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Abstract The present paper introduces a learning-based

optimization approach to the resource constrained multi-

project scheduling problem (RCMPSP). Multiple projects,

each with their own set of activities, need to be sched-

uled. The objectives here dealt with include minimiza-

tion of the average project delay and total makespan.

The availability of local and global resources, prece-

dence relations between activities, and non-equal project

start times have to be considered.

The proposed approach relies on a simple sequence

learning game played by a group of project managers.

The project managers each learn their activity list lo-

cally using reinforcement learning, more specifically learn-

ing automata. Meanwhile, they learn how to choose a

suitable place in the overall sequence of all activity lists.

All the projects need to arrive at a unique place in

this sequence. A mediator, who usually has to solve a

complex optimization problem, now manages a simple

dispersion game. Through the mediator, a sequence of

feasible activity lists is eventually scheduled by using

a serial schedule generation scheme, which is adopted

from single project scheduling.

It is shown that the sequence learning approach has

a large positive effect on minimizing the average project

delay. In fact, the combination of local reinforcement

learning, the sequence learning game and a forward-

backward implementation of the serial scheduler signif-

icantly improves the best known results for all the MP-

SPLIB datasets. In addition, several new best results

were obtained for both considered objectives: minimiz-

ing the average project delay and minimizing the total

makespan.

KU Leuven, Department of Computer Science, CODeS, Ge-
broeders Desmetstraat 1, B-9000 Gent, Belgium
E-mail: tony.wauters@cs.kuleuven.be

Keywords: Multi-Project Scheduling, Learning

Automata, Dispersion Games

1 Introduction

Collaborative project management is becoming com-

mon in today’s globally active industries. Indeed, en-

terprises collaborate simultaneously with different cus-

tomers or partners in various projects requiring scarce

and shared resources. Collaborative or multi-project

management is a means of accelerating product de-

velopment, reducing cost, and increasing quality. How-

ever, it requires careful scheduling of overlapping tasks

with possible competing resource requirements. This

is exactly the focus of the resource constrained multi-

project scheduling problem (RCMPSP), which is a gen-

eralization of the resource-constrained project schedul-

ing problem (RCPSP) [Brucker et al., 1999].

A set of n projects has to be planned simultane-

ously in the RCMPSP. For each project the following

information is given: an earliest release time, a set of ac-

tivities, precedence relations between the activities and

a set of local renewable resources. On top of these, a fi-

nite set of global renewable resources is available, which

have to be shared by all projects. Activities of different

projects may require the same shared resource at the

same time. In order to enable comparing alternative so-

lutions of a given RCMPSP, some local and global per-

formance criteria are defined. Commonly used global

criteria are the Total Makespan (TMS) and the Aver-

age Project Delay (APD). Both will be considered in

this paper.

A large variety of algorithms have been developed

for the RCMPSP. Exact approaches have been reported

in the literature, including the early work on multi-

project scheduling by Pritsker et al. [1969], who propose
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a zero-one programming approach. Other mathemati-

cal approaches are presented in [Deckro et al., 1991,

Chen, 1994, Vercellis, 1994]. These exact approaches

are limited to solving small problem instances, whereas

heuristics, mainly based on priority rules, have a bet-

ter scalability. Kurtulus and Davis [1982] study a num-

ber of priority rules and introduce some new ones (e.g.

SASP, MAXTWK, etc.) in order to minimize the aver-

age project delay in multi-project scheduling problems.

Lova and Tormos [2001] analyse the effect of the sched-

ule generation schemes (serial or parallel) and different

priority rules (MINLFT, MINSLK, MAXTWK, SASP

or FCFS) for single and multi-project problems. The av-

erage project delay is considered for the multi-project

case. Goncalves et al. [2008] present a genetic algo-

rithm for the RCMPSP in order to minimize a weighted

objective function (including tardiness, earliness and

flow time deviation). A random key representation of

the problem is combined with a parameterized sched-

ule generator. The approach is tested on a set of ran-

domly generated problems, which are unfortunately not

publicly available. Browning and Yassine [2010] present

a comprehensive analysis of 20 priority rules for the

RCMPSP. They compare the priority rules on 12, 320

test problems generated with different characteristics.

Kumanam and Raja [2011] propose a heuristic and a

memetic algorithm for scheduling multiple projects in

order to minimize the total makespan.

In addition, several decentralized approaches exist,

where information asymmetry is assumed. This decen-

tralized version is denoted as the DRCMPSP. Confes-

sore et al. [2007] introduced a multi-agent system and

an iterative combinatorial auction mechanism for solv-

ing the DRCMPSP. Large multi-project instances are

addressed by integrating a metaheuristic called the cen-

tralized restart evolution strategy (RES), with an ef-

ficient decentralized electronic negotiation mechanism

[Homberger, 2007, 2012]. Adhau et al. [2012] present

an auction-based negotiation approach, using a new

heuristic for the winner determination problem in auc-

tions. Some improved results for the APD objective are

presented.

Rather than having all (virtual) project managers

negotiate for each activity to be scheduled, the present

paper focuses on coordination through learning a sim-

ple sequence game managed by a trusted third party or

mediator. A serial schedule generation scheme, which

is adopted from single project scheduling [Kolisch and

Hartmann, 1999], first builds a solution for the RCMPSP.

