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Abstract: 34	
  

There is considerable preclinical and clinical evidence indicating that abnormal changes in 35	
  

glutamatergic signaling underlie the development of mood disorders. Astrocytic glutamate 36	
  

dysfunction, in particular, has been recently linked with the pathogenesis and treatment of 37	
  

mood disorders, including anxiety and depression. System xc- is a glial cystine/glutamate 38	
  

antiporter that is responsible for nonvesicular glutamate release in various regions of the 39	
  

brain. Although system xc- is involved in glutamate signal transduction, its possible role 40	
  

mediating anxiety or depressive-like behaviors is currently unknown. In the present study, we 41	
  

phenotyped adult and aged system xc- deficient mice in a battery of tests for anxiety and 42	
  

depressive-like behavior (open field, light/dark test, elevated plus maze, novelty suppressed 43	
  

feeding, forced swim test, tail suspension test). Concomitantly, we evaluated the sensorimotor 44	
  

function of system xc- deficient mice, using motor and sensorimotor based tests (rotarod, 45	
  

adhesive removal test, nest building test). Finally, due to the presence and potential functional 46	
  

relevance of system xc- in the eye, we investigated the visual acuity of system xc- deficient 47	
  

mice (optomotor test). Our results indicate that loss of system xc- does not affect motor or 48	
  

sensorimotor function, in either adult or aged mice, in any of the paradigms investigated. 49	
  

Similarly, loss of system xc- does not affect basic visual acuity, in either adult or aged mice. 50	
  

On the other hand, in the open field and light/dark tests, and forced swim and tail suspension 51	
  

tests respectively, we could observe significant anxiolytic and antidepressive-like effects in 52	
  

system xc- deficient mice that in certain cases (light/dark, forced swim) were age-dependent. 53	
  

These findings indicate that, under physiological conditions, nonvesicular glutamate release 54	
  

via system xc- mediates aspects of higher brain function related to anxiety and depression, but 55	
  

does not influence sensorimotor function or spatial vision. As such, modulation of system xc- 56	
  

might constitute the basis of innovative interventions in mood disorders.  57	
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1. Introduction 68	
  

Depression and anxiety are among the most prevalent mood disorders in our current society. 69	
  

Therapeutic management of these psychiatric disorders relies on classical approaches 70	
  

targeting the monoaminergic neurotransmission systems, which although they have proven 71	
  

their usefulness, are limited in terms of efficacy and side-effects profile (Li et al., 2012). Lack 72	
  

of innovative therapies for anxiety and depression is related to an incomplete understanding of 73	
  

the pathophysiological basis of these complex disorders and the limited knowledge about the 74	
  

cellular downstream adaptations causing the slow onset of the current monoaminergic drugs 75	
  

(Li et al., 2012;  Sanacora et al., 2008). Glutamate, the major excitatory neurotransmitter in 76	
  

the brain, has been implicated in the manifestation of stress and mood disorders (Popoli et al., 77	
  

2012). The finding of altered glutamate levels in plasma and cerebrospinal fluid, as well as 78	
  

changes in glutamate content in brain tissue of patients with mood disorders, indicates a 79	
  

possible pathogenic contribution (Li et al., 2012;  Sanacora et al., 2008). Clinical proof-of-80	
  

concept studies show rapid antidepressant activity of N-Methyl-D-Aspartate (NMDA) 81	
  

receptor antagonists, such as ketamine, in patients with major depressive disorder (Li et al., 82	
  

2012;  Zarate et al., 2010). Alterations in astrocytic glutamate regulation, including 83	
  

perturbation in glutamate reuptake mechanisms and glutamate metabolism have been linked 84	
  

with depression (Gomez-Galan et al., 2013;  Popoli et al., 2012). Finally, increasing evidence 85	
  

points to the involvement of glial cell pathology in disease processes associated with mood 86	
  

and anxiety disorders (Sanacora and Banasr, 2013;  Sanacora et al., 2008). 87	
  

 88	
  

System xc- is a glial plasma membrane antiporter that imports cystine and exports glutamate 89	
  

to the extracellular environment in a 1:1 ratio (Lewerenz et al., 2013). Structurally, system xc- 90	
  

is a heterodimer composed of 4F2hc and xCT, with xCT being the specific subunit and 91	
  

mediating the transport function of the antiporter (Lewerenz et al., 2013). We have previously 92	
  

demonstrated that in regions of the brain such as the striatum (Massie et al., 2011) or 93	
  

hippocampus (De Bundel et al., 2011), nonvesicular glutamate release by system xc- is the 94	
  

major source of extracellular glutamate, which in turn might mediate tonic activation of 95	
  

extrasynaptic glutamate receptors, including group I and group II metabotropic glutamate 96	
  

receptors as well as extrasynaptic NMDA receptors (Bridges et al., 2012). Via these 97	
  

pathways, system xc- is thought to play a modulatory role on the glutamatergic signaling in 98	
  

the brain. Nevertheless, the possible effect of system xc- on emotional features of behavior, 99	
  

such as those related to anxiety or depressive-like behavior, is currently unknown. These gaps 100	
  

in our understanding of the functional relevance of system xc- in the brain are also a result of 101	
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lack of selective pharmacological modulators (Lewerenz et al., 2013), consequently genetic 102	
  

approaches offer an alternative way to dissect the contribution of specific proteins to behavior 103	
  

(Cryan and Holmes, 2005). We have previously indicated that mice lacking xCT (xCT-/-) 104	
  

(Sato et al., 2005) do not demonstrate severe motor dysfunction, have an intact spatial 105	
  

reference memory, but demonstrate an impaired spatial working memory (in adult but not 106	
  

aged mice), potentially due to the decreased extracellular glutamate levels in the hippocampus 107	
  

(De Bundel et al., 2011). In the current study, we extend our behavioral characterization of 108	
  

system xc- deficient mice, with particular focus on anxiety and depressive-like behavior. 109	
  

Furthermore, as system xc- is potentially expressed in areas of the brain regulating 110	
  

sensorimotor function, such as the basal ganglia (Baker et al., 2002;  Massie et al., 2011) and 111	
  

cerebellum (Sato et al., 2002;  Shih et al., 2006), we evaluated differences in sensorimotor 112	
  

function in xCT-/- mice compared to xCT+/+ littermates. For both affective and sensorimotor 113	
  

function, we employed a battery of behavioral tests to reduce false negative results and 114	
  

evaluate specific aspects of behavior (Crawley, 2008). Finally, due to the presence and 115	
  

potential functional relevance of system xc- in the eye (Bridges et al., 2001;  Langford et al., 116	
  

2010;  Lim et al., 2005), we investigated whether loss of xCT would lead to impairment in 117	
  

visual acuity. We included in our phenotypic screen both adult (16-20 weeks old) as well as 118	
  

aged (19-23 months old) mice, in order to evaluate whether changes in behavior would be 119	
  

consistently observed across aging, as well as to investigate whether loss of system xc- affects 120	
  

the aging process in terms of behavior.  121	
  

 122	
  

 123	
  

 124	
  

 125	
  

 126	
  

 127	
  

 128	
  

 129	
  

 130	
  

 131	
  

 132	
  

 133	
  

 134	
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2. Materials and Methods 136	
  

