn, these customers get
a portion of the payments to the aggregator redistributed to them. How much
of these payments are redistributed from aggregator to client depends on the
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Fig. 1. The hierarchical relationship between sites, aggregators and the TSO. Con-
nections represent bilateral agreements about on-demand power regulation and the
boldness of the connection represents the volume of power under regulation in the
agreement.

aggregator’s intended profit margin and the possible diseconomy of scale from
operational costs.

Assuming that participating clients are capable of rationally choosing the
aggregator that o↵ers them the most for their flexibility and that a deregulated
market mechanisms allows a client to switch between aggregators with relative
ease, an aggregator faces a tradeo↵ between market share and profit margin. The
size of an aggregator’s portfolio determines the balancing capacity it can o↵er
to the TSO and the compensation payment it can receive, while the size of the
portfolio also influences the computational cost needed to determine the optimal
use of the resources in the portfolio. This case of grid balancing is just one example
of a smart grid scenario where coordination plays a crucial role. Sites prefer
consuming energy at a level that is optimal in terms of their own cost-benefit
analyzes while the TSO might prefer other consumption levels that balance the
energy production. In literature, smart-grid coordination is often centered around
the application of centralized or decentralized optimization techniques [5]. In this
case, sites prefer consuming energy at a level that is optimal in terms of their own
cost-benefit analyzes while the TSO might prefer other consumption levels that
balance the energy production. Demand-side flexibility aggregators need to take
into account preferences and goals of both the TSO and the sites but also have
to think about their own profit margins. Thorough analysis of cases of strategic
interactions between agents requires an adequate framework for modeling these
interactions. This work proposes the use of Evolution game theory to perform
these analyzes.

In this report we analyze how the cost redistribution rate might influence the
share of clients willing to do business with the aggregator in question in stead of
with a competing aggregator. We use simulations to heuristically estimate payo↵s
and then use evolutionary game theory to model single population dynamics



and to find stable population states in a symmetric game of perfect information
between two competing aggregators. We also illustrate how replicator dynamics
equations can be derived from heuristic payo↵-tables for N agents in this two-
action game. The work described in this report is ongoing and focuses primarily
on first experiences.

The remainder of this report is structured as follows: After a description of
the scenario under analysis in section 2, section 3 will explain the approach we
take to analyze this scenario. The actual analysis will be done in section 4. In
section 5, some relevant related work and scientific background will be discussed
while section 6 provides a conclusion and ideas for future work.

2 Scenario description

The scenario discussed in this work is one of smart grid coordination. More specif-
ically it is a case of grid balancing. Balancing the production and consumption
of energy in an electrical grid for a certain region is the responsibility of the
transmission system operator (TSO). The TSO agent is in charge of correcting
a balancing signal using registered balance responsible parties (BRPs). In this
case, BRPs are instantiated by demand-side aggregators.

Demand-side flexibility aggregators are companies that o↵er energy con-
sumption flexibility through managing a portfolio of clients with flexibility and
presenting the aggregated flexibility to the TSO. Aggregators advertise the size
of their portfolio’s to the TSO to indicate how much of the imbalance they can
handle. The TSO then dispatches requests to counter a portion of the imbalance
relative to the advertised portfolio sizes and financially compensates the aggre-
gator for it. Aggregators then dispatch requests to their clients in a way that
best compensates the portion of the grid imbalance that the aggregator is tasked
to handle. The aggregator financially compensates clients for every flexibility
activation request sent.

In this scenario the task of the aggregator’s clients are fulfilled by industrial
sites such as production/processing factories consuming energy at a financial
cost and gaining income from produced/processed goods. We assume that these
clients are willing to sign up with an aggregator because of the increased financial
gains as a reward for o↵ering flexibility and that clients are able to switch services
to competing aggregators without any problems.

