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§ Abstract

As embedded electronics continue to be integrated into our daily lives at such
a pace that there are nowadays more cellphones than people on the planet,
security is becoming ever more crucial. Unfortunately, this is all too

often realized as an afterthought and thus the security implementations in many
embedded devices o�er little to no practical protection. Security does not require
only cryptographic algorithms; two other critical modules in a secure system are
a key generation module and a random number generator (RNG). The lack of well
thought-out implementations of these modules has been the downfall of the security
in many devices, many of them high-pro�le.

In this thesis, we look into ways of constructing secure versions of both of these
building blocks in embedded devices. Towards this end, we turn our attention to
physically unclonable functions (PUFs). A PUF is a promising, relatively novel
primitive that functions as a �ngerprint for electronic devices. In our research, we
have combined PUFs with custom hardware modules, such as a BCH error correcting
code decoder, to create the �rst “black box” PUF-based key generation module. Our
implementation requires very little real estate, proving that very e�cient BCH error
correcting codes, which are normally written o� as being unwieldy and complex, are
in fact feasible for use in PUF-based systems.

We furthermore investigate the presence of PUFs in commercial o�-the-shelf (COTS)
microcontrollers. A thorough investigation of the usability of SRAM as PUFs and
RNGs in a handful of the most prominent microcontroller families on the market is
presented. We discuss the practical use of the measured microcontrollers in light of
our �ndings, and show that there are large di�erences between the various families.
Our study is the �rst of its kind, and clearly displays the need for continued work in
this fashion on other microcontrollers.

Finally, we develop a system for a secure RNG on COTS embedded devices, leveraging
errors in available PUFs as a source of entropy. Building upon the �ndings of our
microcontroller study, we successfully implement this system onto various ARM
Cortex-M microcontrollers. Part of this result is an implementation of the Keccak
algorithm, the smallest published to date.
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§ Samenvatting

I n onze moderne leefwereld, waarin er meer smartphones dan mensen op de
planeet zijn en de opmars van geïntegreerde elektronica gestaag blijft toenemen,
is beveiliging onontbeerlijk. Helaas wordt dat bij het ontwerpen van apparaten

vaak te laat gerealiseerd, waardoor de beveiliging van vele geïntegreerde toestellen
vaak amper tot geen bescherming biedt. Beveiliging bestaat uit meer dan cryptogra�e,
twee andere noodzakelijke bouwblokken zijn een sleutelgeneratie module en
een willekeurige nummergenerator (RNG). Door een gebrek aan weldoordachte
implementaties van deze modules werd de afgelopen jaren de beveiliging van vele
apparaten gebroken, wat in verschillende gevallen tot grote kosten leidde.

In deze thesis onderzoeken we methodes om veilige versies te maken van beide
bovengenoemde bouwblokken, voor gebruik in geïntegreerde elektronica. Hiervoor
richten we onze aandacht op fysisch onkloonbare functies (PUFs). PUFs zijn
veelbelovende, redelijk moderne cryptogra�sche primitieven die functioneren als
een vingerafdruk voor elektronica. In ons onderzoek combineren we PUFs met op
maat gemaakte hardware, zoals een BCH foutcorrectie module, om zo te komen
tot ’s wereld’s eerste “black box” PUF-gebaseerde sleutelgeneratiemodule. Onze
implementatie vereist zeer weinig oppervlakte, wat bewijst dat BCH foutcodes van
praktisch nut zijn voor PUF-gebaseerde systemen, hoewel zulke codes doorgaans
afgeschreven worden als zijnde te complex.

Verder onderzoeken we de aanwezigheid van PUFs in commercieel verkrijgbare
microcontrollers. We presenteren een grondig onderzoek naar het gebruik van SRAM
als PUFs en RNGs in een aantal van de belangrijkste microcontrollerfamilies. Onze
resultaten tonen aan dat er drastische verschillen zijn tussen deze families, ze zijn
niet allen geschikt voor veilige implementaties. Ons onderzoek is het eerste in zijn
soort en demonstreert een duidelijke nood aan voortgezet werk van deze aard.

Ten slotte ontwikkelen we een systeem voor een veilige, software-gebaseerde RNG op
microcontrollers, gebruikmakend van fouten in aanwezige PUFs als bron van entropie.
Voortbouwend op de bevindingen van onze microcontrollerstudie, implementeren
we dit systeem succesvol op verscheidene ARM Cortex-M microcontrollers. Een deel
van dit werk is de, tot nu toe, kleinste implementatie van het Keccak algoritme.
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1 Introduction

This method, seemingly very clever, actually played into our hands!
And so it often happens that an apparently ingenious idea is in fact a weakness

which the scienti�c cryptographer seizes on for his solution.
— Herbert Yardley, The American Black Chamber (1931)

Modern societies see an ever increasing use of portable computing devices,
the adoption of a growing number of smart appliances, and a pervasive
presence of electronics. This creates a strong need for security solutions

tailored to embedded devices. Because most of these devices are required to be
either as small, as power- or as energy-e�cient as possible, suitable cryptographic
implementation techniques di�er from those used in e.g. powerful desktop computers.

Crucial to the security of a cryptographic systems are the quality of the keys, random
numbers, nonces and initialization vectors. We start this chapter with use cases
of three cryptographic primitives used in most cryptographic applications. These
examples illustrate the importance of the aforementioned keys, etc. This point is
driven home further by a discussion on recent cryptographic security failures of
systems lacking exactly those components.

The second part of the chapter outlines the contents of this thesis which focuses
on e�cient implementations for the generation of high quality keys and random
numbers on embedded devices. The contributions in this context are i) an elaborate
set of measurements on memory behavior for PUF purposes in the most popular
families of o�-the-shelf microcontrollers; ii) the, at time of writing, smallest software
implementation of the hash function Keccak for microcontrollers; iii) a lightweight,
practical implementation for strong random number generation on microcontrollers;
and iv) an area e�cient design and implementation for high quality PUF-based key
generation.

1



2 INTRODUCTION

1.1 Cryptographic primitives

In this �rst section, we explain three cryptographic primitives: symmetric crypto-
graphy, asymmetric cryptography, and hash functions. Most, if not all, cryptographic
protocols require one or more of these primitives. For each of these primitives, we give
a typical use case example, which demonstrates the importance of two components
that are often overlooked or (falsely) assumed present: secure keys and a strong
random number generator.

1.1.1 Symmetric key cryptography

Symmetric key cryptography is the workhorse of modern cryptography, and was the
only known type of crypto until the invention of asymmetric cryptography.

De�nition 1.1. A cryptographic algorithm is symmetric if it is computationally easy
to determine from the encryption key ke the decryption key kd , and vice versa.[86, p. 15]

For the majority of such algorithms, the encryption and decryption keys are the same.
The basic principle of symmetric crypto is illustrated in Figure 1.1. The sender, Alice,
encrypts a plaintext P , i.e. the message, using a shared key k . The encrypted message
C , i.e. the ciphertext, is then sent to Bob. He can decrypt C and recover P , because he
knows the same key k . An eavesdropper, Eve, who does not know k , learns nothing
about the plaintext P from the ciphertext C , apart from perhaps its length.

Shared key k

P k
ciphertext C

k P

Alice Bob

Eve

Figure 1.1: The working principle of symmetric key cryptography.

[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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Symmetric key crypto has been in use since ancient times, �rst by the Babylonians
starting around 500 B.C.,[61] later on famously by Julius Caesar[33] to keep military
messages secret. These ancient ciphers, and a myriad of more recent ones, have
not been able to withstand the test of time, and have been broken by cryptanalytic
methods. Nowadays, the two most used symmetric ciphers are 3DES,[9] mostly in the
�nancial industry, and AES,[30] the de facto standard used in the majority of protocols
where a symmetric cryptography algorithm is required.

Symmetric crypto is very fast, which is one of the major reasons why it is the
workhorse of modern crypto. The biggest drawback is the necessity for all parties to
have knowledge of the same secret key. Naturally, such a situation leads to a chicken
and egg problem: how does one securely transfer a secret key to other parties if there
is no established secret key yet?

In general, symmetric crypto algorithms are divided into two groups, block ciphers
and stream ciphers. We will discuss both very concisely in the next few paragraphs.

De�nition 1.2. A stream cipher is an encryption scheme that generates one symbol
(i.e. a bit) of the keystream at a time, based on an internal state. This symbol is then
combined with the plaintext, usually with a XOR operation.[86, p. 20]

The main advantage of stream ciphers is that they are generally fast and compact.
This is because they only have to generate a single symbol of the keystream at a time,
and hence the mathematical operations which they have to execute at each time step
are limited. Furthermore, since ciphertext bits are encrypted independent from one
another, losing a ciphertext bit during transmission only leads to that bit being lost, it
has no impact on the decryption of other ciphertext bits.

However, care should be taken to never generate a keystream from the same initial
value, since this makes the generated ciphertexts extremely vulnerable to attack.

Due to their properties, stream ciphers are often used in communication systems,
where high throughput is important. For example, the RC4[105] cipher, which is now
considered broken, has been used for a very long time to encrypt transmissions
to and from secure websites on the internet. Certain companies, such as Google,
are now using another stream cipher, Salsa20,[13] to encrypt such transmissions.

[9] W. C. Barker, “Recommendation for the Triple Data Encryption Algorithm (TDEA) block cipher”
(2004).

[13] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers” (2008).
[30] J. Daemen and V. Rijmen, “The Design of Rijndael: AES – The Advanced Encryption Standard” (2002).
[33] C. A. Deavours et al., “Cryptology: Yesterday, Today, and Tomorrow” (1987).
[61] C. D. Isbell, “Some Cryptograms in the Aramaic Incantation Bowls” (1974).
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).

[105] R. L. Rivest and J. C. N. Schuldt, “Spritz—A spongy RC4-like stream cipher and hash function” (2014).
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Another example of a famous stream cipher is A5/1,[48] which was one of the original
ciphers used to encrypt transmissions over the cellular GSM network. Unfortunately,
this cipher has been broken as well.

De�nition 1.3. A block cipher is an encryption scheme that breaks up the plaintext
into strings (called blocks) of a �xed length l and encrypts these one at a time.[86, p. 16]

Block ciphers are very �exible building blocks, not only can they be used to encrypt
data, but also to construct e.g. message authentication codes, hash functions, or
pseudo-random number generators. These concepts will be explained further on.
They can even be used to construct stream ciphers. Hence, block ciphers are not
limited to encryption of �xed length data blocks.

The most famous block cipher nowadays is undoubtedly AES,[30] which is used in
the majority of protocols that utilize a block cipher. As stated before, many �nancial
institutions still use 3DES[9] for encryption of data.

Block ciphers are always used in so-called modes of operation.[86, p. 228] The most
straightforward mode to use a block cipher in is by inputting data block by block and
then concatenating the generated result. This is called electronic codebook (ECB)
mode, and is illustrated in Figure 1.2.

kS

P0

C0

kS

P1

C1

kS

Px

Cx

. . .

. . .

. . .

plaintext P

ciphertext C

Figure 1.2: Block cipher encrypting data in ECB mode.

[9] W. C. Barker, “Recommendation for the Triple Data Encryption Algorithm (TDEA) block cipher”
(2004).

[30] J. Daemen and V. Rijmen, “The Design of Rijndael: AES – The Advanced Encryption Standard” (2002).
[48] J. D. Golic, “Cryptanalysis of Alleged A5 Stream Cipher” (1997).
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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However, ECB mode is notorious for its insecurity, because identical blocks of plaintext
all get encrypted to the same value. This reveals patterns in the plaintext and is thus
clearly not secure. In order to solve this problem, there are many other modes that
one can use, for example the cipher-block chaining (CBC) mode, shown in Figure 1.3.
One important di�erence between ECB and CBC mode is that CBC mode requires an
extra input, a so-called initialization vector (IV). An IV can be made public, although
it is recommended to keep it a secret. IVs should always be selected at random and
used only once, otherwise the security of the algorithm implementation in which it is
used is (severely) weakened.

kS

P0

C0

kS

P1

C1

kS

Px

Cx

. . .

. . .

. . .

IV

plaintext P

ciphertext C

Figure 1.3: Block cipher encrypting data in CBC mode.

Example An illustration of the di�erence between an image encrypted with AES
in ECB and CBC mode is shown in Figure 1.4. It is clear that even though the correct
colors cannot be seen in the ECB encrypted image, it is still trivial to identify the
shape of the unencrypted image. Thus, a lot of information about the plaintext, the
unencrypted image, is leaked. The CBC encrypted image, on the other hand, looks
like random data: it is impossible to make out the original image without knowledge
of the key used to encrypt it.

There are various other secure modes in which a block cipher can be used, all with
their speci�c pros and cons. The di�erence between ECB mode and secure modes is
that all of the latter ones require as an extra input a value used only once (nonce).
The generation of an good nonce/IV often requires the availability of a strong random
number generator (RNG), although in some cases using a simple counter is su�cient.



6 INTRODUCTION

(a) Unencrypted (b) ECB mode encryption (c) CBC mode encryption

Figure 1.4: Example of encrypting an image with AES in di�erent modes.

1.1.2 Asymmetric cryptography

It wouldn’t be until 1976 that a solution to symmetric crypto’s chicken and egg
problem was invented in the form of the Di�e-Hellman key exchange algorithm.[39]

A year later, RSA[104] made its entrance as the �rst asymmetric encryption algorithm.

De�nition 1.4. An asymmetric cryptographic algorithm has the encryption key kP
publicly available, while the decryption key kS remains a secret. For such an algorithm
to be secure, it should be computationally infeasible to compute kS from kP .[86, p. 25]

Asymmetric cryptography is often called public key cryptography, the encryption key
called the public key, and the decryption key the private key. The general principle is
illustrated in Figure 1.5. The sender, Alice, gets Bob’s public key kP from a publicly
available key storage database. She then encrypts a plaintext P using kP to generate
the ciphertext C . The only way to decrypt C is by using Bob’s secret key kS . Thus,
even Alice cannot decrypt the message she just encrypted, because she does not know
ks . Eve, an eavesdropper who has no knowledge of kS either, the ciphertext C reveals
nothing about the plaintext P .

Since the publication of RSA, many more public key algorithms have been invented.
Examples of these are McEliece,[85] lattice-based,[2] and elliptic curves.[66,89] Despite its

[2] M. Ajtai and C. Dwork, “A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence”
(1996).

[39] W. Di�e and M. E. Hellman, “New Directions in Cryptography” (1976).
[66] N. Koblitz, “Elliptic Curve Cryptosystems” (1987).
[85] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory” (1978).
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
[89] V. S. Miller, “Use of Elliptic Curves in Cryptography” (1985).

[104] R. L. Rivest et al., “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems” (1978).
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kPb

Public
keys

kSb

P kPb
ciphertext C

kSb P

Alice Bob

Eve

Figure 1.5: The working principle of asymmetric key cryptography.

age, RSA is still being used for the majority of public key protocols. However, recently
elliptic curve crypto has been becoming more popular, since it requires much shorter
keys and can, in many cases, be made to run much faster.

Compared to symmetric crypto the speed of asymmetric crypto is orders of magnitude
slower, which is why it is generally only used to set up a shared secret between parties,
after which the switch to symmetric crypto can be made.

Example Key establishment is one of the most important uses of asymmetric
cryptography. Using a key exchange algorithm, it is possible for two parties to
establish a secret shared key over an insecure channel, while only having access to
the other party’s public key.

One way to do this is with the Di�e-Hellman algorithm.[39] Figure 1.6 gives an
overview of how it works. Both parties, Alice and Bob, generate a random number
which will function as their private key. They then calculate their public key with
the use of their private one. Because it is extremely di�cult to invert this calculation,
i.e. to �nd a private key given the matching public one, Alice and Bob can send each
other their public key over a network that requires only authentication, no encryption.
They then combine the received public key their own private key to generate a shared
key, which can then be used for symmetric cryptography.

Both parties generally generate a di�erent random private key every time they execute
the Di�e-Hellman algorithm. Thus, a strong random number generator is required,
or an attacker will be able to guess the private key.

[39] W. Di�e and M. E. Hellman, “New Directions in Cryptography” (1976).
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kSa
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Private key
generation

Public key
calculation

Shared key
calculation

Figure 1.6: Overview of Di�e-Hellman key exchange.

1.1.3 Hash functions

De�nition 1.5. A hash function is a computationally e�cient mapping of inputs of
arbitrary length to a �xed length output.[86, p. 33]

Apart from the length reduction, a second important di�erence between hash functions
and (a)symmetric crypto algorithms is that the former do not need a (secret) key as
one of its inputs. The working principle of a hash function is shown in Figure 1.7. A
plaintext P is divided into �xed length sections, which are fed into the hash function.
Once all sections have been processed, a so-called hash digest D is generated. The
length of the digest D is independent of the length of P , and instead depends solely
on the hash function.

Px
. .
.

P1
P0

digest D

pl
ai
nt
ex
tP

Figure 1.7: The working principle of a hash function.

[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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Di�erent hash function exist for a variety of use-cases. For cryptography, one mostly
uses cryptographic hash functions. Although a large number of such functions are
available, nowadays SHA-2[92] is often used. Recently, a competition was held to
choose its successor, SHA-3, which was won by the Keccak[16] algorithm.

De�nition 1.6. A cryptographic hash function is a hash function for which it is
computationally infeasible to �nd i) two distinct inputs which hash to the same value
(collision resistance); and ii) �nd an x which hashes to the same value as a given hash
value, i.e. h(x) = y (pre-image resistance).[86, p. 323]

Another group of hash functions which often �nds use in cryptography are the
universal hash functions, which are de�ned as follows.

De�nition 1.7. Given a set H of hash functions h mapping inputs from setA to outputs
of set B. This set is universal if, given inputs x , y ∈ A, and h chosen uniformly at
random fromH, then the probability for a collision is Pr(h(x) = h(y)) ≤ 1

|B | .
[26]

Example An important use of hash functions is password veri�cation. One of the
properties of cryptographic hash functions is that it is extremely di�cult to �nd a
plaintext which hashes to a given digest. Therefore servers should store digests of
user’s passwords instead of the passwords themselves. Checking a password is then
done by �rst hashing the password a user input, and then comparing this with the
stored digest. An attacker getting hold of these digests will not be able to invert
digests to �nd the passwords.

However, if the attacker does not care which person’s password he �nds, he can use
a prepared database of plaintext–digest pairs, with the plaintexts being often used
passwords. Due to the birthday paradox, changes are high that the attacker will be
able to match digests which also appear in his prepared database.

In order to stop such attacks, a system called salting is used, shown in Figure 1.8.
With salting, one concatenates each password and some random data, called the salt,
and then hashes the result. The digest is stored together with the salt value. To verify
a login attempt, one �rst concatenates the stored salt and the to-be-veri�ed password.
An attacker who wants to use the previously mentioned attack against such a system
needs to have a separate plaintext–digest pair database for every di�erent salt value.
However, doing so is computationally infeasible due to the required calculation time.

[16] G. Bertoni et al., “The Keccak reference” (2011).
[26] J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions” (1977).
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
[92] National Institute of Standards and Technology, “FIPS 180-4, Secure Hash Standard, Federal Information

Processing Standard (FIPS), Publication 180-4” (2002).
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Another important use case of hash functions is the creation of a message
authentication code (MAC). MACs are created by combining a secret key k and
a message m using a hash function. If a message and MAC pair (m,M) is transmitted,
the receiver, who knows the secret key, can verify whether the received pair (m′,M ′)
has been tampered with. He does this by calculating Mr = MAC(k,m′) and comparing
it to the received MAC M ′. Without knowledge of the secret key, an attacker cannot
calculate the MAC, and thus cannot tamper with either the message or MAC without
creating a mismatch between them. Thus, if Mr matches M ′, the receiver knows that
m′ matchesm.

kx

+

Sx

. . .

+

. . .

k1

+

S1

k0

+

S0

dx. . .d1d0
salted
digests

Figure 1.8: Principle of password salting

1.1.4 Keys and random numbers

As the previous examples clearly show, any implementation of a secure cryptographic
protocol typically requires a secure RNG, whether to generate a key, a nonce, or both.

De�nition 1.8. A random number generator (RNG) is a device or algorithm that outputs
a sequence of statistically independent and unbiased numbers.[86, p. 170]

In an ideal world all RNGs would be based on unpredictable natural phenomena
(e.g. thermal noise). Such systems, called true random number generators (TRNGs),
unfortunately su�er from one or more disadvantages which makes them often
unfeasibly for practical use, e.g. large size, slow number generation, or high cost.

The major advantage of TRNGs is that they generate data with very high entropy, a
measure for information content (see Section 2.6.7). The higher the entropy, the more
information the data contains, and thus the harder it is to estimate its contents.

Because of the drawbacks, most implementations are relegated to the use of
pseudo-random number generators (PRNGs), deterministic algorithms which produce
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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seemingly random data. Many PRNGs exist, a few of which are suitable for use in
cryptographic systems, e.g. Yarrow,[64] Blum Blum Shub[18] and various hash- and
block cipher-based designs.[8]

De�nition 1.9. A pseudo-random number generator (PRNG) is an algorithm that given
a truly random value of length n, the seed, outputs a sequence of length l � n.[86, p. 170]

Since the PRNG algorithm itself is deterministic, the output only looks random to
someone without knowledge of the seed value. In order to test the quality of a PRNG
several statistical tests are used, which are discussed in Section 2.6.6. However, passing
these tests is not su�cient for a PRNG to be cryptographically secure. Such a PRNG
should pass the next-bit test. Note that this requires the seed value to be of su�cient
length, such that an adversary can not simply iterate over each possible seed value
and check whether it generates the same values as the given output sequence.

De�nition 1.10. A PRNG passes the next-bit test if there exists no polynomial-time
algorithm that can predict the (l + 1)th bit of output sequence s with a probability
signi�cantly greater than 1

2 , given the �rst l bits of s .[86, p. 171]

There are a few extra properties which a cryptographically secure PRNG should
have. These are grouped under the term robustness,[7] which entails three properties:
forward security, backward security, and resiliency.

Forward security means that an adversary who knows the internal state of the PRNG
at time t can not predict past outputs generated at time t − i . In other words, the
algorithm should function as a one-way function. Bellare and Yee[11] present methods
that make any PRNG forward secure. One simple one consists of hashing the output
of the PRNG before disclosing it. Of course, it is more e�cient if such functionality is
already built into the algorithm itself.

Backward security is similarly de�ned. Assuming a compromise of the PRNG’s
internal state at time t , then we say the PRNG is backward secure if knowledge of
this state does not allow an adversary to predict future outputs at time t + i . Since
a PRNG algorithm is deterministic, this property can only be met if new entropy
is introduced into the state, a process which is called reseeding. Note that in most

[7] B. Barak and S. Halevi, “A Model and Architecture for Pseudo-Random Generation with Applications
to /dev/random” (2005).

[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic
Random Bit Generators” (2012).

[11] M. Bellare and B. Yee, “Forward-Security in Private-Key Cryptography” (2001).
[18] L. Blum et al., “A Simple Unpredictable Pseudo-Random Number Generator” (1986).
[64] J. Kelsey et al., “Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic

Pseudorandom Number Generator” (1999).
[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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practical implementations, one can not constantly reseed a PRNG, since that would
require a TRNG with throughput at least equal to the PRNG. Hence there would be
no reason to use a PRNG to start with. Thus, a PRNG that is backward secure will in
reality gradually recover its security after its state has been compromised.[43]

A PRNG is resilient if an adversary can not predict future PRNG outputs, even if
he can in�uence the entropy pool that is used to (re)seed the internal state of the
PRNG.[42] Note that this does not mean that the adversary knows the internal state.

Note the distinction between a cryptographically secure PRNG and the keystream
generator of a stream cipher. These two building blocks, while similar, have a few
distinct di�erences. The most obvious one is that a keystream generator block can not
be backward secure, since this would require both parties to have access to the same
source of true randomness. If that were the case, then this source of true randomness
must be deterministic, which is clearly contradictory to its de�nition.

In modern operating systems, the di�cult task of generating random numbers is
often left to a central PRNG module. Thus, if the PRNG used in such a system is not
robust, then an adversary will be able to predict both future and past states of the
“centralized” PRNG all from within a single application. This will then allow him
to predict and calculate keys and nonces used by cryptographic algorithms in other
applications that also make use of the “centralized” PRNG.

Thus, although cryptographically secure PRNGs solve many drawbacks of TRNGs,
they are certainly not without problems. The major problems is that their output
depends on an internal secret state. Guaranteeing unpredictable output requires that
the state is initialized, i.e. seeded, and later on reseeded, with high entropic data.

On desktop and server computers a few such seeding sources are available. For
example, there is the time between network packet arrival, delay between keyboard
key presses, and mouse cursor movement patterns. Furthermore, manufacturers have
been picking up on the problem of seeding PRNGs. As a result Intel has added a
hardware PRNG with a TRNG at its core[60] to their newest line of processors.

Finding entropy sources on embedded devices is much more problematic. Unlike
general purpose computers, many embedded devices do not have user input. Most of
them do not have a network connection either, and even if they do, not much data is
sent in order to conserve power. It is thus no surprise that the security of embedded
systems su�ers worse due to this problem, further exempli�ed later on in this section.

[42] Y. Dodis et al., “Security Analysis of Pseudo-Random Number Generators with Input: /dev/random is
not Robust” (2013).

[43] Y. Dodis et al., “How to Eat Your Entropy and Have it Too – Optimal Recovery Strategies for
Compromised RNGs” (2014).

[60] Intel Corporation, “Intel Digital Random Number Generator (DRNG) Software Implementation Guide”
(2012).
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Physically unclonable functions (PUFs), a recent development in cryptography which
functions as an electronic �ngerprint, have the potential to solve some of these
problems. PUFs allow for secure generation of device-dependent keys without external
input, thus removing the need for companies to program high quality keys into their
systems. For more background information on PUFs, see Chapter 2.

Unfortunately, the requirement for a strong (P)RNG is a fact often overlooked during
the implementation of cryptographic systems. There are many examples of systems
being broken because of the use of either a non-secure random number generator, or
because of incorrectly seeding a cryptographically secure PRNG. The next section
contains a multitude of examples of this.

1.2 Problem sketch

The general problem which we want to solve is the lack of secure keys, and of good
TRNGs and PRNGs, i.e. we want to provide solutions which provide highly entropic
keys and pseudo-random numbers. Since secure keys are generated from random data,
these two building blocks are related. Thus, what we are looking for are sources of
entropy that can be used to create these important building blocks. More speci�cally,
we are looking for such sources in embedded devices, since those are much scarcer, as
discussed earlier, and there is an urgent need for them, given the ubiquity of embedded
devices in our society. To further drive home the point that many cryptographic
implementations lack sources of adequate entropy, we will use the remainder of this
section to discuss several high-pro�le cases of cryptographic systems failing due to
exactly this problem.

Problems with PRNG implementations have plagued cryptography implementations
for many years. A famous example from the 90’s is the problematic implementation
of the PRNG in the Netscape browsers. Goldberg and Wagner[47] discovered that the
seed for the browser’s PRNG was constructed from the time of day, the browser’s
process ID, and the ID of the process that launched the browser. All of these values
are simple to guess, and thus an attacker could reconstruct the PRNG seed. Due to
this weakness, any data protected with the Secure Sockets Layer (SSL) protocol could
be easily decrypted.

A more recent high pro�le example of a buggy implementation is the seeding of
the PRNG used in Debian’s OpenSSL library between 2006 and 2008.[34,40] Due to a
software optimization the PRNG algorithm was not seeded with high quality random

[34] Debian Security, “DSA-1571-1 OpenSSL – Predictable Random Number Generator” (2008).
[40] R. Dingledine, “Tor Security Advisory: Debian Flaw Causes Weak Identity Keys” (2008).
[47] I. Goldberg and D. Wagner, “Randomness and the Netscape Browser. How secure is the World Wide

Web?” (1996).
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data. Its seeding data was of very bad quality, due to which only 32 768 di�erent
output streams could be generated by the PRNG. This lead to all keys generated by
those versions of the widely used library to be insecure, and millions of keys had to
be regenerated after the discovery of this bug.

Plenty of other examples are shown in research papers by both Lenstra et al.[71] and
Heninger et al.[53] The authors investigate the security of public keys freely available
on the internet. Most of the investigated keys are for use with the RSA algorithm.
Such keys are constructed using two randomly generated prime numbers. In an
ideal world, all available keys would be constructed with di�erent prime numbers.
However, it turns out that many publicly available keys share prime factors, thereby
severely weakening the security they provide. Heninger et al. managed to trace many
of these weak keys back to certain embedded networking devices which seed their
PRNG algorithm with very extremely low quality seeds.

More key related problems were discovered by Bernstein et al.,[14] who researched
the security of keys used on Taiwanese ID cards. The TRNG in certain models of
these cards is severely �awed, due to which the security of many generated keys is
weakened. Because the Taiwanese ID card is used for all sorts of activities in everyday
life, having breakable keys can have a large impact on people. Furthermore, the only
proper solution to this problem is replacing the cards in question and updating various
databases, a costly endeavor.

The MIFARE Classic RFID card by NXP is another high-pro�le example of a broken
design, in this case due to weaknesses in the PRNG algorithm itself.[32] This RFID card,
of which billions were in circulation, was used for e.g. entry into Dutch military
installations, and payment on the Dutch and London public transport systems.
Naturally, due to its widespread use, updating all a�ected system to use another
RFID card was an extremely expensive operation.

Finally, research by Gutterman et al.[51] and Dodis et al.[42] exposes �aws in the system
used to seed the PRNG used in Linux distributions. Given the widespread use of Linux
operating systems, such weaknesses are problematic.

All of these examples should make it clear that weak PRNG implementations (and
associated seeding algorithms) are rife, and are not limited to low-pro�le cases. Instead,
they have been resulted in �aws in multiple economically important infrastructures.

[14] D. J. Bernstein et al., “Factoring RSA keys from certi�ed smart cards: Coppersmith in the wild” (2013).
[32] G. de Koning Gans et al., “A Practical Attack on the MIFARE Classic” (2008).
[42] Y. Dodis et al., “Security Analysis of Pseudo-Random Number Generators with Input: /dev/random is

not Robust” (2013).
[51] Z. Gutterman et al., “Analysis of the Linux Random Number Generator” (2006).
[53] N. Heninger et al., “Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices”

(2012).
[71] A. K. Lenstra et al., “Ron was wrong, Whit is right” (2012).
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Clearly, one cannot treat them as an afterthought and expect to end up with a
cryptographically secure system.

1.3 Thesis outline

This thesis contains several contributions to the �eld of embedded security, and more
precisely to that of key generation and random number generation. We have developed
an area-e�cient building block for key generation, based on a novel PUF design and
an extremely tiny, custom-built error correction microcontroller. Furthermore, we
present the �rst large study of PUFs inherent to commercial-o�-the-shelf (COTS)
microcontrollers. Finally, combining the results of this study with the world’s smallest
implementation of Keccak to date, we implement an extremely compact software-
only securely seeded PRNG.

1.3.1 Chapter summaries

A summary of this thesis’ chapters, and, if applicable, a listing of the publications on
which they are based, follows.

Chapter 1 – Introduction The �rst chapter gives an introduction to selected
cryptographic building blocks. For each of them, we give examples which highlight
the importance of both secure keys and random number generators. We discuss
recent high-pro�le cases of broken cryptographic systems due to a lack of security
in their key generation and/or random number generation modules. We summarize
the contents and contributions of the remaining chapters. Finally, we give a brief
overview of our papers whose content is not discussed in this thesis.

Chapter 2 – PUF and RNG Background This chapter is �rstly a primer on PUFs:
what are physically unclonable functions, how does one use them, and how can they
be constructed? A major section deals with various metrics used to qualify PUFs.
This chapter furthermore includes an overview of the mathematical notation used in
the remainder of the thesis. We also discuss the way one can harness PUF behavior
for random number generation. Most of the content in this chapter can be considered
background knowledge, a few select sections are based on as yet unpublished material.

Chapter 3 – PUFKY: An Area-E�icient Key Generation Module The third
chapter deals with the design and implementation of a custom PUF-based hardware
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key generation device. We focus on the design and implementation of the error
correction microcontroller required for the design. Our contribution is the design of
an area e�cient, PUF-based black box module for cryptographic key generation. This
design is the �rst ever published completely functional one of its kind. Furthermore,
our microcontroller is the world’s smallest design for decoding BCH codes.

This chapter’s contents are derived from “Tiny, Application-Speci�c, Programmable
Processor for BCH Decoding” ,[123] by Van Herrewege and Verbauwhede, presented
at the International Symposium on System on Chip (2012), and “PUFKY: A Fully
Functional PUF-Based Cryptographic Key Generator” ,[79] by Maes, Van Herrewege, and
Verbauwhede, presented at the workshop on Cryptographic Hardware and Embedded
Systems (CHES 2012).

Chapter 4 – Analysis of SRAM in COTS Microcontrollers In the fourth chapter,
we discuss the evaluation SRAM as a PUF for four important microcontroller
families. These families are respectively the Microchip PIC16, Atmel ATmega, Texas
Instruments MSP430, and ARM Cortex-M. This is followed by a discussion on
the impact of these results on the possibility of software-based PUF and PRNG
implementations on these microcontrollers. Our contribution is the �rst thorough
experimental veri�cation whether embedded SRAM in COTS microcontrollers is �t
for software-based PUF and RNG designs.

This chapter’s content is based both on as yet unpublished work, and on “Secure
PRNG Seeding on Commercial O�-the-Shelf Microcontrollers” ,[121] by Van Herrewege,
van der Leest, Schaller, Katzenbeisser, and Verbauwhede, presented at the workshop
on Trustworthy Embedded Devices (TrustED 2013).