 137	
  

2.1. Animals 138	
  

This phenotyping study was performed on adult (16-20 weeks old) and aged (19-23 months 139	
  

old) male xCT-/- mice and xCT+/+ littermates. The mice used in this study are high-140	
  

generation descendants of the strain described previously (Sato et al., 2005), and were bred in 141	
  

the animal facilities of the Vrije Universiteit Brussel. The xCT null mutants were generated 142	
  

by targeted disruption of the START codon in exon 1 of the Slc7a11 gene, and were 143	
  

backcrossed for more than 12 generations on a C57BL/6J background. Mice were group-144	
  

housed (2-6 mice per cage) under standardized conditions (25oC, 10/14 h dark/light cycle), 145	
  

with free access to food and water. Studies were performed according to national guidelines 146	
  

on animal experimentation and were approved by the Ethical Committee for Animal 147	
  

Experimentation of the Faculty of Medicine and Pharmacy of the Vrije Universiteit Brussel.  148	
  

 149	
  

2.2. Genotyping 150	
  

Genotypes were confirmed by PCR amplification of tail DNA using REDExtract-N-Amp 151	
  

Tissue PCR Kit (Sigma), and the following primers: 5′-GATGCCCTTC 152	
  

AGCTCGATGCGGTTCACCAG-3′ (GFPR3); 5′-CAGAGCAGCCCTAAGGCACTTTCC-3′ 153	
  

[mxCT5′flankF6]; 5′-CCGATGACGCTGCCGATGATGATGG-3′ [mxCT(Dr4)R8]. 154	
  

 155	
  

2.3. Phenotyping 156	
  

In this retrospective study, behavioral phenotyping was performed at various time points 157	
  

during a two-year period, using seven different breeding batches of naive mice (no 158	
  

experimental history prior to behavioral assessment) matched by genotype and age. Tests 159	
  

were performed sequentially during a period of one month (starting from the least stressful 160	
  

test, e.g. open field test, to the more stressful, e.g. tail suspension test), with each test 161	
  

performed on a different day. The age of the mice at the beginning of the tests was 16-20 162	
  

weeks old (for adult mice) or 19-23 months old (for aged mice). Not all mice included in this 163	
  

study were tested in all of the paradigms described. The initial batches of mice were tested for 164	
  

spontaneous activity (open field test), while subsequent batches also included specific tests 165	
  

evaluating sensorimotor function, vision, anxiety- or depressive-like behavior. Behavioral 166	
  

assessment was performed between 9:00 AM and 6:00 PM (during the light phase), with 167	
  

alternate testing of xCT-/- and xCT+/+ mice to ensure evaluation of both genotypes during the 168	
  

same time of the day. For tests requiring real-time behavioral scoring (nest building test, 169	
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adhesive removal test, optomotor test, novelty-suppressed feeding test), blinding for genotype 170	
  

was ensured by the presence of an additional researcher blinded to test order during the 171	
  

experiment. For tests integrated off-line (light/dark test, elevated plus maze test, forced swim 172	
  

test, tail suspension test), blinding for genotype was ensured by integrating the acquired video 173	
  

files in a blinded manner. For the remaining tests (rotarod, and open field tests), blinding for 174	
  

genotype was ensured by employing objective and automated integration systems (TSE 175	
  

RotarRod Systems, and Noldus Ethovision respectively). For each test, mice were 176	
  

acclimatized to the testing room at least 1 hour prior to assessment.  177	
  

 178	
  

2.3.1. Open field test 179	
  

The open field set-up consisted of a square box (60 cm x 60 cm) with surrounding walls 180	
  

(height 60 cm) that prevent escape, manufactured in clear poly(methyl-methacrylate) 181	
  

(Plexiglas), with black opaque walls that prevent observation of visual cues outside the arena. 182	
  

The center of the arena was defined as the central 40 cm x 40 cm zone. The light levels in the 183	
  

room created an illuminance of 150 lux at the center of the open field. Total distance traveled 184	
  

and frequency of rearing (as measures of exploratory behavior), as well as time spent in the 185	
  

center zone (as measure of anxiety-like behavior), were calculated. The experiment was 186	
  

recorded by a video tracking system (Ethovision software, Noldus, The Netherlands) for 60 187	
  

minutes. 188	
  

 189	
  

2.3.2. Rotarod test 190	
  

Motor functions were investigated using an accelerating rotarod system (TSE RotaRod 191	
  

Advanced, TSE Systems). First, mice were trained for 5 minutes at a constant speed of 5 rpm. 192	
  

During this initial training phase, mice were placed immediately back on the rod after falling, 193	
  

allowing them to get familiarized to the test. In the second phase of training, mice underwent 194	
  

3 repeated trials of 1 minute at a fixed speed of 5 rpm, with 3 minutes of rest between trials. 195	
  

For the test, mice underwent 5 repeated trials that started at constant speed of 5 rpm for 30 196	
  

seconds, and continued with a 5 rpm – 25 rpm accelerating protocol during 200 seconds, 197	
  

leading to a maximum total rod time of 230 seconds. Mice were allowed 3 minutes of rest 198	
  

between trials. We applied statistical analysis on the mean of the 5 test trials. 199	
  

 200	
  

2.3.3. Nest building test 201	
  

Sensorimotor performance and skilled forelimb use were investigated using the nest building 202	
  

test, as described previously (Deacon, 2006). In this paradigm, mice were individually housed 203	
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overnight in a non-enriched cage, and challenged to build a nest starting from nesting material 204	
  

in order to provide shelter and heat insulation. The following morning, the quality of the nest 205	
  

was scored on a 0-5 scale, with 0 representing no nest, and 5 a perfect nest (Deacon, 2006). 206	
  

Furthermore, in order to provide a semi-independent objective assay of nesting ability, the 207	
  

amount of nesting material shredded was quantified, by weighing the complete nesting 208	
  

material (one pressed cotton Nestlet™ square) before the test, and weighing the untorn 209	
  

material at the end of the test. 210	
  

 211	
  

2.3.4. Adhesive removal test 212	
  

Sensorimotor performance was assessed using the adhesive removal test, as described 213	
  

previously (Bouet et al., 2009). After mice were habituated to a transparent test box for 60 214	
  

seconds, small adhesive strips (0.3 cm x 0.4 cm) were taped on the plantar surface of both 215	
  

forelimbs, by applying equal pressure. Next, the mice were placed back in the test box. Two 216	
  

parameters were counted: time-to-contact, defined as the time required for the mouse to sense 217	
  

the presence of the adhesive (i.e. mouth to paw contact) and being indicative of correct paw 218	
  

and mouth sensitivity; and time-to-remove, defined as the time required to completely remove 219	
  

the adhesive from the paw, reflecting sensorimotor performance (Bouet et al., 2009). If the 220	
  

mouse did not feel or remove an adhesive during the trial, a maximum time of 120 seconds 221	
  

