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Abstract This article provides a viewpoint on the past and possible

future development of data mining technology. On an introductory level,

it provides some historical background to the development of data mining,

sketches its relationship to other disciplines, and introduces a number of

tasks that are typically considered data mining tasks. It next focuses on

one particular aspect that may play a larger role in data mining, namely,

declarativeness. Despite the fact that many different data mining tools

have been developed, this variety still offers less flexibility to the user than

desired. It also creates a problem of choice: which tool is most suitable

for a given problem? Declarative data mining may provide a solution

for this. In other domains of computer science, declarative languages

have led to major leaps forward in technology. Early results show that in

data mining, too, declarative approaches are feasible and may make the

process easier, more flexible, more efficient, and more correct.

Keywords Data Mining, Inductive Databases, Inductive Query Lan-

guages, Declarative Modeling Languages, Constraint Solving.

§1 Introduction
Data mining has been a very active research area in computer science

since the 1990s. It concerns the generation of useful knowledge from large

amounts of (possibly complex) data. To some extent, it shares these goals with
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the related fields of machine learning and statistics. However, in data mining,

there is typically more focus on computational issues, such as scalability and

efficient data access, and many methods are oriented more towards producing

sets of results (“patterns”), rather than a single result (a “model”).

In over two decades of data mining research, many different types of tasks

have been considered, and many techniques proposed. As a result, a plethora

of different methods and approaches now exist, many of which are based on

complex mathematics or sophisticated algorithms. The focus in data mining has

largely been on the development of methods, more than on understanding the

relationships between them, even though important advances have been made

regarding the latter too.

In this situation, it is increasingly challenging for practitioners to select,

among the many approaches that are available, the one that best fits the problem

at hand. They have to select first an algorithm, and then a parametrization for

the algorithm, such that optimal results are obtained. In practice, their choice is

limited by the tools and methods they happen to be familiar with, and therefore

likely suboptimal.

Related to this is the problem of interpretation. It is well known that

statistical methods are often used incorrectly, leading to incorrect conclusions;

the field of machine learning has also suffered from this.12, 13) In data mining, too,

using the wrong method and interpreting its results may lead to false conclusions.

The solution to both problems is in making data analysis more declar-

ative. It should be possible for the user to describe the data analysis problem,

rather than having to describe a method for solving it. Compare this to how

SQL is used in database technology: SQL made it possible for users to set up

and query databases in a much simpler manner than before. The user can ask

complex questions without having to know any details about the complex re-

trieval procedures that are needed to answer that query. This has not only made

it much easier to use databases, it has also led to better efficiency (the system

chooses the execution strategy that it thinks is most efficient, rather than leaving

this to the user) and made the process less error-prone (manually programming

complex retrieval procedures is bound to lead to bugs). The ultimate goal of

research on declarative data mining is to similarly change the way users are

analyzing data.

Figure 1 visualizes the difference between “procedural” and “declara-

tive” data analysis. The point of declarative data analysis is to maximally move
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Declarative data analysis:

Fig. 1 Procedural and declarative data analysis. In the procedural approach, currently the

state of the art, the user is responsible for translating a problem in the application domain to

data mining terminology, mapping it to a standard data mining problem, selecting a suitable

data mining tool, running the tool, and interpreting the results in the context of the application

domain. In the declarative approach, much of this is done automatically by the system.

responsibilities from the user to the system, so that correctness and optimality

can be guaranteed by the system, rather than relying on the user for this.

Achieving this goal requires research on several points. First, a language

is needed in which a wide variety of data mining problems can be expressed.

Ideally, such a language should allow the user to formulate questions in the user’s

domain language, rather than using specific data mining terminology. Second,

state-of-the-art knowledge about correct data mining methodology must be built

into the system. Third, efficient execution strategies must be developed, as well

as methods for mapping data mining queries onto execution strategies.

There currently is no single research domain called declarative data anal-
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ysis, but all of the above challenges are touched upon, often implicitly, in a

variety of different research areas. This includes inductive databases, inductive

query languages, constraint-based data mining, declarative modeling languages,

constraint programming, statistics, probabilistic inference, and machine learn-

ing. Combining research results from all these areas may significantly advance

the state of the art in declarative data analysis, and may in the long run radically

change the way in which data analysis is conducted.

This article starts with a basic introduction to data mining, and gradu-

ally drills deeper into the topic of declarative data analysis. Section 2 sketches

the broader context in which data mining is set, and provides some historical

perspective. Section 3 focuses specifically on data mining. It familiarizes the

reader with concepts, tasks and methods that will be referred to later on in the

text, and further motivates the concept of declarative data mining. Section 4

discusses inductive databases and inductive query languages, which can be seen

as a first step towards declarative data mining. Section 5 introduces the idea

of using more powerful modeling languages for data mining, using a case study.

Section 6 discusses the concept of “declarative statistics”, showing that the util-

ity of declarative approaches extends well beyond data mining in the narrow

sense. Section 7, finally, presents concluding remarks.