Instead of giving the serial scheduler one activity list, as

in single project scheduling, it is here presented with a

sequence of activity lists, one for each project. The ob-

servation to be made here is that the order of the differ-

ent activity lists in the sequence has a non-neglectable

effect on the quality of the resulting schedule. Each

project manager simultaneously chooses a place in this

sequence. Since all project managers should find a unique

place for their project, they in fact play a dispersion

game [Grenager et al., 2002]. The goal of each project

manager reduces to, 1) building an efficient precedence

feasible activity list locally and 2) learning a suitable

place in the overall sequence of activity lists. Both goals

are learned simultaneously and iteratively by using a

global reinforcement signal, i.e. a value based on the

APD or TMS of the schedule that was generated at the

previous time step. The project managers use a network

of simple reinforcement learning devices called learning

automata [Thathachar and Sastry, 2004] for learning a

good quality sequence of their own activities. The se-

quence game is played with a probabilistic version of

the Basic Simple Strategy (BSS), which guarantees the

players to coordinate within logarithmic time.

The contribution of this paper is threefold, 1) The

approach is a fruitful application of a learning approach

[Wauters et al., 2010] to RCMPSP. 2) Experiments show

that the sequence learning approach has a large positive

effect on the minimization of the average project delay.

In fact, the combination of local reinforcement learning

and the sequence learning game significantly improves

the best known results for all the MPSPLIB1. datasets.

Many new best solutions for the APD objective were

produced, dominating the MPSPLIB benchmark web-

site with 104 best solutions out of 140. In addition to

the excellent performance on the APD objective, sev-

eral new best solutions were generated for the TMS ob-

jective as well. Due to its heuristic nature, the learning

approach scales very well. 3) The difference is inves-

tigated between the proposed collaborative scheduling

approach, and one where the project managers act self-

ishly.

This paper is structured as follows. Section 2 de-

scribes the RCMPSP. The solution representation and

encoding together with the new learning approach are

given in Section 3. Section 4 presents the experiments

and results. Conclusions are drawn in Section 5.

2 Problem description

The RCPSP considers a single project in which ac-

tivities need to be scheduled according to their prece-

dence relations and resource requirements. The litera-

ture covers many models for generalizing the RCPSP to

a multi-project version. The present work relies on the

DRCMPSP originally introduced by Confessore et al.

1 MPSPLIB, http://www.mpsplib.com, January 21, 2014
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Fig. 1 Multi-Project activity-on-node diagram for an exam-
ple with 2 projects (7 activities each, dummy activities in-
cluded)

[2007], and on a problem notation similar to Homberger

[2012]. We however do not focus on the decentralized

aspect of the problem (i.e. information asymmetry is

not addressed), but instead strive for the best global

performance.

The RCMPSP is described by a set of n projects i,

i = 1..n. Each project i consists of Ji non-preemptive

activities with specific finish-start precedence relations.

Each activity j of project i has a duration of dij time

periods. The first and last activities of the projects

are dummy activities with a zero duration and no re-

source requirements. The dummy activities determine

the start and end of the project. Figure 1 presents an ex-

ample of a multi-project activity-on-node diagram with

two projects and seven activities each (dummy activi-

ties included). The precedence relations are denoted by

arrows.

Each project i has an arrival (or release) time adi,

which is the earliest point in time for the project to

start. Project 1 is always released at ad1 = 0, while

the other projects may start at adi ≥ 0. A set Li of

local renewable resources is available for each project

i. A constant maximum capacity of Ril units is associ-

ated with each local resource l ∈ Li. On top of these,

a set G (with |G| ≥ 1) of global renewable resources

is to be shared among all projects. Accordingly, a con-

stant maximum capacity of Rg units is associated with

each global resource g ∈ G. Each activity j of project

i requires rijl units of local resource l and rijg units of

global resource g.

A solution for the RCMPSP must define a start

time (or finish time) sij (fij) for each activity j of each

project i, with fij = sij + dij . This solution is prece-

dence feasible if it respects all precedence relations, and

is resource feasible if at each time period t, the applied

resources do not exceed the maximum capacity of the
global and local resources. A solution that is both prece-

dence and resource feasible is simply called feasible.

Once a solution is constructed, i.e. a multi-project

schedule, its quality can be evaluated based on both

local and global criteria. Each project i has a start-

ing time si that is equal to the starting time si1 of

the dummy starting activity. Similarly, each project i

has a finishing time fi equal to the finishing time fiJi
of the dummy finishing activity. Commonly used local

or private criteria are the makespan and the project

delay. The makespan MSi of a project i is defined as

the difference between the project’s finishing time and

the project’s arrival time MSi = fi − adi. The project

delay PDi of project i is defined as the difference be-

tween the project’s makespan and its critical path du-

ration PDi = MSi − CPDi, with CPDi the critical

path duration of project i. The critical path duration

can be determined by the critical path method and is

a lower bound for the project makespan [Willis, 1985].

Commonly used global criteria are the total makespan

(TMS), the average makespan (AMS), the average

project delay (APD), and the standard deviation of

the project delay (DPD). The total makespan is the

difference between the latest finish time and the earliest

arrival time of all single projects. Note that the earli-

est arrival time over all projects is always zero, because

ad1 = 0. The average makespan is the average of the

makespans of all the projects (AMS =
∑n
i=1MSi/n).

