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Abstract. Prolog is traditionally not statically typed. Since the benefits
of static typing are huge, it was decided to grow a portable type system
inside two widely used open source Prolog systems: SWI-Prolog and
Yap. This requires close cooperation and agreement between the two
systems. The type system is Hindley-Milner. The main characteristics
of the introduction of types in SWI and Yap are that typing is not
mandatory, that typed and untyped code can be mixed, and that the
type checker can insert dynamic type checks at the boundaries between
typed and untyped code. The basic decisions and the current status of
the Typed Prolog project are described, as well as the remaining tasks
and problems to be solved.

1 Introduction

We resolutely choose for the most established type system, that of Hindley and
Milner [3]. It is in wide-spread use in functional programming languages and has
already been proposed various times for logic programming. The first and seminal
proposal in the context of LP is by Mycroft and O’Keefe [4], and the most notable
typed Prolog variants are Godel [1], Mercury [7], Ciao [5] and Visual Prolog
[6]. However, traditional Prolog systems have not followed that trend towards
types, and many Prolog programmers continue to use an untyped Prolog, because
switching to a new language is usually not an option. Our approach intends to
remedy this by addressing the following critical issues:

— Our type system is presented as an add-on (a library) for currently used
Prolog systems, SWI and YAP, rather than being part of yet another LP
language. This means that programmers just need to learn the type system
and can stay within their familiar programming language.

— The type system is optional with granularity the predicate. This allows users
to gradually migrate their existing untyped code, to interface with untyped
legacy code (e.g. libraries) and to hold on to Prolog idioms and built-ins for
which Hindley-Milner typing is not straightforward.
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— Particular care goes to interfacing typed with untyped code. Our approach can
introduce a runtime' type check at program points on the border between
typed to untyped code. In this way, bugs in untyped code are caught at
the boundary and do not propagate into the typed code, i.e. the user knows
where to put the blame.

In its current incarnation, our system only type checks predicate clauses with
respect to programmer-supplied type signatures. In the future, we intend also to
automatically infer signatures to simplify the programmer’s job.

2 The Hindley-Milner type system

In order to support the Hindley-Milner type system, we follow standard practice,
with a syntax that is nearly identical to the Mercury syntax. Types are repre-
sented by terms e.g. boolean, list(integer), ... Types can also be or contain
variables; those are named type variables and polymorphic types respectively,
e.g. T and 1ist(T).

A type definition introduces a new type, a so-called algebraic data type. It is
of the form :- type t(X) —-—> £1(7) ; ...; £,(7) ., which defines a new
polymorphic type t(X). The type variables X must be mutually distinct. The 75
are arbitrary types whose type variables are a subset of X. Also, the function
symbols f;/a; must be mutually distinct, but they may appear in other type
definitions.

A type signature is of the form :- pred p(7) and declares a type 7; for every
argument of predicate p. If a predicate’s signature contains a type variable, we
call the predicate polymorphic.

A fully typed program, i.e., there is a signature for each predicate, is well-
typed iff each clause is well-typed.

A clause is well-typed if we can find a consistent typing of all variables in the
clause such that the head and body of the clause respect the supplied type sig-
natures. The arguments of the head must have the same type (up to variable re-
naming) as the corresponding predicate’s signature. The types of the arguments
in body calls must be instances of the corresponding predicates’ signatures. We
refer the reader to [4] for a formal treatment and for concrete examples to later
sections.

While this works fine for fully typed programs that do not use the typical
Prolog built-in constructs, some care is needed for programs calling built-ins or
containing a mix of typed and untyped code. Sections 3 and 4 deal with these
issues.

3 Support for Prolog Features

Arithmetic Expressions Prolog-style arithmetic does not fit well in the Hindley-
Milner type system. The problem is that variable X in Y is X + 1 can be a
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number, or a full-fledged arithmetic expression. Hence, numbers are a subtype
of arithmetic expressions. Unfortunately, it is an old result that subtyping in
Prolog can go wrong [2]!

In the current implementation, variables in arithmetic expressions can be of a
numeric type only. We are considering to relax this by overloading the expression
argument types to be either arithmetic expression or numeric types.

Built-ins Some Prolog built-ins cannot be given a sensible Hindley-Milner type,
such as arg/32, which extracts an argument of a term. In general, the type of
the argument depends on the index number, which may not be statically known.

Nevertheless, for many Prolog built-ins there is a straightforward signature.
Some of the built-ins our system supports are:

:— pred var(T). :— pred ground(T). :— pred write(T).

:— pred (T ==T). :- pred (T @< T).

:- pred compare(cmp,T,T). :- pred reverse(list(T),1list(T)).

:= type cmp —--> (<) ; (=) ; (). :- type list(T) ---> [1 ; [TIlist(T)].