§2 Data Analysis
The broader context in which data mining is set, is that of data analysis.

Data analysis is as old as science itself. Indeed, long before scientific theories

were based on more fundamental models of nature, such as those provided by

physics or chemistry, humans have built specific models from observations. A

classic example is Kepler’s laws, which were based on observation of the motion

of celestial bodies, and which could be explained from more fundamental models

only much later, using Newton’s theory of gravitation. There are many more

such examples in the natural sciences. Even in mathematics, which is inherently

less empirical, patterns are often observed, and sometimes conjectured to hold

in general, well before they are proven.

For ages, data analysis was hardly considered a separate discipline. Ob-

servations were made, and next analyzed, in whatever manner seemed appropri-

ate. Probably the first separate field to study data analysis as a task in itself,

was that of statistics. While some methods that we now consider statistical

methods, such as least squares regression, were invented much earlier, statistics
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as a standalone scientific discipline originated only around the end of the 19th

century.

Statistics has long focused on methods that have a sound mathemat-

ical basis and require relatively little computational effort. The invention of

computers, mid twentieth century, made it possible to use more computation-

ally intensive methods. But it also had another effect: large-scale collection and

storage of data became ever cheaper, and the data to be analyzed were no longer

restricted to numerical, ordinal or categorical data: much more complex forms

of data, such as text, images, sound, video, and networks, could be stored, and

interest grew in analyzing such data, too. This development gave rise to the

fields of machine learning, and later data mining.

Machine learning originated as a subfield of artificial intelligence in the

1980s. As the name suggests, it was generally concerned with learning something

new (models, theories) from existing knowledge. Examples are: learning the

definition of some concept from examples (concept learning), learning to solve

a task by observing how others solve it (behavioral cloning) or by exploration

(reinforcement learning), mimicking biological learning (neural networks), etc.

With this variety of tasks came a variety of input and output formats used by

the learner.

The term data mining became used in the 1990s to refer to a field that

built on earlier work in statistics, machine learning, and databases, but which

focused in addition on challenges related to scalability, data complexity, interfac-

ing with relational databases, exploratory data mining, visualization, and more.

Data mining also introduced a number of tasks, such as association rule discov-

ery, that had not been considered before. Typical for these tasks is that they are

set-oriented: they are of the form “find all patterns that fulfill certain criteria”.

As such, they are more reminiscent of typical database queries.

Although the goals of statistics, machine learning and data mining are

different, they share the inductive reasoning aspect: generalizing from a sample

towards a broader population. As such, it is no surprise that, for instance,

decision tree learning was developed independently in statistics 7) and machine

learning,26, 27), and later adopted and refined by the data mining community.14)

Similarly, approaches such as support vector machines, probabilistic models,

etc., are nowadays considered to belong to all three disciplines.

More recently, the terms “big data” and “data science” have entered the

scene. As data mining already focused on handling large amounts of data, the
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term big data is sometimes used as a synonym for it. But it is more than that:

it covers not only the analysis of large sets of data, but everything related to its

processing, from collection to exploitation. Indeed, when a telescope generates

terabytes of data per day that are to be analyzed, even the storage of the data

itself, or its transportation over a network, becomes challenging. These chal-

lenges can reasonably be considered to lie outside data mining; they are more

relevant for databases and distributed systems.

Finally, the term data science has become popular from 2010. The term

has been claimed by statisticians, machine learners and data miners alike. This

author’s viewpoint is that data science actually covers all these areas, including

big data, and is an excellent umbrella term for the variety of methods, tools, and

theory that have been developed. Consider again the example of the telescopes:

An astronomer who wants to analyze the data produced by a telescope does

not care whether the methods used for analyzing these data are categorized

under statistics, machine learning, data mining, or whatever other denomination;

neither does she care in what area of computer science the methods for storing

and transporting these data have been developed. The ultimate goal is simply

to turn the data into knowledge. Data science is naturally defined as the science

that covers all aspects of this challenge.

§3 Data Mining

3.1 Data Mining and Knowledge Discovery
Data Mining is often defined as one particular phase in a more general

process called knowledge discovery. Frawley et al.16) define knowledge discovery

as follows: Knowledge discovery is the nontrivial extraction of implicit, previ-

ously unknown, and potentially useful information from data. The discovered

knowledge is assumed to be in the form of a pattern, which is defined as a

statement that describes relationships among a subset of the data.

The whole knowledge discovery process comprises multiple steps, of

which data mining is typically considered one step, namely the one where a set of

data is analyzed and patterns are extracted. Figure 2 provides an overview. The

first step in the process comprises the collection of the data. In some contexts,

data collection is automated and highly reliable, so that errors or missing data

are rare; in other contexts, it is only semi-automatic and possibly unreliable,

and errors or missing data may be abundant. In the latter case, a subsequent
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Fig. 2 The knowledge discovery process

step of data cleaning, or sometimes data curation, may be necessary to improve

the quality of the data and guarantee its validity.