The average project delay is the average of the project

delays of all the projects (APD =
∑n
i=1 PDi/n). Fi-

nally the DPD is calculated as the standard devia-

tion of the project delays of all the projects DPD =√∑n
i=1 (PDi −APD)2/(n− 1). The remainder of the

paper only considers the APD and TMS objectives.

3 Learning approach

This section describes the learning approach for the

RCMPSP, which is based on Wauters et al. [2011, 2012].

It provides details of the applied encoding, schedule

construction, configuration and learning techniques.

3.1 Solution representation and encoding

Multi-project schedules are generated by organising each

project’s activity list in a sequence of activity lists.

This sequence consists of one activity list (AL) for each

project, together with a project order list (POL). An

AL is a precedence feasible ordered list of activities be-

longing to one project. When all ALs are combined

according to the POL into one large AL, a combined

sequence of activity lists (SAL) is obtained.

Once a SAL is generated, it serves for constructing

a multi-project schedule with the serial schedule gen-
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eration scheme (SGS) [Kolisch and Hartmann, 1999]

in a multi-pass iterative forward-backward technique.

The iterative forward-backward technique was intro-

duced by Li and Willis [1992] and is known to produce

good quality schedules. The technique is also named

justification by Valls et al. [2005]. [Lova et al., 2000]

use the forward-backward technique in a multicriteria

heuristic for multi-project scheduling. The method al-

ternates between forward and backward passes until no

more improvement can be made. The forward pass con-

structs schedules from the SAL, where activities start

as early as possible (most left). The finish times of the

activities in the forward schedules determine the order

in which a new activity list is generated in a backward

pass. The backward pass constructs schedules where ac-

tivities start as late as possible (most right), while not

exceeding the TMS of the preceding forward schedule.

This procedure continues until no further objective im-

provements can be made. For the present purpose, the

project managers jointly learn how to offer the schedule

generator the best possible SAL.

3.2 Combining activity lists

The projects’ activity lists and a project order list en-

able many possible ways for building a sequence of ac-

tivity lists. The two most natural ways are to schedule

projects either sequentially or interleaved.

– Sequential: schedule all activities from the first

project in the POL, then all activities from the sec-

ond project in the POL, . . .

– Interleaved: schedule the first activity from the

first project in the POL, then schedule the first ac-

tivity from the second project in the POL, . . .

Many hybrid combination techniques are applicable,

but only the two extremes that are able to incorpo-

rate sequence information are considered in the present

paper. Another option is to directly learn the sequence

of all activities from all projects. This has the follow-

ing drawbacks. First, it would drastically increase the

search space of the learning methods. Second, as shown

in this paper, the project order has a significant impact

on the APD objective, and is therefore important to

focus on. Furthermore, it must be noted that the inter-

leaved method is only of interest when the number of

activities among projects does not differ much.

Figure 2 illustrates the two methods: sequential and

interleaved with a simple two-project example (A and

B). The POL for this example determines that project

A comes before project B.

A1 A2 A3

B1 B2 B3

A1 A2 A3

B1 B2 B3

A1 A2 A3 B1 B2 B3

A1 B1 A2 B2 A3 B3

Sequential

Interleaved

POL: AB

SGS

SGS

Fig. 2 Combining activity lists: sequential and interleaved
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The performance difference between the sequential

and interleaved approach will be explained in Section

4.2.

3.3 Learning activity lists using learning automata

The problem is decomposed into two subproblems: gen-

erating a feasible activity list for each project and gen-

erating an order of projects. The first problem is solved

by the project managers (one for each project), while

the second is coordinated by the mediator. Figure 3

illustrates this decomposition. The present section de-

scribes the main functionality of the project managers,

while Section 3.4 considers the role of the mediator.

Each project manager is responsible for generating a

precedence feasible activity list for his own project. The

task is performed by a multi-agent learning method. It

is based on the technique presented in [Wauters et al.,

2009, 2011] for learning sequences in the multi-mode

resource-constrained project scheduling problem (MR-

CPSP). Each activity in the project uses simple re-

inforcement learning devices called learning automata

(LA) [Thathachar and Sastry, 2004] to learn an order

of its successor activities. In contrast to [Wauters et al.,

2009, 2011], multiple modes are not part of the problem

addressed in this paper, therefore the learning compo-

nents for the modes can be removed from the solution

approach. Only the components for learning a prece-
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dence feasible activity list are used.

Learning automata (LA) are simple reinforcement learn-

ing devices that take actions in single state environ-

ments. A single learning automaton maintains an action

probability distribution p, which it updates based on

a specific learning algorithm or reinforcement scheme.