was given. The shortest time-to-contact and time-to-remove from the two forepaws underwent 222	
  

statistical analyses. Initially, mice were trained for 5 days by performing the test in identical 223	
  

conditions as the test condition. The adhesive placement order (left forepaw or right forepaw 224	
  

first) was alternated for each day of training during the first 4 days, and randomized for the 225	
  

last day of training, and for the test session. 226	
  

 227	
  

2.3.5. Virtual-reality optomotor system 228	
  

Visual acuity of mice was estimated using the detection of optokinetic head movements in the 229	
  

virtual-reality optomotor system developed by Prusky et al. (Prusky et al., 2004). Briefly, the 230	
  

testing apparatus (OptoMotry, CerebralMechanics) consisted of a box made of four computer 231	
  

screens (Four 20-inch LCD monitors) onto which a virtual cylinder comprised of a vertical 232	
  

sine wave grating was projected and a platform was situated at the epicenter of the arena. A 233	
  

video camera was secured to the top lid of the box, directly above the platform to observe the 234	
  

behavior of untrained and freely moving animals. Individual mice were exposed to moving 235	
  

sine wave gratings of different spatial frequencies at 100% contrast and at a fixed speed (12 236	
  

degrees per second). The experimenter judged the presence of head movements in concert 237	
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with the cylinder rotation that represent their slow reflexive tracking of the gratings and a 238	
  

feeling of self-motion (Douglas et al., 2005). Marking the location between the eyes of the 239	
  

mouse with a crosshair provided positional information to the software to center the rotation 240	
  

of the cylinder at the mouse’s viewing position, thereby maintaining the virtual walls of the 241	
  

cylinder at a constant distance from the mouse. Visual thresholds for spatial vision were 242	
  

obtained with a staircase procedure and drum rotation was random from trial to trial. By 243	
  

varying the spatial frequencies randomly and separate for each eye, the ability of the mouse 244	
  

visual system to detect the visual stimuli was determined and the highest spatial frequency 245	
  

capable of driving a response was adopted as the threshold. 246	
  

 247	
  

2.3.6. Light/dark paradigm  248	
  

The light/dark paradigm investigates the spontaneous exploratory behavior of rodents in 249	
  

response to mild stress, in this case being a novel and well-illuminated environment. The test 250	
  

apparatus consisted of an open field arena (60 cm x 60 cm; height 60 cm) manufactured in 251	
  

clear Plexiglas, with black opaque walls that prevent observation of visual cues outside the 252	
  

arena. A small dark compartment (one fourth of the total area), manufactured in black high-253	
  

pressure laminate (Volkern-Trespa), was positioned in one of the corners of the open field 254	
  

arena. The light/dark test was performed in a dark room in which the open field arena was 255	
  

illuminated with three overhead lamps, creating a light contrast (illuminance outside the 256	
  

shelter 700 lux, inside the shelter 0.5 lux). In this conflict test, anxious behavior is 257	
  

investigated by comparing the innate exploratory activity of the mice with the preference for 258	
  

an enclosed, safe shelter. Mice demonstrate an aversion to brightly illuminated areas, and 259	
  

therefore prefer to stay in the small dark compartment during the trial. The test takes 5 260	
  

minutes in total and mice were placed in the dark zone at the start. The trial was videotaped 261	
  

and timed manually by a blinded researcher. Anxiolytic behavior is characterized as the time 262	
  

the subject spends outside the shelter and the latency time before the first exit (Pogorelov et 263	
  

al., 2007). 264	
  

 265	
  

2.3.7. Novelty-suppressed feeding test 266	
  

The novelty suppressed feeding test is a conflict test that evokes competing motivations: the 267	
  

drive to eat versus the fear to enter the center of a brightly lit box. In this way hyponeophagia 268	
  

can be considered a parameter for both depressive- and anxiety-like behavior. The procedure 269	
  

was slightly adapted from Mineur et al. (Mineur et al., 2007). For this test, mice were 270	
  

deprived from food for 24 hours before the start of the experiment, water remained available 271	
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ad libitum. Each subject was placed in a corner of an open Plexiglas box (60 cm x 60 cm; 272	
  

height 60 cm) with a one cm layer of bedding and one food pellet in the center. The 273	
  

illuminance in the center of the open field arena was 150 lux. The time to the first feeding 274	
  

episode was recorded by a researcher blinded to the genotype. 275	
  

 276	
  

2.3.8. Elevated plus maze 277	
  

The elevated plus maze protocol is based on the aversive nature of mice for an open, elevated, 278	
  

unprotected area. We used a cross-shaped maze manufactured in black high-pressure laminate 279	
  

(Volkern-Trespa), and elevated to a height of 37 cm from the ground. The elevated plus maze 280	
  

consisted of two arms without walls and two enclosed by walls (32.5 cm length x 6 cm width 281	
  

x 17 cm height), with a center area of 6 cm x 6 cm (Rodgers et al., 1995). The illuminance at 282	
  

the level of the open arms was 150 lux. Mice were placed at the junction of the maze, facing a 283	
  

closed arm and allowed to explore the maze for 10 minutes. Each mouse was video-recorded 284	
  

during the test, and the researcher left the room after the start of the trial. Time spent in the 285	
  

open arms and the number of open arm entries are parameters for anxiolytic behavior. The 286	
  

duration and entries in the open and closed arms were timed manually by a blinded 287	
  

researcher. 288	
  

 289	
  

2.3.9. Forced swim test 290	
  

A modified version of the forced swim test, originally described by Porsolt et al., was used to 291	
  

assess depressive-like behavior (Porsolt et al., 1977). Mice were placed in a glass tank 292	
  

cylinder filled with 30 cm of water (25 ± 1 °C) and videotaped during 5 minutes. The 293	
  

inescapability of the set-up induces a state of helplessness. The light levels in the room 294	
  

created an illuminance of 400 lux at the level of the forced swim test. Cryan et al. described a 295	
  

time sampling technique, whereby the predominant behavior in each 5 second period of the 296	
  

300 seconds test was recorded by a blinded researcher (Cryan et al., 2002). Three types of 297	
  

behavior were distinguished: climbing behavior consisted of upward-directed movements of 298	
  

the forepaws along the side of the swim tank (also called thrashing). Swimming behavior was 299	
  

defined as mostly horizontal movement across the swim tank. Immobility was assigned when 300	
  

no additional activity was observed other than that required to keep the mouse’s head above 301	
  

the water surface (Cryan et al., 2002). As the trial time was 300 seconds, a total number of 60 302	
  

counts per mouse were recorded, which were divided between climbing, swimming, and 303	
  

immobility. 304	
  

 305	
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2.3.10. Tail suspension test 306	
  

Besides the forced swim test, the tail suspension test is one of the most widely used tests for 307	
  

the examination of depressive-like behavior in mice. The set-up was similar to that described 308	
  

by Steru et al. (Steru et al., 1985). Mice were suspended by the tip of their tail for 5 minutes to 309	
  

induce an inescapable, short-term stress situation. The light levels in the room created an 310	
  

illuminance of 400 lux at the level of the tail suspension test. The time of immobility was 311	
  

measured by a blinded researcher and is considered a parameter for depressive-like behavior. 312	
  