In this scenario, two di↵erent aggregators are present for clients to choose from.
Both aggregators are using two di↵erent aggregation algorithms for matching
and combining client side flexibility to a target amount at a given time. As
input the algorithms take the flexibility profiles available from each client and a
target value representing the aggregator’s portion of the imbalance to correct. A
flexibility profiles has the form of a tuple (id, �P, �T ) where �P represents the
amount of power it can curtail or consume additionally and �T for the duration
this power is available. The target imbalance is a portion of the imbalance the
TSO needs to correct proportional to the size of the aggregator’s portfolio such
that for every aggregator aj 2 A and the total imbalance I: I =

P
aj2A iaj . As



output, the aggregator chooses a combination of flexibility profiles (denoted by
the set F ) min(|

P
f2F �P (f)� iaj |) under the assumption that for each client

only one flexibility profile can be active.
We define two di↵erent aggregator implementations aggbrute and aggheur as

follows. The first algorithm consists of a brute force approach considering all
possible combinations and activating the first best fitting one. The search space
for this approach increases in size very quickly as the number of client participants
grows in relation to the search space size SP = l

cwith l the amount of flexibility
profiles and c the amount of clients per aggregator. The second algorithm consist of
the same brute force approach but with a reduced search space from first filtering
the client participants and limiting the possible combinations to enumerate. In
this approach, only flexibility profiles with a sign opposed to iaj are considered.
The main di↵erence between the two algorithms is the computation time and
the quality of the solutions found. These implementations are by no means state
of the art but in the context of a proof of concept for the analysis discussed in
the next section, they su�ce.

We formalize this scenario as a game with the clients as players and the
aggregators to choose from to do business with, as actions. The player’s payo↵s
are determined by their individual profits from dealings with the respective
aggregators. Clients are paid according to an activation payment rate set at
48.8EUR per KWh of power increase or decrease, for each activation. The
amount of profiles and the values for �P and �T are all drawn from the same
random distributions

3 Approach

Where classical game theory [15] provides tools for static analysis of games
focusing purely on the payo↵s for individual actions, evolutionary game theory
focuses on the payo↵s for an action in combination with the amount of agents
playing the action [6]. So while classical game theory o↵ers ways of eliciting the
possible Nash Equilibria [12], Evolutionary game theory can o↵er insight into
which Nash Equilibria are more likely to occur in practice. EGT can mainly
be categorized into two approaches. There is the static approach proposed by
Maynard Smith where the solution concept of an Evolutionary Stable Strategy
(ESS) is introduced for populations wherein all agents play the same mixed
strategy [21], extending the Nash Equilibrium solution concept from classical
game theory with a notion of robustness to a small invading sub-population
of agents playing a di↵erent strategy. The second approach describes modeling
biological evolution or in this case the agent’s rational choice more explicitly by
a system of di↵erential equations. This system regards agents in a population
as playing only pure strategies while population states are described by vectors
akin to mixed strategies. Using explicit dynamic system modeling allows for the
use of the wide range of tools for analyzing dynamic systems for analyzing the
population evolution [1]. We follow the second approach in this work.



As input for defining these systems, we follow the approach taken in [26]
and treat heuristic strategies as primitive actions for a game theoretic analysis,
meaning that an action is this game formulation represents choosing an algo-
rithm implementation or in this case choosing an aggregator executing a specific
algorithm. For the entities involved in this coordination case, empirical expected
values are estimated using simulation and the resulting heuristic payo↵ table will
be used as a starting point for the analysis. Similar to the approach described
in [18], agent’s choices are assumed to be independent of their types which allows
for a compact representation for the payo↵ table. In a game of n players and k

heuristic strategies to choose from, this payo↵ table will contain entries of the
form

p = (p1, ..., pk) (1)

with pi representing the number of players bound to action i. The function f

maps a vector p 2 P onto a vector q 2 Q of the form

q = (q1, ..., qk) (2)

representing the expected payo↵ for agents bound to action i. This expected
payo↵ is an average over all players playing this strategy. The total number of
entries in this payo↵ table is given by

s =
(n+ k � 1)!

n!(k � 1)!
(3)

. This corresponds to one entry per possible population state, taking into account
agent symmetry. In a setting with two agents choosing between two options, there
are three population states and therefore entries in the payo↵ table. Assigning pa-
rameters a, b, c and d to the possible payo↵s produces the setQ = (a, 0), (b, c), (0, d)
from applying f to set P = (2, 0), (1, 1), (0, 2) For brevity, the payo↵ matrix can
be written as

A =

 
a b

c d

!
(4)