Chapter 5 – So�ware-based Secure PRNG Design The �fth chapter focuses
on the design of a securely seeded PRNG, using nothing but software on COTS
microcontrollers. We discuss a possible attacker model for such a system and its
impact on real-world implementations. Our contribution is the presented PRNG
system, as well as a highly optimized implementation of this system on various ARM
Cortex-M microcontrollers. Part of our design is the, at time of publication, world’s
smallest implementation of Keccak.

The content of this chapter is based on “Secure PRNG Seeding on Commercial O�-the-
Shelf Microcontrollers” ,[121] by Van Herrewege, van der Leest, Schaller, Katzenbeisser,
and Verbauwhede, presented at the workshop on Trustworthy Embedded Devices
(TrustED 2013), on “DEMO: Inherent PUFs and Secure PRNGs on Commercial O�-
the-Shelf Microcontrollers” ,[118] by Van Herrewege, Schaller, Katzenbeisser, and
Verbauwhede, presented at the conference on Computer and Communications Security
(CCS 2013), and on “Software Only, Extremely Compact, Keccak-based Secure PRNG on
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ARM Cortex-M” ,[122] by Van Herrewege and Verbauwhede, presented at the Design
Automation Conference (DAC 2014).

Chapter 6 – Conclusions In this �nal chapter we look back on the presented
results and their implications. We also discuss which uncharted terrain might prove
interesting for future research on key generation and RNGs for embedded devices.

1.3.2 Other publications

We conclude this chapter with a mention of publications whose content is not included.
The publications are listed in reverse chronological order, unless multiple publications
deal with the same topic, in which case all are mentioned together with the newest
publication.

“Chaskey: An E�cient MAC Algorithm for 32-bit Microcontrollers” ,[91] by Mouha,
Mennink, Van Herrewege, Watanabe, Preneel, and Verbauwhede, presented at the
conference on Selected Areas in Cryptography (SAC 2014), contains a proposal
for a new, extremely fast and small message authentication code (MAC) for 32-bit
processors. The MAC algorithm is based on a extremely e�cient round function. We
present implementation results on various ARM Cortex-M platforms, and show that
our design is about 7 to 15 times faster than AES-CMAC, and approximately 10 times
smaller.

The work in “Ultra Low-Power Implementation of ECC on the ARM Cortex-M0+” ,[31]

by de Clercq, Uhsadel, Van Herrewege, and Verbauwhede, presented at the Design
Automation Conference (DAC 2014), describes e�cient methods of implementing fast
elliptic curve cryptography (ECC) on the ultra-low power ARM Cortex-M0+ platform.
By improving upon the commonly used Lopez-Dahab �eld multiplication method,
the fastest implementation to date of an ECC design on any ARM Cortex-M platform
is obtained. Furthermore, the implementation has the lowest energy requirements of
any published microcontroller implementation with similar ECC security parameters.

“Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software
Trusted Computing Base” ,[96] by Noorman, Agten, Daniels, Huygens, Piessens, Preneel,
Strackx, Van Herrewege, and Verbauwhede, the USENIX Security Symposium
(USENIX 2013) investigates methods by which one can provide hardware-based
trusted computing on embedded platforms. The theoretical work is supported by
an implementation of the proposed design, based on a Texas Instrument MSP430
microcontroller. Our contribution consists of an e�cient hardware implementation
of a cryptographic hash function.
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In “Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-
enabled RFIDs” ,[76] by Maes, Peeters, Van Herrewege, Wachsmann, Katzenbeisser,
Sadeghi, and Verbauwhede, presented at the workshop on Financial Cryptography (FC
2012), we present a lightweight authentication protocol for PUFs which greatly reduces
computation and storage requirements compared to traditional PUF authentication
protocols.

Both “LiBrA-CAN: A Lightweight Broadcast Authentication Protocol for Controller Area
Networks” ,[49] by Groza, Murvay, Van Herrewege, and Verbauwhede, presented at the
conference on Cryptology and Network Security (CANS 2012), and “CANAuth - A
Simple, Backward Compatible Broadcast Authentication Protocol for CAN bus” ,[119, 120]

by Van Herrewege, Singelée, and Verbauwhede, presented at the workshop Embedded
Security in Cars (escar 2011), present protocols for authenticating messages on the
controller area network (CAN) bus. The protocol in the former paper allows for �exible
master-slave and fail-safe signature generation. In the latter paper, the problems
associated with MACs on the CAN bus are investigated, and a backward compatible
protocol which allows real-time transmission of MACs is proposed.

In “Compact Implementations of Pairings” ,[117] by Van Herrewege, Batina, Knežević,
Verbauwhede, and Preneel, presented at the Benelux Workshop Information and
System Security (WiSSeC 2009), and “Compacte implementaties van paringen” ,[116] the
Master’s thesis on which the previous work is based, the design and implementation
of a low-area hardware design for the calculation of binary pairings is presented.

1.4 Conclusion

Using nothing but basic cryptographic constructions, we have shown in this chapter
that no secure cryptographic implementation can exist without secure key and random
number generation. Unfortunately, as our many real-world examples show, it has
been demonstrated time and again that many devices lack these basic building blocks,
leading to broken cryptography.

Generating secure keys and random numbers can be particularly problematic on
embedded devices. Yet, such devices are taking on an increasingly prominent role in
our daily lives, e.g. smart phones, RFID cards, wireless gadgets, . . . It is therefore of
critical importance that adequate cryptographic solutions are designed with these
devices in mind.

In the remainder of this thesis, we will therefore focus on secure key and random
number generation implementations �t for embedded designs. We have summarized
the content of each of the remaining chapters, and presented an overview of our
publications in the last section of the current chapter.



2 PUF and RNG Background

This time it had been magic.
And it didn’t stop being magic just because you found out how it was done.

— Terry Pratchet, The Wee Free Men (2003)

As the discussions and examples in the previous chapter have shown, a good key
generator and RNG method are essential for secure cryptographic systems.

In the last decade a new cryptographic primitive, the physically unclonable
function (PUF), has been introduced which shows great promise as, amongst other
things, a secure key generator. Our work focuses on the use of such PUFs for both
key and random number generation. Before we go into the details, an introduction
on PUFs is in order.

This chapter presents a concise background on PUFs, followed by a short section
on RNGs. We start out by de�ning PUFs, and give an overview of some of the
cryptographic constructions they help make possible. The physical e�ects leading to
a PUF’s behavior are discussed and, to give the reader a better idea of PUF designs,
some of the most studied constructions are presented. Next, a threat model for PUFs
is presented. We then discuss which measurements are used in order to assess the
quality of PUF constructions. Next, a method for error correction for PUFs is discussed.
Finally, we discuss how RNGs tie in with PUFs. For an extended treatise on what
exactly constitutes a PUF, its designs, and applications, we refer to Maes.[75]

2.1 Physically Unclonable Function

Describing a PUF is most easily done by regarding it as a �ngerprint for CMOS
integrated circuits. Just like a human’s �ngerprints, an ideal PUF is:

[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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Physical Both �ngerprints and a PUFs behavior are (due to) physical phenomena.
They are not learned or programmed, but are rather inseparable from the object
that they are part of.

Unclonable Control over the processes resulting in a speci�c �ngerprint or PUF
instance are beyond the grasp of today’s technology, making them physically
unclonable.

Function Taking the image of di�erent �ngers on a person’s hand results in di�erent
�ngerprints. In much the same way, a PUF can be queried with ‘challenges’
resulting in di�erent ‘responses’, most often these are both bit strings.

A PUF’s unclonability only applies to the physical aspect: just as it is possible to
make an arti�cial copy of a person’s �ngerprints, it is in some cases possible to model
PUFs. This e�ectively creates a mathematical clone of the PUF, an algorithm for the
challenge-response mapping.

Perhaps the most important parallel between �ngerprints and PUFs is their uniqueness.
No matter how large a group of people, or how big an amount of PUF circuits, the
chance to have two of them generate the same response to a challenge is negligible.
Even though a group of PUF circuits is manufactured using the same process, chaotic
behavior on a (sub-)microscopic scale results in each PUF instance responding
di�erently to being queried with the same challenge.

Another similarity between �ngerprints and PUFs is non-perfect reliability. Each
time one gets his �ngerprints scanned, the result is slightly di�erent. This is due to
the angle at which the �nger is scanned, dust or cuts on the �nger, . . . Specialized
algorithms are used to help match the �ngerprint to the one stored in a database.
Whereas an ideal PUF always returns exactly the same response to a given challenge,
so far no manufactured PUFs have managed this feat. Due to noisy processes, a PUF
instance will with very high probability generate a slightly di�erent response to the
same challenge each time it is queried. Just like �ngerprints, all PUF constructions
published so far require some form of post-processing or error-correction in order to
guarantee a given challenge always produces the same response.

Maes[75, Section 3.2] de�nes several PUF-related properties. A summary overview of
these properties is listed in Table 2.1. Many of the listed properties imply the existence
of others, e.g. none of the listed properties can exist in a PUF if it is not constructible.

In order to qualify as a PUF, a system needs at least both identi�ability and physical
unclonability. Besides these two minimally required properties, there are several
nice-to-have ones. These are not required for a system to be classi�ed as a PUF,
but increase its usability as one. For example, a PUF which has true unclonability
obviously has a greatly increased security margin over a PUF which only boasts
physical unclonability.

[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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Table 2.1: Summary of important PUF properties, based on work by Maes.[75]

Property Meaning

Constructibility Practical production of PUF is possible.
Evaluability Generation of response from challenge is easy.
Reproducibility Similar responses to same challenge for a PUF

instance.
(Inter-device) uniqueness Di�erent PUF instances generate largely di�erent

responses to same challenge.
Intra-device uniqueness The same PUF instance generates largely di�erent

responses to di�erent challenges.
Identi�ability Combination of reproducibility and uniqueness.
Physical Unclonability Technical impossibility to create a physical copy

of a PUF instance.
Unpredictability Infeasibility to predict a PUF’s response to a

challenge given a limited set of other challenge-
response pairs.

Mathematical Unclonability Unpredictability assuming unlimited challenge-
response pairs, i.e. infeasibility of creating a
mathematical model.

True Unclonability Combination of both physical and mathematical
unclonability.

One-wayness Predicting challenge from random given response
is infeasible.

Tamper Evidence Physical changes to PUF modify its challenge-
response behavior.

Strong Combination of true unclonability and a large
challenge-response set.

Note that inter-device uniqueness is called uniqueness in PUF literature, whereas
intra-device uniqueness is generally never mentioned. Therefore, if we don’t further
specify uniqueness, we are talking about the inter-device uniqueness property.

An ideal PUF is strong, meaning it has a response set that is exponentially large in
the size of the challenge, and true unclonability.[75] Unfortunately, it turns out that
designing such a PUF is exceptionally di�cult. All practical PUF designs published so
far have been unable to meet these requirements and are thus weak. Most often, this
is due to not having an exponentially large challenge-response set. On top of this,

[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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many types of PUFs can be modeled mathematically. Designing a cheap, practical
and strong PUF remains one of the biggest challenges in the �eld.

However, we would like to point out that that the established terminology strong
and weak is rather poorly chosen. Using a weak PUF in a design does not imply
an inherent lack of security in that design. One can almost always use a variety of
protocols and algorithms in order to work around the problems posed by weak PUFs.

Note that at least two di�erent de�nitions for strong exist. The �rst one, we have
already explained. The second common de�nition of a strong PUF is a PUF that has a
exponentially large challenge-response set, yet is not required to be unclonable.[35,38]

In this thesis, we use the �rst de�nition.

2.2 Applications

Due to their rather unique properties as cryptographic primitives, PUFs allow for
applications that would be impossible to construct otherwise. In the next paragraphs,
we list some of these applications and point out how they are made possible or
improved by the use of PUFs.

2.2.1 Identification & entity authentication

Identi�cation and entity authentication are closely related cryptographic notions, and
are often regarded as being one and the same. We make a slight distinction between
the two, as discussed by Menezes et al.[86, p. 385]

By identi�cation, we mean being able to produce some sort of identifying information,
without any proof whether this information is valid, or even belongs to the entity
presenting it. Entity authentication goes one step further. It requires proving the
validity of the identifying information, and that the entity presenting the proof did so
at the time the proof was requested, i.e. that the proof was not prepared beforehand.

A concept related to entity authentication is data origin authentication or message
authentication, which deals with proving the validity of a message’s content, i.e. that
the message originates from the correct party and hasn’t been tampered with.[86]

[35] J. Delvaux et al., “Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?”
(2014).

[38] J. Delvaux and I. Verbauwhede, “Side Channel Modeling Attacks on 65nm Arbiter PUFs Exploiting
CMOS Device Noise” (2013).

[86] A. J. Menezes et al., “Handbook of Applied Cryptography” (1996).
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In the remainder of this work, when we mention authentication, we mean entity
authentication.

An example of identi�cation would be presenting the serial number of a passport,
whereas authentication would be presenting the passport itself and having the picture
in it compared to the face of the person presenting the passport.

Traditional methods of electronic identi�cation and authentication come down to
presenting some form of serial number. Such identi�ers, no matter how well protected
they are, are inherently clonable. Thus, they only provide reasonable authentication
as long as one is guaranteed that the identifying information has not been copied or
stolen.

Due to its unclonability, a PUF-based authentication system does not have this problem.
For each PUF instance, a set of challenge-response pairs are stored. Each PUF can
then later on be authenticated by comparing its response to the stored response for
the same challenge. If both match, one has a strong assurance that the correct PUF
generated that response.

2.2.2 Anti-counterfeiting

From a technological standpoint anti-counterfeiting is the same as authentication.
We mentioned it here separately, because it was one of the �rst suggested use-cases
for PUFs, and because it is not an everyday application of cryptographic technology.

Traditional non-electronic anti-counterfeiting methods rely on incorporating di�cult
to manufacture artifacts in a device. Take for example banknotes, which contain
watermarks, microtext, etc.[29] Naturally, such methods are rather expensive.

In many devices, a cheaper, electronic method makes much more sense, and thus anti-
counterfeiting was one of the �rst suggested applications for PUFs.[98] A manufacturer
stores a set of challenge-response pairs for each device containing the PUF. Verifying
whether a device is genuine is accomplished by querying the PUF with one of the
stored challenges and checking if the returned response matches the stored one.

In many ways, this is similar to an electronic serial number. Serial numbers, however,
have one crucial disadvantage: they are trivial to copy. PUFs, on the other hand,
cannot be cloned, which makes it impossible to create exact physical replicas of a
device containing PUF anti-counterfeiting. Furthermore, with a serial number, there
is no way to guarantee that each device has a di�erent number, whereas PUFs provide
such a feature by design.

[29] R. D. Wagner, “Introduction to Security Printing” (2005).
[98] R. S. Pappu et al., “Physical One-Way Functions” (2002).
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2.2.3 Key generation

There are two methods by which today’s electronic devices are provided with
cryptographic keys. The �st method consists of the manufacturer generating a key
and programming this into the device, repeating this for every device. Assuming the
manufacturer does not skip corners, one can be reasonably assured that the key will
be of high quality. However, having to program a di�erent key into every device is a
costly, potentially time-consuming, process.

Therefore, manufacturers often opt for the second method, which has each device
generate its own secret key. While this is a lot simpler, it does bring with it the
problems associated with generating high quality random numbers. Especially on
embedded devices this can lead to very weak practical security.[53]

Instead a PUF can be used to generate the key, which guarantees that each device will
have a secure key. In this case, the PUF is always queried with the same challenge, so
that it always generates the same response, i.e. the key. This combines the advantages
of the security a�orded by the �rst method with the cost reduction and ease of use of
the second method. An additional advantage is that the key is inherently guaranteed
to be strong, of course assuming the PUF design itself has not been tampered with,
whereas with the �rst method, one has to take the manufacturer’s word for it.

Making the challenge programmable changes this system from a �xed to a
programmable key generator, albeit one where there is no control over exactly which
key is generated. An example of such a system, called a logically reprogrammable
PUF, is presented by Katzenbeisser et al.[63]

Dodis et al.[41] introduced the concept of a fuzzy extractor to generate reliable keys
from sources such as PUFs. This is a concatenation of a secure sketch, as described in
Section 2.7, with a strong extractor[95] and is able to generate information-theoretically
secure keys.

To obtain such a very high security level, one has to make a strong assumption about
the min-entropy of the randomness source, which is often impossible. Furthermore,
strong extractors generally induce a large loss in entropy (see Section 2.6.7), i.e. the
output length is much smaller than the entropy of the input, which is undesirable
or impractical since high-entropy randomness is scarce in most implementations.
Finally, a random seed is required, which, as illustrated before, is not easy to obtain
in a lot of cases.
[41] Y. Dodis et al., “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy

Data” (2008).
[53] N. Heninger et al., “Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices”

(2012).
[63] S. Katzenbeisser et al., “Recyclable PUFs: Logically Recon�gurable PUFs” (2011).
[95] N. Nisan and D. Zuckerman, “Randomness is Linear in Space” (1996).
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In order to work around these problems, multiple works[8,44,64] instead recommend
the use of cryptographic hash functions as entropy accumulators, a method which is
heavily used in practice.

2.2.4 Key storage

Although the previously discussed application is an elegant solution to the key
generation problem, in some cases it is required that keys can be set to a chosen
value. In a traditional securely-designed system, the key is stored in specialized secure
storage, designed to protect against attacks attempting to read out the storage. Such
a system allows the key to be reprogrammed at will, but is expensive to manufacture.

By combining a PUF with traditional non-secure storage, a secure and cheap
reprogrammable key storage unit can be created.[113] The PUF is used in the same
way as for key generation (see Section 2.2.3): it is queried with a �xed challenge, and
thus generates a �xed response. Instead of using this response as the system key, it is
used to encrypt the actual key. This encrypted key can then be stored in unsecured
storage and whenever it is needed, it is decrypted with the help of the PUF.

2.2.5 Hardware-so�ware binding

One last application made possible by the advent of PUFs is hardware-software
binding. A hardware-software binding system couples code running on a device to
that device’s hardware. The same code will not run on any other device, even if it
is of the same type. Such a system allows manufacturers to lock down their devices,
preventing any but their own approved software to run on it.[77]

In a basic hardware-software coupling system, the PUF is used as a key generator.
This key is used to encrypt the software. Attempting to run this encrypted software
on another device does not work, since the other device’s PUF will generate a di�erent
key.

One can make the hardware-software binding even stricter by using a logically
recon�gurable PUF that is updated together with every software update. This way,

[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic
Random Bit Generators” (2012).

[44] D. Eastlake et al., “Randomness Requirements for Security” (2005).
[64] J. Kelsey et al., “Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic

Pseudorandom Number Generator” (1999).
[77] R. Maes et al., “A Pay-per-Use Licensing Scheme for Hardware IP Cores in Recent SRAM based FPGAs”

(2012).
[113] V. van der Leest et al., “Soft Decision Error Correction for Compact Memory-Based PUFs Using a

Single Enrollment” (2012).
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every software version that has ever run on the device will be encrypted with a
di�erent key. It is therefore impossible to downgrade the software without knowledge
of the current key, i.e. only the manufacturer can do so.

2.3 Design

The previous sections have dealt with properties and applications of PUFs. This section
discusses the physical processes causing a PUF’s behavior and give a description of
some well-studied PUF designs.

This thesis text concerns itself only with digital, intrinsic PUFs. PUFs which are
not completely digital, i.e. which require some form of analog electronics, are not
discussed. The general class of intrinsic PUFs is de�ned by Maes[75, Section 2.3.3] as
i) having the circuitry required to generate responses embedded within the PUF itself;
and ii) displaying PUF behavior due to factors intrinsic to the manufacturing process.

2.3.1 CMOS process variation

We now discuss the (sub-)microscopic processes that lead to PUF behavior in certain
digital constructions. For a more thorough discussion, we refer the reader to Böhm
and Hofer.[20, Chapter 6]

The majority of modern digital devices are constructed using complementary metal-
oxide-semiconductor (CMOS) technology. Digital circuits built with this technology
are designed as complementary pairs of P- and N-channel MOSFETs. MOSFETs
require power only when (dis)charging capacitance on their gate and drain, and the
wiring connected to it. This makes CMOS technology rather power e�cient, since
the majority of power consumption is due to MOSFET pairs changing state. During
switching, power is consumed due to (dis)charging of capacitance and temporary
short circuits. When the MOSFETs are not switching, only a small amount of power
is consumed due to leakage currents. Furthermore, CMOS technology allows for very
dense implementations. It requires less silicon area than rival technologies, and is
thus cheaper. These are two important factors why it has become the main technology
for modern designs.

In order to increase their yield rate, semiconductor manufacturers attempt to control
process variation to the best of their abilities. Doing so also reduces the di�erence in
physical characteristics of the MOSFETs in a circuit. This in turn improves the match

[20] C. Böhm and M. Hofer, “Physical Unclonable Functions in Theory and Practice” (2013).
[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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between simulated and actual circuit operation. In other words, it is in everyone’s best
interest to control process variations as well as possible. However, due to variations at
a microscopic level, and even at an atomic one, all MOSFETs will still have minuscule
di�erences between them.

The operating characteristics of a MOSFET are determined by its physical layout, of
which the size of all its individual layers is a part. For example, a thinner gate layer
will have a higher capacitance than a thick one, leading to increased switching times.
Thus, one of the e�ects of process variations on a microscopic scale is discrepancies
between operational characteristics of the MOSFETs in the circuit.

Even if manufacturers would be able to eliminate these microscopic variations,
di�erences would still exist at a sub-microscopic (atomic) level. This is because
so-called doped semiconducting materials are used. These materials consist of a
semiconductor material into which atoms of a di�erent material have been inserted.

Process variation at an atomic level in�uences local doping concentration, also called
random dopant �uctuation (RDF).[5] This leads di�erent sections of material to have
slightly di�erent characteristics. The smaller (i.e. newer) the technology, the bigger a
problem RDF is, because the smaller size of newer technologies allows for less dopant
atoms to begin with, and so a small (absolute) di�erence in the amount of dopant
atoms have a much larger impact on characteristics than in older, larger technologies.
For MOSFETs, such sub-microscopic variations can, for example, in�uence the output
resistance RDSon . This in turn has an e�ect on the speed at which a capacitance can
be (dis)charged by the MOSFET, e�ectively altering the speed at which it can switch
on and o� other MOSFETs.

Furthermore, these static process variation e�ects lead to each MOSFET having a
slightly di�erent response to external e�ects, e.g. localized temperature di�erences
will have a higher impact on thinner semiconducting layers due to their reduced
thermal mass compared to thicker layers.

Process variations can be classi�ed into two groups. First of all there are global
variations, which are variations between wafers or lots of ICs. Such variations a�ect
all circuit elements on the wafer or IC lot by the same amount. For example, oscillators
constructed from one silicon wafer might run 0.5% faster than those constructed from
another wafer. Secondly, there are local variations, which lead to the various elements
in a single circuit instance all having slightly di�erent characteristics. Such variations
are the major reason for a PUF’s identi�ability property.

Although every operating characteristic is in�uenced up to a certain point by process
variations, one of the major in�uences on PUF behavior is the MOSFET gate threshold
voltage Vth. This value is determined as the point at which a MOSFET starts to
[5] A. Asenov, “Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 µm

MOSFET’s: A 3-D “Atomistic” Simulation Study” (1998).
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conduct current across its drain-source interface. MOSFETs with a lowerVth will start
to conduct earlier, e�ectively making them faster than those with a higher Vth. On
the other hand, the lower Vth, the higher the leakage current.

Thoroughly discussing all the factors that determine Vth would probably require a
book all by itself.[62] However, to give an idea of how many variables have an in�uence
on this single parameter, the general formula for Vth for an N-channel MOSFET[62,90]

is

Vth = Vth0 + γ ·
( √

|−2ϕF +Vsb| −
√
|2ϕF |

)
,

where

Vth0 = Φgc − 2ϕF − QB0 +Qox
Cox

γ =

√
2q · NA · ϵSi

Cox

QB0 = −
√

2q · NA · ϵSi · |−2ϕF | Qox = q · Nox

Cox =
ϵox
tox

ϕF =
kT

q
ln

(
ni
NA

)

ni = 2.70 · 1013 ·T 2.54 · exp
(−6726

T

)
.

Su�ce to say that perfectly controlling each and every one of these parameters is
an impossible task, and thus, no matter the technological advances, Vth will most
probably always remain one of the �rst parameters to look at when considering PUF
behavior in CMOS technologies.

Di�erences in Vth lead to two types of behavior in PUFs. First of all, when large
Vth di�erences exist within a circuit’s implementation, the circuit will behave in a
deterministic way, e.g. out of two oscillators, one might always run slightly faster.
Of course, for every implementation, which of the two oscillators runs fastest might
di�er. This is the type of behavior that gives rise to a PUF’s identi�ability property.

A second type of behavior occurs when these is very little to no di�erence in Vth, in
which case a circuit will behave randomly, e.g. which of the oscillators runs fastest
will depend on seemingly random external factors. Because of these e�ects error
correction is required for PUFs.

Looking at the formulas determining Vth one can clearly distinguish between three
di�erent groups of parameters. First of all there are the physical constants, e.g. the

[62] S.-M. Kang and Y. Leblebici, “CMOS Digital Integrated Circuits Analysis & Design” (2003).
[90] K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78

to 340 K” (1993).



DESIGN 29

unit charge q, the Boltzmann constant k , and the dielectric constants of silicon ϵSi and
of silicon dioxide ϵox. Since these parameters are unchanging, they have no variable
in�uence on any of the MOSFET’s characteristics.

A second group of parameters are those governed by the production properties of the
MOSFET, i.e. those that are in�uenced by process variation. For example, the gate
oxide thickness tox, the oxide-interface charge density Nox, the doping concentration
NA, and in part the work function di�erence Φдc (the exact formula of which depends
on the MOSFET construction). All of these parameters are in�uenced by process
variation at various stages in the production process, i.e. by the thickness of a semi-
conductor layer, by the amount of dopant atoms, . . . It is this kind of variation which is
responsible for the PUF-like behavior in circuits, i.e. the identi�ability property. Thus,
it is clear that PUF-like behavior originates from physical phenomena and production
e�ects.

Finally, there are parameters in�uenced by the environment, such as the Fermi
potential ϕF , the intrinsic carrier concentration of silicon ni , and in part the work
function di�erence Φдc . All of these are in�uenced by the temperature T . Due to the
complexity of accurately modelling the tiny localized temperature variations within
an operating circuit, current technology cannot predict what will happen exactly
within that circuit. As such, parameters like these have a randomizing e�ect on a
circuit’s operation. Hence, this type of variation is one of the reasons error correction
is required on a PUF’s response, the other being circuit noise.

2.3.2 Example designs

Knowing how (un)wanted variations appear in CMOS circuits, we will now present a
brief overview of some PUF designs. The presented designs are rather simple, and
don’t always behave as an ideal PUF would. For an overview of improved, more
complex designs we once again refer to Maes.[75, Chapter 2]

2.3.2.1 Ring oscillator PUF

The basis of a ring oscillator PUF is, as the name implies, a group of ring oscillators.
Due to process variation, these identically-designed oscillators will all run at slightly
di�erent frequencies. The frequencies are measured, and based on these measurements
a response is generated. Exactly how the measurements are used depends on the PUF
design.

[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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One simple example, shown in Figure 2.1, uses a large amount of oscillators pairs.
The challenge consists of which pairs to measure. For each pair, the two frequencies
are measured and then compared to generate a single response bit. These response
bits are then all concatenated to generate the complete response bitstring.
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Figure 2.1: Oscillator PUF

The biggest drawback of this simple response generation scheme is that many of
oscillator pairs are required in order to have an acceptably large challenge-response
space. E.g. assume each oscillator pair has an ID, pairs are always queried in order
of increasing ID, the response should be 32 bit, and at least 232 possible challenge-
response pairs are required. Then the PUF needs a total of at least 86 oscillators,
since ( x

2
32

)
≥ 232 ⇔ x ≥ 86 .

However, in this scheme all response bits are independent of each other, thus once an
attacker �gures out the response of a speci�c pair, he knows that bit of the response
string every time the pair appears in the challenge. When employing such simple
PUF designs in a system, it is of crucial importance that the raw response is never
made public, and instead e.g. a hash of it is transmitted.

Another common problem happens when oscillator pairs are not �xed. For example,
given the frequency of three oscillators A, B and C, then if

fA < fC
fB < fA



⇒ fB < fC .

Thus, an adversary can infer the response to the challenge requesting the pairing of
A and C, if he knows the responses to the challenges pairing A and B, and B and C.

Ring oscillator PUFs making use of a simple pairwise comparison have very good
reproducibility, meaning they require little in the way of error correction. However,
designs which rely on this property often require many oscillators, due to the
drawbacks mentioned earlier. Finding a design that makes an optimal trade-o�
between the number of oscillators, which in�uences size and thus cost of the �nal
circuit, and the provided security remains an active area of research.
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2.3.2.2 Arbiter PUF

Arbiter PUFs are a class of PUFs relying on variable delays within a circuit to generate
response bits. Figure 2.2 shows the simplest version of such a PUF.

. . .
start

challenge

arbiter

response

Figure 2.2: Arbiter PUF

The arbiter PUF consists of a collection of con�gurable crossover switches with two
in- and outputs. Signals can be routed either straight through or to the opposite
output. Internally, these switches are constructed out of two multiplexers (MUXes).
Due to process variations, the Vth of the MOSFETs making up these MUXes, as well
as wiring capacitance and length, will di�er, e�ectively making their response time
all di�erent, which leads to di�erent propagation speed for both signals. In order to
generate a response bit, a signal is sent down both paths simultaneously, and at the
output a so-called arbiter circuit (often a simple SR �ip-�op) detects which of the two
signals arrives �rst.

Each challenge bit controls whether a switch crosses over or not. By storing the
challenge in a linear feedback shift register (LFSR) and clocking this after every
generated response bit, multiple bits can be generated.

As each switch in�uences the remainder of the signal’s path, the number of challenges
is exponential in the number of switches. However, even though an exponential
number of challenges can be queried, the total time required for each path to reach
the arbiter is linear in the number of switches used. It is therefore fairly easy to create
a mathematical model an arbiter PUF, even when only a few challenge-response pairs
are known.[58] Such PUFs should thus never be used in conjunction with a protocol
that leaks information about responses.

Because the size of the challenge-response set grows exponentially with the number
of crossover switches, arbiter-based designs are an important candidate for a strong
PUF. Whether it is possible to design a strong arbiter PUF in a way that cannot easily
be modeled remains an open question.[35]

[35] J. Delvaux et al., “Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?”
(2014).

[58] G. Hospodar et al., “Machine Learning Attacks on 65nm Arbiter PUFs: Accurate Modeling poses strict
Bounds on Usability” (2012).
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2.3.2.3 SRAM PUFs

SRAM PUFs are part of the family of memory-based PUF designs. Some other members
of this family are the latch, �ip-�op, and buskeeper PUFs. Whereas the previous two
PUF types require a (time-based) measurement to generate a response, memory-based
PUFs do not: they can simply be read out. These PUFs rely for their response bits on
the fact that certain types of memory start up in a state which cannot be controlled
during manufacturing.

Take for example the basic SRAM PUF shown in Figure 2.3. In its simplest form, an
SRAM PUF consists of nothing more than an SRAM chip. SRAM cells consist of two
cross-coupled inverters, whose outputs are both low on power-up. Due to this, they
both drive the input of the other inverter low, and thus will start to raise their output.
Again due toVth di�erences it is likely that one of the inverters is able to do so before
the other, thereby stabilizing the state of the cell and determining its value.

Ro
w

dr
iv

er

Column driver

O
ut

pu
tb

u�
er

response

challenge
[address]

SRAM

in out

SRAM cell

Figure 2.3: Basic SRAM PUF

For the majority of SRAM cells the di�erence in Vth is large enough to lead to the
same, deterministic, start-up state every time.[74] In cases where the Vth di�erences
are very small, power-up e�ectively starts a race condition between the inverters,
with a random start-up state as the result. Due to external factors, start-up state is
not a black and white a�air, i.e. a cell could power up in the one state 80% of the time
and in the zero state 20%.

Challenging a memory-based PUF is done by reading out certain sections of memory;
its challenge-response space is thus linear. The big drawback of this is that model
generation of a section is trivial should a response ever become known to an attacker.
The largest advantage of memory-based PUFs, especially SRAM ones, is that their
behavior closely matches that of an ideal PUF.
[74] R. Maes, “An Accurate Probabilistic Reliability Model for Silicon PUFs” (2013).
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2.4 Threat model

A PUF instance is considered broken if an attacker manages to extract the entropy
contained within the PUF. This means that an attacker is able to predict what the
response to any given challenge will be for that particular PUF instance. In some
designs, such as a PUF-based �xed key generator, being able to determine just one
response, i.e. the one to the �xed challenge, is enough to warrant it broken. There are
three main categories of threats which could allow one to accomplish such a feat. We
will discuss each of them succinctly in this section.

2.4.1 Remote threats

The �rst category of threats are those which can be launched remotely, i.e. these are
software-based attacks. In general, such attacks don’t require specialized hardware,
and are thus cheap. For example, one can attack the protocol that is used when
interfacing with the PUF. Thus, care should be taken that the protocol does not
inadvertently discloses information about secret data,[35] such as the PUF response.
Although this is a di�cult problem, it is not speci�c to PUFs. Thus, established
cryptographic protocol analysis techniques are the recommended prevention method
against protocol attacks.

On the other hand, attacks on helper data, which we discuss in Section 2.7, are speci�c
to PUFs. Helper data, which is required to correct errors in a PUF’s response, is
assumed to be public and stored in non-secure storage. Helper data manipulation
attacks[36,37] modify this data to learn some information about the PUF response. By
iterating these manipulations one can eventually calculate the complete response.

One possible prevention technique is storing not only the helper data, but also a hash
of the helper data and the PUF response. After response correction, the circuit then
veri�es whether the received helper data and generated PUF response hash to the
same value. The drawback of this technique is that it requires extra hardware, i.e. at
least a hash function block, a comparator, and extra storage.