Mice that climbed their tail were excluded from the experiment. 313	
  

 314	
  

2.4. Statistical analysis 315	
  

Data are expressed as mean ± standard error of the mean (SEM). Statistical analyses were 316	
  

performed using GraphPad Prism 4.0 software. For all analyses, we employed a two-way 317	
  

ANOVA followed by Bonferroni post hoc tests. The α value was set at 0.05. 318	
  

 319	
  

 320	
  

 321	
  

 322	
  

 323	
  

 324	
  

 325	
  

 326	
  

 327	
  

 328	
  

 329	
  

 330	
  

 331	
  

 332	
  

 333	
  

 334	
  

 335	
  

 336	
  

 337	
  

 338	
  

 339	
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3. Results 340	
  

 341	
  

3.1. Effect of xCT deletion on motor and sensorimotor function 342	
  

The spontaneous horizontal and vertical motor activity of the xCT-/- and xCT+/+ mice was 343	
  

measured in a 60 minute open field test. Distance traveled, as measure of horizontal activity 344	
  

(see Fig. 1A for 5 minute time bins), was unaffected by the loss of xCT, as xCT-/- mice 345	
  

demonstrated similar activity levels compared to their xCT+/+ littermates irrespective of age, 346	
  

for either the first 5 minutes of the test [genotype factor: F(1,128)=3.796, p=0.053; Fig. 1B], 347	
  

or the entire 60 minute trial [genotype factor: F(1,128)=0.460, p=0.499; Fig. 1C]. Total 348	
  

distance traveled decreased with aging independent of genotype during the first 5 minutes of 349	
  

the test [age factor: F(1,128)=62.96, p<0.0001], but not during the entire 60 minute trial [age 350	
  

factor: F(1,128)=1.473, p=0.227]. Rearing, as measure of vertical activity (see Fig. 1D for 5 351	
  

minute time bins), was similarly unaffected by the loss of xCT, as xCT-/- mice demonstrated 352	
  

similar activity levels compared to their xCT+/+ littermates irrespective of age, for either the 353	
  

first 5 minutes of the test [genotype factor: F(1,128)=1.318, p=0.253; Fig. 1E], or the entire 354	
  

60 minute trial [genotype factor: F(1,128)=1.376, p=0.243; Fig. 1F]. The frequency of rearing 355	
  

decreased with aging, independent of genotype, for both the first 5 minutes of the test [age 356	
  

factor: F(1,128)=84.98, p<0.0001], as well as for the entire 60 minute trial [age factor: 357	
  

F(1,128)=16.02, p=0.0001]. Altogether, the open field data reveal age-related decreases in 358	
  

horizontal and vertical activity that occur in the absence of significant genotype effects, 359	
  

indicating that loss of xCT does not affect spontaneous motor activity.  360	
  

 361	
  

In the rotarod test (Fig. 2A), xCT-/- mice performed equally as their xCT+/+ littermates, 362	
  

irrespective of age [genotype factor: F(1,83)=0.615, p=0.435], demonstrating intact motor 363	
  

coordination and balance. Concomitantly, we could notice an age-related decrease in motor 364	
  

function independent of genotype [age factor: F(1,83)=17.08, p<0.0001]. In the nest building 365	
  

test (Figs. 2B and C), xCT-/- mice performed equally well when compared to their xCT+/+ 366	
  

littermates, irrespective of age, both when comparing the nest score [genotype factor: 367	
  

F(1,62)=0.152, p=0.697], as well as the amount of nest building material shredded [genotype 368	
  

factor: F(1,62)=0.169, p=0.682]. As with the rotarod and open field tests, we could notice 369	
  

age-related decreases in motor function in the nest building test irrespective of genotype, both 370	
  

when evaluating the nest score [age factor: F(1,62)=16.78, p=0.0001], as well as the amount 371	
  

of nest building material shredded [age factor: F(1,62)=19.00, p<0.0001]. Finally, in the 372	
  

adhesive removal test (Figs. 3A and B), xCT-/- mice demonstrated equal sensorimotor 373	
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function compared to xCT+/+ littermates, both when evaluating time-to-contact [genotype 374	
  

factor: F(1,54)=0.636, p=0.428] as well as time-to-remove [genotype factor: F(1,54)=0.190, 375	
  

p=0.664].  376	
  

 377	
  

3.2. Effect of xCT deletion on visual acuity 378	
  

To assess the effect of xCT deficiency and age on basic mouse visual function, we examined 379	
  

the visual acuity of adult and aged xCT+/+ and xCT-/- littermates (Fig. 4) using the virtual-380	
  

reality optomotor system established by Prusky and colleagues (Prusky et al., 2004). The 381	
  

maximal spatial frequency that elicits optokinetic tracking or head movements to follow the 382	
  

drifting gratings provides a proxy for mouse visual acuity in cycles per degree (c/d). Visual 383	
  

acuity values (maximal spatial frequency; c/d) of the left and right eye were not different 384	
  

within each group (adult xCT+/+ mice: p=0.706, t-test; adult xCT-/- mice: p=0.591, t-test; 385	
  

aged xCT+/+ mice: p=0.704, t-test; aged xCT-/- mice: p=0.227, t-test) and were therefore 386	
  

averaged for display. There was no significant genotype effect [genotype factor: 387	
  

F(1,27)=0.125, p=0.726], and no significant interaction between age and genotype [age x 388	
  

genotype factor: F(1,27)=0.026, p=0.872], hence no genotype-dependent effect on the visual 389	
  

acuity was observed in either adult or aged mice. In contrast, a significant decline in acuity 390	
  

was detected with aging in both genotypes [age factor: F(1,27)=34.84, p<0.0001]. This age-391	
  

dependent decrease in spatial vision is consistent with previous findings in old C57BL/6-mice 392	
  

(Lehmann et al., 2012). Together, the behavior effects observed in xCT-/- mice in this study 393	
  

cannot be due to decreased or altered visual acuity since they show similar responses and age-394	
  

dependency as xCT+/+ littermates in the optomotor test. 395	
  

 396	
  

3.3. Effect of xCT deletion on anxiety-like behavior 397	
  

In the 60 minute open field test (Fig. 5C; see Fig. 5A for 5 minute time bins), xCT-/- mice 398	
  

spent more time in the center of the arena compared to their xCT+/+ littermates [genotype 399	
  

factor: F(1,128)=14.45, p=0.0002], an anxiolytic-like effect confirmed for adult (p=0.003) as 400	
  

well as aged (p=0.017) mice. This effect was not observed, however, when evaluating the first 401	
  

5 minutes of the test (Fig. 5B), during which xCT-/- mice spent a similar amount of time in 402	
  

the center compared to their xCT+/+ littermates [genotype factor: F(1,128)=1.196, p=0.276]. 403	
  

These findings indicate that, although the immediate reaction to the open field arena was 404	
  

similar between genotypes, xCT-/- mice habituated quicker to the novel environment (Fig. 405	
  