The literature provides several reinforcement schemes

with different convergence properties. These schemes

use information from a reinforcement signal provided

by the environment, and thus the LA operates with its

environment in a feedback loop. Examples of linear re-

inforcement schemes are linear reward-penalty, linear

reward-inaction and linear reward-ε-penalty. The phi-

losophy behind these schemes is to increase the prob-

ability to select an action when it results in a success

and to decrease it when the response is a failure. In this

work the actions of the LA are permutations of suc-

cessor activities. Each activity maintains an LA with

probability distribution p for selecting these successor

permutations, and updates p with the following update

scheme:

pm(it+ 1) = pm(it) + αreward(1− β(it))(1− pm(it))

− αpenaltyβ(it)pm(it) (1)

pj(it+ 1) = pj(it)− αreward(1− β(it))pj(it)

+ αpenaltyβ(it)[(r − 1)−1 − pj(it)] (2)

with pm(it) (pj(it)) the probability for selecting the m-

th (j-th) successor permutation at iteration it. The con-

stants αreward and αpenalty are the reward and penalty

parameters. When αreward = αpenalty, the algorithm

is referred to as linear reward-penalty (LR−P ), when

αpenalty = 0, it is referred to as linear reward-inaction

(LR−I) and when αpenalty is small compared to αreward,

it is called linear reward-ε-penalty (LR−εP ). β(it) is the

reward received by the reinforcement signal for an ac-

tivity chosen at iteration it. r is the number of successor

permutations. Equation 1 is used to update the proba-

bility pm for selecting the m-th successor permutation,

where Equation 2 is used for updating all other proba-

bilities pj ,∀j 6=m.

A motivation for organizing the activities in a sin-

gle project as a network of learning automata is that

nice theoretical convergence properties are proven to

hold in both single and multi automata environments.

One of the principal contributions of LA theory is that

a set of decentralized learning automata based on the

reward-inaction update scheme is able to control a finite

Markov Chain with unknown transition probabilities

and rewards. This result was extended to the frame-

work of Markov Games, which is an extension of single-

agent markov decision problems (MDP’s) to distributed

multi-agent decision problems [Littman, 1994]. Although

the convergence results do not hold here because the

activity-on-node model does not have the Markov prop-

erty, good results are achieved with the network of LA

in the single project scheduling scheme [Wauters et al.,

2009, 2011].

The virtual project manager uses a network of LA to

build an activity list. Further on, the manager logs his

own performance for which he receives information from

the mediator, and updates the LA according to equa-

tions 1 and 2. The reward-inaction update scheme is

applied because of the above mentioned theoretical con-

vergence properties. The simple reinforcement signal is

the following. When compared with the best schedule

obtained in the schedule generation process, the newly

generated schedule resulted in an objective value which

was:

– Better: update all the LA with reward β(it) = 1

– Worse: update all the LA with reward β(it) = 0

Algorithms 1 and 2 describe the manager method

for producing a precedence feasible activity list. The

activity list is generated by visiting one activity after

another. The project manager applies Algorithm 1 for

constructing an activity list using a network of learning

automata. A1 (AN ) is the first (last) dummy activity of

the project. Each node in this network uses Algorithm

2. The method chooseOrder() in Algorithm 2 applies

a fitness proportionate selection method2 on the prob-

abilities of the LA for selecting a permutation of the

activities successors (denoted as Order). This permu-

tation of successors is afterwards traversed one by one

on each query to the method to return the next suc-

cessor activity (Anext). The learning rates (α) of the

LA are additional parameters of the algorithm, which

balance the quality and speed of learning.

An activity is eligible if all its predecessors have been

visited.

3.4 A sequence learning game

The mediator collects the separate activity lists pro-

duced by the project managers and starts a process for

determining the project order list (POL). Based on the

retrieved activity lists and the POL, the mediator con-

structs a sequence of activity lists (SAL). This sequence

is used to build a multi-project schedule with the serial

schedule generation scheme. The mediator returns the

quality of the obtained schedule to the project man-

agers.

2 also known as roulette wheel selection
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Algorithm 1 Project Manager: generating an activity

list
Require: Project data and Algorithm parameters
Ensure: A precedence constraint feasible activity list

initialize ActivityList
Acurrent ⇐ A1

while Not all activities in ActivityList do
Anext ⇐ Algorithm 2(ActivityList,Acurrent)
if Anext is eligible AND not NULL then

Acurrent ⇐ Anext

else

Acurrent ⇐ random eligible Activity
end if

end while

return ActivityList

Algorithm 2 Next activity determination

Require: ActivityList (partial), Acurrent

Ensure: Anext

if Acurrent is AN then

Anext ⇐ NULL

else
if first visit of Acurrent then

add Acurrent to the ActivityList
Order ⇐ chooseOrder() using LA
Anext ⇐ first activity in Order

store Order
else
Anext ⇐ next activity in stored Order

end if
end if

return Anext

The order determination process to construct a POL

resembles a game, more specifically a dispersion game

[Grenager et al., 2002] where the number of positions is

equal to the number of project managers. To construct

a POL, all project managers need to select a distinct po-

sition or a maximally dispersed assignment of projects

to positions. For example, if three project managers se-

lect the following distinct positions: project manager 0

selects position 1, project manager 1 selects position 2

and project manager 2 selects position 0, then the POL

becomes [2, 0, 1].

The Basic Simple Strategy (BSS) introduced in

[Grenager et al., 2002], allows to select maximally dis-

persed actions in a logarithmic (as a function of the

number of actions) number of rounds, where a naive ap-

proach would be exponential. BSS uses a uniform selec-

tion, the method used in the current work incorporates

the project managers preferences. This is achieved by

introducing a probabilistic version of this BSS, called

the Probabilistic Basic Simple Strategy (PBSS). The

PBSS works as follows. Given an outcome o ∈ O re-

specting the selected positions for all project managers,

and the set of all possible positions Q, each project

manager using the PBSS will:

– select position q ∈ Q with probability 1 in the next

round, if the project manager selected position q in

outcome o, and if the number of project managers

selecting position q in outcome o is exactly 1 (noq =

1).