The cleaned and/or curated data are often stored in a so-called data

warehouse: this is a database system tuned towards storage, retrieval and anal-

ysis of large amounts of data.

The stored data are typically preprocessed before being analyzed. This

preprocessing often includes feature selection and feature construction: The data

are transformed into a tabular format (sometimes called the standard format)

where each data element is represented as one row in a table, and each column

represents one feature or attribute that is thought to be potentially relevant.

Many data analysis methods expect data in this format. However, it is not

always possible to store all the information in a relational database into one

table. The relationships between different data elements that are indicated in a

relational databases may be such that it is impossible to store all the information

relevant to a single individual in a single tuple in a table. We can therefore

distinguish tabular data mining methods, which analyze data in the standard

format, from relational data mining methods, which can directly analyze data

in a relational database.28)

The actual data mining step consists of choosing some data mining al-

gorithm, running it on the data, and storing the results. The results themselves

may not be in a format easily digested by humans; therefore, a postprocessing

step is typically added. Such postprocessing may include selection of the most

relevant results, ranking, graphical visualization, and so on.

The above description covers many instances of the knowledge discovery

process, but not all. Sometimes, data are produced at such a high rate that

they cannot be stored; a stream of data is produced on a continuous basis, and

each data element must be consumed right after it has been produced. Data

mining in this setting is also called data stream mining. Whereas regular data

mining methods have random access to the data (they can in principle look up

any data element at the time they need it), data stream mining methods can
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look at each data element just once, for a brief time, before it is gone forever. In

the knowledge discovery process, there is then no construction of intermediate

objects such as data warehouses or datasets; the only object constructed is the

model (the result of the data mining process), and this model is updated as new

data arrives.

3.2 Typical data mining tasks and approaches
As said, data mining is closely related to machine learning and statistics,

and there are no strict boundaries between these areas. However, some tasks

and methods have been studied mostly in the data mining research community,

and as such can be considered typical data mining tasks. A few of them are

listed here.

Association rule discovery. Assume there is a set of items I and a set

of transactions T , and with each transaction corresponds a subset of the items

in I. The frequency of an itemset S, denote f(S), is the number of transactions

in T that are a superset of S. An itemset is called frequent if its frequency is

above some given threshold. An association rule is of the form X → Y where X

and Y are itemsets. Its support is defined as f(X ∪ Y )/|T |, and its confidence

is defined as f(X ∪ Y )/f(X). The task of association rule discovery is typically

defined as follows: given I and T , find all association rules whose support and

confidence are above some given threshold.

The classic example of association rule discovery is market basket anal-

ysis. A transaction represents a sale in some supermarket; its items are the

products bought. If the association rule milk, bread → cheese has a confi-

dence of 0.8 and a support of 0.2, this means that 80% of all people who buy milk

and bread also buy cheese, and this rule describes a relatively large percentage

(20%) of all customers. Such rules can give insight in customer purchases.

Many systems for association rule discovery first discover all frequent

itemsets, and in a second step derive the association rules from these. This two-

step process was introduced in the seminal work on the Apriori algorithm.2) It

has allowed researchers to study the first step, frequent itemset discovery, as a

problem in itself, and to generalize it towards frequent pattern discovery.

Frequent pattern discovery. This task is similar to frequent itemset

discovery, but focuses on more general kinds of patterns than itemsets. For

instance, each transaction may be a graph, rather than a set of items, and the

task is to find frequent subgraphs. The frequency of a graph G is here defined



Data Mining: From procedural to declarative approaches 9

as the number of transactions that contain a subgraph isomorphic to G; G is

frequent if its frequency is above some threshold. In a variant of this problem,

there are no separate transactions: there is just one large graph H, and the

frequency of G is, roughly, the number of subgraphs of H that are isomorphic

to G. A precise definition of frequency is more difficult to give, in this case; for

instance, one needs to decide whether multiple occurrences of the pattern are

allowed to overlap.33) Discovery of frequent subgraphs is relevant, for instance,

in pharmacology (analyzing molecular structures) or social network analysis.

Predictive modeling. Predictive modeling is a task also considered

in machine learning and statistics. It consists of learning a function that can

be used to predict the value of some property, called the “target” attribute.