5A). In the light/dark paradigm (Figs. 5D and E), xCT-/- mice spent more time outside the 406	
  

shelter compared to their xCT+/+ littermates [genotype factor: F(1,62)=4.835, p=0.031], an 407	
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effect that seemed to be mainly due to a significant difference observed in adult mice 408	
  

(p=0.013). On the other hand, no significant changes could be observed in the latency to exit 409	
  

the shelter between the two genotypes [genotype factor: F(1,62)=2.627, p=0.110]. Also in the 410	
  

light/dark paradigm, we could observe a global increase in anxiety-like behavior with aging 411	
  

independent of genotype, that seemed to be observed both when evaluating time spent outside 412	
  

the shelter [age factor: F(1,62)=14.60, p=0.0003] as well as the latency to exit the shelter [age 413	
  

factor: F(1,62)=7.242, p=0.0091]. This age-dependent increase in anxiety-like behavior 414	
  

confirms previous observations in rodents (Pietropaolo et al., 2014). In the novelty-suppressed 415	
  

feeding test (Fig. 4F), we could also notice a global anxiolytic-like effect in the xCT-/- mice 416	
  

independent of age [genotype factor: F(1,34)=4.395, p=0.043], as well as an increase in 417	
  

anxiety-like behavior with age independent of genotype [age factor: F(1,34)=8.434, p=0.006]. 418	
  

The decreased latency to feed in xCT-/- mice occurred in the absence of significant effects of 419	
  

the xCT deletion on feeding behavior, as evaluated over 24 hours in the home cage or in a 420	
  

metabolic cage (data not shown). Finally, in the elevated plus maze, no significant differences 421	
  

could be observed either in time spent in the open arms [genotype factor: F(1,32)=1.478, 422	
  

p=0.233; age factor: F(1,32)=0.919, p=0.345], or in the number of open arm entries [genotype 423	
  

factor: F(1,32)=2.855, p=0.101; age factor: F(1,32)=1.505, p=0.229]. The mice included in 424	
  

this study, however, demonstrated extreme low scores for elevated plus maze activity, 425	
  

independent of genotype or age, despite our best efforts to use a standardized protocol. The 426	
  

mean time spent in the open arms was 11.66 seconds out of a total trial time of 600 seconds 427	
  

(approximately 2% of the total time), while the average number of total arm entries was 14.69 428	
  

(average of 1.44 open arm entries and 13.64 closed arm entries; n = 36). Importantly, it has 429	
  

been argued that low elevated plus maze activity could render the test unstable (Browne and 430	
  

Lucki, 2013;  Crabbe et al., 1999;  Wahlsten et al., 2003). Furthermore, adult xCT-/- mice 431	
  

demonstrate impairment in spatial working memory in the Y maze (De Bundel et al., 2011) 432	
  

that might have influenced the alternation between closed and open arms of the maze. 433	
  

Especially as the mice underperformed, we believe that interpretation of the elevated plus 434	
  

maze data is not suited and will not be discussed further. 435	
  

 436	
  

3.4. Effect of xCT deletion on depressive-like behavior 437	
  

Depressive-like behavior was evaluated in two behavioral despair paradigms, the forced swim 438	
  

test and the tail suspension test. In the tail suspension test (Fig. 6A), xCT-/- mice spent less 439	
  

time immobile compared to their xCT+/+ littermates [genotype factor: F(1,62)=25.14, 440	
  

p<0.0001], an antidepressive-like effect visible for both adult (p=0.001) as well as aged 441	
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(p=0.001) mice. In the forced swim test (Figs. 6B, C and D), loss of system xc- also lead to a 442	
  

global decrease in immobility time [genotype factor: F(1,72)=9.420, p=0.003] that seemed to 443	
  

be particularly due to an antidepressive-like effect observed in aged mice (p<0.0001). 444	
  

Because of this particular difference, we could observe a global decrease in immobility time 445	
  

with aging irrespective of genotype [age factor: F(1,72)=27.63, p<0.0001], as well as a 446	
  

significant interaction effect [age x genotype factor: F(1,72)=11.25, p=0.0013]. The global 447	
  

decrease in immobility in the xCT-/- mice seemed to be associated with an increase in 448	
  

climbing but not swimming behavior [genotype factor: F(1,72)=6.286, p=0.0144], again 449	
  

mainly due to a significant increase in climbing behavior in aged xCT-/- mice (p=0.005).  450	
  

 451	
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4. Discussion 476	
  

Current theories for mood disorders focus mainly on biogenic amines and still all marketed 477	
  

antidepressant drugs target monoamine reuptake transporters, monoamine oxidase and/or 478	
  

monoamine receptors. Even though these drugs are the standard of treatment today, they have 479	
  

significant limitations with regard to their slow onset of action and the substantial proportion 480	
  

of refractory patients (Niciu et al., 2014;  Zarate et al., 2013). Glutamate, the major excitatory 481	
  

neurotransmitter in the brain, has been linked with the pathogenic process occurring in 482	
  

depression and anxiety disorders (for review see (Popoli et al., 2012;  Sanacora et al., 2008)). 483	
  

Pre-clinical evidence indicates that modulation of glutamatergic signaling using metabotropic 484	
  

glutamate receptor ligands (Swanson et al., 2005) or NMDA receptor antagonists (Pilc et al., 485	
  

2013;  Sanacora et al., 2008) leads to anxiolytic and anti-depressive-like effects. 486	
  

Administration of ketamine to rodents, for instance, was found to reduce immobility in the 487	
  

forced swim and tail suspension tests, while also acting as anxiolytic in the novelty-488	
  

suppressed feeding test and elevated plus maze (for review see (Browne and Lucki, 2013)). In 489	
  

addition to effects on glutamate receptors, there has been recent interest on glutamate 490	
  

metabolism and clearance as mechanisms in mood regulation. Glial astrocytes play an 491	
  

important role in modulation of both actions. They control glutamatergic neurotransmission 492	
  

by rapidly clearing synaptic glutamate thereby preventing spillover to the extrasynaptic space, 493	
  

and also serve a central role in amino acid neurotransmitter metabolism by converting 494	
  

glutamate into glutamine for the glutamate/glutamine cycle (Danbolt, 2001). Reduced brain 495	
  

expression of excitatory amino acid transporters in depressed humans (Valentine et al., 2011) 496	
  

as well as in a rat model for depression (Gomez-Galan et al., 2013) was in line with a rodent 497	
  

study showing that enhanced glutamate uptake by ceftriaxone had antidepressant-like effects 498	
  

(Mineur et al., 2007). 499	
  

 500	
  

System xc- is a plasma membrane transporter, believed to be located on glial cells, mediating 501	
  

uptake of cystine and release of glutamate in a 1:1 ratio (Lewerenz et al., 2013). Cystine 502	
  

imported by system xc- is converted to cysteine that can either participate in the synthesis of 503	
  

glutathione, or be exported back to the extracelluar space via system ASC, and as such 504	
  

regulate the extracellular cystine/cysteine redox couple (Lewerenz et al., 2013). In turn, 505	
  

nonvesicular glutamate release via system xc- has been indicated in various regions of the 506	
  

brain (Baker et al., 2003;  Baker et al., 2002;  De Bundel et al., 2011;  Massie et al., 2011). 507	
  