Another way of preventing helper data manipulation attacks, is by not having helper
data in the �rst place. However, this requires a PUF design that never generates any
errors in its responses, a feat that, so far, no one has been able to manage.

[35] J. Delvaux et al., “Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?”
(2014).

[36] J. Delvaux and I. Verbauwhede, “Attacking PUF-Based Pattern Matching Key Generators via Helper
Data Manipulation” (2014).

[37] ——, “Key-recovery Attacks on Various RO PUF Constructions via Helper Data Manipulation” (2014).
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Modeling attacks are yet another type of attacks which can be executed remotely. If
an attacker gets his hands on a set of challenge-response pairs of a PUF instance, he
might be able to create a model of that instance. The viability of such attacks strongly
depends on the design of the PUF and the number of known challenge-response pairs.
For example, arbiter PUFs are well known for being very susceptible to this type of
attack.[58,106] Since these attacks require a certain number of challenge-response pairs
for adequate modeling precision, restricting availability of such pairs is a good way to
slow them down. Ultimately, however, the only sure�re prevention method is using a
PUF design which is not susceptible to modeling.

If an attacker can query the PUF, which is sometimes assumed for strong PUFs, still
more attacks might be possible. For example, information about the error rate in an
arbiter PUF can be used to generate a model of that PUF.[38] Delvaux and Verbauwhede
warn that such attacks are likely to be viable for all strong PUF designs.

2.4.2 Physical access threats

A second category of threats are those that require physical access to the PUF
circuitry. In general, these are more expensive than remote threats, because specialized
hardware is required.

Side-channel attacks are the best known attacks of this type. Measuring data which is
seemingly unrelated to the PUF response, e.g. power consumption of the PUF, allows
one to determine exactly what the response is.[87] Side-channel analysis[46] is a large
sub�eld of cryptanalysis, and should be expected that many sophisticated attacks,
which have so far only been attempted on classical cryptographic building blocks,
are viable on PUFs as well. Prevention techniques against such attacks often involve
modi�cations to the physical layout of a circuit, which can be very expensive.

Invasive attacks also fall under this category. By using microscopes, probes, and lasers,
it is possible to observe and modify individual elements that make up the PUF circuit.
The techniques required to do so have long been established for failure analysis,
an engineering domain that concerns itself with bug �xing of hardware designs.
Using these techniques, one can read out PUF responses[93] and even create physical

[38] J. Delvaux and I. Verbauwhede, “Side Channel Modeling Attacks on 65nm Arbiter PUFs Exploiting
CMOS Device Noise” (2013).

[46] B. Gierlichs, “Statistical and Information-Theoretic Methods for Power Analysis on Embedded
Cryptography” (2011).

[58] G. Hospodar et al., “Machine Learning Attacks on 65nm Arbiter PUFs: Accurate Modeling poses strict
Bounds on Usability” (2012).

[87] D. Merli et al., “Side-Channel Analysis of PUFs and Fuzzy Extractors” (2011).
[93] D. Nedospasov et al., “Invasive PUF Analysis” (2013).

[106] U. Rührmair et al., “Modeling Attacks on Physical Unclonable Functions” (2010).
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clones of a PUF.[52] Prevention is aimed at making these attacks as time consuming
as possible, e.g. by randomizing circuit layout or adding intrusion detection layers.
However, given a su�cient amount of time and money, it is unlikely that any of these
prevention methods will stop a determined attacker.

2.4.3 “Inside job” threats

Finally, one should consider “inside job”-type of threats. In this case the manufacturer
tampers with the design of the PUF, such that he, or a third party, can recreate or
read out the PUF’s responses.

There a two ways a manufacturer can go about this. In the �rst case, a so-called trojan
circuit is inserted in the design. Such a circuit allows an adversary who is aware of it
to read out secret data from a chip. A lot of research is available on such hardware
trojans and on methods to detect them.[1] Note that the adversary, the manufacturer,
is essentially almighty in this case, so there is no realistic way of preventing the
insertion of the trojan circuit.

In the second case, the manufacturer replaces the PUF design with something that
mimics a PUF. For example, a programmed seed can be expanded with the help of
a block cipher to generate responses. Since the programmed seed is known to the
manufacturer, he can simply calculate the PUF responses to any challenge. In order to
make the PUF behavior more realistic, some source of noise should be added, so that
at least a few errors are present in the response. In order to detect such tampering,
one could verify the PUF’s behavior. Given a well-thought-out and executed design,
it is unlike the attack would be detected though. Even worse, for some designs the
PUF response is not accessible and thus no such veri�cation is possible, e.g. a PUF-
based key generator. A guaranteed way of detecting this attack is to use invasive
techniques and compare the actual circuit layout to the design �les. However, this is
a time-consuming and costly method.

These attacks are particularly devastating, since for the victim they are di�cult and
expensive to detect, whereas for the manufacturer they are cheap and relatively easy
to put in place.

[1] D. Agrawal et al., “Trojan Detection using IC Fingerprinting” (2007).
[52] C. Helfmeier et al., “Cloning Physically Unclonable Functions” (2013).
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2.5 Mathematical notation

In this short section, we brie�y discuss the mathematical notation used in the
remainder of this thesis. A summary can be found in the List of Symbols (p. xxi).

Multiple physical implementations, called instances or samples, of the same PUF
design all generate di�erent responses, hence mathematical notations which clearly
denote all variables involved in measurements can be rather elaborate. For brevity,
we use the compact mathematical notation introduced by Maes.[75, Section 2.2]

The design of a PUF is denoted as P, and the ith physical instance of P by pufi .
Challenges to a PUF are denoted by x , and the set of all challenges for P byXP . When
a PUF is queried with a challenge, we write this as pufi (x), the resulting response is
Yi (x), i.e.

Yi (x)← pufi (x) .
If multiple responses are measured for the same challenge, we denote the response
index in superscript: Y (j)

i (x). In case it is not important to designate exactly which
PUF instance is queried, we write Y (x)← PUF(x). The set of all responses which P
can produce is YP .

Groups of measurements are written in bold, e.g.Yi (x). If for particular measurements
the environmental conditions α , e.g. temperature, are of importance, then these are
designated as Yi ;α (x).
Finally, many of the metrics presented are often written fractionally, i.e. as a percentage
of the response length. Doing so makes comparisons between di�erent PUF designs
signi�cantly easier.

Additional notation is required for various mathematical concepts later on. A binary
Galois �eld is written as F2x . The symbol ⊕ is an addition in such a �eld, i.e. a XOR
operation, and ⊗ a multiplication. An element of F2x is written in capitals, e.g. A.

The notation C(n,k,t) stands for a linear error correcting code with code length n,
dimension k and number of correctable errors t . Such a code can be de�ned by a
generator matrix G. If the code is polynomial, it can also be de�ned by its generator
polynomial G.

By Bn,p (t)we denote the binomial cumulative distribution function with as parameters
the number of trials n and the success probability of each trial p evaluated in t , and
B−1
n,p (q) is its inverse.

When discussing arrays of data, A[i] is used to indicate the ith element of array A.
Arrays start at index position 0, unless speci�ed otherwise.
[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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2.6 �ality metrics

Qualifying the degree to which a physical PUF behaves as a theoretically ideal PUF is
a complex task. Over the years a multitude of metrics have been suggested to assist
in this process. In this section we discuss those which have become the de facto way
of qualifying PUF designs and, in passing, mention a few less used ones.

2.6.1 Operating conditions

As noted before, semiconductor behavior can change with varying operating
conditions. One obvious example is the dependence of the MOSFET threshold voltage
Vth on the operating temperature T , as discussed in Section 2.3.1.

Due to its impact on many semiconductor-de�ning parameters, it is important to
measure challenge-response sets under various temperature conditions. Next to
room temperature (25 ◦C), both the lower (−25 ◦C) and upper (90 ◦C) commercial
semiconductor operating limits are of particular importance. Measurements at these
conditions help to establish whether a PUF will react the same under all expected
operating conditions.

The second factor that has a large impact on semiconductor behavior is the voltage
that circuits are supplied with. Depending on semiconductor technology and
implementation, the required voltage can range anywhere from 0.2 V, for recent
technology, to 5 V, for very old designs. As such the regular supply voltage as well as
its lower and upper limits are di�erent for most PUFs.

Other commonly variable environmental condition, such as pressure, are not
important in this context, since encapsulated digital circuits are not expected to
be in�uenced by them under realistic conditions.

Aging is another type of operating condition which can drastically in�uence circuits.
In order to arti�cially induce aging in a circuit, one can operate it at increased
temperature and supply voltage.

If not explicitly mentioned, metrics are calculated on measurements taken at reference
conditions αref = (Tenv = 25 ◦C,VCC = Vreq), whereVreq is the recommended, required
supply voltage for the device under test.

2.6.2 Hamming weight

De�nition 2.1. The Hamming weight (HW) of a string is the number of non-zero
elements in that string, i.e. for a binary string the Hamming weight is equal to the
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number of ‘1’ bits. The fractional HW of a string is equal to its Hamming weight divided
by its length, and is written as a percentage.

For an ideal PUF response bits behave as independent random processes, i.e. an
n-bit response can be modeled by a binomial distribution with parameters n and
p = 0.5. Therefore the average expected Hamming weight in the response is 0.5n,
with a standard deviation of 0.5

√
n. Values either below or above this value can

indicate a correlation between the response bits, and thus might indicate non-ideal
PUF behavior.

The Hamming weight is related to the uniqueness property, since if all of a PUF’s
responses are heavily biased, i.e. have a very high or low HW, then they must be less
unique than those of a PUF generating responses close to the ideal HW. For example,
consider a PUF design that generates 4-bit responses all with 75% HW. This means
there are only

�4
3
�
= 4 possible responses, which di�er at most at two positions. On

the other hand, if all responses have a 50% HW, then there are
�4
2
�
= 6 possible outputs,

for some of which all four bits are di�erent. Thus, for the PUF design with 75% HW
responses, the responses will be less di�erent from one another than those of the PUF
with 50% HW responses are.

Another property about which Hamming weight gives an indication is unpredictability.
It is easy to see that in the previous example, an adversary has an easier time guessing
a response for the PUF with 75% HW responses than for the one that generates 50%
HW responses, since there are only four possible responses in the �rst case, versus
six in the second one.

Assessing Hamming weight is often a �rst step in qualifying a PUF’s responses.
However, the fact that a PUF’s responses have close to a 50% Hamming weight does
not in any way guarantee anything about the uniqueness or unpredictability of its
outputs. E.g. a truly random process outputting ‘unique’ 32 bits generates bitstrings
with a 50% Hamming weight only 14% of the time:(

32
16

)
· 1

232 ≈ 0.140 .

On the other hand, a process that repeatedly outputs ‘01’ generates a bitstring with
50% Hamming weight, yet clearly has neither the uniqueness nor the unpredictability
property.

Even though Hamming weight is a very simple metric, and will thus miss properties
such as bit dependence, it helps to reveal potential problems in a PUF’s response set,
such as bias.
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2.6.3 Inter-device distance

De�nition 2.2. The inter-device distance is the distance between two responses from
di�erent PUF instances to the same challenge:

Dinter
P (x) , dist[Y (x),Y ′(x)] .

The fractional inter-device distance is de�ned as the inter-device distance divided by the
length of the PUF response, and is written as a percentage.

The distance function can be any metric over YP , although in practice almost all
scienti�c works use Hamming distance with a XOR function, i.e. the Hamming weight
of the bitstring

�
Y (x) ⊕ Y ′(x)�.

Inter-device distance is used to qualify the inter-device uniqueness of PUF instances.
If the challenge-response behavior of a PUF is indeed a random process, then the
fractional inter-device distance is expected to be 50%. Deviations from this expected
value demonstrate correlation between instances.

Given an experiment collecting challenge-response measurements YExp(P) made on
a number of PUF instances Npuf , and a set of challenges Nchal, with each challenge
queried Nmeas times, an array Dinter

Exp(P) can be calculated:

Dinter
Exp(P) =

[
dist

[
Y (j)
i1 (xk );Y (j)

i2 (xk )
] ]
∀1≤i1,i2≤Npuf ;∀1≤k≤Nchal;∀1≤j≤Nmeas

.

We get an estimate for the expected value µ inter
P with the sample mean:

Dinter
Exp(P) =

2
Npuf · (Npuf − 1) · Nchal · Nmeas

·
∑

Dinter
Exp(P) .

The sample standard deviation is used to estimate the standard deviation σ inter
P :

s inter
Exp(P) =

√
2

Npuf · (Npuf − 1) · Nchal · Nmeas − 2 ·
∑ (

Dinter
Exp(P) − Dinter

Exp(P)
)2
.

These variables are used to asses the quality of PUFs in an experiment, e.g. if the
sample mean is around 50%, yet the standard deviation is large (15%), then that would
indicate that certain groups of tested PUF instances have correlated responses. In
their fractional form, the variables allow convenient quality comparissons between
various PUF designs.
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2.6.4 Intra-device distance

De�nition 2.3. The intra-device distance is the distance between two responses to the
same challenge on the same PUF instance:

Dintra
P (x) , dist[Y (j1)

i (x),Y (j2)
i (x)] .

The fractional intra-device distance is equal to the intra-device distance divided by the
length of the PUF response, and is written as a percentage.

Whereas inter-device distance quali�es the inter-device uniqueness between di�erent
PUF instances, the intra-device distance is a measure of reproducability. For an ideal
PUF, the intra-device distance is zero, i.e. it always returns the same response for a
given challenge. For actual PUF implementations, there is bound to be some intra-
device distance, and in that case this metric is used to determine the required error
correction method and parameters.

PUF designs with high intra-device distance are not usable, since, �rst of all, they
require excessive error correction, which is costly in terms of storage, computation
time, and energy consumption. More importantly, high intra-device distance can lead
to error correction methods correcting a response of instance pufi to one of instance
puf j , leading to misidenti�cation.

Estimations for the expected value and standard deviation are calculated using the
same method as for inter-device distance, except the array of distances Dintra

Exp(P) is
de�ned as

Dintra
Exp(P) =

[
dist

[
Y (j1)
i (xk );Y (j2)

i (xk )
] ]
∀1≤i≤Npuf ;∀1≤k≤Nchal;∀1≤j1,j2≤Nmeas

.

Thus, the estimate for the expected value, i.e. the sample mean, becomes

Dintra
Exp(P) =

2
Npuf · Nchal · Nmeas · (Nmeas − 1) ·

∑
Dintra

Exp(P) .

And the standard deviation estimate, i.e. the sample standard deviation, is now

s intra
Exp(P) =

√
2

Npuf · Nchal · Nmeas · (Nmeas − 1) − 2 ·
∑ (

Dintra
Exp(P) − Dintra

Exp(P)
)2
.

Metrics for measurements taken at non-reference conditions are calculated with
respect to to the reference condition αref . E.g. the intra-device distance for a PUF
design measured at α = (Tenv = 90 ◦C) is calculated as

Dintra
P;α (x) , dist[Yi ;αref (x),Yi ;α (x)] .



QUALITY METRICS 41

2.6.5 Self-similarity

De�nition 2.4. Self-similarity is the distance between responses to di�erent challenges
on the same PUF instance:

Dself
P (x1,x2) , dist[Yi (x1),Yi (x2)] .

Self-similarity measures the intra-device uniqueness, i.e. uniqueness within responses
to di�erent challenges on the same PUF instance. Self-similarity is thus a measure of
intra-device uniqueness, whereas inter-device distance is a measure of inter-device
uniqueness. Much like inter-device distance, in an ideal case a PUF’s self-similarity
will be an average of 50%, i.e. responses to di�erent challenges will appear to be
generated by a di�erent PUF instance.

Depending on the use-case self-similarity may or may not be important. E.g. for
identi�cation purposes it does not matter whether pufi generates similar responses
to di�erent challenges. However, for recon�gurable key generators it does, since in
such a case PUFs with high self-similarity might generate similar keys for di�erent
challenges, thereby weakening the security of the generated keys. It should be noted
that one can often reduce the impact of low self-similarity by use of appropriate
protocol and algorithm design, e.g. only transmitting hashed responses and keeping
the responses themselves secret.

The formula for the distance array Dself
Exp(P) is in this case given by

Dself
Exp(P) =

[
dist

[
Y (j)
i (xk1 );Y (j)

i (xk2 )
] ]
∀1≤i≤Npuf ;∀1≤k1,k2≤Nchal;∀1≤j≤Nmeas

.

Similarly, the sample mean as an estimate for the expected value becomes

Dself
Exp(P) =

2
Npuf · Nchal · (Nchal − 1) · Nmeas

·
∑

Dself
Exp(P) .

And the standard deviation estimate, i.e. the sample standard deviation, is now

sself
Exp(P) =

√
2

Npuf · Nchal · (Nchal − 1) · Nmeas − 2 ·
∑ (

Dself
Exp(P) − Dself

Exp(P)
)2
.

Note that in certain cases, self-similarity has little meaning. Take for example an
SRAM PUF for which one assumes the complete content of the SRAM to be a single
response, i.e. a PUF with only a single challenge. Although it is possible to arbitrarily
divide such a response in smaller parts in order to calculate the self-similarity, the
practical relevance of this is not immediately clear. Thus, calculating self-similarity
only makes sense if one has a speci�c PUF design in mind for which the response
length is �xed, and for which, of course, multiple challenges exist.
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This metric has, to the best of our knowledge, not been de�ned in any publications.
We de�ne it here for the sake of completeness and due to its usefulness for e.g. the
applications discussed before.

2.6.6 Randomness tests

Because an ideal PUF behaves essentially as a “�xed” random number generator, it
makes sense to run RNG test algorithms on the output of several PUF responses to
the same challenge:

Y (x) = [Y1(x),Y2(x), . . . ,Yn(x)] .
Alternatively, one can compose a dataset consisting of responses from multiple PUF
instances to multiple challenges:

Y ′(x1, . . . ,xn) = [Y1(x1), . . . ,Y1(xn), . . . ,Yn(x1), . . . ,Yn(xn)] .
Note that in doing so both inter- and intra-device uniqueness will be quali�ed at
the same time, which is not necessarily meaningful, depending on the intended PUF
application.

RNG quality evaluation is a whole �eld by itself; typically (one of) three de facto test
suites are used: the NIST randomness test,[107] Diehard,[81] and �nally Dieharder.[24]

Of these, the Dieharder test suite is the most stringent, and thus provides the best
assurance regarding RNG quality. An additional test suite, partially based on the NIST
tests, is provided by the German BSI agency.[65]

The problem with these test suites for the purpose of PUF evaluation is that they
require very large datasets, i.e. preferably in the order of several (hundred) GiB. This
is problematic, because PUFs are generally many orders of magnitudes slower in
generating output than RNGs are. Hence, generating a dataset acceptably large for
e.g. the Dieharder test suite would take multiple years.

An additional problem is that we want to use these RNG test suites to assess whether
PUF responses are unique, thus no repeated measurements for the same challenge
should be included in the dataset. This means that if dataset Y (x) is used, an huge
number of PUF instances would be required. Using a dataset Y ′(x1, . . . ,xn) would
somewhat ameliorate the problem, but only to a small extent, since the majority of PUF
designs are weak, and can thus only produce a linear number of challenge-response
pairs.
[24] R. G. Brown et al., “Dieharder: A Random Number Test Suite” (2013).
[65] W. Killmann and W. Schindler, “AIS20/AIS31: A proposal for Functionality classes for random number

generators (version 2.0)” (2011).
[81] G. Marsaglia, “Diehard Battery of Tests of Randomness” (1995).

[107] A. Rukhin et al., “A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications” (2010).
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These two facts prevent us from using any of these test suites for the purpose of
evaluating the uniqueness of a PUF design.

2.6.7 Entropy

Consider a random variable X that can take on values x1,x2, . . . ,xn with probability
P(X = xi ) = pi , where ∑n

i=1 pi = 1 and @ pi < 0.

De�nition 2.5. The (Shannon) entropy of X is de�ned as:

H1(X ) , −
n∑
i=1

pi log2 pi ,

where
pi · log2 pi = 0 if pi ≤ 0 .

Entropy is a measure for the amount information one gets by an observation of X . It
is thus also a measure for the uncertainty about the outcome of an observation. I.e. if
one knows beforehand what the outcome of an observation will be, the observation
in itself contains no new information. Entropy is expressed in bits, e.g. a truly random
binary process A produces an entropy of one bit:

H1(A) = −
∑ �

0.5 log2 0.5 + 0.5 log2 0.5
�
= −

∑
(2 · −0.5) = 1 .

Closely related to Shannon entropy is min-entropy H∞. Min-entropy provides a lower
bound on the amount of entropy contained within a random process by only taking
the most likely outcome into account. Thus, if a process has a min-entropy of a bits
of information, one is guaranteed that every observation of that process will contain
at least a bits of information. Therefore H∞(X ) ≤ H1(X ). Clearly, for cryptographic
applications, where one wants to guarantee a certain minimum level of security, this
is a more relevant metric.

De�nition 2.6. The min-entropy of a random process X is

H∞(X ) , − log2 (maxpi ) .

Consider a binary random process B which generates outputs with probabilities
p0 = 0.4,p1 = 0.6. Where the Shannon entropy is a weighted average for the entropy
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one can expect from this process, the min-entropy measures how much entropy the
process will generate in the worst case. For the given example, we have

H1(B) = −
∑ �

0.4 log2 0.4 + 0.6 log2 0.6
�

H∞(B) = − log2 (max(0.4,0.6))

≈ 0.97 . ≈ 0.74 .

In addition to these two metrics, we also use their fractional versions, which we call
entropy density. These are de�ned as the entropy divided by the output length, e.g.
given a random process X with an output of length n, that process’ min-entropy
density is

ρ∞(X ) , H∞(X )
n
.

A process that outputs data with a certain amount of entropy is called an entropy
pool.

In the context of PUFs, there are two ways one can use measurement data to calculate
results. The �rst way generates a metric which we call inter-device entropy H inter(P);
it is calculated over one or more responses for multiple PUF instances. E.g. assume
that the PUF output can be modeled as a binary random process which generates n
independent (but not identically distributed) bits. Each of the output bits yi has a bias
p(i)1 towards one, i.e. P(yi = 1) = p(i)1 .

De�nition 2.7. The inter-device min-entropy of design P can be calculated as

H inter
∞ (P) ,

n∑
i=1
− log2

(
max

(
p(i)1 ,1 − p(i)1

))
.

For a given set of measurements YExp(P), each p(i)1 can be estimated as

p(i)1 =
1

Npuf · Nchal
·
∑

1≤j≤Npuf
1≤k≤Nchal

(
Y (bit i)
j (xk )

)
, ∀ 1 ≤ i ≤ n .

Note that a large number challenge-response sets (and thus PUFs) are required in
order to get a good estimate for this parameter, which this calculation infeasible for
many practical experiments, which have a limited number of PUFs to measure.

Furthermore, note that the formula to estimate the p(i)1 values is only valid in case the
response bits are independent. If they are not, then one has to take this into account
and modify the formula accordingly (see e.g. Maes[75, Section 4.4]). As an example of
[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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the in�uence a certain model can have on entropy calculations, consider a binary
processC which outputs �ve bits, the �rst one being random and each subsequent bit
taking on the inverted value of the previous one, i.e. “10101”. If one is unaware of this
pattern, and treats the bits as being independent, then the calculated min-entropy
equals 5 bits, since each bit in the output has a bias of exactly 0.5. However, when
one takes the interdependence of the bits into account, only the �rst bit contains
randomness, and the calculated min-entropy will equal only 1 bit.

Inter-device entropy allows one to assess uniqueness of a PUF design and the di�culty
an adversary will have guessing the response to a challenge. For an ideal PUF the
inter-device entropy is equal to the length of the PUF’s response, i.e. if every bit in the
response is independent and identically distributed (i.i.d.) with an equal probability
of being one or zero, then each bit contains one bit of entropy. This is in line with the
expected inter-device distance for an ideal PUF, i.e. 50%.

The inter-device entropy is thus crucial to establish the minimum response length
required in order to meet a device’s security requirements. E.g. if a PUF generates
200-bit responses, but those responses only contain 50 bits of min-entropy, then the
maximum security level one can obtain from algorithms and protocols using those
responses is 50 bits of security.

A second method of using PUF measurement data for entropy calculations is intra-
device entropy H intra(P) is not particularly useful for PUF applications. However, it
is for RNGs, so we will discuss it further on, in Section 2.8.

2.6.8 Compressibility

Using a theoretically perfect encoding scheme, input data can be compressed such
that the output has full entropy per bit. By comparing the input to the output length,
the entropy in the input can be calculated. This principle is taken advantage of
by Maurer[83] in order to test the entropy in the output of an RNG. More recently,
Ignatenko et al.[59] suggest the use of the Context-Tree Weighting compression scheme
to estimate the entropy, i.e. the uniqueness, in a PUF’s responses.

While this does give an indication of problematic PUF behavior, this approach su�ers
from similar problems as the RNG test suites: large bitstrings are required in order to
get meaningful results. It is possible to create such bitstrings by concatenating the
responses to multiple challenges, as is e�ectively done in an arbiter PUF. However, it
is not clear to what extent the resulting metrics would then apply to the PUF as it is
used in a realistic setting, i.e. with much shorter responses.

[59] T. Ignatenko et al., “Estimating the Secrecy-Rate of Physical Unclonable Functions with the Context-
Tree Weighting Method” (2006).

[83] U. M. Maurer, “A Universal Statistical Test for Random Bit Generators” (1990).
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Because of these problems, we have chosen not to use this metric in the remainder of
this thesis.

2.7 Error correction

As discussed, whenever a PUF instance is queried with a challenge, it will return
a slightly di�erent response, due to errors. In order to be able to use a PUF
in applications, a method is required to correct erroneous bits in the response.
Furthermore, PUF responses should never be transmitted as cleartext, since that
will allow an attacker to attempt replay attacks, or create a model for the PUF. In this
section, we will �rst explain the workings of cyclic error-correcting codes, and then
discuss an algorithm that can be used to correct PUF responses without revealing the
response.

2.7.1 Cyclic error-correcting codes

For a thorough explanation of error-correcting codes, we refer to MacWilliams
and Sloane.[73] In this section, we only touch upon the bare necessities required
to understand the remainder of this thesis. Furthermore, we only discuss cyclic codes,
a subset of polynomial codes, which are themselves a subset of linear codes.

The process of generating a codeword for a bit stringD of length k , given the generator
polynomial G for a cyclic error-correcting code of length n, dimension k , and with
number of correctable errors t , i.e. C(n,k,t), is straightforward. One concatenates the
data D with the remainder of dividing D, interpreted as a polynomial, by G, i.e.

C =
(
D ⊗ 2n−k

)
⊕

((
D ⊗ 2n−k

)
mod G

)
.

In order to verify whether a received codeword C ′ contains any errors E, one checks
if G divides C ′:

C ′ mod G = (C ⊕ E) mod G

=
((
D ⊗ 2n−k

)
⊕

((
D ⊗ 2n−k

)
mod G

)
⊕ E

)
mod G

=
((
D ⊗ 2n−k

)
mod G

)
⊕

((
D ⊗ 2n−k

)
mod G

)
⊕ (E mod G)

= E mod G .
[73] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting Codes” (1978).
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Thus, if C ′ contains no errors, the result of this calculation is zero. If it is not, the
resulting value can be used to correct the errors inC ′, assuming that HW(E) ≤ t . The
method required to correct these errors depends on the type of error-correcting code
that is used.

Codes that generate codewords this way are called cyclic because circular shifts of a
codeword result in another valid codeword. By shortening the dimension bym bits,
the code C(n,k,t) is also reduced in length bym bits to C(n −m,k −m,t). E.g. from
C(255,21,55), one can create C(235,1,55), which has the same generator polynomial
and error correction capabilities, at the expense of less data one can correct. Note
that such a code is no longer cyclic.

2.7.2 Secure sketching

The notion of a secure sketch was proposed by Dodis et al.[41] and provides a method
to reliably reconstruct the outcome of a noisy variable in such a way that the entropy
of the outcome remains high, i.e. to remove errors from a PUF’s response data. In this
work, we focus on the syndrome construction for binary vectors. In order to prevent
confusion with similar terms later on, in the remainder of the text we refer to this
construction as the reconstruction data secure sketch, or simply secure sketch.

We describe the operation of the reconstruction data secure sketch which uses a
cyclic code C(n,k,t) with generator polynomial G. The secure sketch method is not
restricted to the use of such codes however, any lineair code will work. The enrollment
procedure takes as input a response Yi (x), of length n, and produces a helper data
hi (x) bit string of length n − k :

hi (x) = Yi (x) mod G .

The recovery procedure takes as input a di�erent (possibly noisy) response Y ′i (x)
(= Yi (x) ⊕ E, with E a bit error vector) and the previously generated helper data hi (x),
and calculates the reproduction data s ′i (x):

s ′i (x) = (Y ′i (x) mod G) ⊕ hi (x)

=
�
Y ′i (x) mod G� ⊕ (Yi (x) mod G)

= (Yi (x) ⊕ E ⊕ Yi (x)) mod G

= E mod G .

[41] Y. Dodis et al., “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy
Data” (2008).
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Thus, because of the linearity of the code, the value of the reproduction data s ′i (x)
depends only on the errors in Y ′i (x) and not on the actual responses. If HW(E) ≤ t ,
then E can be decoded from s ′i (x), and Yi (x) recovered as Yi (x) = Y ′i (x) ⊕ E.

Note that error-correcting codes are normally used in a setting where one does not
know beforehand what is being corrected. However, in the setting of the helper data
construction, we know that the output of the error-correcting algorithm should be
the response Yi (x), which was generated during the sketch generation. Whereas
one would normally input a received codeword to the correction algorithm, we thus
instead input the reproduction data s ′i (x).
In a sense, we are supplying the error correction algorithm with the zero codeword
C0 plus errors E. Indeed, we know that in the case without errors, i.e. s ′i (x) = C0 = 0,
every bit of s ′i (x) the correction algorithm marks as erroneous must be due to the
error vector E, and not due to C0.

Thus, the complete length of the codeword can be used for data, i.e. n = |Yi (x)|.
This allows for a much more e�cient use of the error correcting codes, e.g. with
C(318,174,17), we can check 318 PUF response bits for errors, instead of only 174.

2.7.3 Helper data entropy loss

Only the helper data hi (x) needs to be stored in between sketching and recovering.
Thus, if error correction happens within the design, then at no point in time does
an adversary gain knowledge of the actual PUF response Yi (x). However, due to the
linear nature of the error-correcting codes used, one has to assume that hi (x) leaks
information about Yi (x).
More speci�cally, hi (x) discloses at most n − k bits of entropy of Yi (x). Thus, one has
to take into account that Yi (x) only contains a remaining H(Yi (x)) − (n − k) bits of
entropy in the worst case. If the entropy in Yi (x) is less than n − k bits, the remaining
entropy in Yi (x) is zero.

Designs such as PUF-based cryptographic key generators do not reveal the
reproduction data s ′i (x) and thus one only has to take the entropy loss due to the
helper data hi (x) into account. However, other designs, such as those making use of
a reverse fuzzy extractor protocol,[76] transmit s ′i (x), and thus partly the error vector
E, over a public channel. In that case, there is an extra loss of entropy, unless s ′i (x)
is independent of Yi (x). This is only true if the error vector E is independent of
Yi (x). Schaller et al.[109] show that this is not necessarily true, and present a modi�ed

[76] R. Maes et al., “Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-
enabled RFIDs” (2012).

[109] A. Schaller et al., “Eliminating Leakage in Reverse Fuzzy Extractors” (2014).
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protocol which solves this problem.

Unfortunately, a large number of publications do not take this entropy loss into
account,[21,22,50,78,113] which leads to the designs in all of those works being weaker
than advertised. The importance of taking this loss of entropy into account was
recently stressed once more by Koeberl et al.[67] Note that this entropy reduction not
only applies to the secure sketch construction, but should be kept in mind for any
PUF application where data derived from a response is made publicly available.

2.7.4 Dealing with biased responses

Biased PUF output is problematic when used in conjunction with an error correction
method such as a secure sketch. Due to helper data entropy loss, it is often the case
that one cannot assume any remaining entropy in the corrected PUF response.

As a simple example to illustrate this, consider a 318-bit PUF response with a 75%
bias towards one, and a maximum error rate no more than 5%. This allows us to use a
CBCH (318,174,17) code for error correction. Because of the bias, the min-entropy of
the PUF response is only − log2 0.75 · 318 = 132 bits of entropy, assuming no further
correlation between the bits. Because of information loss due to the helper data, a
total of 318 − 174 = 144 bits of entropy have to be considered lost. Therefore, one
has to assume only max(0,132 − 144) = max(0,−12) = 0 bits of entropy remain in
the corrected PUF output. Thus, due to the high bias, the corrected response has no
entropy remaining at all.

In these next paragraphs, we present a simple, lightweight method which makes it
possible to use such biased PUF responses and still have them retain entropy after
error correction. Our method requires only a single readout of the PUF response, and
thus does not signi�cantly increase response generation times. To the best of our
knowledge, this idea has not been published before.

[21] C. Böhm et al., “A Microcontroller SRAM-PUF” (2011).
[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
[50] J. Guajardo et al., “FPGA Intrinsic PUFs and Their Use for IP Protection” (2007).
[67] P. Koeberl et al., “Entropy Loss in PUF-based Key Generation Schemes: The Repetition Code Pitfall”

(2014).
[78] R. Maes et al., “Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM

PUFs” (2009).
[113] V. van der Leest et al., “Soft Decision Error Correction for Compact Memory-Based PUFs Using a

Single Enrollment” (2012).
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2.7.4.1 Enrollment step

Our method requires two extra steps. The �rst one takes place during enrollment, and
consists of applying the von Neumann debiasing algorithm[94] to the PUF response.
This algorithm works as follows: the input bitstream is split up into pairs Bi of two
bits. The output bi of the algorithm is

bi =




∅ if Bi = 00 ∨ 11
0 if Bi = 01
1 if Bi = 10 ,

where ∅ means the input is discarded and no output is generated. As long as there is
no correlation between the bits, except for bias, then the result of this processing step
is an unbiased bit stream. For an input bitstream of length n with bias p towards one,
and bias q = 1 − p towards zero, the expected number of output bits l is

l = npq .