Usually, a set of example (x, y) pairs is provided, where x ∈ X and y ∈ Y are

tuples containing numerical or symbolic components, and the task is to learn a

function f such that, for all examples, f(x) is equal to y, or at least similar to

it. A so-called loss function l(y1, y2) defined over Y ×Y expresses how similar y1

is to y2. Often, the data set D is considered to have been drawn randomly from

some distribution D over X ×Y, and the task is to find the function f that does

not just minimize the loss over D, that is,
∑

(x,y)∈D

l(f(x), y), but the expected

loss over the distribution D. When Y is a set of symbolic values, these values

are often called classes, or labels, and the task is called classification. When Y is

numerical, the task is called regression. When Y contains vectors of numbers, it

is sometimes called multivariate regression; when it contains tuples of booleans,

the task is called multilabel classification;30) when it contains values with a more

complex structure, it is called structured prediction.29)

Clustering. Clustering is a task that is ubiquitous in data mining, as

well as in statistics or machine learning. The task is to identify structure in data,

by finding groups of instances such that instances within a group are similar,

and instances in different groups are dissimilar. Similarity is often expressed

using a distance metric: two instances are similar if the distance between them

is small. Many different types of clustering methods can be distinguished. Some

clustering methods define clusters extensionally (by listing their elements), other

methods define them intensionally (by describing properties of the cluster or its

elements). Some methods return a partition (each subset in the partition is

a cluster), others return a hierarchical clustering (clusters contain subclusters,

which again contain subclusters, etc.); such a hierarchical clustering is usually
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visualized as a dendrogram. Clustering is usually considered an example of un-

supervised learning: no information is provided as to which instances belong to

which cluster; but semi-supervised versions exist, where, for instance, for some

pairs of instances the system is told whether these instances should be in the

same cluster or not.10)

3.3 Variety of tasks and approaches
The standard task definitions listed in the previous section do not always

perfectly match the tasks a user is interested in.

For instance, one problem with association rule discovery is that it often

yields too many association rules; many of these closely resemble each other,

and many may be uninteresting to the user. Ideally, the user should be able to

indicate more precisely what kind of rules he wants to see. E.g., the user may be

interested only in association rules that contain a particular type of items in the

head or body, in association rules that fulfill more complex grammatical rules

(expressed, e.g., using a regular expression17)) or in association rules that fulfill

other quantitative constraints than the ones based on confidence and support.

A straightforward way to implement a system that looks for such rules, is to

have it return all association rules fulfilling the weaker conditions (confidence

and support) and then filter according to the remaining constraints. Given the

number of rules that may pass the weak constraints, such an approach can still

be very inefficient. Researchers have therefore searched for ways to “push the

constraints into the mining process”: the more constraints can be exploited

during the search process, the more efficient it becomes. Each different type of

constraint requires a different approach to pushing it into the search. This has

led to the development of many different association rule discovery systems.

A similar situation exists in clustering. Many different clustering systems

exist; they differ in terms of the goal (the type of clustering they try to define,

and the criteria they try to optimize), and the way they work. In addition to this,

some clustering systems can take constraints into account: these constraints may

indicate that two instances should be in the same cluster (must-link constraints),

or should be in different clusters (cannot-link constraints).32) Other forms of

constraints are so-called chunklets, sets of instances that should all be in the

same cluster;4) “example clusters”, examples of clusters that one wishes to see in

the clustering returned by the system;20) and more.34) Given that many different

types of clustering systems exist, and for all of them it may be meaningful to
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extend them so that they can handle certain types of constraints, the already

large number of existing clustering approaches can easily be multiplied by a

relatively large factor, just to cater for all possible combinations of goal criteria

and types of constraints.

Association rule discovery and clustering are not the only fields that have

seen the development of many different systems, all solving a slightly different

problem. More generically, a similar effect is visible in machine learning, which in

recent years has shifted strongly towards statistical or Bayesian methods, which

model the problem as a convex optimization problem and then run a solver. For

many problems that are essentially small variations of each other, a new model is

proposed and next solved. This modeling, however, is non-trivial, to the extent

that it is usually presented as a novel approach to solving some problem.

Thus, given a particular problem, the user is confronted with the fol-

lowing tasks: find out whether this kind of problem has been studied before; if

so, obtain and use an implementation solving that problem; if not, either de-

velop a new solution for the problem, or find a system that can solve a closely

related (but not identical) problem and use that system to approximately solve

the problem at hand. None of all this is easy.

This situation begs the question whether it is possible to develop an

approach in between these extremes; a single system or approach that is flexible

enough to solve a variety of tasks, and yet easy enough to use. That is exactly

what declarative data mining aims at.

3.4 Declarative data mining
Declarative approaches to machine learning and data mining have been

around for some time. For instance, in inductive logic programming (ILP)23, 24),

the concept of declarative bias has always played an important role. ILP systems

start out from a knowledge base expressed in a first-order logic based language

such as Prolog, and inductively construct new knowledge (a logical theory) from

this. The expressiveness of logical languages implies that a very wide range of

learning tasks can be modeled in this way, and because of this, ILP systems

need some guidance: the user needs to specify a “declarative language bias”, a

description of what type of results she is interested in. Much research has gone

into effective ways of specifying the language bias and searching the correspond-

ing hypothesis space. Note, however, that ILP systems offer flexibility in terms

of defining the hypothesis space (the set of all objects among which solutions
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are to be found), but much less regarding the task itself, or the algorithm to be

executed for solving that task.