Although system xc- participates in the modulation of glutamatergic signaling (Bridges et al., 508	
  

2012), its role in behavioral regulation is poorly understood.  509	
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 510	
  

The precise distribution of system xc- in the brain has been difficult to evaluate, due to the 511	
  

paucity of specific antibodies recognizing xCT (the specific subunit of system xc-) 512	
  

appropriate for immunohistochemistry. Nevertheless, previous in situ hydbridization studies 513	
  

indicated robust xCT expression in regions facing the cerebral ventricles as well as in 514	
  

meninges, linking system xc- with maintenance of the redox state of the cerebrospinal fluid 515	
  

(Sato et al., 2002). Furthermore, strong xCT expression was observed in the area postrema, 516	
  

the medial habenular nucleus as well as the paraventricular thalamic nuclei (Sato et al., 2002). 517	
  

Expression of system xc- in such discrete areas of the brain is intriguing, as it could be linked 518	
  

with particular roles in the brain. Interestingly, lesions of the area postrema have been 519	
  

previously found to decrease anxiety like behavior in rats (Miller et al., 2002). Furthermore, 520	
  

the medial habenula has been linked with mediating anxiety and fear responses, while 521	
  

increased activity has been linked with depression (Viswanath et al., 2013). Finally, the 522	
  

paraventricular thalamic nuclei were recently shown to be activated in depressive-like states 523	
  

(Zhu et al., 2011). Altogether, the strong expression of xCT in discrete regions mediating 524	
  

stress, anxiety and depressive-like responses could indicate that this antiporter might be 525	
  

relevant for the manifestation of such behaviors in vivo (Crawley and Paylor, 1997). 526	
  

Furthermore, expression of system xc- is also present in other areas of the brain including the 527	
  

hippocampus (De Bundel et al., 2011), striatum (Baker et al., 2002;  Massie et al., 2011), 528	
  

nucleus accumbens (Baker et al., 2003), as well as in the cortex and cerebellum (Burdo et al., 529	
  

2006;  Sato et al., 2002;  Shih et al., 2006), while recently Lutgen et al. described the presence 530	
  

of xCT mRNA in the basolateral amygdala and bed nucleus of the stria terminalis (Lutgen et 531	
  

al., 2014). In the current phenotypic study we embarked on the characterization of system xc- 532	
  

deficient mice using a battery of tests assaying anxiety and depressive-like behavior, with the 533	
  

hope of gaining further insight on the role of nonvesicular glutamate released by system xc- 534	
  

on behavior.  535	
  

 536	
  

Due to the presence of system xc- in areas mediating sensorimotor control such as the basal 537	
  

ganglia (Patel et al., 2014) or cerebellum (Proville et al., 2014), we first carefully evaluated 538	
  

the potential impact of xCT deletion on sensorimotor function. In order to do so, we evaluated 539	
  

different aspects of motor performance, ranging from motor coordination and balance 540	
  

(rotarod), spontaneous behavior and exploration (open field) to fine movement skills and 541	
  

correct sensorimotor integration (nest building and adhesive removal). Our results 542	
  

consistently indicate that loss of xCT has no significant effect on motor and sensorimotor 543	
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function, while observing age-related genotype-independent decreases in motor function in 544	
  

the open field, rotarod and nest building tests. Our findings are in agreement with a recent 545	
  

behavioral characterization of xCT-/- mice that similarly did not observe changes in motor 546	
  

coordination or motor learning in the rotarod task, or in spontaneous motor activity in the 547	
  

open field test (McCullagh and Featherstone, 2014). 548	
  

 549	
  

System xc- has also been found to be present and potentially functionally relevant in the eye. 550	
  

Expression of system xc- has been described in the retina (Bridges et al., 2001;  Hu et al., 551	
  

2008;  Kato et al., 1993), lens (Lim et al., 2005) and cornea (Langford et al., 2010), where it 552	
  

might act to protect against oxidative stress. Indeed, various oxidative stress stimuli such as 553	
  

xanthine/xanthine oxidase or hydrogen peroxide leads to increased xCT expression (Dun et 554	
  

al., 2006;  Mysona et al., 2009), while intravitreal injection of system xc- inhibitor DL-α-555	
  

aminoadipate leads to a decline in retinal GSH levels and retinal dysfunction (Kato et al., 556	
  

1993). At the same time, increased glutamate release via an overactive system xc- might be 557	
  

detrimental to retinal neurons, due to excitotoxic damage (Lewerenz et al., 2013;  Lim and 558	
  

Donaldson, 2011). Conclusive studies on the functional involvement of system xc- in the eye 559	
  

are lacking, and it is currently unclear whether system xc- contributes to visual function in 560	
  

vivo. In the present study, we evaluated the basic visual acuity of system xc- deficient mice 561	
  

using the optomotor test. Although we observed an age-related decline of visual acuity, in line 562	
  

with previous observations in aged C57BL/6 mice (Lehmann et al., 2012), we did not detect 563	
  

any significant differences between genotypes, in either adult or aged mice. Our data, thus, 564	
  

suggest that system xc- might not play a major role in the subcortical-mediated visual acuity 565	
  

in physiological conditions. At the same time, the age-related decline in visual acuity might 566	
  

have contributed, at least partly, to the age-related effects observed in other behavioral tests 567	
  

evaluating motor function or anxiety-like behavior. Further studies evaluating ocular GSH 568	
  

and extracellular glutamate levels in xCT-/- mice, as well as the response of system xc- 569	
  

deficient mice in animal models of visual deprivation, would be extremely important in 570	
  

further defining the role of system xc- in visual function. 571	
  

 572	
  

The absence of significant effects on motor function or visual acuity in system xc- deficient 573	
  

mice in each age group provided important controls to evaluate these mice in assays for 574	
  

anxiety- and depressive-like behavior. In order to evaluate anxiety-like behavior, we tested 575	
  

xCT-/- mice and their xCT+/+ littermates in various approach-avoidance paradigms. These 576	
  

tests are based on the conflict between the innate exploratory behavior of rodents and their 577	
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aversion towards open, bright, or elevated spaces, at risk for predation (Griebel and Holmes, 578	
  