– select a position from the probabilistic distribu-

tion over positions q′ ∈ Q for which noq′ 6= 1, other-

wise.

noq is the number of times position q was selected in out-

come o. The probabilistic distribution over positions is

obtained from the project managers’ experience with

previous decisions. A technique from an earlier study

[Wauters et al., 2012] for fast permutation learning was

adopted. Where Wauters et al. [2012] focus on the gen-

eral problem of learning permutations, the method is

here applied to learn positions in the POL. Each project

manager maintains a single learning automaton to ad-

just its preferences for a place in the POL. Moreover,

this method requires information about the positions

that were selected uniquely during the PBSS procedure.

The project managers play a dispersion game, and the

mediator provides the needed unique position selection

information, i.e. positions q ∈ Q in outcome o for which

noq = 1 holds.

An example with four project managers illustrates

the PBSS. The first two project managers (0 and 1)

have strong preferences to be first in the POL. Their

preference probabilities are: [0.5, 0.25, 0.125, 0.125].

The third project manager (2) has uniform preference

probabilities [0.25, 0.25, 0.25, 0.25]. The fourth project

manager considers it better to be scheduled later and

has preference probabilities [0.1, 0.2, 0.3, 0.4]. Based

on these preference probabilities, the project managers

play a PBSS. Figure 4 shows a possible outcome, i.e. the

positions chosen in each of the 3 required rounds. In the

first round, only project manager 3 selected position 3.

Consequently, project manager 3 will select unique po-

sition 3 again in the next rounds. In the second round

the first three project managers select a new position,

different from 3. Project manager 2 selects the unique

position 2 and will select position 2 again in the next

rounds. In the third round the first two project man-

agers select a new position different from 2 and 3. At

this point all project managers have selected a unique

position resulting in the POL [1, 0, 2, 3].

Figure 5 shows the performance of PBSS in func-

tion of the number of project managers n, i.e. neces-

sary number of rounds to find a maximally dispersed

solution. For each number of project managers (n ∈
{5, 10, 20, 50, 100, 500, 1000}) a PBSS was performed 100

times with non-uniform probability vectors. A logarith-
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mic behavior for PBSS3 can be observed. 1000 project

managers on average require only 15.31 rounds for find-

ing a POL.

3.5 Full approach

Algorithm 3 describes the full learning approach. The

following steps are repeated in each iteration of the

learning approach:

– generate a feasible activity list for each project.

– generate a project order list (POL).

– generate a new schedule

– update the learning automata.

The algorithm stops when a predefined maximum num-

ber of schedule generations is exceeded. Due to the

forward-backward SGS method, multiple schedules can

be generated at each iteration. The learning approach

behaves randomly at the start, while after a few itera-

tions schedules of higher quality are generated.

3 The logarithmic behavior for the uniform BSS was al-
ready shown by Grenager et al. [2002].

Algorithm 3 Learning approach
Require: A RCMPSP
Ensure: A feasible multi-project schedule

Initialize project managers and mediator
while Maximum number of schedule generations not ex-
ceeded do

{**generate a feasible activity lists for each project**}
for all Project Managers do

Generate a precedence feasible activity list (see Algo-
rithm 1)
Send the generated activity list to the mediator

end for
{**generate a project order list (POL) by playing a disper-

sion game**}
while Not all project managers have chosen a different
position in the POL do

for all Project Managers do
Choose a position in POL (=action) using PBSS
strategy based on POL performance logs
Send chosen position to mediator

end for

Mediator informs project managers about the actions
that have been selected once.

end while

{**generate a new schedule**}
Mediator uses the POL and activity lists to create a SAL
Mediator uses the SAL in a forward-backward SGS
method to create a multi-project schedule SCHEDnew

if SCHEDnew has lower objective value than
SCHEDbest then

SCHEDbest = SCHEDnew (store as new best)
end if

Mediator sends the objnew to the project managers
{**update the learning automata**}
for all Project Managers do

Update the learning automaton used for POL deter-
mination
Update its sub-network of LA:
if objnew < objbest then

Update all its LAs with a reward β(it) = 1
objbest = objnew

end if
end for

end while
return SCHEDbest

4 Experiments and results

The present section presents the experimental results

of the proposed learning approach on standard bench-

mark problems for the RCMPSP. The performance is

compared to the state of the art for both the APD and

TMS objectives.