Also the Bayesian approach to machine learning mentioned above, where

users define an optimization problem to be solved, is to some extent declarative;

however, as argued before, the translation from a problem description to a math-

ematical optimization problem is non-trivial and requires a lot of mathematical

knowledge.

The idea of translating a data mining problem to a more generic type of

problem, and then running a standard solver, is also present in a broad range of

work where data mining tasks are expressed as constraint solving problems, and

solved using constraint programming. It has been shown on several occasions

that this approach can lead to very efficient solution strategies for (variants of)

classic data mining tasks such as itemset mining or clustering.25, 19, 9)

In the remainder of this article, a number of approaches are explored

that try to combine flexibility with ease of use. It should be stressed that this

is by no means a complete overview. Topics have been selected with the goal of

illustrating the variety of approaches and challenges involved in declarative data

mining while at the same time minimizing the background needed to digest it.

§4 Inductive Databases and Query Languages
The concept of inductive databases was first proposed by Imielinski and

Mannila.21) The basic idea behind it is the viewpoint that a dataset contains

patterns, just like it contains data. That is, just like we can query a database for

its content, we should be able to query it for patterns. Patterns should be “first

class citizens”: we should be able to query for them, store found patterns that

we found interesting, etc., just like we can query and store any other database

objects.

There are multiple challenges related to this. One is the development

of a language that allows one to represent a broad class of models. Indeed, it

is not difficult to develop a language for representing decision trees, neural net-

works, or association rules; but a language that can represent any kind of model

is a different story. One attempt to do just that is PMML, which stands for

Predictive Model Markup Language 18). It is an XML-based standard for repre-

senting predictive models. PMML was developed with the goal of simplifying the

storage and exchange of a wide range of predictive models. For instance, an im-

plementation of PMML in the statistical programming environment R provides
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functionality for exporting support vector machines, decision trees, (generalized)

linear models, and more.

While PMML is relevant to the goals of inductive databases, research

on it focused mostly on representation, and not on query languages for retriev-

ing models or patterns from a database. Such query languages are also called

inductive query languages. Within the inductive databases community, much of

the research has focused on this problem. In the following, a number of such

query languages are discussed. A more extensive discussion and overview of the

state of the art is given by Džeroski et al.15)

4.1 Extensions of SQL for Data Mining
One approach towards developing inductive query languages is extending

regular query languages, such as SQL, so that data mining queries can be asked.

One of the earliest contributions in this direction was made by Meo et al.22), who

introduced an extension of SQL that contains the MINE RULE operator. The

operator makes it possible for a user to mine a database for association rules

and store the result in a new table. Here are some examples of MINE RULE

queries, taken from Meo et al.:

MINE RULE SimpleAssociations AS

SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD, SUPPORT, CONFIDENCE

FROM Purchase WHERE price <= 150

GROUP BY transaction

EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

MINE RULE OrderedItems AS

SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD, SUPPORT, CONFIDENCE

WHERE BODY.date < HEAD.date

FROM Purchase

GROUP BY customer

EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

The first query finds associations between products bought in the same

transaction; this is the straightforward type of association rule, with one non-

default constraint added, namely that we only want to find sets of items with

a price not exceeding 150. The second query is more interesting, and demon-

strates the power and flexibility of the query language: here, the user asks for

associations among products bought by the same customer (not necessarily in

the same transaction) where the items in the body were bought on an earlier

date than the items in the head.

As a second example of how SQL can be extended towards data min-
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ing queries, consider the SCCQL language,1) which allows the user to query a

database for clusterings. The following example, taken from Adam et al.1), il-

lustrates how constraint-based clustering can easily be performed with such a

language.

Consider a database that contains information on the evolution of cells

in a cell colony. A colony starts out with one cell, which at some point divides

into two; later on these cells again divide, and so on. A set of cells stemming from

one original cell is called a Lineage. The table Lineage describes lineages, the

table Cell describes individual cells, and the table Stateovertime describes the

evolution of a cell over time; it contains for each cell a number of “snapshots”

that describe, for instance, the length and width of the cell at the time the

snapshot was taken. Some of the lineages start out with a mutant cell; the

Lineage attribute Mutant indicates which mutation the cell had (0 means no

mutation).

In this context, the query

CLUSTER LMean, WMean

FROM (SELECT c.Id, l.Mutant, AVG(s.Length) AS LMean, AVG(s.Width) AS WMean

FROM Stateovertime s, Cell c, Lineage l

WHERE l.ExperimentId=5 AND c.LineageId = l.Id AND s.CellId = c.Id

GROUP BY c.id) AS Data

WITH SOFT MUST LINK WHERE Data.Mutant=0 BY Mutant

asks for clustering cells according to their mean length and mean weight (taken

over their whole life span), imposing as a soft constraint that all non-mutant

cells must be in the same cluster. Note that the creation of the table to be

clustered (here called Data), and the specification of the constraints imposed on

the clustering, are seamlessly integrated in the query.

4.2 Mining views
The Mining Views approach6) takes the view of data mining as querying

one step further. In this approach, the SQL language is not extended at all.