For each output bit, not only the bit itself, but also the index of the input pair which
generated this bit is recorded. The resulting list of indexes is helper data hvn which
will be used in subsequent readouts of the PUF. The helper data hvn contains only
information on the location of a bit toggle in the PUF response, but no information
whatsoever on the value of the response bits themselves. Thus, hvn does not require
any loss of entropy to be taken into account.

The output of this step is a bit string without bias which can be used as the input for
a “regular” PUF error correction method, such as a secure sketch.

2.7.4.2 Reconstruction step

The second step of the method is executed during reconstruction, each time the PUF
is read out. Using hvn , bit pairs B′i are extracted from the PUF response at locations
which generated an output bit at enrollment. On these pairs a modi�ed version of the
von Neumann debiasing algorithm is run:

b ′i =



0 if B′i = 0x
1 if B′i = 1x ,

where x ∈ {0,1}.
[94] J. von Neumann, “Various Techniques Used in Connection With Random Digits” (1951).
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Since the output of the modi�ed van Neumann algorithm only depends on the value
of the �rst bit, errors in the output must be due to an erroneous �rst bit. Therefore,
assuming the error rate for both zero and one bits is the same, i.e. pe,0 = pe,1, it is
trivial to see that the bit error rate p ′e of the processed data is p ′e = pe. Thus, this
method does not increase the error rate of the original PUF response.

Unfortunately, the above assumption will generally not hold in a real life scenario.
The stronger the bias of a PUF’s responses, the higher the bit error rate will be for the
bit value that appears the least in the responses. Therefore, the output of the above
method will have a higher bit error rate than the unprocessed PUF response. The bit
error rate is upper bounded by

p ′e ≤ max(pe,0, pe,1) ,

and will on average equal p ′e = 1
2 (pe,0 + pe,1).

After processing, the output of the second step can then be used the same way as
unbiased PUF data is handled. Of course, quite a few bits will be lost due to the
processing. Continuing with the previous example, if we require 318 response bits to
be error corrected, the expected required input length for the debiasing algorithm is
318/(0.75 · 0.25) = 1696 bits. After error correction, we would then be left with an
expected minimum of 174 bits of entropy.

The crucial idea, which makes our method both lightweight and e�cient, is that
the von Neumann algorithm is not executed directly on the PUF response during
reconstruction, but instead on extracted bit pairs. If instead the whole response is used,
the output of the debiasing would be a di�erent length each time, which would require
advanced solutions in order to be able to use standard error correction methods on
the output.

2.7.4.3 Increasing the number of extracted bits

The biggest drawback to our method is that a quite a few bits are lost to the debiasing
algorithm. Methods exist to extract a number of bits arbitrarily close to the amount
of Shannon entropy in the bit stream.

Here we discuss how to adapt a method published by Peres[101] for PUF-based
applications. Peres’ method iterates the von Neumann algorithm on data extracted
from discarded pairs and extracts information both from the value of pairs as well as
from their position.

Extracting information from discarded pairs works by considering only one bit in
those pairs and feeding those bits back into the von Neumann algorithm. E.g. given
[101] Y. Peres, “Iterating Von Neumann’s Procedure for Extracting Random Bits” (1992).
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a response “0011”, we get pairs “00→ 0” and “11→ 1”. From these, we generate an
output “01 → 0”. One can keep iterating this by considering pairs discarded in the
previous step. Helper data hvn′ for this step would consist of the locations of the �rst
bit of all sets of bit pairs which generate an output value.

In order to extract even more information from the data, Peres also takes into account
the order in which values appear. First bits are generated depending on whether a
pair has two identical bits. E.g. given a response “0100”, we get “01→ 1” and “00→ 0”.
These generated bits are then fed back into the von Neumann algorithm to generate
output, i.e. in the example “10→ 1”. The helper data hvn′′ for this step would consist
of the locations of the �rst bit of a sequence of four bits which will generate an output.

By using this iterated algorithm approximately H1(0.75) = 258 bits can be extracted
from our example 318 bit biased PUF response.

Unfortunately, the helper data necessary to extract bits from the order of values leaks
data on the PUF response. By checking whether a certain location in hvn′′ exists either
in hvn or hvn′ , one can �nd the value which will be generated using hvn′′ . For clarity,
we will illustrate this with an example.

Assume a location i0 in hvn′′ . From this location two bits, b ′′0 and b ′′1 , are generated
which will get fed back into the von Neumann algorithm. If i0 also exists in hvn , then
the two bits which generate b ′′0 must be di�erent, and thus b ′′0 = 1. Furthermore, since
i0 is in hvn′′ , we know that the von Neumann algorithm generates an output from the
combination b ′′0 b

′′
1 , and thus b ′′0 , b ′′1 . Therefore, the bit generated from location i0

due to hvn′′ will be “1”. Similarly, if i0 had been in hvn′ and hvn′′ instead, the generated
bit due to hvn′′ would have been “0”.

Note that knowledge of hvn′′ and only one of hvn or hvn′ is enough to compute all of
the data which hvn′′ will generate. Clearly, the hvn′′ helper data cannot be used in a
cryptographic setting. However, the hvn′ data can still be used, since it doesn’t leak
information on the response.

The chance for a bit pair having two identical bits is p2 + q2, and the chance for a pair
to be “11” from the set of all such pairs is p2

p2+q2 . Therefore, the expected number of
bits l ′ generated by using both helper data hvn and hvn′ is:

l ′ =
n

2 · 2pq +
n

4 · (p
2 + q2) ·

(
2 · p2

p2 + q2 ·
q2

p2 + q2

)

= n ·
(
pq +

1
2 ·

p2q2

p2 + q2

)
.

Similarly to our earlier statement, if the modi�ed von Neumann algorithm listed
above is applied, then the output value generated using hvn′ is equal to the �rst of
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those four bits. Therefore, the output will only be incorrect if this �rst bit is erroneous,
what happens to the other three bits does not matter. If the bit error rate for both bit
values is equal, then once again the bit error rate p ′e for the data generated using hvn′

is thus p ′e = pe. Since data generated using hvn and hvn′ is simply concatenated, the
bit error rate for the completely processed response is also equal to pe. The bit error
rate for cases where pe,0 and pe,1 are not equal is the same as for data generated using
hvn .

Using this improved method on our example PUF, the output length will be
approximately 21.56% of the input length. I.e. the response length n needs to be
approximately 1475 bits for l ′ = 318. Compared to using only hvn , this is an
improvement of approximately 13%, at the cost of 13% more helper data. Iteratively
processing dropped pairs can further improve the output length.

2.7.4.4 Potential security issues

Even though the presented method does not directly leak any information about the
value of the response through the helper data, it does leak some information. Any pair
whose location which is not present in hvn must consist of two equal values. Using
this information, one can easily calculate the bias of the response. For PUFs which
are easily modeled, i.e. arbiter PUFs, such information could greatly ease modelling.
Thus, for such PUFs, it is likely a bad idea to use the proposed debiasing method.

Another potential weakness is the susceptibility of the helper data to manipulation
attacks. If an attacker is able to systematically modify parts of the helper data, he will
eventually be able to reduce the PUF’s response to two possible values. One method
of preventing such attacks makes use of a hash function: both the helper data and
the �nal corrected PUF response are hashed and the digest is stored together with
the helper data. During reconstruction the hash is recalculated using the available
helper data and corrected PUF response, and is compared to the stored hash. For
more information on manipulation attacks and prevention schemes, we refer to e.g.
Delvaux and Verbauwhede.[36,37]

It is clear that the presented solution is not yet complete and will not work for all
types of PUFs. We therefore consider it a starting point for future research.

[36] J. Delvaux and I. Verbauwhede, “Attacking PUF-Based Pattern Matching Key Generators via Helper
Data Manipulation” (2014).

[37] ——, “Key-recovery Attacks on Various RO PUF Constructions via Helper Data Manipulation” (2014).
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2.8 Random number generation

Before �nishing this chapter, it is important to mention the possibility of using a
PUF not only for its “�xed” response generation behavior, but for generating random
numbers as well.[57,114,115]

Process variation, as explained in Section 2.3.1, leads to two types of random behavior.
The “static”, �ngerprint-like response behavior originates from circuit elements which
are rather strongly mismatched due to process variations. However, when comprised
of well-matched elements, certain designs, e.g. an SRAM cell, will function as a TRNG,
due to very small di�erences in operating conditions and circuit noise. This is a
“variable” random behavior, which leads to errors in a PUF’s response.

Whereas PUF designs most often assume that errors in the response are �xed, i.e.
thrown away, one can instead use the errors as a source of random numbers. These
two ideas can be combined to create a circuit that behaves both as a PUF and an RNG.
Such a design can serve as a building block providing two critical requirements for
cryptographic systems: key generation/storage and random number/nonce generation.
One example of such a circuit is the design by Varchola et al.[124]

The intra-device entropy metric mentioned earlier is a good way to qualify the usability
of errors in a PUF’s response for an RNG design. It gives an indication of the amount
of randomness one can expect in a PUF’s response, and thus the di�culty for an
adversary to guess the erroneous bits, even if he knows the expected response to the
challenge (i.e. the response retrieved at enrollment).

De�nition 2.8. The intra-device min-entropy of instance pufi can be calculated as

H intra
∞

�
pufi

�
,

n∑
i=1
− log2

(
max

(
p
(pufi ; bit j)
1 ,1 − p(pufi ; bit j)

1

))
.

This formula is almost the same as for the inter-device entropy (see De�nition 2.7),
however the crucial di�erence is in the bias values p(pufi ; bit j)

1 . For a dataset YExp(P),
using the same assumptions about P as in Section 2.6.7 (i.e. independent bit bias),
each bias value can in this case be estimated as

p
(pufi ; bit j)
1 =

Nchalmax
k=1

( 1
Nmeas

·
Nmeas∑
l=1

(
Y (l ; bit j)
i (xk )

))
, ∀ 1 ≤ i ≤ Npuf; ∀ 1 ≤ j ≤ n .

[57] D. E. Holcomb et al., “Power-Up SRAM State as an Identifying Fingerprint and Source of True Random
Numbers” (2009).

[114] V. van der Leest et al., “E�cient Implementation of True Random Number Generator Based on SRAM
PUFs” (2012).

[115] E. van der Sluis et al., “Random Number Generating System Based on Memory Start-Up Noise” (2012).
[124] M. Varchola et al., “New Universal Element with Integrated PUF and TRNG Capability” (2013).
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Note that for each pufi , we are taking as bias value for bit j the maximum bias
encountered over all challenges. This in order to guarantee that a worst-case bias
value is used when calculating the min-entropy. Calculating the intra-device min-
entropy for the design P is done by selecting the worst case (i.e. lowest) value from
all PUF instances. This is again done to ensure that the calculated value gives a lower
bound to the amount of intra-device entropy that one can expect.

De�nition 2.9. The intra-device min-entropy for design P is calculated as

H intra
∞ (P) ,

Npuf

min
i=1

�
H intra
∞

�
pufi

��
.

Note that calculating an accurate estimate of H intra(P) requires many PUF instances,
i.e. it is hard to calculate, for the same reason accurately estimating H inter(P) is hard.
However, it is easy to get a very good estimate for H intra�

pufi
�
, since one can just

keep querying pufi until an appropriate number of responses have been gathered.

If one is instead interested in the intra-device Shannon entropy H intra
1 (P), instead

of using minimum and maximum values, one will most likely want to average out
the calculations over multiple challenges and multiple PUF instances. This matches
better with Shannon entropy being a measure of average expected entropy.

2.9 Summary

We started this chapter with a description of what constitutes a PUF and gave an
overview of the most important PUF properties. Next, we gave an overview of
applications which are made possible, or at the very least greatly improved, by PUFs.
The underlying processes leading to PUF behavior were described, and example
designs for three important types of PUFs were discussed. Next, we discussed several
metrics by which the quality of PUFs and RNGs are assessed. Then, we described an
algorithm used to securely correct erroneous bits in PUF responses and the impact
this has on available response entropy. As part of this, we have also presented an as
yet unpublished method which makes it possible to securely use heavily biased PUFs
with error correction methods. The presented method is only a starting point, and
requires more research before it can be considered a full-�edged solution. Finally, we
discussed how PUFs can be used to generate random numbers.





3 PUFKY: An Area-Efficient

Key Generation Module

That’s not magic, that’s just engineering!
— Terry Pratchett, Interesting Times (1994)

W ith the theorethical background on PUFs out of the way, we will now
discuss a practical, e�cient implementation of a PUF-based key generation

module, named PUFKY. PUFKY is designed to be used as a �exible black
box module, which can easily be con�gured at design time to meet various constraints,
such as required key length or acceptable failure rate. Our design was at the time of
publication the �rst practical PUF-based key generation building block for FPGAs.

R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A Fully Functional
PUF-Based Cryptographic Key Generator”, in International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), E. Prou� and P.
Schaumont, Eds., ser. Lecture Notes in Computer Science, vol. 7428, Leuven,
Belgium: Springer, 2012, pp. 302–319
Contribution: Main author, responsible for all hardware designs, except

PUF & repetition decoder.

A. Van Herrewege and I. Verbauwhede, “Tiny, Application-Speci�c,
Programmable Processor for BCH Decoding”, in International Symposium on
System on Chip (SoC), Tampere, Finland: IEEE, 2012, 4 pp.
Contribution: Main author.

Content sources
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3.1 Introduction

Our aim is to construct a practical, e�cient PUF-based key generator. Furthermore,
the design should easily permit changes to both the length of the generated key,
and the maximum allowable error rate. Since PUF responses are generally noisy
and of relatively low entropy, a PUF-based key generator faces two main challenges:
increasing the reliability to a practically acceptable level and compressing su�cient
entropy in a �xed length key.

Fuzzy extractors[41,76] perform exactly these two functions and can be immediately
applied for this purpose, as suggested in a number of earlier PUF key generator
proposals. Guajardo et al.[50] propose to use an SRAM PUF for generating keys, using
a fuzzy extractor con�guration based on linear block codes. This idea was extended
and optimized by Bösch et al.[22] who propose a concatenated block code con�guration,
and Maes et al.[78] who propose to use a soft-decision decoder. Yu et al.[127] propose a
con�guration based on ring oscillator PUFs and apply an alternative error-correction
method.

Our main contribution is a highly practical PUF-based cryptographic key generator
design, and an e�cient yet fully functional FPGA reference implementation
thereof. The proposed design comprises a number of major contributions based
on new insights: i) we propose a novel variant of a ring oscillator PUF based
on very e�cient Lehmer-Gray order encoding; ii) we abandon the requirement
of information-theoretical security in favor of a much more practical yet still
cryptographically strong key generation; iii) we counter the widespread belief
that code-based error-correction, BCH decoding in particular, is too complex for
e�cient PUF-based key generation,[22,67] by designing a highly resource-optimized
BCH decoder; and iv) we present a global optimization strategy for PUF-based key
generators based on well-de�ned design constraints.

The two core building blocks of PUFKY are the novel ring oscillator-based PUF and
the extremely lightweight microcontroller for BCH decoding. In this chapter, we

[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
[41] Y. Dodis et al., “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy

Data” (2008).
[50] J. Guajardo et al., “FPGA Intrinsic PUFs and Their Use for IP Protection” (2007).
[67] P. Koeberl et al., “Entropy Loss in PUF-based Key Generation Schemes: The Repetition Code Pitfall”

(2014).
[76] R. Maes et al., “Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-

enabled RFIDs” (2012).
[78] R. Maes et al., “Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM

PUFs” (2009).
[127] M.-D. M. Yu et al., “Lightweight and Secure PUF Key Storage Using Limits of Machine Learning”

(2011).
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will only brie�y touch upon the PUF design, and instead focus on the supporting
error-correction microcontroller.

The design of the controller can easily be adapted to other types of PUFs, with
minimal required manual changes to its �rmware. For our chosen “default”
PUFKY con�guration (which generates a 128-bit key with a 10−9 failure rate), the
microcontroller, which implements a BCH(318,174,17) decoder, only requires 68 slices
of a Xilinx Spartan-6 FPGA, or 1 130 GE in 130 µm UMC ASIC technology.

3.2 Background

The secure sketch algorithm as presented in Section 2.7 uses a single linear error-
correcting code to repair errors in PUF responses. However, Bösch et al.[22]

demonstrated that code concatenation o�ers considerable advantages when used
in secure sketch constructions. Notably, the use of a simple repetition code as an
inner code signi�cantly relaxes the design constraints. The parameter constraints for
a secure sketch based on the concatenation of a repetition code C1(n1,1,t1 = bn1−1

2 c)
as an inner code and a second linear block code C2(n2,k2,t2) as an outer code, are
given in the second column of Table 3.1.

Table 3.1: Parameter constraints for secure sketches, for a single linear code and for a
repetition code concatenated with a linear code, for inputs with an entropy density
ρ and error rate pe. The maximum failure rate after error correction is pfail, and the
output hasm bits remaining entropy.

C(n,k,t) C2(n2,k2,t2) ◦ C1(n1,1,t1 = bn1−1
2 c)

Rate k
n > 1 − ρ k2

n1n2
> 1 − ρ

t ≥ B−1
n,pe

(
(1 − pfail)

1
r
)
, t2 ≥ B−1

n2,p′e

(
(1 − pfail)

1
r
)
,

Correction with r =
⌈

m
k−n(1−ρ)

⌉
with p ′e = 1 − Bn1,pe (t1),

r =
⌈

m
k2−n1n2(1−ρ)

⌉

The design parameters of the secure sketch construction are mainly determined by the
selection of an appropriate linear block code C(n,k ,t). In order to yield a meaningful
secure sketch, C(n,k,t) needs to meet some constraints determined by the available
PUF, with error rate pe and entropy density ρ, and by the required remaining entropy

[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
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m and reliability 1 − pfail of the output of the secure sketch. These constraints are
listed in the �rst column of Table 3.1. The rate and correction constraints bound the
possible code parameters as a function of the available input (pe,ρ) and the required
output (m,pfail). They respectively express the requirement of not disclosing the
full entropy of the PUF through the helper data, and the minimally needed bit error
correction capacity in order to meet the required reliability. Finally, a practicality
constraint, not listed in the table, is de�ned simply as “e�cient decoding algorithms
must exist for the chosen code”.

For example, assume a PUF with n = 127, ρ = 95%, and pe = 5%. Let’s say that we
require m ≥ 50 bits of entropy after error correction and a failure rate pfail ≤ 10−6.
We will use the formulas for one code, i.e. those in the left column of Table 3.1. The
rate formula gives us k

/
n > 1 − ρ. By rearranging this formula, we get n · ρ > n − k ,

i.e. the entropy in the PUF response needs to be larger than the amount of entropy
lost due to helper data. For this example, we �nd k > 7.

The formula for r rounds up the required entropy after correction divided by the
actual entropy after correction, i.e. it tells us how many blocks of n bits need to be
corrected, and afterwards concatenated, in order to obtain at leastm bits of entropy
in the corrected response. Since the formula of r depends on k , we can not calculate a
�xed value for it, since we only have an inequality for k . However, if we pick a code
C(n,k,t), then both k and t are �xed, and we can verify whether the inequality for t
holds, i.e. the inequality in the second row of Table 3.1. This demonstrates the iterative
procedure required for �nding an adequate code. Note that there is no guarantee that
such a code can be found for the given PUF parameters, so in some cases a redesign
of the PUF will be necessary in order to obtain the required performance.

For this example, multiple codes are possible. The best BCH code in this case, i.e.
the one that minimizes the entropy loss due to helper data while still meeting all
requirements, is CBCH (127,64,21). This leaves us with m = 64 − 127 · (1 − 0.95) =
57.65 bits of entropy in the corrected response. To obtain the required failure rate, we
need t ≥ 21, thus the inequality is satis�ed.

3.2.1 Repetition code construction

A repetition code is an exceptionally simple error-correcting code, based on the simple
premise that if one transmits the same bit multiple times, the majority of bits will be
received without errors.

Constructing an n-bit codeword consist of simply repeating the 1-bit data word n
times. In order to decode the word, a majority vote is taken and the received data
bit is decoded to whichever value appears most often in the received codeword. The
generator polynomial for a repetition code has a coe�cient equal to one at each
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position, e.g. for CREP(3,1,1) we have G = x2 + x + 1. For a channel with error rate
perr, a repetition code CREP(n,1,t = bn−1

2 c) has a decoding error rate pfail:

pfail = 1 − Bn,perr (t) .

I.e. the failure probability for the decoding step is equal to one minus the probability
that t or less bits are erroneous. A repetition code for data consisting of multiple bits
can be created by simply concatenating single data bit repetition codes.

The following simple example illustrates the use of a repetition code in a secure sketch
construction. Assuming the PUF outputs 5 bits, a CREP(5,1,2) code will be used. Let’s
say the response at enrollment was Y = 11010, therefore

h = Y mod G

= (x4 + x3 + x) mod (x4 + x3 + x2 + x + 1)

= x2 + 1

= 0101 .

Note that the length of h is equal to n −k = 4. A subsequent query of the PUF returns
Y ′ = 10011. This response contains 2 errors:

E = Y ⊕ Y ′ = 11010 ⊕ 10011 = 01001 ,

which is within the correction limit of the code. Calculating the reproduction data s ′
gives us

s ′ = (Y ′ mod G) ⊕ h

=
�(x4 + x + 1) mod (x4 + x3 + x2 + x + 1)� ⊕ (x2 + 1)

= (x3 + x2) ⊕ (x2 + 1)

= x3 + 1

= 1001 .

Remember from Section 2.7 that we are e�ectively calculating s ′ = C0 ⊕ E. Thus, there
are two ways s ′ can take on this value, either E = x3 + 1 or E = x4 + x2 + x . Note that
these two options are each other’s binary inverse. Out of the two options, one must
have HW(E) > t (= 2), and thus we would not be able to correct the response if that
were the correct error vector. Thus, one chooses the option which has a Hamming
weight ≤ t . A simple way to calculate the value of the data error bit e1, i.e. the most
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signi�cant error bit, which determines whether the bits in the reproduction data s ′
need to be inverted, is

e1 = (HW(s ′) > t) .
The full error vector can then be reconstructed as the concatenation of e1 and s ′
XORed with e1 at each position. In our example, we thus have

Y = Y ′ ⊕ E

= Y ′ ⊕ (e1 | (s ′ ⊕ e1e1 . . . e1))

= 10011 ⊕ 01001

= 11010 .

3.2.2 BCH code construction

As shown by Bösch et al.,[22] BCH codes[23,55] are very e�cient when used as the outer
code in a PUF error correction design. Despite the belief[22] that a BCH decoder
implementation is large, and thus not suited for a small PUF-based design, we
nevertheless choose to use this code for PUFKY.

A BCH code CBCH (n,k,t), de�ned by its generator polynomial G, is constructed as
follows. First, one selects the size u of the underlying �eld F2u . Let A ∈ F2u be of
order ord(A). For each Ai ,i = b, . . . ,b + 2t − 1, de�neMi as the minimal polynomial
of Ai . G is de�ned as the least common multiple of allMi . This gives a code of length
n = ord(A), with k = n − ord(G), and ord(G) = t . In this chapter, we only consider
codes for which A = α , a primitive element of F2u , and b = 1, so-called primitive
narrow-sense BCH codes.

BCH decoding consists of a three step process: syndrome calculation, error polynomial
calculation and error position calculation. Each of these steps is explained in more
detail in the next paragraphs.

3.2.2.1 Syndrome calculation

The �rst decoding step is calculating the so-called syndromes. In order to calculate the
syndrome, one takes a received codeword C ′, i.e. the sum of an error-free codeword

[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
[23] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes” (1960).
[55] A. Hocquenghem, “Codes Correcteurs d’Erreurs” (1959).
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C and an error vector E, and evaluates it as a polynomial. The syndromes are the
evaluations of C ′(x) for x = α i , with i = 1, . . . ,2t . Thus, syndrome Si is de�ned as

Si = C
′(α i ) = C(α i ) ⊕ E(α i )

= E(α i ) .

The evaluation of theC ′ polynomial can be calculated a lot faster than straightforward
polynomial evaluation, since every coe�cient must be either 0 or 1. This allows one
to replace all multiply-accumulate operations in an implementation with conditional
additions.

3.2.2.2 Error location polynomial calculation

Suppose we have an error vector E = x l1 + x l2 + . . . + x ly . Then the value of the �rst
three syndromes is

S1 = α l1 + α l2 + . . . + α ly

S2 = α2l1 + α2l2 + . . . + α2ly

S3 = α3l1 + α3l2 + . . . + α3ly .

The Berlekamp-Massey (BM) algorithm,[12,82] when given a list of syndromes Si ,
returns an error location polynomial

Λ(x) = (α l1x + 1)·(α l2x + 1)· . . . · (α ly x + 1)

= (x − α−l1 )·(x − α−l2 )· . . . · (x − α−ly ) .

One of the problems with the original BM algorithm is that it requires an inversion of
an element A ∈ F2u in each of the 2t iterations it executes internally. To eliminate
this costly operation, Burton[25] devised an inversionless version of the algorithm.
Multiple authors have suggested improvements to this algorithm in the form of
space-time tradeo�s.[100,103,108]

[12] E. Berlekamp, “On Decoding Binary Bose-Chadhuri-Hocquenghem Codes” (1965).
[25] H. Burton, “Inversionless Decoding of Binary BCH codes” (1971).
[82] J. Massey, “Shift-Register Synthesis and BCH Decoding” (1969).

[100] J.-I. Park et al., “High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-
Massey Algorithm” (2009).

[103] I. Reed and M. Shih, “VLSI Design of Inverse-Free Berlekamp-Massey Algorithm” (1991).
[108] D. Sarwate and N. Shanbhag, “High-Speed Architectures for Reed-Solomon Decoders” (2001).



64 PUFKY: AN AREA-EFFICIENT KEY GENERATION MODULE

3.2.2.3 Error location calculation

Finding the roots of Λ(x) gives the location of the errors in R. The Chien search
algorithm[28] is an e�cient way of evaluating all possible values of α i , thus allowing to
check for every bit position if it is erroneous. It does this by improving multiplications
in the evaluation formula to constant factor multiplications by noting that intermediate
results for Λ(α i+1) di�er by a constant factor from intermediate results for Λ(α i ):

Λ(α i ) = λy · α it + . . . + λ1 · α i + λ0

≡ λy ,i + . . . + λ1,i + λ0,i

Λ(α i+1) = λy · α (i+1)t + . . . + λ1 · α i+1 + λ0

= λy ,i · α t + . . . + λ1,i · α + λ0,i

≡ λy ,i+1 + . . . + λ1,i+1 + λ0,i+1 .

3.2.3 Cryptographic key generation

As discussed in Section 2.2.3, the fuzzy extractor by Dodis et al.[41] can be used to
generate reliable keys using PUFs. Their proposed method of accumulating entropy
with a strong extractor brings with it heavy losses in entropy and requires a random
seed. We therefore follow the recommendations described in multiple reference
works,[8,44,64] and use a cryptographic hash function as entropy accumulator instead.

The amount of data to be accumulated to reach a su�cient entropy level depends on
the (estimated) entropy rate of the considered source. For PUFs, entropy comes at a
high implementation cost and being too conservative leads to an excessively large
overhead.

For this reason we are forced to consider relatively tight estimates on the remaining
entropy in a PUF response after secure sketching. On the other hand, the output
length of a PUF-based key generator is very limited (a single key) compared to PRNGs.
In any case, the total amount of entropy which needs to be accumulated should at
least match the length of the generated key.
[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic

Random Bit Generators” (2012).
[28] R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes” (1964).
[41] Y. Dodis et al., “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy

Data” (2008).
[44] D. Eastlake et al., “Randomness Requirements for Security” (2005).
[64] J. Kelsey et al., “Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic

Pseudorandom Number Generator” (1999).
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3.3 Design

The top-level architecture of our PUFKY PUF-based key generator is shown in
Figure 3.1. As a PUF, we use a ring oscillator PUF (ROPUF) which produces high-
entropy outputs based on the frequency ordering of a selection of ring oscillators,
as described in Section 3.3.1. To account for the bit errors present in the PUF
response, we use a secure sketch construction based on the concatenation of two
linear block codes, a repetition code CREP(nREP ,1,bnREP−1

2 c) with nREP odd and a BCH
code CBCH (nBCH ,kBCH ,tBCH ). Our reference implementation requires CREP(7,1,3) and
CBCH (318,174,17) in order to guarantee that the 128-bit key has an error rate ≤ 10−9.
The design of the helper data generation and repetition error decoder blocks used in
the secure sketching is described in Section 3.3.2, the design of the BCH decoder is
described in more detail in Section 3.4. To accumulate the remaining entropy after
secure sketching, we apply the recently proposed light-weight cryptographic hash
function SPONGENT.[19]
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Figure 3.1: PUFKY high-level architecture.

3.3.1 ROPUF design

Our ROPUF design is inspired by the design of Yin and Qu[126] which generates
a response based on the frequency ordering of a set of oscillators. An oscillator’s
frequency is measured by counting the number of oscillations in a �xed time interval.
To reduce the area taken up by frequency counters, oscillators are ordered in b batches
of a oscillators sharing a counter. In total, our ROPUF design contains a×b oscillators
of which sets of b can be measured in parallel. The measurement time is equal to
a �xed number of cycles of an independent on-chip ring oscillator and, in our case,
[19] A. Bogdanov et al., “SPONGENT: A Lightweight Hash Function” (2011).

[126] C.-E. D. Yin and G. Qu, “LISA: Maximizing RO PUF’s Secret Extraction” (2010).
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is equal to approximately 87 µs. After some post-processing, an `-bit response is
generated based on the relative ordering of b simultaneously measured frequencies.
A total of a × `-bit responses can be produced by the ROPUF in this manner. Note
that, to ensure the independence of di�erent responses, each oscillator is only used
for a single response generation. The architecture of our ROPUF design is shown in
Figure 3.2.
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Figure 3.2: ROPUF architecture.

As discussed in Section 3.2, the quality of the PUF responses, expressed by (pe,ρ), will
be decisive for the design constraints of the secure sketch, and by consequence for the
key generator as a whole. The details of the post-processing will largely determine
the �nal values for (pe,ρ). We propose a three-step encoding process to convert b
frequency measurementsF b = (F0, . . . ,Fb−1) in an `-bit responseX = (X0, . . . ,X`−1):

1. Frequency normalization: remove structural bias from the measurements.
2. Order encoding: encode the normalized frequency ordering to a stable bit vector,

while preserving all ordering entropy.
3. Entropy compression: compress the order encoding to maximize the entropy

density without signi�cantly increasing the bit error probability.

3.3.1.1 Frequency normalization

Only a portion of a measured frequency Fi is random, and only a portion of that
randomness is caused by the e�ects of process variations on the considered oscillator.
Analysis by Maiti et al.[80] demonstrates that Fi is subject to both device-dependent
and oscillator-dependent structural bias. Device-dependent bias does not a�ect the
ordering of oscillators on a single device, so we will not consider it further. Oscillator-
dependent structural bias on the other hand has a potentially severe impact on the
randomness of the frequency ordering. It is reasonable to assume for the frequencies
[80] A. Maiti et al., “A Large Scale Characterization of RO-PUF” (2010).
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Fi to be independent, but due to the oscillator-dependent structural bias we cannot
consider them to be identically distributed, since each Fi has a di�erent expected
value µFi .

The ordering of Fi is largely determined by the deterministic ordering of µFi and
not by the e�ect of random process variations on Fi . We prevent this by subtracting
the sample average Fi , calculated over many Fi on many devices, from Fi , thereby
obtaining the normalized frequency F ′i = Fi −Fi . Assuming Fi ≈ µFi , the normalized
frequencies F ′i are i.i.d.

Calculating Fi needs to be performed only once for a single design.When these
normalization terms are known with high accuracy, they can be included in the
design, e.g. using a ROM.

Order encoding Sorting a vector F ′b of normalized frequencies amounts to
rearranging its elements in one of b! possible ways. The goal of the order encoding
step is to produce an `′-bit vector Y `′ which uniquely encodes the ascending order of
F
′b .

Since the elements of F ′b are i.i.d., each of the b! possible orderings is equally likely
to occur,[125] leading to H1(Y `′) = log2 b! = ∑b

i=2 log2 i . An optimal order encoding
has a high entropy density but a minimal sensitivity to noise on the F ′i values. Since
deviations from the “standard” frequency measurement will most likely manifest
themselves as order swaps between two neighboring values, it would be prefered that
such an error only in�uences a single response bit. We propose a Lehmer encoding of
the frequency ordering, followed by a Gray encoding of the Lehmer coe�cients.

A Lehmer code is a unique numerical representation of an ordering which is e�cient to
obtain since it does not require explicit value sorting. It represents the sorted ordering
of F ′b as a coe�cient vector Lb−1 = (L0, . . . ,Lb−2) with Li ∈ {0,1, . . . , (i + 1)}. It is
clear that Lb−1 can take 2 · 3 · . . . · b = b! possible values which is exactly the number
of possible orderings.

The Lehmer coe�cients are calculated from F ′b as Lj =
∑j

i=0(F ′j+1 > F ′i ), with
(x > y) = 1 if true and 0 if not. The Lehmer encoding has the nice property that two
neighboring values swapping places only changes a single coe�cient by ±1. Using a
binary Gray encoding for the Lehmer coe�cients, this translates to only a single bit
di�erence in the resulting output. The length of the binary representation becomes
`′ =

∑b
i=2dlog2 ie, close to the theoretical optimum H1(Y `′).