4.1 Problem Instances

The proposed approach is assessed for the same 140

(60+80) DRCMPSP instances as in [Homberger, 2012]

and [Adhau et al., 2012]. These instances are avail-

able from the Multi-Project Scheduling Problem Li-
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brary4. To the best of the authors’ knowledge, this is the

only publicly available multi-project scheduling bench-

mark website, where problem instances can be down-

loaded and results of different methods can be com-

pared. The instances were originally designed for decen-

tralized methods, but can also be used to evaluate cen-

tralized methods. The library contains 20 datasets with

140 instances based on multiple RCPSP instances5. The

number of projects is one out of n = 2, 5, 10, 20. The

number of activities per project i, is one of Ji = 30,

90, 120. Thus the largest instances consist of 20 × 120

activities = 2400 activities. The library contains two

types of datasets. The ‘normal’ ones which incorpo-

rate global and local resources with varying capacity,

and the ‘AgentCopp’ (AC) instances where all the re-

sources are global and have the same capacity. The nor-

mal datasets contain 5 instances per dataset, while the

AC instances contain 10 instances per dataset. The in-

stances vary in terms of arrival dates, and the ratio

between the number of global and local resources. Ta-

ble 1 shows the problem datasets and their properties,

taken from Homberger [2012]. An additional column

representing the total problem size (number of projects

times number of jobs per project) was added for fur-

ther scalability experiments. More information on the

characteristics of the instances and the generation of

the problems can be found in [Homberger, 2012].

4.2 Sequential vs interleaved scheduling

Figure 6 shows the schedules produced with the same

SAL, for both the sequential and the interleaved method.

They were applied to an instance with 10 projects, and

90 activities each (mp90 a10 nr2). The graphs show the

number of activities executed per time step for all 10

projects (stacked on top of each other). The schedule

on the left is the sequential one and it has APD = 15.6

and TMS = 164, while the schedule on the right (in-

terleaved) has APD = 22.9 and TMS = 148. When

the two scheduling methods are compared, considerable

differences between the produced schedules can be no-

ticed. Figure 7 shows the difference between sequential

and interleaved scheduling for different global objec-

tives like APD, TMS, DPD and AMS. The graph shows

average values over 10, 000 randomly generated multi-

activity lists for one instance of the datasets. Similar

graphs have been generated for other instances. In gen-

eral, the sequential scheduling method produces sched-

ules with lower APD and higher TMS, while the in-

4 MPSPLib, http://www.mpsplib.com, January 21, 2014
5 PSPLib, http://www.om-db.wi.tum.de/psplib/main.html,

January 21, 2014

terleaved scheduling method produces schedules with

higher APD and lower TMS. This shows that when the

APD objective is considered, the project order is very

important, and thus motivates the dispersion game ap-

proach.

4.3 Comparison with best known results

The experiments in this section were executed on an

Intel Core 2 Duo PC (3.3Ghz, 4GB RAM), and all the

methods are implemented in the Java 1.6 programming

language. The stopping criterion was set to 100, 000

schedule generations, so as to enable fair comparison

with the 100, 050 schedule generations used by all the

methods compared by Homberger [2012]. After several

preliminary experiments, a good value for the learn-

ing rate was determined: αreward = 0.001. Higher val-

ues converge too quickly to suboptimal solutions, while

lower values are not able to learn anything useful within

the given stopping criterion. This value [αreward = 0.001]

was used for updating all the learning automata. A se-

quential activity list combination method is selected

when APD is the main objective, while an interleaved

activity list combination method is selected for the TMS

objective.

The first analysis considers the APD objective. The

learning approach is compared with the best solutions

reported in the literature, obtained by either centralized

(RES, SASP) or decentralized approaches (CMAS/ES,

CMAS/SA, MAS/CI, DMAS/ABN) [Homberger, 2012,

Adhau et al., 2012]. The APD results are shown in

Table 2, which denotes the average values over all in-

stances in each problem subset APDAV , the average

calculation time for the learning approach in seconds,

and the percental difference with the literature’s best.

The learning approach obtains an average APD im-

provement over all instances of 24.5% compared to the

best in the literature. It is interesting to notice that the

achieved improvements are even better (up to 41%) for

the very large instances (up to 20 projects with each

120 activities to be planned), indicating good scalabil-

ity. Figure 8 compares the average project delay over all

instances of the learning approach with all the methods

from the literature. It is clear that a significant APD

improvement over other methods from the literature

is realized. Many new best APD solutions were found,

showing 104 best APD solutions out of 140 instances on

the MPSPLIB benchmark website (last check on June

17, 2013). It must be noted that the literature’s best was

often found by decentralized methods assuming infor-

mation asymmetry. These new best results, calculated

by the centralized learning approach, may somehow be
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Problem subset NOI Characterization per instance Size

n Ji (|G| ; |Li|)
MP30 2 5 2 30 (1;3) or (2;2) or (3;1) 60
MP90 2 5 2 90 (1;3) or (2;2) or (3;1) 180
MP120 2 5 2 120 (1;3) or (2;2) or (3;1) 240
MP30 5 5 5 30 (1;3) or (2;2) or (3;1) 150
MP90 5 5 5 90 (1;3) or (2;2) or (3;1) 450
MP120 5 5 5 120 (1;3) or (2;2) or (3;1) 600
MP30 10 5 10 30 (1;3) or (2;2) or (3;1) 300
MP90 10 5 10 90 (1;3) or (2;2) or (3;1) 900
MP120 10 5 10 120 (1;3) or (2;2) or (3;1) 1200
MP30 20 5 20 30 (1;3) or (2;2) or (3;1) 600
MP90 20 5 20 90 (1;3) or (2;2) or (3;1) 1800
MP120 20 5 20 120 (1;3) or (2;2) or (3;1) 2400
MP90 2AC 10 2 90 (4;0) 180
MP120 2AC 10 2 120 (4;0) 240
MP90 5AC 10 5 90 (4;0) 450
MP120 5AC 10 5 120 (4;0) 600
MP90 10AC 10 10 90 (4;0) 900
MP120 10AC 10 10 120 (4;0) 1200
MP90 20AC 10 20 90 (4;0) 1800
MP120 20AC 10 20 120 (4;0) 2400

Table 1 Problem datasets and their properties [Homberger, 2012]. NOI is the number of instances, n is the number of projects,
Ji is the number of activities of project i, |G| is the number of global resources, |Li| is the number of local resources of project
i, Size is the total number of activities.