Instead, views are defined on the database. These views contain objects such as

itemsets, association rules, etc., and they can be queried just like any regular

table. Thus, the possibility to mine for itemsets, association rules, decision trees,

etc. is not provided by extending the language, but by extending the database

structure, making use of language constructs that are standard in SQL.

As a proof of concept, the following approach was proposed and implemented.6)

For each table T , multiple views on that table are defined:
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T_Concepts(Cid, A1, A2, ..., An)

T_Sets(Cid, Supp, Sz)

T_Rules(Rid, Cida, Cidc, Cid, Conf)

...

For a table T , the view T Concepts contains all imaginable itemsets over T ,

that is, all subsets of the attribute set of T . It represents itemsets using the

original attributes of T , with value true if the attribute is a member of the

itemset and ? if not (for the motivation of this choice, see the original article).

Obviously, the table does not store all 2n possible subsets. It is a virtual table;

when queried, its contents are computed as the need arises. The table T Sets

contains the support and size of each itemset, and T Rules contains all possible

rules, indicating their antecedent, consequent, the concept that is the union of

both, and the confidence of the rule.

To the user, asking for all association rules fulfilling some constraints

looks exactly like querying a table containing all the association rules. For

instance, the following query: 6)

select Ante.*, Cons.*, R.Conf, S.Supp

from T_Sets S, T_Rules R, T_Concepts Ante, T_Concepts Cons

where R.Cid = S.Cid

and Ante.Cid = R.Cida

and Cons.Cid = R.Cidc

and S.Supp >= 3

and R.Conf >= 80

selects all association rules R that have a confidence of at least 80% and a support

of at least 3,∗1 and reports for each rule the antecedent, consequent, confidence

and support.

The following query returns all itemsets with an “area” (defined as sup-

port times size of the itemset) above 60, or support of at least 10:

select C.*, S.Supp, S.Sz, S.Supp * S.Sz as area

from T_Sets S, T_Concepts C

where C.Cid = S.Cid

and ( (S.Supp*S.Sz > 60) or S.Supp >= 10)

More specifically, the query returns for each such itemset the itemset itself (C.*),

and its support, size and area.

Thus, data mining results can be obtained through simple SQL-based

querying. Internally, a query to a “mining view” may of course cause the exe-

∗1 Different from the definition earlier in this paper, support is measured as an absolute
number here, not as a percentage.
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cution of an association rule discovery algorithm, but it is up to the system to

decide how to answer the query; this is transparent to the user.

The user can construct new views on top of the existing ones. Thus,

views corresponding to relatively complex data mining tasks can in principle be

constructed. The database system can use any optimization strategies at its

disposal to optimize the execution of these complex tasks. In practice, database

systems contain highly advanced optimization strategies for “regular” queries

but not necessarily for inductive queries. Little is currently known on how to

optimize the latter.

§5 Modeling languages for data mining
The previous section made clear that inductive query languages can

provide a lot of flexibility in terms of the data mining tasks that can be solved.

However, in some cases, the expressive power of databases and query languages

may not be sufficient to express the available knowledge about some domain and

task. More powerful knowledge representation languages can then be used. The

following case study shows the usefulness of such languages in data mining; it is

based on original work by Andrews et al.3) and Bruynooghe et al.8)

The case study is set in the context of philology. A written tradition is

a set of written documents that somehow relate to each other; typically, they

are variants of the same story or text. These variants came into existence be-

cause in medieval times, books were copied manually by monks. In this process,

variations got introduced into the new text, by mistake or otherwise. It could

also happen that a monk started copying one text, and at some point switched

to another text (for instance because the first had been damaged and was un-

readable at some point), which resulted in a copy derived from more than one

original; this condition is called contamination.

A stemma is a directed acyclic graph (DAG) that indicates which texts

have been copied from which other texts. If no contamination is present, it is a

tree. If the whole tradition stems from a single document, that document is the

root of the DAG.

Some of the texts in a stemma may have been damaged or destroyed; for

these texts, it may not be known which variant they contained for a particular

phrase in the text. For a particular phrase, a document is called a witness if it

is known which variant of the phrase it contained.

One task that philologists are interested in, is constructing a stemma
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from a set of documents; this task is quite similar to phylogenetic tree con-

struction, an important problem in bioinformatics, and standard methods from

bioinformatics are often used in this context. But in this particular case study,

the philologists were interested in a different question: given a set of documents,

some of which are witnesses for a particular phrase, and a stemma relating them

to each other, is it possible that each variant of the phrase has a single point of

origin (a single “source”)?

If stemmata were trees, this question would be easy to answer, but for

DAG-structured stemmata the problem is much more complex; in fact it is NP-

complete.8) A special-purpose program was written to answer this question, but

the program was complex and its correctness could not easily be proven.