Applied to the case of smart grid coordination where clients help balance
electrical grids by choosing an aggregator, selection dynamics are used to model
the rational choice between two aggregators in repeated pairwise interaction of
clients comparing their choice of aggregator. These clients base their choice on
their fitness (ie. the payo↵s they receive from the aggregator). The selection dy-
namics used in this work is the replicator dynamics [23]. The replicator dynamics
are a set of ordinary di↵erential equations describing the population dynamics
in terms of the fitness of agents choosing the strategy compared to the overall
average fitness of the whole population. In this context, fitness is described by
an agent’s financial costs and rewards arising from the choice of aggregator. The
replicator dynamics equations describe how a population share of agents following
a specific aggregator will increase/decrease in size as the payo↵s for those agents
are better/worse than the average payo↵ of the whole population. Consider a
mixed strategy profile x for the population as a population state where each



component xi represents the population share choosing aggregator i in stead of
one agent’s randomization over the choice of aggregators. The general replicator
equations are then given in (5) following the notation used in [27].

ẋi = xi[u(ei, x)� u(x, x)] (5)

with u(ei, x) representing the average expected payo↵ of an agent choosing
aggregator i when the population is in state x and u(x, x) representing the overall
average expected payo↵ for an agent from a population in state x. We can also
represent the dynamics from (5) in terms of the 2⇥ 2 payo↵ matrix from (4) as

ẋ1 = x1[(Ax)1 � x

T
Ax)] (6)

with ẋ2 = �ẋ1 because we assume a constant population size.
From (6) we generalize the replicator dynamics for N agents and 2 actions

in terms of the heuristic payo↵ table entries represented by the function f by
defining u(ei, x) in (7) and u(x, x) in (8).

u(e1, x) =
N�1X

i=0

x

N�i�1
1 x

i
2f(N � i, i)1

✓
N � 1

i

◆
(7)

u(x, x) =
2X

i=1

x

N
i f(N �N(i� 1), N(i� 1))i+

N�2X

j=1

x

N�j
1 x

j
2

S�1X

k=0

✓
N � 2

j � k

◆
f(N � j, j)k

(8)

with N specifying the number of agents and S the number of actions to choose
from (in this case 2) Finally, we analyze the critical points of these equations in
terms of stability.

Simulations are performed for each population distribution of the game with
2, 3, 4 and 5 agents respectively. Each simulation run is repeated 30 times with
di↵erent randomization seed averaging over the results. The sites each have
8 non-equal flexibility profiles to o↵er to their respective aggregators and the
simulations using these agents drive the evaluation explained in the next section.

4 Analysis

The situation of two agents participating in the game is analyzed first for sim-
plicity and afterwards, an empirical analysis with more agents is done to better
estimate the performance of the aggregation algorithms and the influence of the
redistribution factor.



4.1 Two Agents

Simulation results provide a normalized payo↵ matrix A similar to (4). Payo↵
table A can be normalized further to A

0 by subtracting c from the first column
and b from the second column without loss of generality because the set of NE and
the set of ESS are invariant under local payo↵ shifts in symmetric games when
a1, a2 6= 0 with a1 and a2 being the resulting table entries [27]. The numerical
results from simulations are given in (9).

A =

 
298 146

133 197

!
! A

0 =

 
165 0

0 51

!
(9)

Based on the signs of a1 and a2, Weibull [27] categorizes 3 di↵erent cases,
corresponding respectively to variants of the Prisoner’s Dilemma [2] if a1⇤a2 < 0,
a coordination game [4] if a1, a2 > 0 and the Hawk-Dove game [21] if a1, a2 < 0.
The simulation results for the case of equal activation payment rates result in a
payo↵ matrix that corresponds to the coordination game. In the coordination
game there are two stable strategies, namely the two pure strategies present
(choose aggbrute and choose aggheur respectively). The two basins of attraction in
the mixed strategy space are separated by the symmetric mixed Nash equilibrium
x = (� ⇤ aggbrute + (1 � �) ⇤ aggheur) with � ⇡ 0.236 meaning that an initial
population distribution x

0 = (p ⇤ aggbrute + (1 � p) ⇤ aggheur) with p > � will
move towards a distribution with solely players choosing aggbrute respectively
aggheur if p < �. Together with the two pure strategies, x is also a NE of the
game, but in this case x is not an ESS because for every other x0, x0 is a best
reply to x. This shows that although aggbrute is not completely dominant (in
some cases choosing aggheur is still a best response), the number of players should
at least equal five before a population share of � agents encompasses at least one
agent. Drawing conclusions for populations of five agents based on simulations
of only two agents is quite insubstantial. Therefore, we show how results from
simulations with more agents can provide insight and a more accurate estimation
on the probability of each aggregator to become the dominant population share
holder. Figure 2 graphically shows a one-dimensional phase plot representing the
evolution of the population share playing aggbrute.