Fig. 6 Schedule comparison, sequential (left) vs interleaved (right).

used as a benchmark for decentralized methods in the

future.

When the total makespan objective (TMS) is con-

sidered, the learning approach performs best with an

interleaved activity list combination method. Table 3

shows TMS results obtained with the interleaved method.

The learning approach is able to keep up with the best

in the literature. Even a slight improvement can be ob-

served on some datasets. Figure 9 compares the total

makespan over all instances. The performance of the

learning approach is very competitive with the other

methods reported in the literature. Only RES [Homberger,

2007] reaches a slightly better average TMS over all in-

stances. Nevertheless, several new best TMS solutions

were obtained. Moreover, the learning approach gener-

ated some Pareto non-dominated solutions, which im-

prove on both objectives (APD and TMS). Figure 10 il-

lustrates a multi-objective comparison of both the TMS

and APD results obtained with other methods on in-

stance j90 a10 nr5.

The results mentioned in Table 2 and Table 3 have

been validated and uploaded to the Multi-Project Prob-

lem Library website (http://www.mpsplib.com).

4.4 Comparison with priority rules

This section compares the learning-based optimization

approach with well known priority rules for the RCMPSP.

[Browning and Yassine, 2010] summarizes all priority

rules for the RCMPSP. All priority rules from Browning
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Literature Learning approach

Problem subset (APDAV ) (APDAV ) Time (s) Difference
MP30 2 12.4 11.2 21.4 9.7%
MP90 2 5.6 5.3 83.4 5.4%
MP120 2 60.8 49.4 184.2 18.8%
MP30 5 16.7 15.4 79.7 7.8%
MP90 5 8.9 7.8 297.2 12.4%
MP120 5 65.1 48.5 673.6 25.5%
MP30 10 84.4 52.0 250.8 38.4%
MP90 10 46.1 31.8 1448.6 31.0%
MP120 10 131.0 100.0 2110.6 23.6%
MP30 20 177.8 111.4 868.4 37.3%
MP90 20 30.2 17.6 3305.2 41.8%
MP120 20 31.8 28.2 6946.4 11.3%
MP90 2AC 127.8 104.3 144.3 18.4%
MP120 2AC 47.0 35.2 154.2 25.1%
MP90 5AC 287.8 244.6 553.1 15.0%
MP120 5AC 247.5 178.8 871.1 27.8%
MP90 10AC 244.9 169.4 1414.5 30.8%
MP120 10AC 151.0 96.9 2618.5 35.8%
MP90 20AC 146.4 85.4 4252.1 41.7%
MP120 20AC 237.1 158.6 8586.0 33.1%

Table 2 Comparison of average project delay with the best in the literature

Literature Learning approach

Problem subset (TMSAV ) (TMSAV ) Time (s) Difference
MP30 2 63.6 63.4 21.4 0.3%
MP90 2 107.2 107.6 76.8 -0.4%
MP120 2 169.0 173.4 180.2 -2.6%
MP30 5 89.2 87.2 64.0 2.2%
MP90 5 123.6 123.8 260.6 -0.2%
MP120 5 182.2 191.0 558.0 -4.8%
MP30 10 180.6 180.4 196.2 0.1%
MP90 10 180.4 182.4 899.0 -1.1%
MP120 10 279.8 287.8 1463.4 -2.9%
MP30 20 327.4 330.8 635.6 -1.0%
MP90 20 161.6 161.4 1961.8 0.1%
MP120 20 187.6 186.0 2848.2 0.9%
MP90 2AC 232.2 235.7 144.3 -1.5%
MP120 2AC 139.2 147.2 156.4 -5.7%
MP90 5AC 538.2 551.7 548.1 -2.5%
MP120 5AC 480.7 493.1 842.2 -2.6%
MP90 10AC 458.3 469.4 1220.2 -2.4%
MP120 10AC 350.7 357.3 1857.1 -1.9%
MP90 20AC 285.9 286.7 2521.3 -0.3%
MP120 20AC 506.4 512.9 5040.6 -1.3%

Table 3 Comparison of total makespan with the best in the literature

and Yassine [2010] have been implemented and tested

on the MPSPLib benchmark. It was chosen because it

also considers the average project delay as an objective.

The priority rules are listed in Table 4. A parallel sched-

ule generation scheme is used. For more details about

these priority rules we refer the reader to Browning and

Yassine [2010].

Figure 11 shows the average APD over all instances

for the considered priority rules and compares it with

the learning approach. The learning approach performs

better than any of the priority rules. Furthermore, if

one would combine all priority rules, it would give an

average APD of 124.72, which is still significantly worse

than the result of the learning approach. The best pri-

ority rules are LCFS and SASP, while the worst priority

rules are FCFS and WACRU.