A different approach was tried next: the problem was modeled using

IDP311), a modeling language that seamlessly integrates procedural and declar-

ative components. An extension of first-order logic is used for the declarative

components. The procedural component allows the user to state what tasks have

be executed using the knowledge described in the declarative components.

In this particular case, the procedural component mostly takes care of

reading files, printing output, etc.; most of this part is not relevant for the

discussion here. The declarative component is more interesting. It specifies a

theory, a declarative description of the problem to be solved. For the problem

mentioned above, Figure 3 shows the theory as it is written in IDP3.

The knowledge base starts with defining a vocabulary. Essentially, it

states the following:

• we will be talking about things called Manuscripts, and things called

Variants

• there is a binary relationship CopiedBy among Manuscripts

• with each Manuscript is associated one Variant (called the “Variant In”

that Manuscript)

• with each Variant is associated one Manuscript (called the “Source of”

that Variant)

Next, a theory is provided that makes use of that vocabulary. The theory

states that for all x, if x is not the source of its variant, then x must have been

copied from a manuscript with the same variant. (The symbols ! and ? denote

universal and existential quantification in IDP, ~= denotes inequality.)

In the task we have here, the input will consist of a list of manuscripts

and variants, a full specification of CopiedBy (which manuscripts are copied
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/* ---------- Knowledge base ------------------------- */

vocabulary V {

type Manuscript

type Variant

CopiedBy(Manuscript,Manuscript)

VariantIn(Manuscript): Variant

SourceOf(Variant): Manuscript

}

theory T : V {

! x : (x ~= SourceOf(VariantIn(x))) =>

? y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

}

Fig. 3 Description of the constraints on the stemmatology problem. This description does

not include the actual data mining task, it only provides context for this task.

by which other manuscripts - that is, a hypothesized stemma), and a partial

specification of VariantIn (for some manuscripts we know which variant they

contain). The task is to complete this partial specification in a way that is

consistent with the theory; in other words: find an assignment of variants to all

manuscripts such that each variant has only one source. This is essentially a

satisfiability problem, and IDP’s built-in SAT solver is used to solve it.

This approach was used to check the consistency of stemma/dataset

pairs. It turned out to solve the problem faster than the custom-built program,

and led to the discovery of bugs in that program. The model used by the

declarative approach is easy to write down and easy to understand.

This case study illustrates that there exist data analysis tasks for which

no solution is readily available, and an algorithmic solution is difficult to con-

struct, yet a declarative description of the problem can easily be built. Flexible

modeling tools with powerful reasoning capabilities (more specifically, a combi-

nation of first order logic reasoning, optimization, and constraint solving), such

as IDP3, can be useful in such cases.

§6 Declarative statistics

6.1 Problematic use of statistics in data mining
As the need for data analysis grows, more and more non-specialist users

make use of statistical methods to analyze data. Advanced tools make it possible

for anyone to perform advanced statistical analyses. But while using these tools
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does not require deep knowledge of statistics, using them correctly does.

Statistical textbooks warn against common errors such as incorrect use

of the t-test, incorrect interpretations of P-values, repeated testing of many dif-

ferent hypotheses, and so on. But in data analysis, more complex and sometimes

very subtle issues arise that textbooks do not explicitly warn against, and mis-

takes are still common in such situations. Several authors have written articles

pointing out incorrect use of statistical methods in machine learning and data

mining13, 12), and how to avoid it. While their suggestions are heeded by most

researchers, the lack of an active deeper understanding of statistics causes re-

searchers to avoid the mistakes explicitly mentioned in the literature, yet commit

comparable mistakes in other situations.

For instance, in cross-validation experiments, standard deviations are

often included in tables with results, and statistical significance tests are per-

formed. But it was shown already in 2004 that there is no unbiased estimate

of the variance of the cross-validation error estimator.5) This raises the question

what the entities reported as “standard deviations” actually are. Multiple inter-

pretations are possible: they may be the standard deviation of the n estimates

obtained in an n-fold cross validation, the standard deviation of the sample pro-

portion in a randomly drawn sample of the same size as the dataset, . . . It is

usually not specified in papers exactly what “standard deviation” is being re-

ported; but whatever it is, it cannot be the standard deviation of the accuracy

estimate. Yet, it is often interpreted as such.

6.2 Declarative languages for statistical inference
The above examples show that statistical inference is too complex and

too subtle to be left to occasional users. Still, the current state of the art is such

that correct conclusions can only be drawn if users select the right statistical

test (if one exists), perform it correctly, and interpret the results correctly. A

possible solution to this problem lies in the use of declarative languages. Ideally,

the user should be able to formulate a question (a hypothesis or estimation)

and get the answer to that question without having to specify the methodology

himself.