[125] K. Wong and S. Chen, “The Entropy of Ordered Sequences and Order Statistics” (1990).
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Consider the following example of Lehmer encoding and decoding. Assume an array
X with a permutation of the �rst four letters in the alphabet:

X = [B,C,D,A] .

In order to generate an encoding for this permutation, we start by �nding how many
elements in X are “smaller” than the last one. Using the formula given above, we get

L0 =
∑0

i=0
(X [1] > X [i]) = 1 L1 =

∑1

i=0
(X [2] > X [i]) = 1 + 1 = 2

L2 =
∑2

i=0
(X [3] > X [i]) = 0 + 0 + 0 = 0 .

Thus, the encoding is L = [1,2,0]. Note that at no point did we have to do any sorting
on the array.

In order to reconstruct the permutation from Y = [A,B,C,D], we work from right to
left. First, one takes from Y the element at position L2 and inserts it on the left of
the result array, i.e. X ′ = [Y [L2]] = [A]. Next, this element is removed from Y . This
process is then repeated, i.e. in the next step X ′ = [Y [L1],A] = [D,A] and Y = [B,C].
After all elements in L have been processed, one element will remain in Y , which is
then inserted again on the left of X ′. Thus, the result in this case is X ′ = [B,C,D,A],
which is indeed equal to X .

Entropy compression Ideally, we want each bit in the order encoding to have full
entropy. The entropy density of the order encoding is already quite high:

ρ1
(
Y `′

)
=

b∑
i=2

log2 i

dlog2 ie
.

It can be increased further by compressing it to Y ` with ` ≤ `′. Note that Y `′ is
not quite uniform over {0,1}`′ since some bits of Y `′ are biased and/or dependent.
This results from the fact that most of the Lehmer coe�cients, although uniform by
themselves, can take a range of values which is not an integer power of two, leading
to a suboptimal binary encoding.

It is easy to see this in the example presented above. The value L1 can take on either
0 or 1, and can thus be optimally encoded with one bit. However, L1 ∈ {0,1,2} and
thus two bits are required to encode this value, even though, in the ideal case, the
entropy content is only H1(L1) = − log2( 1

3 ) ≈ 1.58 bits, because L1 will never encode
the value 3.

We propose a simple compression by selectively XOR-ing bits from Y `′ which su�er
the most from bias and/or dependencies, leading to an overall increase of the entropy
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density. Note that XOR-compression potentially also increases the bit error probability,
but at most by a factor `′

` .[75]

In the example above, if one compresses L1 to a single bit, then this bit L1′ will be 0
one third of the time, and 1 the remaining two thirds. Thus, the entropy H1(L1′) has
been increased to 0.92 bits of entropy, whereas L1 only has 0.79 bits of entropy per
bit.

The bound on the increase in bit error probability can be proven as follows. Take a
string A of length n bits, which are XORed together to create a string B of length 1 bit.
We will assume that each bit in A has the same error probability perr. An error will
manifest itself in B whenever there is an odd number of errors in A, otherwise the
errors will cancel out due to the XOR operation. The error rate of B is thus

pB =
n∑
i=1
2-i

(
n

i

)
· pie · (1 − pe)(n−i) .

Dividing this by the original error rate pe of an individual bit, we get:

pB
pe
=

1
pe
·

n∑
i=1
2-i

(
n

i

)
· pie · (1 − pe)(n−i)

≤ 1
pe
· *

,

n∑
i=0

(
n

i

)
· pie · (1 − pe)(n−i) −

(
n

0

)
· p0

e · (1 − pe)n+
-

≤ 1
pe
· (1 − (1 − pe)n)

≤ n .

To prove this last step, consider the function on the third line:

1
pe
· (1 − (1 − pe)n) ≤ n

⇔ 1 − n · pe ≤ (1 − pe)n .

[75] R. Maes, “Physically Unclonable Functions: Constructions, Properties and Applications” (2012).
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This is easily seen to hold for n = 1. We can prove the general case by induction:

(1 − pe)n+1 = (1 − pe)n · (1 − pe)

≥ (1 − n · pe) · (1 − pe)

= 1 − (n + 1) · pe + n · p2
e

≥ 1 − (n + 1) · pe .

3.3.2 Helper data generation and error decoding

We consecutively describe our design of the helper data generator and error decoder
blocks for the used repetition code, as well as the helper data generation for the BCH
code. The design of the BCH decoder block is described in greater detail in Section 3.4.

3.3.2.1 Repetition code CREP

As shown in Section 3.2.1, the generator polynomial of a repetition code of length
n is G = ∑n−1

i=0 x i . That means that in hardware, one only has to XOR Ybit 1 together
with each of the other bits Ybit 2, . . . ,Ybit nREP , i.e. hi = Ybit 1 ⊕ Ybit i+1.

The design of the REP decoder, shown in Figure 3.3, is very straightforward. Our block
takes for a CREP(n,1,t) code n bits of PUF data Y ′′ and (n− 1) bits of helper data hrep. A
total of 2 · (n − 1) XOR gates calculate the reproduction data s ′′ = (Y ′′ mod G) ⊕ hrep
from these inputs.

Remember that the value for the �rst error bit is e1 = (HW(s ′′) > t). The remaining
error bits are obtained by a pairwise XOR of e1 with the other bits of s ′′. However,
as pointed out in Section 2.7, we have to assume that n − 1 bits of entropy are lost
because the helper data is public. Thus, we only output the corrected bit Y ′1 . In order
to generate the helper data hrep, an all-zero vector is input as the hrep value, s ′′ is then
equal to hrep.

Y
′′

hrep

HW(s ′′) > t

Y ′bit 1

s ′′

Figure 3.3: Design of our REP decoder with single bit corrected output.
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3.3.2.2 BCH code CBCH

Just as for the repetition code, the BCH code requires us to calculate a modular division
of an input with the code’s generator polynomial. However, unlike the repetition code,
not all of the generator polynomial’s coe�cients are one at each position. One can
e�ciently implement the required modular division operation in hardware as an LFSR
of length (nBCH − kBCH ), with feedback taps determined by the generator polynomial.
Thus, the size of this block, for CBCH (n,k,t), is equal to (n − k) registers and a number
of XOR gates equal to the sum of the generator polynomial’s coe�cients.

Calculating the reproduction data s ′ = Y ′ ⊕ hbch is done by �rst sequentially clocking
in each bit of Y ′ in the LFSR, and then XOR-ing this with the helper data hbch.
Generating helper data is done the same way as in the repetition secure sketch
block, by simply taking the output of the LFSR XORed with zero.

3.4 BCH decoding microcontroller

In the following sections, we will take a closer look at the design of the microcontroller
used to correct the PUF responses. Particular attention is paid to the various design
techniques used to reduce the controller’s footprint.

In order to better understand the design choices we make, one must look at the
design requirements. Our application requires very long BCH codes. For example, as
discussed in Section 3.5, the default PUFKY con�guration (128-bit key with 10−9 failure
rate) requires a BCH(318, 174, 17) code. The optimal BCH parameters depend on many
factors, amongst them the PUF’s error rate, its response length and required key length.
Thus, our design has to be �exible and adaptable to any set of BCH code parameters.
Another peculiarity is the fact that execution time is not of major importance in our
design, since key generation is typically not a time-critical operation. Our primary
goal is area reduction, in order to make the PUFKY design as small as possible.

Most, if not all, of these design goals are in stark contrast to what is generally required
of BCH decoders. A review of published BCH and closely related Reed-Solomon
decoder designs[72,99,100,103,108] shows that they are mostly constructed as systolic

[72] W. Liu et al., “Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell
NAND Flash Memories” (2006).

[99] J.-I. Park et al., “An Area-E�cient Truncated Inversionless Berlekamp-Massey Architecture for Reed-
Solomon Decoders” (2011).

[100] J.-I. Park et al., “High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-
Massey Algorithm” (2009).

[103] I. Reed and M. Shih, “VLSI Design of Inverse-Free Berlekamp-Massey Algorithm” (1991).
[108] D. Sarwate and N. Shanbhag, “High-Speed Architectures for Reed-Solomon Decoders” (2001).
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array designs, which, roughly speaking, comes down to creating a large calculation
array out of identical building blocks.

Such designs are inherently highly pipelined, which leads to a very high throughput.
However, such designs also require a large area. Furthermore, published designs
are almost without exception targeted towards communication systems, in which
di�erent code parameters are used than the ones required for PUFKY in various
con�gurations. In particular, the number of correctable bits for the PUFKY design
needs to be larger than in conventional designs, which can have a rather big impact
on decoding time and storage requirements.

Due to our primary design goals being a small area footprint and a high �exibility
with regards to code parameters, the best choice in this case is to forgo the de facto
systolic array design and opt for a microcontroller-based approach instead.

3.4.1 Hardware design

Our design is heavily in�uenced by the requirements of the BCH decoding algorithms,
as explained in Section 3.2.2, and hence our microcontroller is very application-speci�c.
In this section we describe the individual components of the microcontroller, as well
as the communication interface.

3.4.1.1 Components

The BCH decoding controller design consists of three main components, which are
shown in Figure 3.4. Each of them is described separately in the next paragraphs.
The critical path of the controller is highlighted in orange in the �gure. This path
originates in the ROM, goes through the control unit, address RAM, data RAM, and
F2u ALU, to �nally end back in the control unit.

Data block The data block contains, �rst, a data RAM block that stores all variables
necessary for the decoding as well as the error word, and, second, an arithmetic unit
(ALU). The size, as well as the width, of the data RAM depends on the parameters of
the BCH code. Because calculations done on the RAM content only return a single
result, the dual port RAM only has one data input port. At the start of execution,
the data RAM should contain reconstruction data s ′, after execution has �nished, it
contains the error word e .

As will be shown further on, virtually all calculations for BCH decoding are over
elements in F2u . This lead us to develop a minimal ALU supporting only a single
complex operation: single-cycle multiply-accumulate in F2u . The ALU contains a
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Figure 3.4: High-level architecture of the BCH decoding microcontroller. The
highlighted line indicates the critical path.

single register for the accumulator and has a dual port input from the RAM, both
of the ports are fed into the multiplier. The operation is implemented in a �exible
way, such that one can chose between executing either a multiply-accumulate, a
multiplication or an addition.

Not shown in Figure 3.4, but also present in the F2u ALU, is support for �xed length
rotation and shifting, however this only requires wires, no active circuitry. Naturally,
some extra multiplexer are needed in order to select between the outputs of these
various operations.

Address block Part of the novelty of our design is the use of an extremely
tiny, dedicated address block. This block consists of a tiny address RAM and an
attached address calculation unit (ACU), reminiscent of digital signal processor (DSP)
designs.[70]

The size of the address RAM is only 5 words, independent of the BCH code parameters,
while its width does depend on them, since larger codes require more data RAM, and
thus a larger address space. The reason for including a dedicated address block is due
to the high amount of array processing required by the algorithms.
[70] P. Lapsley et al., “DSP Processor Fundamentals: Architectures and Features” (1996).
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The attached ACU (see Figure 3.4) works over elements in Z and supports increase and
decrease by one, passthrough and binary inversion. By inputting a destination address
on the �rst address port and a source address on the second one, the passthrough can
be used to copy values to di�erent locations in RAM. This is the reason why the RAM
block has a dual port address input and a dual port value output, yet only a single data
input. The binary inversion operation is equal to negate and decrease by one in two’s
complement notation, an operation required by our Berlekamp-Massey algorithm.
The combination of these operations allow the use of the address block for address
pointer storage, for array pointer arithmetic and for keeping track of counter values.

Controller The controller consists of a �rmware ROM, which contains the machine
code for BCH decoding. The �rmware is �xed, and generated at synthesis time. Since
our controller contains no pipelines, the design used to decode the �rmware and
control the datapath can be implemented as a single �nite state machine.

Because the size of the address RAM is always �ve words, including the source and/or
destination addresses of an operation into an instruction word takes only three bits.
This allows for much smaller machine code than if the full addresses would have to
be included with each instruction.

3.4.1.2 Communication

Both the address RAM output and the data block ALU register output are wired back
to the controller in order to enable comparisons. Write enable signals to both RAMs
as well as to the data block ALU register can be blocked by the controller. This allows
predicated execution for almost every instruction, i.e. an instruction can be executed
completely, except its result will not be stored, so it e�ectively acts as a nop operation.

The controller reset line is not only coupled to the controller block, but also to
multiplexers in front of the data RAM. By keeping the controller in reset, one can
write data, i.e. the reproduction data s ′, to the data RAM address and data inputs. As
soon as reset is released, the controller starts executing the �rmware, i.e. decoding.
The last instruction in the �rmware tells the controller to assert a ready output and
halt. The error word can then be retrieved by asserting the reset line again and reading
out the result from the data RAM. This type of design allows the controller to be easily
integrated in larger designs with little to no overhead, since there is no communication
protocol one has to implement in order to interface with the controller.

Analysis of the required algorithms for BCH decoding shows that the majority of
operations takes place in loops over arrays. This is the reason the controller contains
a separate address block. The output of the address RAM is wired straight into the
data RAM address input. Thus, all addressing in the controller is indirect. However,
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since virtually all loops operate over arrays, this construction allows for very intuitive
and e�cient �rmware development. For example, implementing an array summation
takes only three assembly instructions: accumulate, increase address pointer and
conditional branch, note that at no point explicit loads or stores are necessary.

All RAMs are non-bu�ered, meaning there are no cycles between querying an address
and the value at that address appearing at the output. The drawback of this design
choice is a reduced maximum frequency, since the critical path runs through both
RAMs. If bu�ered RAM were used instead, the critical path would most likely be
one third of what it currently is. Such an improvement would require a much more
advanced controller though. First of all, assuming approximately one instruction is
handled per cycle, an instruction pipeline would be required. Furthermore, due to
predicated execution, our controller would then need to be able to �ush the pipeline,
as well as insert stall/NOP states. We have therefore opted not to implement this, since
execution time is rather low on the list of design goals, and the complex controller
would take up a larger area.

3.4.2 So�ware design

In this next section, we describe the software aspects of our BCH decoder. First of
all, we list the microcontroller instruction set architecture (ISA), next we go over the
algorithm implementations and �nally we describe the optimization techniques used
during �rmware implementation.

3.4.2.1 Instruction set

An overview of the instruction set architecture of the microcontroller is given in
Table 3.2. The instructions have a minimum width of 10 bits; the actual required width
depends on the parameters of the chosen BCH code and the �rmware. If the size u of
the underlying �eld F2u is larger than 10, the instruction width needs to increase in
order to be able to initialize RAM to any value, unless all initialization values have
their most signi�cant bit equal to zero. For the PUFKY designs we tested, the �eld
size was always 9 or less, and thus the instruction width is �xed at 10 bits. However,
increasing this would require no more than modifying a constant in our HDL code.
Encoded in an instruction word are the type of operation to execute, predicated
execution �ags and (if applicate) source and/or destination address pointers.

The instructions are chosen speci�cally in function of the algorithms required for BCH
decoding. The most important considerations in choosing an instruction to implement
are i) the size of the hardware required for it; ii) whether adding it will allow for
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signi�cant speed-up of the execution time; and iii) whether it can be used for multiple
algorithms. For an architecture as highly optimized for one function as this one,
instruction selection is a trail-and-error process that goes hand in hand with �rmware
development. With the 10-bit instruction width of our example implementation,
every single combination of bits is reserved for some function, i.e. not a single extra
instruction can be added without increasing the instruction width.

One good example of the instruction selection process is the gf2_add_mult instruction
combined with predicated execution. Initially, the processor had two separate
instructions for F2u operations: gf2_add and gf2_mult. Each of the three algorithms
requires at least one of these operations, thus, combining them was a logical choice,
since the hardware was already available. Furthermore, replacing two functions by
one frees up a machine word which can then be used for another instruction. It also
speeds up those instances where a multiply-accumulate operation is required, e.g.
the Berlekamp-Massey algorithm (Algorithm 3.2). The problem is now how to select
whether an addition, a multiplication or a multiply-accumulate is required. By adding
support for predicated execution, not only can the gf2_add_mult instruction execute
those three operations, other instructions bene�t from it as well, e.g. branches can
be removed in favor of non-executed instructions, thereby reducing execution time.
Naturally, adding predicated execution comes at a price, in this case an extra 2 bits in
the instruction word and a few extra gates in the instruction decoder.

Another example of a highly optimized instruction is rotr, which not only rotates a
word to the right, but can also set a predicated execution �ag to the value of the LSB of
the rotated word. This specialized instruction allows the implementation of the inner
loop of the syndrome calculation algorithm (Algorithm 3.1) with just two instructions:
rotr on R[j] followed by a conditional gf2_add_mult of S[i] and evalarg. Another
example is the shiftl instruction, which has two variants, one which sets the newly
shifted-in LSB to zero (shiftl_clr), another which sets it to one (shiftl_set). This
instruction is used in the error location calculation algorithm (Algorithm 3.3) during
reconstruction of the error vector.

It is possible to increase the execution speed of some of the following algorithms
by including a squaring instruction, in particular Algorithms 3.1 and 3.3. However,
doing so would greatly increase the size of the F2u ALU. Thus, since low area is a
more important design goal than fast execution, this is an example of an instruction
we choose not to implement.

Jump instructions encode the jump length relative to the current instruction address.
Due to the machine code representation of instructions, the jump o�set cannot take
up more than 7 bits, and thus no more than 127 instructions at a time can be jumped
over. Should longer jumps be required, then this can be accomplished by chaining
jumps, i.e. jumping to another jump instruction.
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Comparisons can have as their left hand side the content of either any of the �ve
address RAM locations, or the F2u ALU register. The microcontroller can check for
,,>,or ≤ with an 8-bit �xed value encoded into the instruction.

Table 3.2: Instruction set architecture of the microcontroller.

Opcode Result Cycles
jump PC← value 2
cmp_jump PC← value if (comp = true) 3
stop PC← PC 1
comp condi ← (comp = true) 2
set_cond condi ← value 1
load_reg reg← data[addri ] 1
load_fixed_reg reg← value 2
load_fixed_addr addri ← value 2
mod_addr addri ← f (addri ) 1
copy_addr addri ← addrj 1
store_reg data[addri ]← reg 1
store_fixed data[addri ]← value 2
rotr data[addri ]← data[addri ]	 1 1
shiftl_clr data[addri ]← data[addri ]� 1 1
shiftl_set data[addri ]← (data[addri ]� 1) | 1 1
gf2_add_mult data[addri ]← data[addri ] ⊗ data[addrj ] 1

reg← reg ⊕ (data[addri ] ⊗ data[addrj ])

3.4.2.2 Algorithm implementation

Next, we brie�y discuss our implementations of the algorithms for BCH decoding.
The �rmware was manually written and optimized in a custom assembly language and
processed with a machine code translator speci�cally written for our microcontroller.
As stated before, a total of three algorithms are required. Before any calculations are
done, an outside source should load reproduction data s ′ into the microcontroller’s
data RAM, as discussed in Section 3.4.1.2.

Syndrome calculation The �rst algorithm in the decoding process is the syndrome
calculation algorithm, a listing of which can be found in Algorithm 3.1. As discussed
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in Section 3.2.2.1, this algorithm evaluates the received codeword as a polynomial
for successive powers of a primitive element α i ,i = 1, . . . ,2t . The outer loop starting
at line number 2 iterates over every power of α . Due to the specialized instruction
set, the inner loop at lines 7 to 10 can be implemented with just three assembly
instructions: shift right, conditional multiply-accumulate and conditional jump.

Algorithm 3.1: Syndrome calculation.

Input: R[n] ∈ F2
Output: S [2t ] ∈ F2u
Data: curArg, evalArg ∈ F2u ; i, j ∈ N

1 curArg← α
2 for i ← 0 to 2t − 1 do /* Loop over powers of α. */

3 S [i]← 0
4 evalArg← 1
5 if R[0] = 1 then /* Check whether LSB of R is set. */

6 S [i]← S [i] ⊕ evalArg /* Add 1 (= α 0) to syndrome element. */

7 for j ← 1 to n − 1 do /* Loop over each term of the R polynomial. */

8 evalArg← evalArg ⊗ curArg /* Multiply evalArg by α i+1. */

9 if R[j] = 1 then
10 S [i]← S [i] ⊕ evalArg /* Add x (= α (i+1)·j ) to syndrome element. */

11 curArg← curArg ⊗ α /* Set curArg to α i+2. */

Berlekamp-Massey algorithm Once syndrome calculation is �nished, an inver-
sionless form of the Berlekamp-Massey algorithm is run. Inversionless means that,
unlike the �rst published version of this algorithm, no time-consuming inversions over
F2u are required. This algorithm calculates the error location polynomial, which is
discussed in Section 3.2.2.2. The listing for the algorithm can be found in Algorithm 3.2.
Due to the relatively large amount of arithmetic operations and loops, this is the
slowest of the three required algorithms.

At no time can the order of the polynomialΛ be larger than i or t , i.e. ord(Λ) = min(i,t).
Therefore the total number of times that line 12 gets executed, can be improved to
(3t2 + t)

/
2 , compared to 2(t2 + t) which we found in the literature.

The variable k requires integer arithmetic, thus we store it in the address RAM, since
the rest of the algorithm only requires four address pointers. The operation on line 19
can be calculated by bitwise inversion if k is treated as a two’s complement number.

Error location calculation Finally, the error positions are calculated using a
polynomial evaluation algorithm based on the Chien search method, as discussed



BCH DECODING MICROCONTROLLER 79

Algorithm 3.2: Inversionless Berlekamp-Massey algorithm, based on work by
Burton.[25]

Input: S [2t ] ∈ F2u
Output: Λ[t + 1] ∈ F2u
Data: b[t + 2], δ , γ ∈ F2u ; flag ∈ F2; k ∈ Z; i, j ∈ N

1 b[−1]← 0 /* Initialize first element of b. Starts at index −1! */

2 b[0]← 1
3 Λ[0]← 1
4 for i ← 1 to t do /* Initialize b and Λ polynomials. */

5 b[i]← 0
6 Λ[i]← 0
7 γ ← 1
8 k← 0
9 for i ← 0 to 2t − 1 do /* Loop over every element of S. */

10 δ ← 0
11 for j ← 0 to min(i, t) do /* Calculate discrepancy due to Λ coeff. */

12 δ ← δ ⊕ (S [i − j] ⊗ Λ[j])
13 flag← (δ , 0) & (k ≥ 0) /* Check whether b and γ need to be updated. */

14 if flag = 1 then
15 for j ← t to 0 do
16 b[j]← Λ[j] /* Store Λ coeff. which generated current discrepancy. */

17 Λ[j]← (Λ[j] ⊗ γ ) ⊕ (b[j − 1] ⊗ δ ) /* Apply correction to fix Λ. */

18 γ ← δ /* Store value of current discrepancy. */

19 k← −k − 1
20 else
21 for j ← t to 0 do
22 b[j]← b[j − 1] /* Shift coeff. of b. */

23 Λ[j]← (Λ[j] ⊗ γ ) ⊕ (b[j − 1] ⊗ δ ) /* Apply correction to fix Λ. */

24 k← k + 1

in Section 3.2.2.3. A listing of this algorithm is given in Algorithm 3.3. The error
location polynomial evaluates to zero for α−l1 , if there is an error at location l1. Thus,
normally one would use powers of α−1 in the Chien search algorithm. However, due
to Fermat’s little theorem, the following holds:

α i = αn−(n−i)

= α−(n−i) .

Therefore, we can evaluate the error location polynomial for positive powers of α
and if an error location is found at step i set an error bit at location n − i . This is the
reason the loop on line 1 in the algorithm listing runs backwards, otherwise the error
bit would be stored at the wrong location.
[25] H. Burton, “Inversionless Decoding of Binary BCH codes” (1971).
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In the �rmware the error location vector is created by left shifting an array and setting
the newly inserted bit to either one or zero, using one of two specially implemented
instructions. Due to the combined multiply-accumulate and predicated execution,
which can be turned on or o� per assembly instruction, the inner loop at lines 4–7
can be implemented very e�ciently: one unrolled loop requires only three assembly
instructions.

Algorithm 3.3: Error location calculation algorithm, based on work by Chien.[28]

Input: Λ[t + 1] ∈ F2u
Output: errorLoc[n] ∈ F2
Data: curAlpha, curEval ∈ F2u ; i, j ∈ N

1 for i ← n − 1 to 0 do /* Run backwards so error locations are correct. */

2 curEval← Λ[0]
3 curAlpha← α
4 for j ← 1 to t do /* Iterate over each coeff. of Λ. */

5 Λ[j]← Λ[j] ⊗ curAlpha /* Update Λ[j] coeff. */

6 curEval← curEval ⊕ Λ[j] /* Add Λ[j] · α j ·(n−i ) to result. */

7 curAlpha← curAlpha ⊗ α /* Set curAlpha to α j+1. */

8 if curEval = 0 then /* If a root is found, set error bit. */

9 errorLoc[i]← 1
10 else
11 errorLoc[i]← 0

3.4.2.3 So�ware and Hardware Optimization Techniques

Although low execution time is only the third of our design goals, it is the only
one which can signi�cantly be impacted by software design. Thus, we focus on fast
execution speed as much as possible during programming of the �rmware. As a bonus,
faster running �rmware will decrease total energy consumption.

In these next paragraphs, we give an overview of the optimization techniques used.
Many of these are software-based, yet a few can be seen as hardware optimizations.
Due to the tight coupling between the microcontroller’s hardware design and the
�rmware, it is di�cult to separate these two types of optimizations and thus we
present them here together.

The e�ect of various optimization steps on CBCH (318,174,17), used in the reference
PUFKY implementation, is shown in Figure 3.5.

[28] R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes” (1964).
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Figure 3.5: E�ect of optimizations on CBCH (318,174,17) decoding runtime.

Our initial software design requires approximately 145 000 cycles to decode one 318-
bit codeword. First we apply loop unrolling to the inner loops of all three algorithms.
For the chosen BCH parameters, the loops can be unrolled in such a way that no extra
pre- and post-loop code needs to be added. Loop unrolling signi�cantly improves
runtime, due to the elimination of a large fraction of conditional branch operations
which are, at three cycles, the slowest instruction in our microcontroller. Naturally,
this comes at the cost some extra ROM. This �rst optimization improves runtime by
more than 30%: one decoding now requires approximately 100 000 cycles.

The next optimization is the merge of the multiply and accumulate instruction, which
has an impact on both hard- and software. On the hardware side, modi�cations
to both datapath and controller are required. This leads to improvements on both
runtime and code size. All three algorithms bene�t from this instruction merge,
more speci�cally Algorithm 3.1 lines 8–10, Algorithm 3.2 lines 12, 17 and 19, and
Algorithm 3.3 lines 5–6. This optimization decreases total runtime to approximately
84 000 cycles, an improvement of 16%.

In order to eliminate even more conditional branches, the second inner loop in the
Berlekamp-Massey algorithm is duplicated, once for each possible value of the flag

variable. A simple optimization which leads to another 12% runtime decrease, at the
cost of a few extra words of ROM.

Reducing the number of conditional branches even more is done by introducing
predicated execution. All instructions can be programmed to either always execute,
execute when the condition �ag is false or when it is true. For the multiply-accumulate
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instruction, two condition �ags are used, which makes it possible to use the instruction
as a multiplication or addition if required. The introduction of this feature has a large
impact on the inner loop of the syndrome calculation algorithm, which can now
be implemented with only two instructions: rotate right and set condition bit, and
conditional multiply-accumulate. After this optimization, the total runtime is reduced
to approximately 66 000 cycles, another 11% decrease.

Finally, by improving the memory management of some variables, i.e. moving them
to more appropriate locations, we are able to reduce the runtime by another 17%, to
55 000 cycles. The memory layout, together with size requirements dependent on
code parameters, is shown in Figure 3.6.

Syndrome
calculation
Berlekamp-
Massey

Chien
search

max( dnu e, t + 2) 2t max(t + 3, 4)

R1 . . . R d nu e S2t−1 . . . S0 v0 . . . v3

bt . . . b−1 S2t−1 . . . S0 Λt . . . Λ0 v0 v1

eL0 . . . eLd nu e Λt . . . Λ0 v0 v1

Figure 3.6: Memory layout for each algorithm in the BCH decoding process.

The combination of all these optimizations reduces the total runtime by 62%, compared
to the original implementation, from 145 000 to 55 000 cycles. Obviously this not only
bene�ts runtime, but energy requirements as well.

3.4.2.4 Framework for Flexible Code Generation

Our design is implemented completely in the HDL language Verilog. Parts of the
Verilog code can be dynamically generated by a framework we designed. The
framework takes the three BCH code parameters as input, veri�es that such a
parameter combination is valid, generates appropriately sized RAMs and calculates
parameters such as datapath and address bus widths. Next an assembly listing for the
�rmware is created and from this a custom ROM design in Verilog is generated. Due
to this tool, only a minimum amount of manual modi�cation to the �rmware code is
required, in the worst case, and the e�ect of many BCH code parameters on di�erent
design metrics can be quickly evaluated.
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3.4.3 Implementation

In the following paragraphs, we give an overview of our implementation results for
the BCH decoding microcontroller. First we give results for FPGA and ASIC synthesis
of the hardware. Next, the impact of BCH code parameters on runtime is shown.

3.4.3.1 Synthesis

ASIC Synthesis for ASIC was done with Synopsys Design Compiler D-2010.03-SP4,
using the UMC’s 130 nm fsc0l_d_sc_tc low leakage library. Table 3.3 shows that the
controller core requires only 1 130 GE. This excludes the two dual-port RAMs (for
data and address storage) and the ROM containing the �rmware. The amount of
storage required is listed in the same table. Finally, we also give the total area required
including the size of RAMs and ROM, synthesized for the same UMC technology with
the Faraday Technology memory compiler.

It is clear that the chosen set of code parameters have no in�uence on the size of the
core. The area required by the RAM mostly depends on the error correcting capability,
i.e. t , of the code, which can also be seen in Figure 3.6. For the ROM, the change in
size mostly depends on what the most e�cient loop unrolling stride is for the chosen
code parameters.

Table 3.3: Synthesis results for ASIC implementation using UMC’s
130 nm fsc0l_d_sc_tc library. “Area [GE]” does not include RAM/ROM area,
“Total area [µm2]” does.

Area Fmax RAMs ROM Total AreaBCH(n,k,t )
[GE] [MHz] [bit] [bit] [µm2]

(413, 296, 13) 1130 119.5 88 × 9
5 × 7 249 × 10 56 × 103

(380, 308, 8) 1130 119.9 72 × 9
5 × 7

237 × 10 55 × 103

(318, 174, 17) 1130 119.3 96 × 9
5 × 7

246 × 10 57 × 103

FPGA Synthesis for FPGA was done for the Xilinx Virtex-6 family using Xilinx
ISE 12.2 M.63c with design strategy “Area reduction with Physical synthesis.” Table 3.4
shows that the total size of our design is very small: it requires less than 1% of the
size of the smallest Virtex-6 FPGA, the 11 640-slice XC6VLX75T.
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Di�erent BCH code parameters have little in�uence on the design size. No separate
BlockRAMs are used, since our design uses RAM and ROM blocks which are
implemented within LUTs. Thus, the listed slice count is the total size that the
design requires.

Table 3.4: Synthesis results for implementation on a Xilinx Virtex-6 FPGA.

Area FmaxBCH(n,k,t )
[slice] [FF] [LUT] [MHz]

(413, 296, 13) 65 33 244 94.4
(380, 308, 8) 66 33 244 97.8
(318, 174, 17) 68 33 251 93.6

3.4.3.2 Runtime

Although the size of the hardware is not signi�cantly in�uenced by the BCH code
parameters, the runtime of our �rmware is. Table 3.5 clearly shows the large e�ect
of the parameter t , the number of correctable errors, on the total runtime. The same
table also gives formulas for ideal runtime. We de�ne this as: the number of cycles
required if each loop iteration executes in a single cycle, without executing multiple
loop iterations in parallel; e.g. a loop of x iterations would require x cycles.

Table 3.5: High-order approximations for runtime of algorithms in the BCH decoding
process. Ideal assumes single cycle inner loops.

Runtime [cycles]Algorithm
Ideal Actual

Syndrome calculation 2t · n 40t · dnu e
Berlekamp-Massey 3.5 · (t2 + t) 36t2

Error loc. calculation t · n 3.6t · n

A comparison between ideal and actual, high-order runtime formulas show that our
software implementation is very e�cient. For example, the syndrome calculation and
error location algorithms requires only 2–4 times more cycles than in the ideal case,
assuming a realistic value for u, i.e. 8 ≤ u ≤ 10. This includes delays introduced by
setup code for variables and conditional branches, which are non-existent in the ideal
case. The Berlekamp-Massey implementation requires an approximately ten times
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longer runtime than the ideal case, which is very e�cient as well, considering the
amount of arithmetic operations which have to be computed in the inner loops.

Table 3.6 lists the runtime of our controllers for some example BCH codes. Once more,
it is clear that the t parameter has the largest in�uence on total runtime.

Table 3.6: Total runtime for BCH decoding.

Runtime @ 90 MHzBCH(n,k,t )
[cycles] [µs]

(413, 296, 13) 55 379 615
(380, 308, 8) 26 165 291
(318, 174, 17) 50 320 559

3.4.3.3 Comparison with existing designs

Although we would like to compare our design with existing BCH decoders, this is
extremely di�cult, mostly because of the unique goals of our design. Whereas our
primary goal is compactness, existing published results are aimed at communication
systems and are designed with high throughput in mind.[27,72,99,100,103,108]

This problem is compounded by the type of code used. In our design we use a BCH
code, since erasures are not a problem in our target application. Most published
designs are for Reed-Solomon (RS) decoders, which are related, yet require slightly
di�erent algorithms. This leads to di�erences in both the arithmetic hardware and
storage requirements of the decoders.