0 1
x1

0.236

Fig. 2. Phase plot showing the replicator dynamics for the game played by two clients.

4.2 N Agents

Where games concerning 2 agents are analyzed using a two-dimensional payo↵
table, games with N agents require an N-dimensional payo↵ table which is



impractical to conveniently display. In this section we omit payo↵ tables and
proceed with an empirical evaluation of the dynamic systems constructed from
the simulation results. The dynamics equations from (7) are used to construct
the replicator dynamics from simulation results with N agents for N ranging
from 1 to 4 agents. Results shows that an initial populations x0 moves toward
the stable point in the dynamics for increasing amounts of participating agents
indicating that with more accurate estimated payo↵s from simulations with more
agents, aggbrute clearly dominates the aggheur strategy. Because of the dynamics
equation defined in (7), the di↵erences between the case with two participants is
that more symmetric equilibria are possible. In the dynamics equation, all points
for which ẋi = 0 are considered as fixed points. The significance of the other
fixed points will be addressed in the next section.

The next section will discuss how much the aggbrute implementation can
reduce the activation payment rate while still remaining dominant and how
further decreasing these payment rates will influence population dynamics.

4.3 Influence of Retribution Factor
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Increasing the number of players has a positive effect on the probability to attain a dominant population share.
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Fig. 3. Plot showing the initial population share needed to maintain a market share in
the long run for aggbrute (lower is better), for an increasing amount of agents.

Using simulation results for cases with 2,3,4 and 5 agents, the relation between
the cost redistribution factor and the repulsors in the dynamics is shown in Figure
3. The cost redistribution factor c determines the fraction of the operational cost
that is redistributed to the clients, subtracting from their activation payment
rates. Assuming that the total operational costs equals the activation payment
rate, c 2 [0, 1] determines the e↵ective payment rate r 2 [48.8, 0]. The results show
that increasing the cost redistribution factor for aggbrute and therefore decreasing
the rewards clients receive for their participation has a significant influence on



the probability the aggbrute implementation will be able to gather a dominant
market share or even maintain a market share in the long run. Figure 3 shows
that the ability to maintain a market share decreases if the cost redistribution
factor increases. Increasing the number of clients participating does, however,
have a positive influence on maintaining a market share. Increasing the number
of clients participating allows the aggregator to utilize a wider profit margin but
at the risk of losing any probability of attaining a dominant market share. Figure
3 only shows fixed points that are repulsors in the replicator dynamics and do not
show the phase plots or other fixed points that might be of interest. For example,
Figure 4 shows all fixed points for the case of five clients and a redistribution
factor r = 0.6 and shows that there are two critical points of which one is an
attractor. In this case, there will always remain a portion of the population that
chooses aggheur because these clients do not su↵er from the payment penalty
that clients choosing aggbrute do and the average expected payo↵ for a whole
population choosing aggbrute will be lower than when there are clients choosing
aggheur present. The phase plot displayed in Figure 4 shows this e↵ect of there
being no probability of aggbrute attaining a dominant market share.

0 1
x1

0.59 0.81

Fig. 4. Phase plot showing the replicator dynamics for the game played by 5 clients.

5 Related Work

The smart grids domain by now has been a well established field for coordination
research ranging from demandside management [16] to coordinated charging of
electric vehicles [10] [3]. A popular approach towards smart grid coordination in
literature is the application of optimization algorithms in coordination protocols
[25]. Designing coordination protocols starts from the assumption of willing
participants that can be governed easily. When dealing with self-interested agents
that are outside the scope of control from the perspective of the protocol designer,
a framework capable of modeling strategic interaction is required. Game theory
[15] and more specifically inverse game theory, otherwise known as mechanism
design (MD) [13], allows for taking into account multiple individual goals for
designing incentive compatible coordination mechanisms while accounting for
strategic agents [14]. One example of such mechanisms is proposed in [22] where
the authors propose a mechanism for scheduling uncertain demand given uncertain
supply while dealing with strategic agents.