Below are some examples of how such a system could work; these are

inspired by ongoing research on the topic.31)

Consider the following problem. We consider three variables describing

students: Length, Sex, and StudyProgram. Assume that it is known that both
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Length and StudyProgram are dependent on Sex, but both are independent

when conditioned on Sex. Assume that we want to estimate the average length of

students in the engineering program. Using an SQL-like language for statistical

inference, this could look like this:

ESTIMATE mean(Length)

FROM Student

WHERE Sex=’male’ and StudyProgram = ’Engineering’

WITH CONFIDENCE 0.95

This query results in a tuple containing an upper and lower bound of the confi-

dence interval for the mean. The width of the obtained confidence interval will

depend on the number of students. If not many students are registered in the

engineering program, a wide interval will be obtained.

However, if the database contains more students than just those in en-

gineering, the additional information about those students can help obtain a

more accurate estimate. Since Length is independent of StudyProgram when

conditioned on Sex, the condition StudyProgram=’Engineering’ can simply be

dropped. A narrower interval will then be obtained, because more data are used

for the estimate.
Now consider the following query, which asks for a point estimate of the

mean Length of all students in Engineering:

ESTIMATE mean(Length)

FROM Student

WHERE StudyProgram = ’Engineering’

If Length were independent of StudyProgram, the condition StudyProgram=’Engineering’

could be dropped, and the full set of students could be used to estimate the

mean length of the student population. However, Length is not independent

of StudyProgram: some programs are more popular among male students, and

male students are on average taller than female students. A correct way of in-

ferring the mean length of all students in engineering would be to estimate the

mean length of male and female students separately, using the whole population

of students, and then taking a weighted average of these two, using as weights

the proportions of male and female students in engineering. A statistician using

the statistical language R might for instance write:

m = mean(Length[Sex==’male’])

f = mean(Length[Sex==’female’])

p = length(Length[Sex==’male’])/length(Length)

estimate = p*m+(1-p)*f

Note that mean(Length[Sex==’male’]) refers to the sample mean, not the
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mean of the population. Its use is correct here because the sample mean is

an unbiased estimate of the population mean. A data analyst writing this must

be aware of that.

This type of reasoning is pretty standard in probabilistic graphical mod-

els. But it is not obvious that a typical researcher who wants to analyze some

data knows about such methods, and even if he does, performing the compu-

tations requires a significant effort. With the current, procedural, approach to

statistics, the researcher would have to think of this option, know how to apply

it correctly, and enter the correct formulas for the computation manually. In a

declarative setting, the above query would simply give the correct answer; the

user does not need to know how it was computed.

So, depending on the execution strategy, the above query could give

two different estimates: the sample mean of all engineering students, or an

estimate based on a linear combination of the sample means of all male and

female students, not restricted to engineering. The system should choose the

most accurate among these.

Since the above query asks for a point estimate, it is not clear to the user

just how accurate that estimate is. The user could ask for a confidence interval:

ESTIMATE mean(Length)

FROM Student

WHERE StudyProgram = ’Engineering’

WITH CONFIDENCE 0.95

With the first execution strategy, the computation of this confidence interval

must take into account the deviation between the sample mean and the popu-

lation mean. This is pretty standard. With the second execution strategy, the

computation must take into account the deviation between the sample mean and

the population mean of Length among male students, the same among female

students, and the deviation between the sample proportion of male students and

the population proportion. That is, the variance of the weighted average estima-

tor has to be computed. This computation is pretty standard for a statistician,

but not trivial for users who do not master the fundamentals of probability

theory.

The above case study shows how much intelligence about inductive in-

ference (including the efficiency of alternative ways of estimating parameters)

could in principle be built into the system, freeing the user from concerns about

correctness or efficiency.

It is noteworthy that the above example makes use of background knowl-
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edge about independence of variables, knowledge that would typically be avail-

able in the structure of a probabilistic graphical model. Without that knowledge,

the above techniques could not be used. The knowledge could be obtained by

analyzing the data, but as the result of such an analysis is not certainly correct,

uncertainty about it should be taken into account. To the author’s knowledge,

it is currently not known how this can be done.

The above is just an illustration of how declarative languages for statis-

tical inference could work, and how useful they could be. It is clear that more

research is needed before such approaches will be widely useful in practice, but

the potential impact of such research is large.

§7 Conclusions
The importance and visibility of Data Science has increased rapidly in

the last few decades, and will continue to increase. Ever more “amateur” data

scientists are now analyzing data, sometimes using off-the-shelf tools, sometimes

by writing programs on their own. Off-the-shelf tools often do not offer the

flexibility that is needed, and writing one’s own tools is labor-intensive and

error-prone. Declarative data analysis has the potential to offer a middle road

that combines flexibility with ease of use, efficiency, and correctness guarantees.

Research on declarative data analysis is still ongoing. Much remains to

be done, but it has a high potential to shape the future of data science. This

article has identified a number of highly relevant research areas, including induc-

tive databases and query languages, constraint-based data mining, declarative

modeling languages, and declarative languages for statistical inference. It has

presented a selection of past and current research in these areas, as well as op-

portunities for further research on declarative data analysis. Hopefully, it may

inspire researchers to contribute to this emerging and very exciting field.
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