2013). In the 60 minute open field test, we could notice that system xc- deficient mice showed 579	
  

decreased avoidance of the center area in both age groups, indicating an age-independent 580	
  

anxiolytic effect of xCT deletion. This effect, however, could not be observed during the 581	
  

initial 5 minutes of the trial, in line with previous findings evaluating xCT-/- mice during 582	
  

short open field trials (De Bundel et al., 2011;  McCullagh and Featherstone, 2014). It is 583	
  

believed that the initial stages of the open field test reflect the immediate reaction to the 584	
  

mildly stressful novel environment, while long term observation periods reflect habituation 585	
  

effects (Fonio et al., 2012). Our data, therefore, suggest that although xCT-/- mice show a 586	
  

similar reaction upon the introduction to the open field arena, they habituate faster to this 587	
  

novel environment compared to xCT+/+ littermates. In the light-dark paradigm, adult xCT-/- 588	
  

mice spent significantly more time outside the shelter compared to their xCT+/+ littermates, 589	
  

further reinforcing an anxiolytic behavior. Interestingly, this anxiolytic effect could not be 590	
  

observed in aged xCT-/- mice, indicating an age-dependent effect. In the novelty-suppressed 591	
  

feeding test, loss of system xc- globally decreased the latency to feed, also indicating a trend 592	
  

for decreased anxiety-like behavior. In conclusion, our findings indicate an anxiolytic effect 593	
  

of loss of system xc- in mice, observed in diverse paradigms tapping into distinct or 594	
  

overlapping domains of anxious behavior (Ramos, 2008;  Turri et al., 2001).  595	
  

 596	
  

Next, we evaluated the effect of loss of system xc- on depressive-like behavior using two 597	
  

behavioral despair tests. In these paradigms, mice are faced with an inescapable situation, 598	
  

with their total test immobility time indicating reluctance to maintain an active escape-599	
  

oriented behavior. An increase in immobility time is considered to indicate depressive-like 600	
  

behavior (Cryan and Holmes, 2005). In the mouse tail suspension test, we could observe that 601	
  

xCT-/- mice consistently demonstrated decreased immobility time compared to xCT+/+ 602	
  

littermates, highlighting an age-independent antidepressive-like effect. In the forced swim 603	
  

test, we could notice that aged, but not adult, xCT-/- mice had decreased immobility time, 604	
  

with a concomitant increase in climbing but not swimming behavior. Importantly, aged xCT-605	
  

/- mice did not demonstrate differences in performing complex and challenging motor tasks, 606	
  

such as the rotarod task, and as such changes observed in the forced swim test are most likely 607	
  

attributed to changes in mood, and not to a shift in motor phenotype. The finding that adult 608	
  

xCT-/- mice demonstrate an antidepressant effect in the tail suspension test, but not in the 609	
  

forced swim test, is intriguing, and might indicate different neurobiological pathways 610	
  

mediating the response in the two tests. Indeed, in spite of the similarity at face value, the 611	
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neurochemical pathways mediating behavior in the two paradigms are not believed to be the 612	
  

same (Bai et al., 2001). This finding reinforces the antidepressive-like phenotype observed 613	
  

after loss of system xc-, especially in the aged mice.  614	
  

 615	
  

Although assigning specific mouse tests to various human mood symptoms is understandably 616	
  

difficult (Ramos, 2008), attempts have been made to model various manifestations of 617	
  

depression in mice (Cryan and Holmes, 2005). In particular, immobility in behavioral despair 618	
  

paradigms could be related to depressed mood, inappropriate reaction to a stressful situation, 619	
  

helplessness, as well as psychomotor retardation (Cryan and Holmes, 2005). The latency to 620	
  

feed in the novelty suppressed feeding, besides indicating anxiety, might also be related to 621	
  

hedonic processes (Dulawa et al., 2004). Similarly, the quality of the nest built during the nest 622	
  

building test, besides reflecting motor activity, could also be related to fatigue or loss of 623	
  

energy as seen in major depression (Cryan and Holmes, 2005). Overall, our findings indicate 624	
  

an antidepressive-like effect of xCT deletion, particularly regarding measures of behavioral 625	
  

despair. The slightly decreased latency to feed in the novelty suppressed feeding test in 626	
  

system xc- deficient mice indicates a potential implication in anhedonia, and merits further 627	
  

investigation in more specific tests, such as the intracranial self-stimulation paradigm (Cryan 628	
  

and Holmes, 2005).  629	
  

 630	
  

Geriatric depression is considered to entail a unique set of neurochemical and pathological 631	
  

changes that distinguishes it from middle aged depression (Smith et al., 2007). As a 632	
  

consequence, geriatric depression faces a greater variability in antidepressant treatment 633	
  

response, an increased relapse rate, and a significant number of treatment resistant patients, as 634	
  

well as an important impact of co-morbid anxiety on treatment response (Flint, 2005;  Smith 635	
  

et al., 2007). Furthermore, minor depression is more frequent in older adults, and is more 636	
  

likely to present with co-morbid anxiety (Byrne and Pachana, 2010). Interestingly, Slotkin et 637	
  

al. indicate distinct effects of olfactory bulbectomy in aged versus young rats, both on 638	
  

behavior, as well as on the serotonergic and catecholaminergic systems, and such 639	
  

particularities in geriatric depression should be taken into account for antidepressant treatment 640	
  

(Slotkin et al., 1999). In our phenotyping study, we observed age-related interactions between 641	
  

loss of system xc- and both anxiety and depressive-like behavior, further reinforcing the idea 642	
  

of a differential involvement of neurotransmitter systems, such as the glutamatergic system, 643	
  

during late life. This finding is consistent with a recent behavioral evaluation of mGlu5-/- 644	
  

mice, which showed differential effects of the mutation on anxiety and depressive-like 645	
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behavior with age (Inta et al., 2013). In particular, due to a strong antidepressive-like effect 646	
  

observed in the aged xCT-/- mice, we believe that system xc- could be an interesting target for 647	
  

treatment of geriatric depression, especially when co-morbid with anxiety. Furthermore, as 648	
  

loss of system xc- protects against nigrostriatal dopaminergic neurodegeneration (Massie et 649	
  

al., 2011), this strategy could be of interest in treating age-related neurodegenerative disorders 650	
  

such as Parkinson’s disease that have important co-occurrence of anxiety and depression 651	
  

(Chaudhuri and Schapira, 2009). Finally, changes in affective behavior in aged system xc- 652	
  

deficient mice occur in absence of impairment in either spatial reference memory or working 653	
  

memory (De Bundel et al., 2011), which might favor such interventions in late-life psychiatric 654	
  

disorders that are strongly associated with dementia and cognitive impairment (Laks and 655	
  

Engelhardt, 2010;  Smith et al., 2007). 656	
  

 657	
  

Astrocytic glutamate release via system xc- can activate extrasynaptic NMDA receptors, as 658	
  

well as group I and group II metabotropic glutamate receptors (Bridges et al., 2012). As 659	
  

discussed above, antagonists for NMDA, as well as for some metabotropic glutamate 660	
  

receptors can induce antidepressive- and/or anxiolytic-like effects (Pilc et al., 2013;  Sanacora 661	
  

et al., 2008;  Swanson et al., 2005). Furthermore, overactivation of extrasynaptic NMDA 662	
  

receptors can induce excitotoxicity (McCullagh and Featherstone, 2014) and might be 663	
  

involved in the cellular and morphological changes observed in the prefrontal cortex or 664	
  

hippocampus of patients with mood disorders (Popoli et al., 2012). Loss of system xc- has 665	
  

been shown to be neuroprotective, possibly by reducing the extracellular glutamate levels and 666	
  

the potential for excitotoxicity (Massie et al., 2011). Although highly speculative, the 667	
  

observed behavioral changes in xCT-/- mice might be linked with a decreased activation of 668	
  

extrasynaptic NMDA receptors, and/or reduced tonic stimulation of metabotropic glutamate 669	
  

receptors, such as group II metabotropic glutamate receptors (Baker et al., 2002;  Moran et al., 670	
  