Finally, the target application of PUF-based key generation forces us to use BCH code
parameters unlike any we have been able to �nd in the literature.

[27] H.-C. Chang and C. Shung, “New Serial Architecture for the Berlekamp-Massey Algorithm” (1999).
[72] W. Liu et al., “Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell

NAND Flash Memories” (2006).
[99] J.-I. Park et al., “An Area-E�cient Truncated Inversionless Berlekamp-Massey Architecture for Reed-

Solomon Decoders” (2011).
[100] J.-I. Park et al., “High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-

Massey Algorithm” (2009).
[103] I. Reed and M. Shih, “VLSI Design of Inverse-Free Berlekamp-Massey Algorithm” (1991).
[108] D. Sarwate and N. Shanbhag, “High-Speed Architectures for Reed-Solomon Decoders” (2001).
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The reason no other BCH decoders for PUF applications have been published, is
probably that at least two papers[22,67] mention that such decoders would be large
and complex. As our implementation results show, the opposite is true.

Despite these di�culties, Table 3.7 attempts to compare published designs with ours.
In order to make the already di�cult comparison as meaningful as possible, we have
selected from our designs the one for which the BCH parameters most closely match
those of the compared designs. Our implementation has smaller throughput than
those designs, however, its area is between an order of magnitude two and three times
smaller. Given the area of the other designs, as well as the fact that they consist of
many simultaneously clocked registers, it is likely that the power consumption of our
design is at least three to four orders of magnitude better. If the time-area product is
the main optimization goal, then clearly our design is not the best, due to its very slow
throughput compared to other designs. It is di�cult to make meaningful statements
about energy consumption, since this requires knowledge of both the throughput,
which we know, and the power consumption, which we can only broadly estimate.

Table 3.7: Comparison of BCH decoder microcontroller with published designs. Area
does not include RAM/ROM/FIFOs. See Section 3.4.3.3 for interpretation.

Throughput Area Time × areaDesign Code
[Gbit/s] [GE] [s/Gbit · GE]

Park et al.[100] RS(255, 239, 8) 5.6 43 600 7 786
Park et al.[99] RS(255, 239, 8) 3.2 19 723 6 163
Liu et al.[72] BCH(4148, 4096, 4) 0.4 25 000 62 500
Our design BCH(380, 308, 8) 0.0013 1 130 869 231

3.5 Full generator implementation

We present the results for a reference implementation of PUFKY in this section. The
aim of this implementation is to generate a 128-bit key, with a maximum failure rate
[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
[67] P. Koeberl et al., “Entropy Loss in PUF-based Key Generation Schemes: The Repetition Code Pitfall”

(2014).
[72] W. Liu et al., “Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell

NAND Flash Memories” (2006).
[99] J.-I. Park et al., “An Area-E�cient Truncated Inversionless Berlekamp-Massey Architecture for Reed-

Solomon Decoders” (2011).
[100] J.-I. Park et al., “High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-

Massey Algorithm” (2009).
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pfail ≤ 10−9. Such a failure rate would be adequate for for military-grade devices,
whereas a failure rate of 10−6 could be considered su�cient for consumer-grade
devices.

In order to determine the required code parameters and number of ring oscillators
in the PUF, the ROPUF response was measured on 10 identical FPGAs at various
temperature conditions (10 ◦C, 25 ◦C, and 80 ◦C), using a design with b = 16 batches
of a = 64 oscillators each (see Section 3.3.1). Such a design generates ∑b

i=2dlog2 ie =
49 bits of output at a time. Post-processing of these results show a maximum expected
error rate of 13% and an inter-device entropy density ρ = 97.95% after compressing
the output down to l = 42 bits, taking into account a safety margin of 2% for the error
rate.

An exhaustive search of possible code parameters and ROPUF size meeting our
reference goals, and taking into account the above ROPUF measurement results,
returns b = 16 batches of a = 53 oscillators for the ROPUF, CREP(7,1,3), and
CBCH (318,174,17). For every 42 bits output by the ROPUF, |hrep | = 36 bits of helper
data are generated, leaving 6 bits to be forwarded to the BCH decoding block. The
BCH decoder requires |hbch | = 144 bits of helper data, and supplies the SPONGENT-
128 entropy accumulator with 318 bits of corrected response data, which compresses
this to a 128-bit key.

The ROPUF generates a × l = 2226 bits in total, which contain a × l × ρ = 2180.40 bits
of inter-device entropy. Due to the helper data being public, a · |hrep | + |hbch | =
53 · 36 + 144 = 2052 of those bits need to be considered lost, which leaves a total of
2180.40 − 2082 = 128.40 bits of entropy, just enough to meet our goal.

Our PUFKY reference implementation requires 1162 slices on a Xilinx Spartan-6
FPGA, of which 82% is taken up by the ROPUF. Table 3.8a lists the size of each
submodule used in the design. The total time required to generate the 128-bit key is
approximately 5.62 ms (at 54 MHz). The ROPUF requires 82% of that time to generate
output; the remainder of the time is taken up for 90% by the BCH decoding. Table 3.8b
lists the number of cycles required for each step of the key generation.

3.6 Conclusion

In this chapter we discussed the design of a PUF-based key generation device. Generic
design constraints were identi�ed and used to construct a practical design. We
presented a complete implementation of this design, based on a ring-oscillator PUF, a
BCH decoding microcontroller and a hash function as entropy accumulator.

Using novel response encoding methods, our ROPUF can produce high-entropy
responses (up to 99% with a su�cient amount of XOR compression). An in-depth
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Table 3.8: Area requirements and runtime of our reference PUFKY implementation on
a Xilinx Spartan-6 FPGA. Due to slice compression and glue logic the sum of module
sizes is not equal to total size. The PUF runtime is independent of clock speed, it is
determined by the time required for an internal free-running oscillator to complete a
�xed number of oscillations.

(a) Area requirements

Module Size [slices]

ROPUF 952
REP decoder 37
BCH syndrome calc. 72
BCH decoder 112
SPONGENT-128 22
helper data RAM 38

Total 1 162

(b) Runtimes

Step Time [cycles]

PUF output 4.59 ms
REP decoding 0
BCH syndrome calc. 511
BCH decoding 50 320
SPONGENT hashing 3 990
control overhead 489

Total @ 54 MHz 5.62 ms

treatise showed which design strategies and techniques allow our BCH decoding
microcontroller to be very e�cient and �exible, yet �t in less than 1% of the area
(< 70 slices) of even a small FPGA. The proposed BCH decoder design proves that
the established perceived area overhead of BCH decoders for PUF error correction is
grossly exaggerated. Finally, motivated by their wide-spread use in PRNG-based
key generators, we use a hash function as entropy accumulator, which o�ers a
considerable e�ciency gain compared to the much more stringent design constraints
for information-theoretically secure key extraction.

A reference implementation was presented which generates a 128-bit key in 5.62 ms
and requires 1162 slices in a Xilinx Spartan-6 FPGA. Due to its completeness and
e�ciency, our PUFKY reference implementation is the �rst PUF-based key generator
to be immediately deployable in an embedded system.



4 Analysis of SRAM in COTS

Microcontrollers

Seeing, contrary to popular wisdom, isn’t believing.
It’s where belief stops, because it isn’t needed any more.

— Terry Pratchet, Pyramids (1989)

Although a great many custom hardware designs for PUFs and RNGs have
been published, it is not always economically feasible to use such designs
in a system. We therefore focus our attention on solutions requiring only

commercial o�-the-shelf microcontrollers. More speci�cally, in this chapter we will
present an overview of important metrics concerning PUFs and RNGs for embedded
SRAM power-up content. We focus our e�orts on the most important families of
microcontrollers.

Our measurements and calculations show that many COTS microcontrollers have
rather well-behaved SRAM, so to speak. However, there are exceptions, and one
should thus not blindly assume that SRAM power-up values can always be used for
the purpose of constructing PUFs and RNGs. Of the chips we tested especially the
STMicroelectronics STM32 ARM Cortex-M microprocessors, more speci�cally the
STM32F100R8, exhibits desirable characteristics. On the other hand, the Microchip
PIC16 family, more speci�cally the PIC16F1825, is unsuitable for the applications we
have in mind.

89
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Content sources

4.1 Introduction

Our goal is to make PUFs and strong RNGs economically viable by presenting designs
that require no more than a commercial o�-the-shelf microcontroller. This means
designs that do not need any additional electronics or custom hardware apart from a
microcontroller. The problem with the many custom hardware PUF and RNG designs
presented over the years, is that for many devices they are not economically feasible.
As evidenced by Section 1.1.4, there is a big market for cheap PUFs and RNGs. Thus,
�nding resources in COTS microcontrollers that allow us to create such designs is
critical in improving the security of everyday electronic devices.

One microcontroller-contained resource that immediately comes to mind, and that
has been shown repeatedly to be excellent for PUF constructions, is SRAM. Holcomb
et al.[56] and Bösch et al.[22] both researched the use of SRAM power-up values as
a PUF. Holcomb et al.[56] also present a design whereby entropy is extracted from
the SRAM power-up values using a universal hash function. Although many other
papers on SRAM PUFs have since then been published, virtually all of them require
either custom hardware or external SRAM chips. Two recent exceptions to this
are by Platonov et al.[102] and Böhm et al.,[21] who both describe the creation of
[21] C. Böhm et al., “A Microcontroller SRAM-PUF” (2011).
[22] C. Bösch et al., “E�cient Helper Data Key Extractor on FPGAs” (2008).
[56] D. E. Holcomb et al., “Initial SRAM State as a Fingerprint and Source of True Random Numbers for

RFID Tags” (2007).
[102] M. Platonov et al., “Using Power-up SRAM State of Atmel ATmega1284P Microcontrollers as Physical

Unclonable Function for Key Generation and Chip Identi�cation” (2013).
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a PUF purely from software in respectively an Atmel ATmega1284P and an NXP
LPC1768 microcontroller.

We focus our e�orts on SRAM for a few reasons. First of all, it is to the best of
our knowledge the only resource in COTS microcontrollers that can conceivably be
used to construct a self-contained PUF. Furthermore, every microcontroller contains
embedded SRAM, and thus we are not restricted in our choice of microcontrollers
to specialized or expensive high-level types. Next, SRAM power-up values are, by
their very nature, instantly available the moment the microcontroller powers-up.
This in contrast to, e.g., oscillator-based systems, that need to be measured. And
�nally, there is a certain �exibility with SRAM. E.g. assume that due to application
requirements one needs 8 KiB of SRAM in order to create an adequately strong 256-bit
PUF-generated key. If the microcontroller for which one is developing does not have
that much SRAM, then chances are very good that a very similar microcontroller
from the same family will.

We qualify the SRAM power-up content using the metrics presented in Section 2.6.
For PUFs, in particular the intra- and inter-device distances are of importance. For
RNGs on the other hand, we are interested in the min-entropy calculated as explained
in Section 2.8. Perhaps counter-intuitively, we do not want a too high fractional
min-entropy, since that would mean that the related intra-device distance would be
high as well, which would make error correction impossible for PUF-based designs.

In order to create an as encompassing overview as possible, we attempt to do this
quali�cation for the most important microcontroller families. Deciding which families
these are, is a di�cult exercise, because of the myriad of di�erent microcontroller
families available, and, as a result, a very fractured market. We have based our
selection on data from the Gartner Group, and �lings by various microcontroller
manufacturers to the U.S. Securities and Exchange Commission (SEC). This data is
summarized in a recent presentation for investors by MicrochipMicrochip.[88] Our �nal
selection includes microcontrollers from, what we believe to be, four big and important
families. These are Atmel AVR, Microchip PIC16, Texas Instruments MSP430, and
ARM Cortex-M (using STMicroelectronics STM32 ICs).

4.2 Measurement setup

Before presenting the results of our measurements, we �rst have to discuss the
measurement setup used. Our setup uses a central controller board that sequentially
power-cycles microcontrollers under measurement. Although this is a fairly
straightforward setup, there are a few important requirements on both the controller

[88] Microchip, “Stephens Inc. Spring Investment Conference” (2013).
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hardware and the �rmware in the microcontrollers being measured. We will
�rst present the central measurement controller design, and next discuss the few
requirements on �rmware in the microcontrollers. We then discuss some important
aspects of the measured microcontrollers. Finally, we brie�y explain the conditions
under which measurements are taken.

4.2.1 Hardware setup

Our goal is to have a controller board that is as universal as possible, meaning it has to
be able to assist in taking SRAM measurements from any COTS microcontroller.
Measurements are to be stored on a computer, thus storage capacity is not an
issue. There is however the issue of how measurement data �nds its way from
the microcontrollers to the computer. We choose to have the microcontroller interface
transmit at the same rate as the controller to computer interface. This makes it possible
to bypass the controller while a microcontroller is transmitting data, reducing the
chance that bugs in the controller �rmware in�uence measurements.

One problem with SRAM is that it it exhibits data remanence when powered o�, i.e.
the SRAM cells retain their last values. Furthermore, the lower the temperature, the
worse this e�ect becomes, i.e. the longer data remains stored. This is clearly shown
by Skorobogatov,[111] who describes the e�ect for many types of external SRAM ICs.
Our own tests indicate that for some types of microcontrollers data remanence can
last for extended periods of time, e.g. various types of Microchip PIC16 chips retain
stored data for over 10 minutes when disconnected from a power supply, even at room
temperature. Clearly this e�ect heavily interferes with the ability to take independent
measurements quickly and e�ectively. It is thus crucial for our measurement setup
that the data remanence e�ect is prevented. This can be accomplished by forcefully
discharging the ICs under test by tying their V+ lines to ground.

In order to simulate a realistic conditions, the voltage curve at power-up on the
microcontroller’s supply pins should behave as in a regular circuit. It should thus
follow a curve similar to

V (t) = V+ · (1 − exp− t /RC ) ,

where R is the output resistance of the power supply, and C the capacitance on the
supply line. We assume a reference circuit running at 3.3 V in which the power supply
can deliver 1 A, thus R = 3.3 Ω. We further assume a decoupling capacitance of
C = 100 µF. Thus, the voltage on the microcontroller’s supply pins should reach 99%
of the supply voltage after

ln(1 − 0.99) · RC ≈ 1.52 ms .
[111] S. Skorobogatov, “Low Temperature Data Remanence in Static RAM” (2002).
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The voltage curve should be monotonically increasing, i.e. no glitches or spikes
should be present. Note that as long as the supply power-up curve is realistic, slight
deviations of the calculated time are not much of a problem, especially if the actual
time is shorter.

Summarized, the following properties are required of the controller:

1. Support any arbitrary SRAM size.
2. Support any realistic baud rate.
3. Allow connection of many microcontrollers at once.
4. Be extensible in regard to the number of attached microcontrollers.
5. Make automated, unsupervised measurements possible.
6. Support remote setup.
7. Actively discharge microcontrollers that are not being measured.
8. Supply voltage curve of microcontrollers should be realistic.

A simpli�ed schematic of our design is shown in Figure 4.1. A set of multiplexers
allow the controller to either connect itself or the microcontroller under test to
the external serial communication interface. The controller continuously monitors
the output of the currently powered microcontroller in order to detect when the
communication has �nished, after which a measurement of the next microcontroller
is started. Using this system it is also possible to detect when communication has
stalled, or no microcontroller is present. This allows the controller to continue taking
unattended measurements should some of the devices under test fail, since it will
dynamically adapt to such situations.
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Figure 4.1: High-level schematic of the measurement controller board (left) with a
board of microcontrollers to be measured attached (right).
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The two 1-to-8 multiplexers used, SN74F251B, have tri-state outputs. This allows
us to simply tie the outputs of several ICs together in order to combine the outputs,
as long as we ensure only a single multiplexer is enabled at a time. Such a design
is especially convenient for future extensions, whereby more microcontrollers are
connected to the central controller.

Our current setup can be connected to up to sixteen microcontrollers. However, the
system is easily extensible to at least 1024 devices, should that prove necessary. Note
however that each microcontroller is measured sequentially, and thus for measuring
a large number of microcontrollers multiple controllers operating in parallel might
be preferable in order to reduce measurement time.

The microcontrollers are powered by a 4-to-16 demultiplexer, more speci�cally a
CD74HCT4514 IC. This IC features push-pull outputs, and thus microcontrollers
are automatically discharged when they are not powered. Using an oscilloscope
we veri�ed that this demultiplexer supplies voltage with a realistic curve to the
microcontrollers.

The brain of the measurement controller itself is a Microchip PIC16F721. A basic
interface allows the selection of di�erent baud rates, and taking both automatic
and manual measurements. The IC is clocked with a crystal oscillator speci�cally
targeted at asynchronous serial communication, running at 14.7456 MHz. That way,
we can guarantee compatibility with all common baud rates, and thus virtually all
microcontrollers can be interfaced with the controller.

Finally, additional components that were used, but not shown in the schematic of
Figure 4.1, are a voltage converter, decoupling capacitors, and LEDs to allow visual
identi�cation of the currently powered microcontroller.

4.2.2 Firmware setup

Firmware for the microcontrollers under test is simple. The required behavior at
power-up can be summarized as:

1. Initialize the serial port (UART).
2. Transmit the value of every SRAM byte over the UART.
3. Idle or execute code that doesn’t use the UART.

Care should be taken not to use any of the SRAM storage while doing this. Most
microcontrollers have several working registers to store variables, such as a pointer
to the current SRAM byte, which makes this is easy to achieve. However, some
microcontrollers, such as the Microchip PIC16 family, only have a single working
register and therefore, in order not to use any SRAM bytes, some variables used by the
measurement �rmware have to be stored in unused con�guration registers instead.
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Note that this more or less requires the �rmware to be written in assembly. Using a C
(or other language) compiler to generate code will almost certainly guarantee that
part of the SRAM is used, and thus initialized.

In the interest of making our measurements as repeatable as possible, assembly listings
of the �rmware for each measured microcontroller are included in Appendix A.

4.2.3 Microcontroller overview

Despite all being part of prominent microcontroller families, there are quite some
di�erences between the measured microcontroller ICs.

Two of the selected microcontrollers are 8-bit architectures. The �rst of these is the
Atmel ATmega328P, part of Atmel’s AVR family. This chip contains a total of 2 KiB
SRAM. Pictured in Figure 4.2a is a PCB populated with the sixteen ICs used for our
measurements. A �rmware assembly listing can be found in Listing A.1.

The second 8-bit microcontroller is the Microchip PIC16F1825, part of Microchips’
PIC10/12/16 family. The PIC16F1825 contains 1 KiB of SRAM. The protoboard PCB
with 16 ICs which we used for our measurements is shown in Figure 4.2b. The
�rmware assembly is shown in Listing A.2.

Next up is the Texas Instruments MPS430 family. These are 16-bit microcontrollers
targeted to devices requiring ultra low-power consumption. The IC we measured,
the MSP430F5308, contains 6 KiB SRAM. Figure 4.2c shows the PCB we used for
measurements, populated with �fteen ICs. The assembly for this microcontroller’s
�rmware can be found in Listing A.4.

The fourth, and �nal, chip is the 32-bit STMicroelectronics STM32F100R8. This is
an ARM Cortex-M chip, more speci�cally a Cortex-M3. It contains 8 KiB SRAM in
total. Shown in Figure 4.2d is the PCB used for our measurements. Due to lifted traces
underneath some ICs, only eleven of the sixteen microcontrollers can be measured.
Listing A.3 shows the assembly code used to generate the measurement �rmware.

4.2.4 Operating conditions

While operating conditions such as supply voltage and power-up voltage curve,
have an in�uence on SRAM power-up behavior, they are generally well controlled,
assuming no physical tampering takes place. Temperature, on the other hand, is an
operating condition which can, and does, signi�cantly change depending on where a
device is deployed, and which can signi�cantly alter SRAM behavior.
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(a) 16× ATmega328P (b) 16× PIC16F1825

(c) 15×MSP430F5308 (d) 11× STM32F100R8

Figure 4.2: Measurement PCBs for the various microcontrollers.

Therefore all measurements are repeated three times, once at room temperature
(±20 ◦C), and furthermore at both ends of the commercial temperature spectrum,
respectively at −30 ◦C and 85–90 ◦C. In order to guarantee controlled and repeatable
conditions, the measurements at both temperature extremes were taken in a
temperature chamber (TestEquity 105 Half Cube).

4.3 Measurements & evaluations

With the preliminaries out of the way, we now discuss the measurements for the
four microcontroller families. The results are presented per metric, making it easy to
compare results for the various microchips. It will furthermore allow us to clearly
show that all SRAM is, in fact, not created equally, at least for microcontrollers.

As the astute reader will notice, some of the plots further on in this section, and
some of the tables in Appendix B, contain data only for a subset of the measured ICs.
This is because partial failure of the interconnection between the PCB containing the
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microcontrollers under test and the central controller board due to both freezing and
elevated temperatures, which lead to disturbances in the communication between the
measurement infrastructure and the PC storing the measurement data.

The number of measurements taken for each microcontroller IC are listed in Table 4.1.
These include faulty measurements due to the aforementioned interconnection failure.
The software used to calculate metrics automatically discards outliers. A measurement
is considered an outlier when its fractional Hamming weight is either below 10% or
above 90%, unless this is the case for the majority of measured ICs of a particular type.
We have also discarded measurements that do not contain the correct number of bits
due to communication issues.

Table 4.1: Number of measurements taken for each microcontroller IC.

Temperature [◦C]Micro-
controller −30 ±20 85–90

ATmega328P 2 916 9 695 2 989
PIC16F1825 3 662 3 700 3 671
MSP430F5308 3 339 3 174 3 359
STM32F100R8 7 745 3 419 9 003

4.3.1 Plot conventions

This section contains a lot of plots, the conventions of which we will now explain.
Visual representations of SRAM contain a single block per bit of data, black for those
with value one, white for those with value zero. The blocks are plotted MSB �rst, from
left to right, and from top to bottom. Each line contains an integer multiple of eight
bits. If the last row does not have the same length as other rows, it is padded with
zero blocks. Plots for the same device at di�erent temperatures are always generated
from data from the same physical IC. This allows one to check for obvious problems
with intra-device distance, i.e. if the visual patterns at di�erent temperature are very
dissimilar. The plots also allow one to look for obvious patterns in the data, which
are not necessarily discovered by the other metrics.

For box plots, the central box extends from the lower (25th percentile) to the upper
quartile (75th percentile), i.e. 50% of the data points fall inside this range. The median
of all measurements is drawn as a white line inside the box. The top and bottom
whiskers extend to the 2nd and 98th percentile respectively. Finally, the minimum and
maximum are marked with a • symbol.
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We present all results as fractions, i.e. a Hamming weight of 1024 for an IC with
2048 bits of SRAM is written as 50%. This greatly simpli�es making comparisons
between the di�erent microcontrollers. Expansive tables containing values for each
metric for each microcontroller instance we measured, can be found in Appendix B.

4.3.2 Visual inspection

We �rst investigate whether a visual representation of the SRAM power-up values
reveals any obvious problems with the data, such as the presence regular patterns
within it. In the ideal case, each pattern should look random, but patterns for the
same device at di�erent temperature should look very similar.

In order to improve visibility, we crop the SRAM visualization so they display
maximum 1 KiB. If this is not done, identifying details in the SRAM plots is extremely
di�cult, if not impossible, since they tend to look like greyish blobs. Because of this
cropping, all visualizations have the same scale, further easing comparability.

4.3.2.1 Atmel ATmega328P

The plots in Figure 4.3 do not reveal any obvious patterns in the ATmega328P data.
There is, however, a pronounced darkening of the visualizations as the temperature
decreases. This indicates a strong bias towards one-valued bits, which wil show up
in the Hamming weight metric. Because the density of the plots di�ers across the
temperature range, intra-device density over temperature is likely to be quite high.

(a) −30 ◦C (b) ±20 ◦C (c) 90 ◦C

Figure 4.3: 1 KiB slice SRAM power-up data visualization for ATmega328P.
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4.3.2.2 Microchip PIC16F1825

Figure 4.4 immediately show that the PIC16F1825 SRAM power-up data is highly
problematic for PUF exploitation. There is a very obvious, regular, byte-wise pattern,
whereby each byte consists of either all ones or all zeros, with the value being
determined as the opposite of the previous byte’s bits. Because all measured ICs show
a similar pattern, inter-device distance is greatly reduced. The intra-device distance
does seem to be reasonable over the temperature range, although the regular pattern
makes it rather hard to estimate the plot’s density.

(a) −30 ◦C (b) ±20 ◦C (c) 85 ◦C

Figure 4.4: SRAM power-up data visualization for PIC16F1825.

4.3.2.3 Texas Instruments MSP430F5308

Similar random-looking patterns in all three plots in Figure 4.5 indicate a good
intra-device distance. The MSP430F5308 SRAM power-up values seem markedly less
in�uenced by temperature variations. The SRAM power-up values do seem to be
rather strongly biased towards one, as evidenced by the high density of the plots.

4.3.2.4 STMicroelectronics STM32F100R8

Like the MSP430F5308, the STM32F100R8 SRAM power-up values seem to be hardly
in�uenced by temperature variation, as shown in Figure 4.6. The visualization looks
quite similar at the three measured temperatures, so intra-device distance should be
good. There are no obvious regular patterns visible, and the distribution of one and
zero bits seems equal, indicating a Hamming weight close to the ideal 50%.
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(a) −30 ◦C (b) ±20 ◦C (c) 90 ◦C

Figure 4.5: 1 KiB slice SRAM power-up data visualization for MSP430F5308.

(a) −30 ◦C (b) ±20 ◦C (c) 85 ◦C

Figure 4.6: 1 KiB slice SRAM power-up data visualization for STM32F100R8.

4.3.3 Hamming weight

For both PUF and RNG purposes the ideal SRAM should have an average Hamming
weight of 50%. In Figure 4.7 boxplots are drawn for each of the measured
microcontroller families. Statistics for the Hamming weight are calculated using
a maximum of 3000 randomly selected measurements per IC. The values displayed by
the boxplots are calculated using the sample mean of each of the measured ICs.

4.3.3.1 Atmel ATmega328P

One can clearly see the large e�ect temperature variations have on the Hamming
weight of the ATmega328P, which is also visible as the change in density in its SRAM
visualizations (see Figure 4.3). As already evidenced by the SRAM visualizations, there
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Figure 4.7: Hamming weight for each microcontroller family.

is a large deviation from the expected 50% HW: at −30 ◦C almost 75% of the bits power
up with value one. At increasing temperatures the HW improves in fairly big steps,
yet even at 90 ◦C the sample median is still above 60%. There is also a rather large
di�erence in HW between the measured ICs, up to 7% at −30 ◦C.

Such a strong bias to one must necessarily reduce the inter-device distance, as shown
in the example in Section 2.6.2, and thus reduces the entropy of the SRAM power-up
values if used as a PUF response. However, this does not necessarily mean that the
ATmega328P cannot be used as a PUF, only that for a given security level a larger
SRAM will be required compared to an ideal SRAM with 50% HW. One can expect
the intra-device distance, and thus the available entropy for RNGs, to be reduced as
well, although the HW metric does not give de�nite proof of that.
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4.3.3.2 Microchip PIC16F1825

The PIC16F1825 has a well-behaved HW at both room and elevated temperatures,
with most ICs having close to the ideal 50% HW. At the high end of the commercial
temperature range, the average HW for all measured ICs is clustered within 48 to
52%, almost ideal. There is a fairly long tail at room temperature though, with a few
ICs having a bias of almost 5% to zero.

However, at −30 ◦C the HW has a bias of approximately 5% on average to zero. The
HW distribution is long-tailed, with the HW of a few of the measured ICs being
hardly in�uenced at all, while for the majority the SRAM power-up values show a
strong bias towards zero (down to 43% HW). The PIC16F1825 is the only one of the
measured ICs that shows a linear correlation between HW and temperature; for all
other measured microcontrollers the relationship is inverted.

Note that the very obvious pattern displayed in Figure 4.4 has no in�uence on the
HW metric, because it has a HW of exactly 50%.

4.3.3.3 Texas Instruments MSP430F5308

A large fraction of approximately 62% of bits of the MSP430F5308 power up as one;
this represents a rather large bias, albeit smaller than for the ATmega328P. The bias
remains fairly constant across the measured temperature range, which hints at a
low intra-device distance at non-room temperatures. For the measured ICs, the HW
distribution is skewed towards 50%, the distance between the lower quartile and the
median is a lot shorter than that from the median to the upper quartile.

Of all the measured microcontrollers, the MSP430F5308 displays the largest deviation
in HW between the measured ICs, the distance between the lower and upper quartile
at −30 ◦C is 11%, larger than the deviation of the median from the ideal 50% HW.

4.3.3.4 STMicroelectronics STM32F100R8

Finally, we have the STM32F100R8, which produces very good results. The Hamming
weight is almost exactly the same at all temperatures, and centered just shy of
50%. Furthermore, there is no signi�cant deviation from the median to speak of,
all measured ICs behave the same way. Judging from this metric intra-device distance
will likely be very small, and inter-device distance large.
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4.3.4 Inter-device distance

For PUFs, it is important for the inter-device distance to be as large as possible, since
it is a measure for the uniqueness of each PUF response. For RNG use cases, this
metric has no importance, since it is based on the static content of the SRAM, which
contains no entropy for an RNG to exploit. Ideally, the inter-device distance should
be 50%, which is the maximum possible.

The plotted statistics are calculated over all pairwise combinations of measurements
over all measured ICs, using 500 randomly selected measurements per IC. Thus, for
each microcontroller family 5002 · n(n−1)

2 pairs are considered, with n the number of
measured ICs (i.e. between 13.75 · 106 and 30 · 106 pairs). Boxplots of the inter-device
distance for each of the measured microcontroller families are shown in Figure 4.8.

ATmega328P PIC16F1825 MSP430F5308 STM32F100R8

20

30

40

50
Fractional inter-device distance [%]

Figure 4.8: Inter-device distance for each microcontroller family.
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4.3.4.1 Atmel ATmega328P

Despite its very strong bias towards one, and due to the lack of regular pattern within
its SRAM power-up values, the ATmega328P has a reasonable good inter-device
distance centered around 44%.

4.3.4.2 Microchip PIC16F1825

As could be expected due to the regular pattern shown in Figure 4.4, the PIC16F1825
has a very low median inter-device distance of 22%. The worst case pair even has
a distance as low as 18%. Even ignoring the obvious security issues arising from
the regular pattern, this microcontroller is likely to be highly problematic for PUF
purposes, since, with such a low inter-device distance, error correcting codes are
likely to transform pufi ’s response into that of another puf j . Just how likely this is to
happen also depends on the intra-device distance.

4.3.4.3 Texas Instruments MSP430F5308

Similarly to the ATmega328P, the MSP430F5308 has a reasonable inter-device distance
of approximately 46.5%.

4.3.4.4 STMicroelectronics STM32F100R8

Again the STM32F100R8 shows the best results of all the measured microcontrollers,
with very little deviation from the median over all 13.75 · 106 pairs used for calculating
the inter-device distance. Note that there seems to be a slight correlation between the
measured devices, due to which the median sample mean, at 48%, is slightly deviated
from the ideal 50%. This is to be expected, since all the HW statistics are also situated
slightly below the 50% mark.

4.3.5 Intra-device distance

The intra-device distance plays an important role in parameter selection for both PUF
and RNG designs. For PUFs, the lower the intra-device distance, the better, since that
means one can use smaller and less complex error correction algorithms. Thus, for
PUFs the ideal fractional intra-device distance is 0%. On the other hand, for RNG
designs the intra-device distance is an indirect measure of the amount of entropy
available. Thus, in that case, the ideal fractional intra-device distance is 50%.
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Based on published results for external SRAM chips,[110] we can expect the intra-
device distances across temperature to be higher than the intra-device distance at
room temperature. This e�ect is also visible in the SRAM visualizations where plots
at reduced and elevated temperature are either denser or sparser than the plot at
room temperature. Note that intra-device distance at non-reference temperatures
(i.e. non-room temperatures) are always calculated versus reference temperature
measurements. This is because one always wants to correct the errors in a PUF
response relative to a response measured at enrollment time, which happens under
reference conditions.

We have calculated the intra-device distance statistics at reference temperature using
all pairwise combinations of measurements per IC, using 1000 randomly selected
measurements per IC. Thus, for each microcontroller family n · 1000·999

2 pairs are
considered, with n the number of measured ICs (i.e. between approximately 5.5 · 106

and 8 · 106 pairs). For intra-device distance at non-reference temperatures each
possible pair of a non-reference and a reference temperature measurement was
considered, i.e. n · 10002 pairs per IC. The plotted data for each microcontroller family
is calculated from the sample mean intra-device distance for each measured IC in that
family. The results are plotted in Figure 4.9.

4.3.5.1 Atmel ATmega328P

At room temperature, the ATmega328P produces remarkably consistent responses,
with a maximum calculated intra-device distance of only 2.5%. As expected, this
maximum rises at 90 ◦C, to approximately 6.5%. At both temperatures the deviation
from the median is very limited, approximately 0.5% and 1.25%.

However, at −30 ◦C a very di�erent result emerges. The median intra-devices distance
at this temperature is nearly 10%, with certain pairs showing up to 13%, the largest of
any of the measured ICs. Furthermore, the range between minimum and maximum
calculated distance is over 5%, i.e. the maximum is almost double the minimum. This
means that in order to use the ATmega328P’s SRAM power-up values as a PUF, one
has to use error correction which for the majority of ICs will be able to correct way
more errors than required, and thus use more energy and space than what would be
required for the average IC.

[110] G.-J. Schrijen and V. van der Leest, “Comparative Analysis of SRAM Memories Used as PUF Primitives”
(2012).
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Figure 4.9: Intra-device distance for each microcontroller family.