Meta-Predicates Meta-predicates take goals as arguments. They are supported
through the higher-order type pred. For instance, the types of some well-known
built-in meta-predicates are:

:- pred \+(pred). :— pred once(pred). :- pred setof(T,pred,list(T)).

It may seem problematic in a goal like setof (X,Goal,List) to figure out
the type of X. This is not so: the necessary information is usually provided by an
earlier goal, e.g. Goal = between(1,10,X). The former forces the type of Goal
to be pred. Hence, from the latter it follows that X has type integer, assuming
the signature :- pred between(integer,integer,integer).

The meta-predicate support is generalized to higher-order predicates with
closures as arguments, i.e. goals missing one or more arguments. For instance,
the well-known maplist/3 predicate has the signature:

:— pred maplist(pred(X,Y),list(X),list(Y)).

Atoms For lack of the conventional strings, many Prolog programmers resort
to using atoms instead. In order to support this convention, our type sys-
tem offers the atom type containing all atoms. Hence, the ISO-Prolog built-in
atom_concat/3 has signature

:— pred atom_concat(atom,atom,atom) .

Note that a true string type would offer a cleaner solution.
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4 Interfacing Typed and Untyped Code

One of the most distinguishing properties of our type system is its support for
interfacing typed with untyped code.

Untyped to Typed While typed code is statically verified by the type checker,
untyped code is not. Hence, any call from untyped code (or the Prolog toplevel)
to typed code can go wrong, if the provided arguments are not of the required
types. If left unchecked, such an ill-typed call may manifest itself elsewhere far
away in the code and greatly complicate the debugging process.

By default, we prevent this scenario by performing a runtime type check on
any call from untyped to typed code (by means of a simple program transforma-
tion). If the call is ill-typed, it is caught before the actual call is executed. Then,
the programmer knows the untyped code leading up to the call is to blame.

Typed to Untyped Also in the inverse situation, when calling untyped code from
typed code, we want to catch type violations early on in order to blame the un-
typed code. In order to do so, the programmer has to supply a type annotation for
the call to untyped code. This allows to statically verify whether the surrounding
typed code is consistent with this annotation. On top of that, a runtime check
whether the untyped code satisfies the type annotation is inserted. The check
is performed right after the call returns: any logical variables improperly bound
by the call are detected in this way.

As an example, consider the following predicate from Santos Costa’s red-
black tree library:

;- pred list_to_rbtree(list(pair(K,V)),rbtree(K,V)).

list_to_rbtree(List, T) :-
sort(List,Sorted) :: sort(list(pair(X,V)),list(pair(K,V))),
ord_list_to_rbtree(Sorted, T).

Assume the sort/2 predicate is untyped, whereas the other predicates are typed.
The programmer has annotated the call (after ::) with the missing type infor-
mation sort(list(pair(K,V)),list(pair(K,V))). Based on the annotation,
the type checker assumes that the arguments List and Sorted both have the
type list(pair(X,V)). Moreover, a runtime type check is inserted right after
the call, to check whether the two arguments actually have this type.

The programmer can optionally declare that the runtime check need not be
performed.

Untyped Terms The programmer is forced to make a single one-off decision for a
predicate: either she provides a signature and the predicate is typed, or she does
not and the predicate is untyped. The former choice is the most desirable, but
may require pervasive changes to the code as all terms handled by the predicate
must be typeable, and hence be made to respect the Hindley-Milner data type
conventions.



We provide the programmer a way out of this dilemma with the universal
type any, which covers all possible terms. Now the programmer only provides
precise types for the terms she wants, and defers the job for the others by typing
them with any. For the subsequent gradual and localized instruction of more
precise types, terms of type any can be coerced to other types, and vice versa.

5 Conclusion

The Typed Prolog project is based on the belief that it is better to gradually
introduce types in an existing language than to start from scratch with a new
language. People tend not to migrate to another system just because of types,
hence our decision to introduce types into Yap and SWI, two widely used Prolog
systems, and in such a way that users can gradually adapt to the use of types.

We aim at making this process as pleasant as possible, with special support
for Prolog language features and for interfacing typed with untyped code, and
while not forcing the Prolog programmer to give up essential functionality.

The Typed Prolog project started in the spring of 2008 and now consists of
about 1,000 lines of code. It is no surprise that there are still many issues to
tackle: error messages, handling floats and rationals, complete integration with
the module system, dealing with large sets of facts, adaptation of the runtime
checks to delayed execution, general support for constraint solvers, ...

The simultaneous introduction of the same type system into SWI and Yap is
another clear sign of the commitment of their development teams to unify their
functionality. Library type_check will be available in their next release. Most
other Prolog systems could include our library with little effort, in particular
Ciao Prolog, because its overall design principles are compatible with ours.
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