2005). Further studies are warranted investigating the molecular mechanisms underlying the 671	
  

anxiolytic and antidepressive-like behavior observed in xCT-/- mice. Still, by modulating 672	
  

rather than strongly interfering with glutamatergic neurotransmission, inhibition of system xc- 673	
  

might represent a safe approach in targeting glutamatergic dysfunction, especially when 674	
  

associated with chronic disorders such as mood disorders (Bergink et al., 2004;  Pilc et al., 675	
  

2013). 676	
  

 677	
  

Although our current findings indicate that system xc- mediates aspects of anxiety and 678	
  

depressive-like behavior, certain limitations should be acknowledged. First, the retrospective 679	
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nature of our study reflects a more heterogeneous experimental design, with different tests 680	
  

performed for different batches of mice. Test history has been found to influence the results of 681	
  

behavioral testing (Voikar et al., 2004). However, by ensuring that all individual batches were 682	
  

matched by genotype and age, we believe that the potential bias of reporting genotype effects 683	
  

due to test history is small. On the other hand, the retrospective nature of our study allowed 684	
  

for a large sample size (which is sometimes limiting in behavioral research, see (Button et al., 685	
  

2013)) and the evaluation of the xCT -/- mice in a large variety of paradigms that is 686	
  

sometimes difficult to perform in a prospective study. Furthermore, employing different 687	
  

batches of mice might also decrease the chance of reporting batch-related effects on behavior. 688	
  

A second limitation of our study relates to the exclusive characterization of male system xc- 689	
  

deficient mice. While our findings provide a starting point regarding the effects of system xc- 690	
  

on behavior, it would be of interest to perform a similar phenotyping study on female mice, in 691	
  

order to see if the effects of system xc- would be consistent across genders. Such studies 692	
  

would be especially insightful, in light of the known differences that exist between genders 693	
  

regarding regulation of mood and stress responses and the increased incidence of depression 694	
  

and anxiety disorders in women (Young and Korszun, 2010).  695	
  

 696	
  

In a very recent report, Lutgen et al. indicate that system xc- inhibitor sulfasalazine leads to 697	
  

increased anxiety-like behavior in rats in the open field and elevated plus maze tests, without 698	
  

affecting depressive-like behavior in the forced swim test (Lutgen et al., 2014). These 699	
  

findings are in contrast with our current observations, and widen the perspective and 700	
  

complexity of behavioral modulation by system xc-. It is conceivable that these contrasting 701	
  

results are due to different levels of system xc- inhibition (acute and partial with sulfasalazine, 702	
  

versus chronic and complete in xCT-/- mice), or the species of animals used. At the same 703	
  

time, however, sulfasalazine is known to have poor blood-brain barrier permeability in intact 704	
  

animals (Liu et al., 2012), and peripheral and central off-target effects, such as anti-705	
  

inflammatory properties (inhibition of nuclear factor kappa B, see (Wahl et al., 1998)) and 706	
  

blockade of NMDA receptors (Ryu et al., 2003), that could influence acute effects on 707	
  

behavior. Future studies will be of particular importance evaluating acute versus chronic 708	
  

modulation of system xc- and its relation to emotional behavior. 709	
  

 710	
  

5. Conclusion 711	
  

Our present findings indicate that system xc- mediates aspects of anxiety and depressive-like 712	
  

behavior in mice. Inhibition of system xc-, in particular, might be an interesting and novel 713	
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approach in the management of mood disorders, including those with late life onset. Further 714	
  

studies are eagerly awaited evaluating this hypothesis in animal models of anxiety and 715	
  

depression, and using selective pharmacological inhibitors of system xc- or conditional xCT 716	
  

mutants. 717	
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Figure Legends 938	
  

 939	
  

Fig. 1. Spontaneous motor behavior. Loss of system xc- does not affect horizontal (C) or 940	
  

vertical (F) spontaneous motor activity as assessed in a 60 minute open field test (see A and D 941	
  

for corresponding 5 minute time bins). Activity levels were similarly unaffected in xCT-/- 942	
  

mice during the first 5 minutes of the trial (B, E). Data are presented as mean ± SEM *** 943	
  

p<0.001 (2-way ANOVA), sample size indicated in figure. 944	
  

 945	
  

Fig. 2. Motor coordination and fine motor skills. Loss of system xc- does not affect motor 946	
  

coordination and balance as assessed using an accelerating rotarod protocol (A), nor does it 947	
  

influence fine motor skills and the capacity to build a nest (B, C). Data are presented as mean 948	
  

± SEM *** p<0.001 (2-way ANOVA), sample size indicated in figure.  949	
  

 950	
  

Fig. 3. Sensorimotor behavior.  Loss of system xc- does not affect sensorimotor function as 951	
  

evaluated in the adhesive removal test; xCT-/- mice demonstrate intact sensory function 952	
  

(time-to-contact, A), as well as intact fine motor skills (time-to-remove, B). Data are 953	
  

presented as mean ± SEM, sample size indicated in figure. 954	
  

 955	
  

Fig. 4. Visual acuity thresholds. Loss of system xc- does not affect spatial frequency 956	
  

thresholds or visual acuity in either adult or aged mice tested in the optomotor setup. Data are 957	
  

presented as mean ± SEM *** p<0.001 (2-way ANOVA), sample size indicated in figure. 958	
  

 959	
  

Fig. 5. Anxiety-like behavior. Loss of system xc- leads to age-independent anxiolytic effects 960	
  

in the 60 minute open field test (C), that are not observed however in the first 5 minutes of the 961	
  

trial (B), and potentially associated with facilitated habituation to the open field arena (A). 962	
  

Loss of system xc- leads to age-dependent anxiolytic effects in the light/dark paradigm (D, E), 963	
  

and global anxiolytic effects in the novelty suppressed feeding test (F). Data are presented as 964	
  

mean ± SEM *** p<0.001, ** p<0.01, * p<0.05 (2-way ANOVA), ## p<0.01, # p<0.05 965	
  

(Bonferroni post-hoc versus age-matched xCT+/+), sample size indicated in figure.  966	
  

 967	
  

Fig. 6. Depressive-like behavior. Loss of system xc- leads to age-independent antidepressive 968	
  

effects in the tail suspension test (A), and age-dependent antidepressive effects in the forced 969	
  

swim test (B), with increased climbing (D) but not swimming (C) behavior. Data are 970	
  

presented as mean ± SEM *** p<0.001, ** p<0.01, * p<0.05 (2-way ANOVA), ### p<0.001, 971	
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## p<0.01, # p<0.05 (Bonferroni post-hoc versus age-matched xCT+/+), sample size indicated 972	
  

in figure.  973	
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