4.3.5.2 Microchip PIC16F1825

The PIC16F1825 has an even smaller intra-device distance at room temperature than
the ATmega328P, in fact, it boasts the smallest distance of all measured ICs. The
calculated maximum is only 2%. Furthermore, the deviation from the median is very
small, all calculated distances fall within approximately 0.75% of each other.

Unfortunately, at both −30 and 85 ◦C no trace remains of this behavior. The deviation
increases to approximately 7.5% and 4.5% respectively. The maximum calculated intra-
device distance at these temperatures is 10.6% and 8%, a multiple of the maximum at
room temperature.
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4.3.5.3 Texas Instruments MSP430F5308

The intra-device distance statistics of the MSP430F5308 are very similar to those of
the ATmega328P, even if it has a larger intra-device distance at room temperatures.
Just as for the ATmega328P, for real world use, the required parameters for the error
correction algorithm will be such that for the majority of cases, a lot of unrequired
energy and space is wasted, due to the 11.5% intra-device distance at −30 ◦C.

4.3.5.4 STMicroelectronics STM32F100R8

Compared to the other three microcontrollers, the STM32F100R8 has a much higher
intra-device distance at room temperature, at approximately 5.5% it is even higher
than the MSP430F5308’s one. Contrary to the other ICs, freezing temperatures do not
have that large an e�ect on the intra-device distance. At 90 ◦C, however, the distance
does increase remarkably, to around 10%. At all three temperature conditions, the
behavior of all measured ICs is fairly consistent, due to which the interquartile range
is fairly limited. Due to this small range, out of all four measured microcontrollers,
the STM32F100R8 will require the most lightweight error correction algorithm in
practical applications.

4.3.6 Intra-device min-entropy

Lastly, we present the results for the min-entropy content of the SRAM power-up
values of each microcontroller. As explained in Sections 2.6.7 and 2.8, we are interested
in the worst case entropy, and will thus calculate min-entropy. Because we only have a
rather limited number of microcontroller instances, it makes little sense to calculate the
inter-device entropy. Calculating intra-device entropy for each of the microcontroller
ICs poses no problem however, and it is thus this type of entropy metric we present
here.

As discussed before, intra-device entropy is crucial for RNG applications. It gives
a strong indication about the quality of the SRAM power-up values for use as an
entropy pool. For RNG applications, the ideal case is if each bit in the SRAM has an
entropy content of 1 bit of information.

The min-entropy for each microcontroller is calculated using 500 randomly selected
measurements per IC, i.e. 500n measurements in total per microcontroller family, with
n the number of measured ICs. We assume a model where the noise on the SRAM bits
is independent, but not identically distributed. The results are shown in Figure 4.10.
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Figure 4.10: Intra-device min-entropy of SRAM power-up values for each
microcontroller family.

4.3.6.1 Atmel ATmega328P

The min-entropy for the ATmega328P rises the higher the temperature becomes, with
the results for each temperature point being closely grouped together. As can be
expected, the min-entropy at room temperature is similar to the intra-device distance.

4.3.6.2 Microchip PIC16F1825

Calculations show that the PIC16F1825 min-entropy is rather low, compared to the
other microcontrollers. The median rises with temperature, although it should be
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noted that at −30 ◦C the range between minimum and maximum is very large, with
the maximum being higher than the maximum calculated for 20 and 85 ◦C.

An inspection of the raw SRAM data reveals that while a few ICs do not seem a�ected
much by the freezing temperature, for others a large percentage of SRAM cells powers
up in the zero state, which explains the extremely low minimum of 1.2%.

4.3.6.3 Texas Instruments MSP430F5308

At −30 ◦C two of the measured ICs contain a large amount of min-entropy, even
higher than at 90 ◦C. Although these two ICs are de�nitely outliers compared to the
others, it is hard to ignore them, given that they represent one eight of the measured
ICs.

For the majority of ICs the change in min-entropy at di�erent temperatures follows
a pattern similar to the ATmega328P. However, in the case of the MSP430F5308 the
min-entropy is almost twice as high. The minimum measured is 4.6% at −30 ◦C.

4.3.6.4 STMicroelectronics STM32F100R8

The results for the STM32F100R8 are, as for all other metrics, tightly grouped. At
−30 ◦C there is a slight decrease in min-entropy, due to an increased number of cells
powering up in the zero state. Increased temperature seems to have little e�ect, the
min-entropy at both 20 and 90 ◦C is almost identical. Ignoring the two outliers in the
MSP430F5308 results, the STM32F100R8 has the highest amount of min-entropy in its
SRAM power-up state.

4.4 Discussion

It is clear from the results that SRAMs are de�nitely not all created equal. As such, a
short discussion on our �ndings and a qualitative comparison between the measured
microcontrollers for the purpose of SRAM-based PUF and PRNG applications is in
order.

4.4.1 PIC16F1825

Of all the measured ICs, particularly the PIC16F1825 is unsuited for either PUF or RNG
applications. For PUF applications, the biggest problem is that all of the measured
PIC16F1825 ICs contain a repetitive, highly structured pattern. The existence of this
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pattern heavily undermines the security of whatever PUF-based application one might
implement on this microcontroller.

In the process of trying to �nd the cause of this pattern, we have found that the
voltage power-up curve has a strong in�uence on the SRAM power-up state. While
an IC is normally powered up with a curve such as that in Figure 4.11a, we have found
that using a “glitched” pattern, such as in Figure 4.11b, greatly reduced the regularity
of the pattern.

0
0

3.3

t

V+

(a) Regular

0
0

3.3

t

V+

(b) Glitched

Figure 4.11: Voltage power-up curves tested on PIC16F1825.

From a practical point of view, the “glitch” solution solves little. First of all, one
would need to add extra components to the circuit in order to reproduce the glitch at
every power-up. Besides working against our goal of using no external components,
this would increase the cost of the circuit. Even more troublesome however, is the
fact that the voltage level to which the glitch needs to rise in order to reduce the
pattern is di�erent for all sixteen ICs we tested it on. The required glitch voltage was
in the range of 2.3 to 3.3 V for the tested ICs. Thus, the glitch-producing circuitry
would need to be calibrated for every device. Due to these two reasons, we did not
investigate this phenomenon any further.

Unfortunately, the internal layout of the PIC16F1825 is a closely guarded secret by
Microchip. As such, our best guess as to the origin of the pattern is an analog circuit
inside the microcontroller that has an in�uence on the power-up voltage curve to the
SRAM.

An extra problem is that the maximum calculated intra-device distance is 10.6%, and
the minimum inter-device distance approximately 18%. Assume that the intra-device
distance follows a Gaussian distribution, with as parameters the calculated sample
mean and standard deviation of the worst case measured IC (µ = 10.6,σ = 1.5). In
that case, approximately 1 in 106.4 PUF responses will be further than 18% from the
non-erroneous response, which is borderline acceptable. Note that this example does
not use any safety margin whatsoever.

If a small 3% safety margin is added, i.e. µ = 13.6, then in order to guarantee an error
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correction failure rate ≤ 10−6 (standard for consumer grade devices), one needs to be
able to correct at least

1 − 0.5 ·
(
1 + erf

(
x − 13.6√

2 · 1.5

))
= 10−6 ⇔ x ≈ 20.76% errors.

These are more errors than the minimum expected inter-device distance, i.e. the
erroneous response of pufi will often be closer to the corrected response of puf j
than to pufi itself. Thus, even ignoring the problematic pattern, it seem infeasible to
implement a reliably working PUF using the PIC16F1825’s SRAM power-up state.

For the purpose of PRNG applications, the PIC16F1825 is problematic as well. The
very low min-entropy combined with the small available amount of SRAM, leads
to an expected minimum min-entropy of approximately 100 bits of information.
One generally wants to seed a PRNG with entropy at least as high as the security
level.[8] Thus, that means that no PRNG with a security level higher than 2100 can be
constructed with the PIC16F1825.

4.4.2 ATmega328P and MSP430F5308

The ATmega328P and the MSP430F5308 are rather similar, for the purpose of PUF
applications. They both have a strong bias towards one, especially so the ATmega328P.
Due to this bias, one needs to use longer PUF responses in order to obtain the security
level a�orded by the response. For our purspose, we will only consider the bias
at reference temperature, because that is the temperature at which enrollment is
executed. In the following example, we assuming a fractional Hamming weight of
70% for both ICs, and require a min-entropy of at least 128 bits of information. In
order to achieve, one requires a PUF response of at least

⌈
128

− log2(0.70)

⌉
= 249 bit.

Note that in this case, we assume no loss of information due to public helper data. I.e.
we assume that, apart from the bias, the SRAM in both microcontrollers behaves as a
perfect PUF with 0% intra-device distance, and thus no error correction is required.

In reality, for the ATmega328P one would need to take into account an error rate
of at least 15%; for the MSP430F5308 13% might be su�cient. As it turns out, this
is the same as in the PUFKY design. Assume the same error correction algorithms
and parameters are used as in the PUFKY design (i.e. 2 226 bits of PUF response
data and 2 052 bits of helper data, see Section 3.5). It is clear that using only error

[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic Random
Bit Generators” (2012).
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correction methods, it is in this case impossible to construct a viable PUF design,
since the assumed loss of information due to helper data is greater than the worst
case inter-device entropy in the SRAM:

− log2(0.70) · 2226 ≈ 1145 < 2052 .

Due to the bias, a PUF construction using only error correction is thus infeasible.

However, it is feasible to construct a PUF if one of the techniques for dealing with
bias proposed in Section 2.7.4 is used. We will once again assume the same error
correction scheme as used for PUFKY. Note that we simplify our example design by
assuming the error rate for both zero and one bits are the same. Therefore, a total of
l ′ = 2226 bits of PUF response are required. We further assume the two-step debiasing
algorithm and that the bias p towards one is the same as before, i.e. p = 0.7. Therefore,
the number of biased PUF response bits n required is:

n = l ′ ·
(
pq +

1
2 ·

p2q2

p2 + q2

)−1

=
2226

0.2480 ≈ 8976 .

A closer look at our measurements reveals that these parameters should also work in
an actual implementation, i.e. one where the error rate for zeros and ones di�ers.

In total, approximately 1 KiB of SRAM is required to extract enough unbiased data
for the error correction algorithms to work with. Both the ATmega328P and the
MSP430F5308 have more SRAM than that available, so this is not a problem. The
remaining amount of entropy after error correction is expected to be approximately

− log2(0.5) · 2226 − 2052 = 174 bit.

PRNG constructions are also feasible on both microcontrollers. For the ATmega328P,
the minimum observed 2% intra-device min-entropy corresponds to approximately
327 bits of information available in the whole SRAM. Whereas for the MSP430F5308,
the minimum 4.6% equates to 2.2 Kibit of information. In both cases this is more than
the suggested minimum for seeding a PRNG with 128-bit security level.

4.4.3 STM32F100R8

Again, lastly we have the STM32F100R8, which, as can be expected from the preceding
sections, seems to be an excellent platform for both PUF and PRNG applications.

In the case of PUFs, assuming a worst case Hamming weight of 48%, and an error rate
of 13%, and the same PUFKY parameters as before, after correcting a block of 2226 bits,
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a total entropy of − log2 0.52 · 2226− 2052 = 48 bits of information remains. Applying
a correction on three such blocks gives a total of 144 bits of information. Of course, in
an actual implementation, one would choose error correcting code parameters better
suited to the 32-bit ARM Cortex-M architecture.

As for PRNG applications, we expect a min-entropy of at least 5.25%, corresponding to
3.36 Kibit. Thus, even factoring in a generous safety margin should pose no problem
to obtaining su�cient entropy for PRNG designs with very high security levels.

4.5 Conclusion

We conclude this chapter by summarizing the discussion on practical PUF and PRNG
applications using the measured microcontrollers. The feasibility of using these
microcontrollers for either purpose is shown in Table 4.2.

Table 4.2: Practical feasibility of PUF and PRNG applications on measured
microcontrollers. An 7 indicates infeasible, an 3 indicates feasible, and an∼ indicates
feasible if certain conditions are met (e.g. the use of a debiasing algorithm).

ATmega328P PIC16F1825 MSP430F5308 STM32F100R8

PUF ∼ 7 ∼ 3

PRNG 3 7 3 3

It seems that especially for PUF implementations, one should not pick just any
microcontroller. Of the four microcontrollers we tested, only the STMicroelectronics
STM32F100R8 is suitable for secure, pure software-based PUF implementations using
only error correction codes. Implementations on the ATmega328P and MSP430F5308
are possible, but require a debiasing step �rst, due to the strong bias of their SRAM
cells towards one. The PIC16F1825 has two factors working against it: a regular
patterns in the SRAM and a low inter-device distance, both of which make a secure
PUF implementation impossible.

On the PRNG side, all tested microcontrollers, except for the Microchip PIC16F1825,
can be used. In this case the problem with the PIC16F1825 is its low min-entropy,
coupled with its small amount of SRAM. The ATmega328P, MSP430F5308 and
STM32F100R8 are all adequate choices for a PRNG application. Out of these three, the
ATmega328P is the least suited, due to the relatively low min-entropy in its SRAM
power-up state and the rather small amount of SRAM available on the microcontroller.
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In closing, it is clear that there is a large di�erence between embedded SRAMs.
Therefore, the importance of conducting adequate measurements before deciding on a
microcontroller for software-based PUF and/or PRNG designs cannot be overstressed.
Of all the chips we tested, the STM32F100R8 proved to be exemplary in nearly every
aspect, and thus seems like an ideal testing platform for future work.



5 Software-based Secure

PRNG Design

Chaos is found in greatest abundance wherever order is being sought.
It always defeats order, because it is better organized.

— Terry Pratchett, Interesting Times (1994)

S ection 1.1.4 has pointed out that embedded devices often lack methods to
generate strong random numbers. As the measurements in Chapter 4 reveal,
many microcontrollers contain relatively large amounts of entropy in their

SRAM start-up values, both in the inter- and intra-device distances. Thus, there are
no technological restrictions that prevent software-based implementations of both
PUFs and strong PRNGs on those chips.

In this chapter, we present an implementation of a purely software-based, strongly
seeded, cryptographically secure PRNG for COTS microcontrollers. Initial seeding
material is extracted from the SRAM power-up data. Our design can function as a
drop-in, black box module that provides strong random numbers to the rest of the
system.

We build an implementation of this system for the ARM Cortex-M family of
microcontrollers. The implementation is built around a version of Keccak with
small parameters, and generates one byte of pseudo-random data every 3 337 cycles
on the ARM Cortex-M3/4. The primary optimization goal is minimal code size. At
496 bytes of ROM and 52 bytes of RAM, our Keccak-f [200] implementation, and
supporting functions, is the smallest Keccak implementation published so far.

115
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Content sources

5.1 Introduction

Our goal is the design and implementation of a completely self-su�cient, software-
based cryptographically secure PRNG for an embedded microcontroller. It should be
possible to run the PRNG as a black box in a larger design, without it compromising
any functionality of the microprocessor. As our target platform, we have chosen the
ARM Cortex-M microcontroller family, one of the most popular embedded platforms
currently available. Code for this processor can be used on many powerful ARM
Cortex-A microcontrollers as well, which are used in virtually every smartphone
today.

Since a PRNG ful�lls a support function, the primary design goal is to reduce both
ROM and RAM requirements to a minimum, leaving more space available for the
core functionality of the system the PRNG will be used in. Speed is far less important
in this case, since random number generation occurs far less often in cryptographic
protocols than, e.g., encryption.
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The past years have seen a few publications related to generating random numbers
from SRAM, or on embedded devices. Holcomb et al.[56] presents a method of using the
power-up value as a source of randomness. The method’s main drawback is having
to power cycle the SRAM chip every time new randomness is required. Exactly
due to this requirement, it is not possible to use the suggested method in a COTS
microcontroller, since the controller would have to be reset each time random data is
required. O’Donnell et al.[97] present a design whereby a PUF is repeatedly queried
until an unbiased response is generated, which is then further post-processed in order
to generate a random number. van der Leest et al.[114] present a custom hardware
PRNG designed according to NIST recommendations,[8] which makes use of SRAM
power-up values for seed generation. Francillon and Castelluccia[45] present a PRNG
solution for embedded systems equipped with a radio module. In their design bit
transmission errors are used as a source of randomness.

To the best of our knowledge, there are two other publications which discuss self-
su�cient PRNG designs, requiring only a microcontroller, and no external components.
The �rst of these, by Hlaváč et al.,[54] discusses the use of jitter between an external
crystal and the internal RC oscillator on an Atmel ATmega169 as a source of
randomness. They also suggest the use of both the internal RC oscillator and watchdog
timer, to make the system self-su�cient, but do not verify whether such a construction
has good properties as an entropy source. One possible drawback of their suggested
design is the loss of the watchdog timer functionality, which might be critical in
certain embedded systems.

A second publication, by Kristinsson,[69] investigates the use of analog-to-digital
(ADC) measurements on �oating analog inputs as a source of entropy. Such a design
is suggested as a good source of “fairly random numbers” by the documentation of
the randomSeed() function in the o�cial Arduino Language Reference.[3] The paper’s
conclusion however is that this design in fact generates quite predictable data, not �t
for PRNG seed generation. This is rather unfortunate, since the Arduino system is
extremely popular, and thus the suggestion in its manual might inspire millions of
people worldwide to make use of this insecure method.

[3] Arduino SA, “Arduino Language Reference” (2014).
[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic

Random Bit Generators” (2012).
[45] A. Francillon and C. Castelluccia, “TinyRNG: A Cryptographic Random Number Generator for

Wireless Sensors Network Nodes” (2007).
[54] J. Hlaváč et al., “True Random Number Generation on an Atmel AVR Microcontroller” (2010).
[56] D. E. Holcomb et al., “Initial SRAM State as a Fingerprint and Source of True Random Numbers for

RFID Tags” (2007).
[69] B. Kristinsson, “Ardrand: The Arduino as a Hardware Random-Number Generator” (2012).
[97] C. W. O’Donnell et al., “PUF-Based Random Number Generation” (2004).

[114] V. van der Leest et al., “E�cient Implementation of True Random Number Generator Based on SRAM
PUFs” (2012).
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5.2 Design

In this section we will �rst discuss the attacker model we assume when later on
deciding on parameters for our design. Next is a high-level overview of our PRNG
design, followed by a discussion on parameter selection for the design.

5.2.1 A�acker model

In order to improve the practicality of our design, we choose an attacker model
which most closely matches realistic expectations. We distinguish two main types
of attackers: passive and active. For both of these, the goal is to break the PRNG’s
security by determining its internal state.

The passive attacker is equivalent to a regular user of the system, in that he only has
access to parts of the system which are designed to be public. Thus, in the case of a
PRNG, the passive attacker has access to the output of the PRNG and the publicly
accessible interface required to make the system generate an output. The passive
attacker has no physical access of any kind to the system, and thus his attacks are of
a mathematical nature. Protection against such attacks requires adequate choices of
security-related parameters, and can thus be done entirely in software.

Active attackers can further be divided into di�erent categories, depending on the
amount of funds they have access to. The basic active attacker is able to in�uence the
state of the PRNG, e.g. through a restricted (re)seeding interface. Such attacks are
software-based, and thus come for free. Defending against privilege escalation attacks
can preclude these attacks, and requires either software-based solutions or additional
hardware functionality, such as e.g. Sancus[96] or ARM TrustZone.[4] Note, however,
that such attacks are not speci�c to our implementation, but rather a problem of the
underlying operating system and/or hardware. Hence, preventing these attacks is
outside the scope of our design.

A second class of active attackers are attackers that have physical access to the system.
For low-budget adversaries this opens up at least two attack vectors. First of all, there
are side-channel attacks,[46] which use e.g. power measurements in order to infer a
secret used in software. Increasing the di�culty of such attacks can be done in software
by making the PRNG run in constant time, and not having any conditional jumps
based on secret data (i.e. the state), although this does not completely prevent such

[4] ARM Ltd, “ARM Security Technology: Building A Secure System Using TrustZone Technology” (2005).
[46] B. Gierlichs, “Statistical and Information-Theoretic Methods for Power Analysis on Embedded

Cryptography” (2011).
[96] J. Noorman et al., “Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software

Trusted Computing Base” (2013).
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attacks. Stronger defenses against side-channel attacks include the use specialized
hardware logic styles or adding noise sources to the circuit. Such constructs are outside
the scope of this implementation; the best we can do is implement software-based
solutions.

A second attack vector for low-budget physical access adversaries is the use of
debugging interfaces to read out and/or reprogram (part of) the microcontroller
on which the PRNG is running. This attack is rather problematic, since there is no
way to defend against it from software. Furthermore, many microcontrollers are not
built for security purposes, hence they do not allow one to completely disable all
debugging interfaces. For example, the STM32L1xx Cortex-M3 microcontrollers by
STMicroelectronics allow one to completely disable readout of both ROM and RAM
storage through debugging interfaces.[112] Other microcontrollers in related families,
e.g. the STM32F1xx, do not o�er such functionality, and are always vulnerable to
readout through the JTAG interface. However, even with (irreversible) protection
enabled, the system might still be reprogrammed, and thus read out, through a
bootloader. Therefore, even with appropriate fuses set, a system might still be
vulnerable. There are no steps that can be taken in software against these kinds
of attacks, they are something that should be dealt with through a combination of
hardware protection and thorough code auditing of outward facing communication
interfaces (e.g. a bootloader).

The �nal class of physical access attackers consists of those with a large to virtually
unlimited amount of funds. Such attackers can, amongst other feats, physically probe
buses and registers inside the microcontroller, and reverse the state of “permanently”
blown fuses. The only realistic defense against such attacks is in trying to make
them economically infeasible. However, there exist no mechanisms which can
completely defend against a determined, skilled attacker of this class. Note that COTS
microcontrollers exist which o�er such kinds of deterrents, e.g. Maxim DeepCover
Secure Microcontrollers,[84] naturally these cost signi�cantly more than unprotected
ones. Protecting against such an attacker is, again, clearly outside of the scope of our
design.

Taking into account the above, the only adversary which we can realistically defend
against by adapting our software implementation is the passive one. Defending
against the basic active attacker should be feasible as well, but doing so is matter to
be handled by the operating system (if any is used) or supporting hardware; it has
no in�uence on our implementation. However, adversaries with physical access will
most likely be able to break into the system through a debugging interface, unless
specialized high-security microcontrollers are used. Thus, from a realistic point of

[84] Maxim Integrated, “DeepCover ® Secure Microcontrollers” (2014).
[112] STMicroelectronics, “AN4246 - Proprietary Code Read Out Protection on STM32L1 microcontrollers”

(2013).
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view, if the attacker manages to gain physical access to the system, he will most likely
be able to break it. Defenses against the strongest class of attackers all fall far outside
the scope of our lightweight implementation, and thus such attackers can be ignored
in our this implementation.

5.2.2 High-level PRNG overview

As is common practice, we base the design of our PRNG on the recommendations
outlined in the NIST SP800-90 document.[8] A high level overview of the strongly
seeded PRNG architecture is given in Figure 5.1, and consists of three building blocks.

Embedded SRAM
providing entropy

ha
sh

SRAM
data

secure
seed

Entropy extraction
sp
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gestatet
number +
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Pseudo-random
number generation

Power-up Seed
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Figure 5.1: High-level construction of PRNG strongly seeded with SRAM power-up
data entropy.

The �rst of these building blocks is the entropy pool, for which we have chosen the
power-up values of the SRAM built into the microcontroller. The main reason for
selecting SRAM have been outlined in Chapter 4: instant availability and a su�ciently
high entropy content. The SRAM should contain an amount of entropy at least equal
to the required security level of the PRNG.[8] Taking for example the entropy density
of the STMicroelectronics STM32F100R8’s SRAM power-up values, which is minimum
3% under realistic conditions, and assuming that the entropy is distributed uniformly,
one would need at least d128/0.03ebit ≈ 0.5 KiB of SRAM to seed a PRNG with a
security level of 128 bits. Since even the smallest microcontroller in the STM32F1
family has 4 KiB RAM, meeting this requirement poses no problem.

Accumulating the entropy available in the SRAM power-up data can be accomplished
with a universal hash function (see De�nition 1.7) or a cryptographic hash function.

[8] E. Barker and J. Kelsey, “Recommendation for Random Number Generation Using Deterministic Random
Bit Generators” (2012).
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In order to accumulate the entropy, the SRAM data is hashed, with the �nal hash
serving as the seed for the PRNG. The hash function’s state does not need to be
initialized for this, that way a little time is saved and the state might already contain
some entropy due to the SRAM power-up values it contains.

The �nal block in the design is the PRNG itself. For this step, NIST recommends using
either a block cipher in hash mode (e.g. AES in CBC-MAC) or HMAC[10,68] with an
approved hash function.

Since both the second and third step can be implemented using a cryptographic
hash function, we choose to implement such function just once and use it for both
steps, for e�ciency reasons. The disadvantage of using an HMAC construction in
the third step is that two calls to the hash algorithm are required for each call to the
HMAC algorithm. Newer, sponge-based hash functions do not require the HMAC
construction to be able to securely generate random numbers and don’t have this
disadvantage. We therefore deviate from the NIST recommendations and follow those
outlined by Bertoni et al.,[15] who present a lightweight PRNG construction using a
sponge-based hash function. In our implementation, we choose to use Keccak[16]

as the sponge-based hash function. Keccak has recently been accepted as the new
SHA-3 standard. The NIST recommendations have not yet been updated to include
this new standard.

Keccak is shown in Figure 5.2 as it is used in building blocks two and three. Its
internal state is divided into two section, a public part of length r , and a secret part of
length c . The size of data input and output is equal to r , and is called the rate. The
length c is a measure for the security of the hash function, and is called the capacity.
The total size of the internal state is thus r + c .

st
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e t ⊕ f

seedt

⊕ f

seedt+1outt+2
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reseedt+x−1outt+x
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Figure 5.2: A sponge-based hash function used as PRNG. First the state is initialized
with seeding data, after which pseudo-random numbers can be generated. Reeseding
can be done at any time by XORing in new data. The rate of the sponge is r , its
capacity c .

[10] M. Bellare et al., “Keying Hash Functions for Message Authentication” (1996).
[15] G. Bertoni et al., “Sponge-Based Pseudo-Random Number Generators” (2010).
[16] G. Bertoni et al., “The Keccak reference” (2011).
[68] H. Krawczyk et al., “HMAC: Keyed-Hashing for Message Authentication” (1997).
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To accumulate entropy in the state, data seedt is fed into the hash. This process
of inputting data is called absorbing in sponge function terminology. Once enough
entropy is accumulated, the output of the hash function can be used as a PRNG.
Generating output, i.e. running the sponge function without feeding in data, is called
squeezing. Multiple random numbers outt can be generated by repeatedly squeezing
the sponge function.

Concerning the robustness of the PRNG, as discussed in Section 1.1.4, we need to
take into account three properties. This design is resilient as long as an attacker
doesn’t request more than a certain number of output blocks from the PRNG, as
discussed in Section 5.2.3. Backward security can be achieved by reseeding, which
is done by simply absorbing more data into the state. Due to the hash function’s
entropy accumulating nature, one does not need to know which bits of (re)seeding
material contain the actual entropy, which enables the use of entropy sources with
low entropy density. Finally, Bertoni et al.[15] discuss a technique to make the design
forward secure by reseeding the PRNG with part of its own output.

5.2.3 Keccak parameter selection

From Bertoni et al.,[15] we learn the resistance against both passive and active state
recovery attacks for the above construction. For passive state recovery attacks,
i.e. where the adversary cannot in�uence the seeding data being absorbed into the
sponge, the construction provides a security level of 2c /m(A) . The valuem(A) is the
multiplicity as de�ned by Bertoni et al.,[15] and is approximately 1 if l ≤ 2r /2, with l
being the number of blocks that have been output. For active state recovery attacks,
whereby the adversary can in�uence the value of the state, e.g. by modifying seeding
material, the construction o�ers a security level equal to 2c/l .

We assume that a security level of at least 128 bits is required and that pseudo-random
numbers of 64 bits in length are convenient in most applications. Furthermore, the
primary optimization goal of our implementation is to be as compact as possible,
both in ROM and RAM. With that in mind, the ideal Keccak permutation to use is
Keccak-f [200] with a rate r = 64 bits and a capacity c = 136 bits. This provides
the required security as long as reseeding happens at least every r · 2r /2 = 32 GiB of
output in passive state recovery attack scenarios, or every 28 · r = 2 KiB of output in
active state recovery attack scenarios.

Note that the allowed amount of output in the active state recovery attack is rather
limited. We nevertheless choose these parameters for the following reasons. If
an attacker can in�uence the value of the state, this must happen either directly
through software, or indirectly through reducing the content of the entropy pools by

[15] G. Bertoni et al., “Sponge-Based Pseudo-Random Number Generators” (2010).
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in�uencing the operating conditions (e.g. reducing the operating temperature to a
very low level). For a software attack, this means that the protections o�ered by either
the operating system or hardware have failed against a privilege escalation attack.
Preventing such attacks is, as discussed in Section 5.2.1, outside the scope of our
implementation, and picking di�erent parameters would not improve matters. The
second option, in which operating conditions are in�uenced directly by an attacker,
requires physical access to the system. As discussed in Section 5.2.1 as well, such
access almost certainly guarantees that the system will be broken.

We therefore decide that the chosen parameters o�er adequate protection under the
assumption that no privilege escalation attacks are possible, and that an attacker does
not have physical access to the system. Di�erent parameters would not be able to
o�er increased security anyway, should either of those conditions be violated.

5.3 Implementation

We will now discuss the reasoning behind our target platform selection, present an
overview of the actual implementation and discuss some techniques used to obtain
our �nal result. This result, and a comparison of our implementation of Keccak with
other published ones, is given next. Finally, we discuss some tests used to verify the
correct working of the PRNG design.

5.3.1 Platform selection

Our implementation platform of choice is the ARM Cortex-M. This is a popular family
of embedded 32-bit microcontrollers. The three major types of chips available in this
family are the M0(+), M3, and M4(F). The M0(+) is an ARMv6-M architecture, the M3
is an ARMv7-M, and the M4(F) is an ARMv7E-M. Chips of the less powerful variety
(e.g. M0) use a subset of the instruction set of the more powerful controllers (e.g. M4).

Furthermore, most of the chipsets used in modern mobile devices, such as tablets
and cellphones, are of the ARM Cortex-A family. Because many of these chipsets
additionally contain one or multiple Cortex-M controllers, our implementation can
run on most of them as well.

Therefore we choose to �rst implement and optimize our code for the Cortex-M0,
since the same code can then run on any Cortex-M chip available. This Cortex-M0
implementation is then further optimized for the Cortex-M3 and -M4 devices, because
those are often incorporated into more powerful Cortex-A chips. The chips on
which we tested our implementations are the STMicroelectronics STM32F051R8,
STM32F100RB, and STM32F407VGT6.
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5.3.2 High-level implementation overview

An execution of Keccak works by running the internal state, into which input
data can be XORed, through a permutation function for a number of rounds.
There are seven possible variants of this function, which is called Keccak-f [x],
with x ∈ {25,50,100,200,400,800,1600}. The state has a size in bits equal to the x
parameter. The major di�erence between the functions is the word size with which
they work. The state consists of 25 words of word size x/25. Thus, for Keccak-f [200]
the function works with 8-bit words, i.e. bytes. The second di�erence is the number
of rounds per execution, which is equal to 12 + 2 · log2(x/25), i.e. 18 in our case.

A straightforward implementation of the Keccak-f permutation, as shown in
Algorithm 5.1, requires temporary variables larger than the size of the state while
executing. Especially in constrained embedded devices, one would prefer to reduce
this temporary storage as much as possible, which is why small space requirements are
our primary optimization goal. It is possible to implement Keccak using a so-called
in-place technique,[17] which reduces the amount of stack space required. Speed is a
second optimization goal: it is not crucial in a cryptographic PRNG design, since in
real-world systems most time will be spent executing other cryptographic algorithms.

Algorithm 5.1: Straightforward Keccak-f permutation algorithm for round i .[17]

Data: state A[5,5], temp. arrays B[5,5], C[5], D[5]
1 for x ← 0 to 4 do
2 C[x ]← A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕ A[x, 4]
3 for x ← 0 to 4 do
4 D[x ]← C[x − 1] ⊕ (C[x + 1]≪ 1)
5 for x ← 0 to 4 do
6 for y ← 0 to 4 do
7 A[x, y ]← A[x, y ] ⊕ D[x ]

8 for x ← 0 to 4 do
9 for y ← 0 to 4 do

10 B[x, 2x + 3y ]← A[x, y ]≪ p[x, y ]

11 for x ← 0 to 4 do
12 for y ← 0 to 4 do
13 A[x, y ]← B[x, y ] ⊕ (∼B[x + 1, y ] ⊗ B[x + 2, y ])

14 A[0, 0]← A[0, 0] ⊕ RC[i]

[17] G. Bertoni et al., “Keccak implementation overview” (2011).
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High-level pseudo-code for the in-place Keccak-f permutation algorithm is given in
Algorithm 5.2, which is based on Alg. 4 in the work of Bertoni et al.[17] Note that all
indices are calculated mod 5. The arrays p and RC contain constants. The in-place
technique saves on storage space by overwriting those parts of the state which are
not required anymore by future calculations. This can be seen in the listing as the
indexes into the state array A are �rst permuted by means of a matrix multiplication
with N =

� 1 0
1 2

�
. Because rank(N ) = 4, bytes in the state array occupy their original

position every four rounds. However, because for Keccak-f [200] the number of
rounds is not a multiple of four, 18 mod 4 = 2, the state array elements need to be
swapped around after the last round execution in order to put them back in their
correct position.

Whereas Alg. 4 in the work of Bertoni et al.[17] uses two separate arrays B and C , we
combine these into array BC , since the variable C is not used after the calculation
of D �nishes. This reduces the required storage by 5 words (i.e. 5 bytes in this case),
around 10% of the total required RAM space. Compared to the straightforward
implementation the RAM space is reduced by 25 words, approximately 40% less.