4.5 Effect of the sequence game

Figure 12 shows the difference between a completely

random SAL (random feasible activity lists and ran-

dom project order), and a SAL constructed with the se-
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FCFS first come first served
SOF shortest operation first
MOF maximum (longest) operation first
MINSLK minimum slack
MAXSLK maximum slack
SASP shortest activity from shortest project
LALP longest activity from longest project
MINTWK minimum total work content
MAXTWK maximum total work content
RAN random
EDDF earliest due date first
LCFS last come first served
MAXSP maximum schedule pressure
MINLFT minimum late finish time
MINWCS minimum worst case slack
WACRU weighted activity criticality and resource utilization
TWK-LST MAXTWK and earliest late start time (2-phase rule)
TWK-EST MAXTWK and earliest early start time (2-phase rule)
MS maximum total successors
MCS maximum critical successors

Table 4 Implemented priority rules from Browning and Yassine [2010].
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Fig. 11 Comparison of the learning approach with priority rules from Browning and Yassine [2010].

quence game (dispersion game). The figure shows aver-

age APD evolution per 1000 iterations, for one RCMPSP

instance (j30 a10 nr4). The noticeable APD increase is

due to learning a good sequence via a dispersion game.

4.6 Global vs individual reward

In real world situations, each project manager can have

individual objectives and goals. Whereas, the RCMPSP

studied in the present papers considers a global objec-

tive to be optimized. The proposed approach can be

classified as a central method, since all scheduling infor-
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Fig. 9 Comparison of algorithms with respect to total
makespan over all problem instances.

mation is known by the mediator. The decisions about

activity priorities are made locally by each project man-

ager, and can be parallelized in order to speed up de-

cision making. Moreover, the project managers them-

selves do not receive scheduling information about the

other projects. Only a single 0-1 global reward signal

is provided to them. In order to assess the importance

of global knowledge, an experiment was conducted to

study the difference between a system with a global
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Fig. 10 Multi-objective comparison on instance j90 a10 nr5.
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Fig. 12 Effect of the sequence game on instance j30 a10 nr4.

reward signal and one with an individual reward sig-

nal. The project managers receive a binary reward sig-

nal based on the APD objective value in the global

reward signal test. Contrastingly, the test with indi-

vidual reward signal provides a binary reward signal

based on the managers’ individual project delay (PDi).

The project managers do not know how the global sys-

tem is evolving during the search. Both reward signals

are β(t) = 1, if the objective value was improved, and

β(t) = 0 otherwise.

Figure 13 shows the difference in solution quality

(APD) between the two aforementioned systems. The

following settings were used: stopping criterion = 100, 000

schedule generations, and learning rate αreward = 0.001

for updating all the learning automata. The figure clearly

shows the negative impact of losing global knowledge on

all problem subsets. The solutions obtained with the

global reward signal are on average 30% better than

the solutions obtained with the individual reward sig-

nal. This result, showing the importance of the global

reward signal, was somehow expected since the project

managers have conflicting goals. The result also shows
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the importance of a good coordination mechanism among

the project managers, in this work handled by a disper-

sion game.

5 Conclusion

A new learning-based optimization approach to the

resource-constrained multi-project scheduling problem

(RCMPSP) was introduced. Project managers learn a

sequence of activities using a network of learning au-

tomata. In the meantime, project managers also play a

sequence game, in which they all need to select a dis-

tinct action, representing their position in the overall

project order list. The outcome of this game determines

the order of the projects’ activity lists for building a

multi-project schedule. A dispersion game was played

with a probabilistic version of the basic simple strategy,

which is a method with logarithmic performance char-

acteristics. An additional mediator was used to coordi-

nate the dispersion game, and to build a multi-project

schedule using a serial schedule generation procedure.

Combining the separate activity lists in a sequential

way by playing the sequence game (opposed to an in-

terleaved way) leads to smaller average project delays.

The learning approach was evaluated on the MP-

SPLIB benchmark, and was able to generate sched-

ules with an average project delay superior to all the

previous best results. Concerning the total makespan

objective, the algorithm shows to be competitive with

the state of the art. Many new best schedules on the

benchmark instances were found, some of them even im-

proved on both considered objectives (average project

delay and total makespan). The experiments conducted

on the MPSPLIB benchmark clearly revealed the algo-

rithm’s scalability.

In addition to the presented sequential and inter-

leaved activity list combination methods, one could test

the whole spectrum of combinations. A multi-objective

optimization version of the RCMPSP, where Pareto

non-dominated solutions need to be found, opens per-

spectives for further improvement.

References

S. Adhau, M.L. Mittal, and A. Mittal. A multi-agent

system for distributed multi-project scheduling: An

auction-based negotiation approach. Engineering

Applications of Artificial Intelligence, 25(8):1738 –

1751, 2012.

T. R. Browning and A. A. Yassine. Resource-

constrained multi-project scheduling: Priority rule

performance revisited. International Journal of Pro-

duction Economics, 126(2):212 – 228, 2010.

P. Brucker, A. Drexl, R. Möhring, K. Neumann, and
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