This work focuses on the addition of using techniques from evolutionary biology
in combination with game theory as proposed by John Maynard Smith [21] to
analyze demand-side aggregation algorithms. There is a significant theoretical



body of work on explaining evolution in games of strategic interactions [20] and
in evolution applied to mechanism design (also known as evolutionary mechanism
design) [17] in some influencial survey papers. Applications of EGT has gained
the most momentum in economical research. For example Walsh et al. o↵er an
analysis of strategic interaction between price bots in di↵erent market settings [26]
while Phelps et al. compare two double-auction market designs using evolutionary
game theory [18] but applications are not limited to the economics domain alone.
Sandholm o↵ers an extensive overview of applications in social sciences next to
applications in economics [20]. To the best of our knowledge, the application
of EGT in the context of smart grids has been limited. This work attempts to
address that.

This work proposes the Replicator Dynamics for modeling the population
dynamics [23]. The replicator dynamics is in itself a special case of a class of
dynamical systems that has been analyzed in terms of limit behavior and stability
in general [11]. When it comes to deterministic selection dynamics, other examples
and studies of using di↵erential equations for modeling evolutionary dynamics
are also available. Ho↵bauer and Sigmund [9] and Sandholm [19] have provided
excellent surveys on this topic. The evolution aspect in EGT does not necessarily
have to be biologically inspired. Other selection dynamics based on learning [24]
and imitation [8] are also candidates for modeling evolutionary dynamics but
not all of these selection dynamics bare the strong link to Maynards Smith’s
definition of evolutionary stable states and classical game theoretic notions of
the Nash equilibrium [12] that the replicator dynamics do.

6 Conclusion and future work

In this report we show a proof of concept application of evolutionary game theory
to a case of coordinated grid balancing. This case is modeled as a game between
strategic self interested players and simulations provide expected payo↵s for
the players. The players represent flexible energy consumers who have a choice
between di↵erent aggregators to do business with. These aggregators employ
aggregation algorithms that di↵er in e�ciency and computational complexity.
We show how evolutionary game theory can help analyze the e↵ect cost redis-
tribution from aggregators to their clients (the players) can have on the market
share of the aggregator and the simulation results show how the probability
of an outperforming aggregator maintaining a market share decreases as their
cost redistribution factor increases, when competing with another less e�cient
aggregator. This report documents first experiences and ongoing work in applying
evolutionary game theory in a smart grid context by analyzing client population
dynamics.

Future work includes analyzing the e↵ect cost redistribution has on the
e↵ectiveness of the actual grid balancing actions and finding the optimal cost
redistribution factor that still allows the outperforming aggregator to attain
a dominant market share. Furthermore, extending this work to include more
participating aggregators and other selection dynamics that model possible



real world interaction more closely are interesting research topics that can be
visited. The algorithms chosen in this work are by no means state of the art
but they illustrate how the analysis can provide insight on the client population
dynamics in a flexibility market environment. In the future, more state of the
art aggregation mechanisms will be used. Finally, this work considers strategic,
self-interested agents but does not include clients capable of handling uncertain
information about their own available flexibility nor can they provide false
flexibility information to their aggregator. Future work plans to address this.
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22. Ströhle, P., Gerding, E.H., de Weerdt, M.M., Stein, S., Robu, V.: Online mechanism

design for scheduling non-preemptive jobs under uncertain supply and demand. In:
Proceedings of the 2014 international conference on Autonomous agents and multi-
agent systems (AAMAS). pp. 437–444. International Foundation for Autonomous
Agents and Multiagent Systems (2014)

23. Taylor, P.D., Jonker, L.B.: Evolutionarily Stable Strategies and Game Dynamics.
Mathematical biosciences 156(40.1), 145–156 (1978)

24. Tuyls, K., Parsons, S.: What evolutionary game theory tells us about multiagent
learning. Artificial Intelligence 171(7), 406–416 (May 2007)

25. Vandael, S., Claessens, B., Hommelberg, M., Holvoet, T., Deconinck, G.: A scalable
three-step approach for demand side management of plug-in hybrid vehicles. Smart
Grid, IEEE Transactions on 4(2), 720–728 (2013)

26. Walsh, W., Das, R., Tesauro, G., Kephart, J.: Analyzing complex strategic interac-
tions in multi-agent systems. AAAI-02 Workshop on Game- . . . (2002)

27. Weibull, J.W.: Evolutionary game theory. MIT press (1997)