Algorithm 5.2: “Looped” in-place Keccak-f permutation algorithm for round i .
Based on Alg. 4 in the work of Bertoni et al.[17]

Data: state A[5,5], temp. arrays BC[5], D[5]
1 for x ← 0 to 4 do
2 BC[x ]← 0
3 for j ← 0 to 4 do
4 BC[x ]← BC[x ] ⊕ A[N i (x, j)T ]

5 for x ← 0 to 4 do
6 D[x ]← BC[x − 1] ⊕ (BC[x + 1]≪ 1)
7 for y ← 0 to 4 do
8 for x ← 0 to 4 do
9 BC[x + 2y ]← (A[N i+1(x, y )T ] ⊕ D[x ])≪ p[N (x, y )T ]

10 for x ← 0 to 4 do
11 A[N i+1(x, y )T ]← BC[x ] ⊕ (∼BC[x + 1] ⊗ BC[x + 2])

12 A[0, 0]← A[0, 0] ⊕ RC[i]

5.3.3 Implementation details

Our �rst implementation is done for a Cortex-M0, since that guarantees compatibility
with other Cortex-M microcontrollers. Since minimal code and RAM size are the
[17] G. Bertoni et al., “Keccak implementation overview” (2011).
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primary optimization goal, everything is implemented as loops (i.e. no loop unrolling).
To further reduce code size, all indices are calculated on the �y, expect for those into
the state register A. Those indices are bit packed into a byte together with the content
of p (the number of positions to rotate). Because rank(N ) = 4, the same bytes values
repeat every four rounds. Thus, 4 · 25 = 100 bytes are required for this lookup table
(LUT). Another 18 byte LUT is required for the round constants RC . It is possible to
eliminate the 100 bytes lookup table by calculating the index into A on the �y. This
would cost a few cycles extra each time, and, in the case of our implementation, comes
at the expense of more RAM, a trade-o� we choose not to make.

Further reductions in code size are made possible by making the LUTs word-aligned.
This allows the use of certain e�cient instructions for address calculation (i.e. adr)
which would crash the microcontroller if the LUTs were byte-aligned.

Some more code space is reclaimed by reversing as many loop counters as possible, i.e.
running the loops from 4 to 0. This is more e�cient because comparisons with 0 can be
done simultaneously with decrementing the loop counter, and thus an instruction can
be saved when checking if the loop should be ended. Although such an optimization
only allows the removal of a single instruction in most cases, it can signi�cantly
improve speed for the innermost loops, due to loop overhead reduction.

We obtain a speed increase of around 25% by optimizing our code for the Cortex-M3
and -M4 cores. This is �rst of all made possible by the more powerful instruction
set, which allows operations such as addition with on-the-�y shifted operands or
boolean operations with immediate values, whereas those values have to be loaded
into working registers �rst on the ARMv6-M architecture (i.e. the M0).

The code can be further reduced and sped up by using the conditional execution
capabilities of these more powerful cores. Conditional execution allows the
microcontroller to ignore instructions if certain �ags are not set, thereby removing
the need for costly conditional jump instructions. This e�ect is most noticeable in
inner loops, where the removal of jumps leads to a signi�cant speed increase.

Finally, the order of load-modify-write instructions matters on these cores, whereas it
doesn’t on the Cortex-M0 that we used. On the M0 data is available for calculation as
soon as its load instruction �nishes, which is not the case on the M3 and M4 devices
we used, due to a more complex pipeline. Thus, by carefully moving around code,
speed gains can be obtained without any changes to the actual instructions used.

Each of these three techniques accounts for around 30% of the speed-up gained versus
the Cortex-M0 implementation.
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5.3.4 Results and comparison

These techniques reduce our initial Cortex-M0 code size from 736 bytes of ROM
to 500 bytes, a 32% reduction. This includes not only the Keccak-f [200] function
(404 bytes), but initialization, hashing, padding and output generation code as well.
During hashing 52 bytes of RAM are required, of which 28 are used to store the
PRNG state and which thus need to be kept afterwards. Hashing takes 4 205 cycles
per byte. On the Cortex-M3 and -M4, we manage to very slightly reduce code size to
496 bytes (of which 400 bytes are required for the Keccak-f permutation), and the
time required to hash is reduced to 3 337 cycles per byte. On an STMicroelectronics
STM32F4DISCOVERY development board running at 168 MHz, that equates to
approximately 20 µs/byte or 50 KiB/s.

To the best of our knowledge, only one other implementation of Keccak for an
embedded device has been published.[6] A comparative listing is given in Table 5.1.
Our implementation requires less ROM, making it the smallest published Keccak
implementation so far. However, the one by Van Assche and Van Keer[6] is faster.

The main reason for the speed di�erence is that the Atmel ATtiny45 microcontroller
allows addressed access to the working registers. I.e. one can load data from r3 by
using address r1[2]. This is not possible in ARM Cortex-M microcontrollers, thus a
lot of time in our implementation is spent loading and storing data in memory, which
is addressable in that fashion, but is two to three times as slow as working registers.

Table 5.1: Comparison of our Keccak implementations with other implementations
of Keccak-f [200] for embedded platforms. The RAM usage for our implementations
is given as static + while running Keccak. All listed implementations include required
utility functions for absorbing, squeezing, padding, . . .

ROM RAM SpeedImplementation Platform
[bytes] [bytes] [cycles/byte]

Van Assche et al.[6] ATtiny45 752 48 2 412
Ours Cortex-M0 500 28 + 24 4 205
Ours Cortex-M3/4 496 28 + 24 3 337

[6] J. Balasch et al., “Compact Implementation and Performance Evaluation of Hash Functions in ATtiny
Devices” (2012).
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5.3.5 PRNG verification

In order to verify our PRNG implementation, multiple experiments were conducted.
For the �rst round of tests, we used three development boards, a Cortex-M0, -M3,
and -M4F one. More speci�cally, the STMicroelectronics STM32F0-, STM32VL-,
and STM32F4DISCOVERY boards, which contain respectively an STM32F051R8T6,
STM32F100RB, and STM32F407VGT6 microcontroller. In all of these tests, 8 KiB
RAM content was used to generate the PRNG seed. A picture of our test and demo
setup is shown in Figure 5.3. A Texas Instruments Stellaris LaunchPad (Cortex-M4F)
asynchronously controls the three boards, guaranteeing each board is power-cycled
as fast as possible, in order to maximize the number of measurement outputs.

The �rst experiment was running the NIST, Diehard and Dieharder tests on the output
of the PRNG. As can be expected from a cryptographic hash function, all boards
passed these tests. These tests however, say very little about the quality of the PRNG
design. Even if the initial seeding material contains zero entropy, then the tests
would still succeed. This is because the output of Keccak, and that of other strong
cryptographic hash functions, is not distinguishable from a random permutation.

Figure 5.3: PRNG test and demo setup, containing STMicroelectronics STM32F0-,
STM32VL-, and STM32F4DISCOVERY boards, asynchronously controlled by a Texas
Instruments Stellaris LaunchPad.
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The second set of experiments was conducted on our STM32F100R8 measurement
board (see Chapter 4). As a �rst test, we checked whether the PRNG generates di�erent
numbers on every power-up. The microcontrollers were repeatedly power-cycled and
the �rst generated 64-bit pseudo-random number was logged each time. The NIST
test was run on the logged data sets, all of which passed the test.

As a second test, we used the thousands of SRAM measurements we had for each
of the STM32F100R8 chips to generate a 64-bit number from the �rst 4 KiB of each
measurement, using Keccak. This test is similar to the previous one, except that we
use less SRAM data to generate the numbers, and that the processing was done on a
PC. Just as for the previous test, this dataset also passed the NIST test.

For the two tests in the last experiment, we could not run the Diehard(er) tests, because
generating su�cient data would take over 8 years, due to the time required for power
cycling the microcontrollers.

5.3.6 Alternative implementations

Unfortunately, Keccak works over loops of size 5, which makes it impossible to store
all bytes required in a sub-loop into a single 32-bit register. Also, because registers in
an ARM Cortex-M are not addressable (meaning that there is no instruction to e.g.
load data o�set 7 bytes from register r0 as r0[7]), we cannot make e�cient use of the
full 32-bit width of the registers.

A possible solution to this would be to implement Keccak-f [800], which uses 32-bit
words. This would allow number generation approximately four times faster, at
the trade-o� of requiring approximately four times as much RAM. Code size could
probably be reduced even further, because operations such as e.g. rotating a 32-bit
word can be executed in a single instruction, whereas rotating an 8-bit word in a
32-bit register requires at least two instructions.

5.4 Conclusion

In this chapter we have presented a design for a securely seeded, software-based,
strong PRNG with a security level of at least 128 bits. We use the entropy in a
microcontroller’s SRAM power-up data to generate a strong seed value for the PRNG.
Such a design allows the implementation of strong PRNGs on commercial o�-the-
shelf microcontrollers, without requiring any extra external components. This type
of design is valuable in those situations where the increased expense of a secure
microcontroller is not economially feasible, yet strongly random data is required, e.g.
set-top boxes and routers.
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We implemented an extremely space optimized version of our PRNG design for the
ARM Cortex-M0 and ARM Cortex-M3/4. The implementation is based on Keccak,
and has a security level of at least 128 bits. Only 496 bytes of ROM and 52 bytes of
RAM are required. The ROM size includes initialization, hashing, padding and output
generation functions, the Keccak-f [200] permutation implementation itself requires
only 400 bytes. The total time required to hash a byte, or generate a pseudo-random
byte of output, is 3 337 cycles on the ARM Cortex-M3/4. To the best of our knowledge,
our implementation of Keccak is the smallest one available for any platform.



6 Conclusions

As the examples in Chapter 1 made clear, a myriad of embedded systems are
severely lacking with respect to security. This problem is compounded by the

fact that network-enabled devices are making an ever-increasing presence in
our daily lives. Now, more than ever, cryptography is required in order to protect our
data and privacy. Furthermore, companies are depending on it to implement digital
rights management (DRM) schemes and secure updating of softwares. Physically
unclonable functions (PUFs) are a recently discovered class of cryptographic primitives
that can improve many low-level cryptographic building blocks required by all of
these applications. In particular, they are very promising for secure key generation
modules and random number generators (RNGs).

Chapter 2 is reserved mainly for background information on PUFs, as well as some
information on random number generators. We discuss the various properties of
PUFs which makes them unique as a cryptographic building block, and show how
applications can bene�t from the use of PUFs. An overview of some of the most
important PUF types are presented, along with a discussion of what exactly lies at the
origin of PUF-like behavior. Metrics by which the quality of a PUF can be ascertained
are discussed. Next is the description of a basic protocol for error correction, which
PUFs require, and its impact on the security a�orded by PUFs. We also present a
promising method for debiasing of PUF data. Finally, we show how one can harness
PUFs for use in RNGs.

In Chapter 3 we present a practical design for an area e�cient, PUF-based key
generation module. By out�tting an electronic device with such a module, one
can guarantee that each device will have a personal, secure key. Our design makes
use of a novel ring-oscillator PUF and an e�cient error correction scheme. It is in
particular the design of a custom BCH decoding microcontroller which we study. By
tailoring every part of the microcontroller speci�cally to the algorithms required for
BCH decoding, we end up with the smallest implementation which has been published
so far for such a decoder. This result disproves the prevalent belief that BCH decoders
are unwieldy and complex. Our reference key generation module, which generates an
128-bit key with an failure rate of 10−9, �ts in less than 1200 Xilinx Spartan-6 FPGA
slices. With this design, which is the �rst fully functional PUF-based key generator,
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we prove that PUFs are a viable building block, even for small embedded devices.

Even though our design in Chapter 3 proves that PUF-based designs can be made
very small and e�cient, custom hardware is often not an option due to economic
reasons. Therefore, we turn our attention to PUFs in commercial o�-the-shelf (COTS)
components in Chapter 4. More speci�cally, we investigate the SRAM power-up
behavior in four important microcontroller families. These families, which have been
selected due to their large market share, are the Atmel ATmega, the Microchip PIC16,
the Texas Instruments MSP430, and the ARM Cortex-M. We discuss in detail various
metrics, and the impact these have on practical usability of the embedded SRAM for
either PUF or RNG designs. Our experiments show that there are large di�erences
between the various microcontroller families: for some the SRAM behaves almost
ideally for the intended designs, while in others very obvious start-up patterns make
the SRAM all but unusable.

In Chapter 5, we continue our quest for secure PUF and RNG constructions which
require nothing but a COTS microcontroller and some software. An e�cient
and simple design is presented for a securely seeded PRNG on a microcontroller.
Generating a secure PRNG seed, while critical for strong cryptography, is often
troublesome on embedded devices, which has lead to weak security in many
devices. By exploiting the errors in SRAM on power-up as a source of entropy,
our design generates strong randomness every time. We develop a proof of concept
implementation on multiple ARM Cortex-M microcontrollers. At the core of this lies
a tiny optimized Keccak implementation, at time of publication, the smallest in the
world. Our proof of concept passes the NIST randomness test, which proves its merit.

Future work Although a signi�cant amount of research has been conducted on
PUFs in the past few years, several open problems still exist. For one, there have been
no practical designs for a strong PUF, and indeed, it is not certain whether such a
design exists. The invention of silicon-based strong PUF would allow the simpli�cation
of many protocols, and would also permit for more lightweight implementations.

If PUFs are ever to be used in high security systems, then they should resist side-
channel attacks. Very little research concerning this has been published so far. Clearly,
this is an area in which a lot of progress can still be made. Luckily, a lot of research
has been done on these types of attacks in general, so it should be possible if not to
completely copy, then at least to build upon existing counter-measure techniques.
One of the main questions will be whether it is possible to design a side-channel
resistant PUF with good properties that is not so big so as to make secure memory an
attractive alternative.

A second important area of PUF research lies in improving error correcting techniques.
Due to the construction of many PUF-based protocols, a certain amount of security is
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lost due to the use of error correcting codes. By improving upon the existing methods,
the required error correcting codes can be shortened. This will reduce the “security
leakage”, which will in turn lead to a reduction in required PUF real estate. Methods to
deal with heavily biased PUFs are another part of this area of research. We presented
an initial idea for a lightweight method which allows one to extract unbiased data
e�ciently from such PUFs, but more research is required in order to turn this into a
full-�edged solution.

Almost all of the research directions mentioned above will invariably lead to new,
custom hardware designs. Unfortunately, cryptography, as any other engineering
discipline, is often a game of compromise. It is not always feasible to add custom
hardware to a device, often due to economic reasons. We therefore believe it to be
of utmost importance that research is done into PUFs in COTS semi-conductors.
Even though such PUFs might not function as well as custom designed ones, their
use could signi�cantly improve the current, often non-existing, security measures
in electronic devices. Interesting directions for research are the behavior of several
on-chip oscillators or of analog-to-digital converters.

Discovery of such “COTS PUFs” will open the door to cheap, software-based PUF
and PRNG designs. It is therefore also important that designs and algorithms are
developed that make these PUFs practical for everyday use. E�cient implementations
are necessary in order to convince manufacturers that improving the security of
their devices is possible at a very low cost. Very often, it is unclear just how e�cient
one can implement a design, and which trade-o�s will need to be made in order to
reach certain goals. The importance of high-quality, practical work on cryptographic
implementations can therefore not be overstated. Such applied research will help in
bringing the bene�ts of PUFs to the masses, and not relegate them to an object of
purely academic research, which, unfortunately, happens all too often with promising
cryptographic designs.

Although it is bene�cial that multiple manufacturers are adding (T)RNGs to their
microcontrollers nowadays, it is often unclear from the microcontrollers’ datasheet
exactly how random numbers are generated and which, if any, kind of post-processing
is applied to the output of the hardware RNG module. An independent review of the
quality of these RNGs is required in order to establish how secure they are. Note that
this not only applies to RNG modules in embedded microcontrollers, but also to such
modules in desktop and server CPUs, e.g. Intel’s DRNG module.

In light of this, it would be very bene�cial if guidelines were be drawn up on how
to practically implement secure software-based PUF and PRNG implementations for
embedded devices. Such guidelines could help prevent many common mistakes which
are still being made. A framework implementing such designs for the most commonly
used microcontroller families would be very welcome as well. One particularly useful
implementation that comes to mind is a PRNG for COTS microcontrollers that is



134 CONCLUSIONS

seeded using true randomness (e.g. such as our implementation in Chapter 5), and
that continuously accumulates additional entropy from various sources on the device
(e.g. available hardware RNG modules and/or clock jitter). Such an implementation
could greatly improve the security of millions of embedded devices worldwide, many,
if not most, of which are currently lacking in this department.



A Microcontroller

Firmware

I n this appendix chapter, we list the assembly code used for the �rmware of each
of the measured microcontrollers in Chapter 4. This in order to encourage a
repeat of our tests.

Listing A.1: Assembly code for Atmel ATmega328P.

1 ; Atmel ATmega328P firmware for SRAM readout on startup.

2 ; Transmission in binary over UART at 38400 baud.

3
4 ; Register name definitions

5 .nolist

6 #define _SFR_ASM_COMPAT 1

7 #include <avr/io.h>

8 .list

9
10 ; Define register names for readability

11 #define curAddr X

12 #define curAddrH R27

13 #define curAddrL R26

14 #define curVal R16

15 #define cmpAddrH R29

16 #define cmpAddrL R28

17
18 .section .text ; Start code segment

19 .org 0x00

20
21 Init:

22 ; Setup clock for 8 Mhz

23 ldi curVal , 0

24 sts CLKPR , curVal ; Set prescaler to 1

25
26 ; Disable watchdog timer

27 ldi curVal , 0x00

28 sts MCUSR , curVal ; Clear all "powerup" reset flags

29 sbr curVal , WDCE ; Enable watchdog change enable bit

30 sts WDTCSR , curVal ; Disable watchdog related settings

135
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31
32 ; Setup UART

33 ldi curVal , 0x00

34 sts UBRR0H , curVal ; Set baud rate

35 ldi curVal , 0x0c ; 38 400 Hz

36 sts UBRR0L , curVal

37 ldi curVal , (1 << TXEN0) ; Enable transmitter

38 sts UCSR0B , curVal

39 ldi curVal , (3 << UCSZ00) ; Set 8 data bits

40 sts UCSR0C , curVal

41
42 ; Setup IO

43 cbi _SFR_IO_ADDR(PORTB), PORTB0 ; Set B0 low (LED on)

44 sbi _SFR_IO_ADDR(DDRB), DDB0 ; B0 as output

45
46 ; Setup variables

47 ldi curAddrL , 0x00

48 ldi curAddrH , 0x01

49 ldi cmpAddrL , 0x00

50 ldi cmpAddrH , 0x09

51
52 ; Start transmission of SRAM content

53 DoTransmission:

54 ld curVal , curAddr+ ; Indirect load and post -inc pointer

55 sts UDR0 , curVal ; Store value in transmit register

56
57 TransmissionWait:

58 lds curVal , UCSR0A ; Load UART status register

59 sbrs curVal , TXC0 ; Skip next instr if TX clear is set

60 rjmp TransmissionWait ; Jump back for some more idle waiting

61
62 ; Done with TX, clear flag by writing 1 to it (docs p. 194)

63 ori curVal , (1 << TXC0)

64 sts UCSR0A , curVal

65
66 ; Check if the last SRAM byte has been transmitted yet

67 cp curAddrH , cmpAddrH ; Compare values

68 brlo DoTransmission ; Branch if lower

69 cp curAddrL , cmpAddrL ; Compare values

70 brlo DoTransmission ; Branch if lower

71
72 LEDOff:

73 sbi _SFR_IO_ADDR(PORTB), PORTB0 ; Set B0 high (LED off)

74
75 BusyWait:

76 ; If we end up here , then everything has been transmitted

77 rjmp BusyWait

78
79 .end ; End of file
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Listing A.2: Assembly code for Microchip PIC16F1825.

1 ; Microchip PIC16F1825 firmware for SRAM reaout on startup.

2 ; Transmission in binary over UART at 38400 baud , 8N/1.

3
4 #include <p16f1825.inc >

5 processor 16f1825

6
7 __CONFIG _CONFIG1 , _FOSC_INTOSC & _WDTE_OFF & _PWRTE_ON & _MCLRE_OFF &

_CP_OFF & _CPD_OFF & _BOREN_ON & _CLKOUTEN_OFF & _IESO_OFF &

_FCMEN_OFF

8 __CONFIG _CONFIG2 , _WRT_OFF & _PLLEN_ON & _STVREN_ON & _BORV_HI &

_LVP_OFF

9
10 ; Helper macro

11 CMP_NEQ macro CMP_REG , CMP_VALUE ; 3/4 cycles

12 movlw CMP_VALUE

13 subwf CMP_REG , W

14 btfss STATUS , Z

15 endm

16
17 ; Use FSR1x registers as temporary storage

18 #define tempStore FSR1L

19 #define bankStore FSR1H

20
21 #define MaxAddrL 0xEF

22 #define MaxAddrH 0x23

23
24 RESET_VECTOR: org 0x00

25 goto MAIN

26
27 MAIN: org 0x05

28 ; Setup INTOSC - 32 MHz

29 banksel OSCCON

30 movlw b’11110000 ’

31 movwf OSCCON

32
33 ; Setup ports

34 banksel PORTA

35 movlw 0xFF

36 movwf PORTA

37 movwf PORTC

38
39 banksel ANSELA

40 clrf ANSELA

41 clrf ANSELC

42
43 banksel TRISA

44 clrf TRISA

45 clrf TRISC

46
47 ; Setup UART

48 banksel SPBRGL
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49 movlw .51 ; Baud rate 38400 bps (0.2% error)

50 movwf SPBRGL

51 clrf SPBRGH

52
53 banksel TXSTA

54 movlw b’00100100 ’ ; Set up UART

55 movwf TXSTA

56
57 banksel RCSTA

58 movlw b’10000000 ’ ; Enable UART

59 movwf RCSTA

60
61 ; Wait for oscillator to become stable

62 banksel OSCSTAT

63 WAIT_FOR_OSC:

64 btfsc OSCSTAT , PLLR ; Wait for PPL to become ready

65 btfss OSCSTAT , HFIOFS ; Wait for stable HF int. osc

66 goto WAIT_FOR_OSC

67
68 ;; Start reading out SRAM ;;

69 ; Setup FSR for readout of bank 0 (incl. common RAM)

70 banksel FSR0L

71 movlw 0x20

72 movwf FSR0L

73 clrf FSR0H

74
75 moviw --FSR0 ; Decrement pointer by 1

76
77 READOUT_BANK_0:

78 moviw ++FSR0 ; Inc pointer & move value to W

79 call TRANSMIT_HEX ; Transmit value

80 clrf INDF0 ; Clear value

81
82 CMP_NEQ FSR0L , 0x7F ; Skip if at end of bank 0

83 goto READOUT_BANK_0

84
85 ; Setup FSR for readout of bank 1 & up

86 banksel FSR0L ; Setup FSR0 to point to linear memory

87 movlw 0x50

88 movwf FSR0L

89 movlw 0x20

90 movwf FSR0H

91
92 moviw --FSR0 ; Decrement pointer by 1

93
94 READOUT_RAM:

95 moviw ++FSR0 ; Inc pointer & move value to W

96 call TRANSMIT ; Transmit value

97 clrf INDF0 ; Clear value

98
99 ; Check if maximum value is reached (without using RAM!)

100 CMP_NEQ FSR0L , MaxAddrL ; Check LSB

101 goto READOUT_RAM
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102
103 CMP_NEQ FSR0H , MaxAddrH ; Check MSB

104 goto READOUT_RAM

105
106 DONE:

107 goto DONE

108
109 TRANSMIT:

110 banksel TXREG

111 movwf TXREG

112 banksel TXSTA ; Go to correct bank

113 TRANSMIT_TEST:

114 btfss TXSTA , TRMT ; Skip if TX register is empty

115 goto TRANSMIT_TEST ; Busy wait until transmitted

116 return ; Return to caller function

117
118 end

Listing A.3: Assembly code for STMicroelectronics STM32F100R8.

1 /* STMicro STM32F100 firmware for SRAM readout on startup. */

2 /* Transmission in binary over UART at 115200 baud , 8N/1. */

3 .syntax unified

4 .cpu cortex -m3

5 .fpu softvfp

6 .thumb

7
8 .global g_pfnVectors

9 .global SystemInit_ExtMemCtl_Dummy

10 .global Default_Handler

11
12 /* Memory locations for linker script. */

13 .word _sidata

14 .word _sdata

15 .word _edata

16 .word _sbss

17 .word _ebss

18
19 .equ BootRAM , 0xF108F85F

20 .section .text.Reset_Handler

21 .weak Reset_Handler

22 .type Reset_Handler , %function

23 Reset_Handler:

24 ldr r0, =0 x40021000 /* RCC_BASE */

25 ldr r1, =0 x00004009 /* PB + AF + USART1 enable */

26 str r1, [r0, #0x18] /* Store r1 in RCC_APB2ENR */

27
28 ldr r0, =0 x40010C00 /* GPIOB_BASE */

29 ldr r1, =0 x4B444444 /* PB6 = AF @ 50MHz , rest floats */

30 str r1, [r0, #0] /* Store r1 in GPIOB_CRL */

31
32 ldr r0, =0 x40010000 /* AFIO_BASE = remapping register */
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33 ldr r1, =0 x00000004 /* USART1 on PB6/7 */

34 str r1, [r0, #4] /* Store in AFIO_MAPR */

35
36 ldr r0, =0 x40013800 /* UART1 */

37 movs r1, #0

38 strh r1, [r0, #4] /* +4 USART_DR */

39 strh r1, [r0, #16] /* +16 USART_CR2 = 0 */

40 strh r1, [r0, #24] /* +24 USART_GTPR = 0 - Prescaler */

41 movs r1, #69 /* 8MHz / 69 == 115200 */

42 strh r1, [r0, #8] /* +8 USART_BR */

43 movw r1, #0x200C /* 8-bit , no parity , enable TX */

44 strh r1, [r0, #12] /* +12 USART_CR1 */

45
46 ldr r2, =0x2000 /* Size = Length (8K) */

47 ldr r3, =0 x20000000 /* Mem = RAM Address */

48 TXLoop:

49 ldrh r1, [r0, #0] /* USART ->SR */

50 ands r1, #0x80 /* TXE */

51 beq TXLoop

52 ldrb r1, [r3], #1 /* [Mem++] */

53 strh r1, [r0, #4] /* USART ->DR */

54 subs r2, r2, #1 /* Size -- */

55 bne TXLoop

56
57 main: b main /* Infinite loop */

58
59 .size Reset_Handler , .-Reset_Handler

Listing A.4: Assembly code for Texas Instruments MSP430F5308.

1 ; TI MSP430 firmware for SRAM reaout on startup.

2 ; Transmission in binary over UART at 115200 baud , 8N/1.

3
4 ; Load processor definitions in C-style

5 #include <msp430.h>

6
7 ; Variable name definition

8 #define Status R2

9 #define ptrSRAM R4

10
11 .text ; Program start

12 ISR_Reset:

13 mov.w #(WDTPW + WDTHOLD), &WDTCTL ; Stop watchdog timer

14
15 Port_Setup:

16 bis.b #(BIT0 + BIT6), &P1OUT ; Set P1.0 & 1.6 high (LEDs on)

17 bis.b #(BIT0 + BIT6), &P1DIR ; Set P1.0 & 1.6 as output

18
19 bic.b #BIT6 , &P1OUT ; Disable green LED

20
21 bis.b #(BIT1 + BIT2), &P1SEL ; Set P1.1 & 1.2 to RX/TX

22 bis.b #(BIT1 + BIT2), &P1SEL2 ; Set P1.1 & 1.2 to RX/TX



MICROCONTROLLER FIRMWARE 141

23
24 bis.b #BIT4 , &P1DIR ; P1.4 output

25 bis.b #BIT4 , &P1SEL ; P1.4 output SMCLK

26
27 Setup_DCO:

28 clr.b &DCOCTL ; Set DCO to lowest setting

29 mov.b &CALBC1_12MHZ , &BCSCTL1 ; Set range

30 mov.b &CALDCO_12MHZ , &DCOCTL ; Set DCO step + modulation

31
32 UART_Setup:

33 ; Keep UART in reset and select SMCLK

34 bis.b #( UCSSEL1 + UCSWRST), &UCA0CTL1

35
36 ; 115.2 kbps @ 11.0592 MHz

37 mov.b #0x60 , &UCA0BR0

38 mov.b #0x00 , &UCA0BR1

39 mov.b #0x00 , &UCA0MCTL

40
41 bic.b #UCSWRST , &UCA0CTL1 ; Enable UART

42
43 SRAM_Prepare:

44 mov.w #0x0200 , ptrSRAM ; Load SRAM base addres

45
46 SRAM_Transmit:

47 mov.b @ptrSRAM+, &UCA0TXBUF ; Transmit value & inc ptr

48
49 1:

50 bit.b #UCA0TXIFG , &IFG2 ; Check if TX int flag is set

51 jz 1b ; If not ready yet , wait some more

52
53 cmp.w #0x0400 , ptrSRAM ; Calculate diff(ptrSRAM , endSRAM + 1)

54 jnz SRAM_Transmit ; Not finished , so continue

55
56 LEDs_End:

57 bis.b #BIT6 , &P1OUT ; Turn on green LED

58 bic.b #BIT0 , &P1OUT ; Turn off red LED

59
60 Endless_Loop:

61 jmp Endless_Loop ; Endless loop



B Microcontroller Metrics

I n this chapter, we list various metrics for the SRAM power-up values of each of the
individual microcontrollers which were read out as part of the study presented
in Chapter 4. The metrics are listed here in the same order as they are discussed

in that chapter.

Each table contains the following columns (in order): IC identi�er (ID), sample mean
(X ), sample standard deviation (s), median (Md), �rst quartile (Q1), third quartile (Q3),
minimum (Xmin), and maximum (Xmax).

For metrics where data is available for multiple ICs, the last row in each table, identi�ed
by

∑
, is an aggregated result, calculated using the mean for each IC. This row is

used to generate the plots in Chapter 4. A missing IDs indicates that the IC with
that particular identi�er did not function correctly (e.g. due to lifted traces on the
measurement PCB), and is thus not included in our measurements.

Note that all metrics are given as fractional values in order to improve comparability
between the metrics of di�erent microcontrollers. Thus, to get the actual result in bits
for a metric, has to multiply by the total number of bits in SRAM for that particular
microcontroller. As a refresher, those amounts are listed in Table B.1.

Table B.1: Number of SRAM bits for each measured microcontroller.

Microcontroller SRAM bits

Atmel ATmega328P 16 384
Microchip PIC16F1825 8 192
Texas Instruments MSP430F5308 49 152
STMicroelectronics STM32F100R8 65 536
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B.1 Hamming weight

Table B.2: Frac. HW for ATmega328P ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 64.52 0.11 64.53 64.45 64.60 64.11 64.85
2 67.68 0.11 67.69 67.60 67.77 67.30 68.00
3 67.21 0.17 67.21 67.14 67.29 59.69 67.52
4 66.62 0.11 66.62 66.55 66.69 66.23 66.97
5 66.14 0.11 66.14 66.06 66.21 65.74 66.44
6 66.96 0.12 66.96 66.88 67.04 66.52 67.34
7 67.42 0.11 67.42 67.34 67.49 67.05 67.76
8 66.84 0.12 66.84 66.75 66.92 66.44 67.18
9 67.29 0.13 67.30 67.21 67.38 66.87 67.66

10 67.10 0.11 67.10 67.02 67.18 66.74 67.45
11 65.33 0.11 65.34 65.26 65.41 64.94 65.75
12 64.44 0.12 64.45 64.37 64.53 64.06 64.81
13 66.70 0.12 66.71 66.61 66.79 66.30 67.06
14 67.29 0.12 67.29 67.21 67.37 66.90 67.63
15 68.42 0.12 68.43 68.34 68.51 67.93 68.77
16 68.60 0.12 68.60 68.51 68.68 68.20 68.94∑

66.79 1.19 67.03 66.50 67.32 64.44 68.60

Table B.3: Frac. HW for ATmega328P ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 70.12 0.08 70.12 70.06 70.17 69.84 70.45
2 74.77 0.09 74.77 74.71 74.83 74.47 75.06
3 73.08 0.08 73.08 73.03 73.14 72.78 73.34
4 73.44 0.09 73.44 73.38 73.50 72.64 73.74
5 73.03 0.09 73.04 72.97 73.09 72.73 73.41
6 72.47 0.10 72.47 72.41 72.53 72.17 72.80

Continued on next page
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Table B.3 - Cont.: Frac. HW for ATmega328P ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

7 72.49 0.08 72.49 72.44 72.55 71.97 72.77
8 73.17 0.09 73.17 73.11 73.23 72.85 73.54
9 74.66 0.09 74.66 74.60 74.73 74.35 74.96

10 73.92 0.09 73.92 73.87 73.98 73.57 74.26
11 70.41 0.08 70.41 70.36 70.47 70.04 70.68
12 70.87 0.09 70.87 70.81 70.92 69.89 71.14
13 73.33 0.09 73.33 73.27 73.39 73.00 73.65
14 74.22 0.09 74.22 74.16 74.27 73.94 74.60
15 75.72 0.09 75.72 75.66 75.78 75.40 76.09
16 76.18 0.09 76.18 76.12 76.23 75.85 76.48∑

73.24 1.74 73.25 72.49 74.33 70.12 76.18

Table B.4: Frac. HW for ATmega328P ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 59.40 0.09 59.40 59.34 59.47 59.07 59.74
2 62.25 0.09 62.25 62.19 62.31 61.96 62.54
3 61.87 0.09 61.87 61.80 61.93 61.50 62.16
4 60.95 0.09 60.95 60.88 61.01 60.62 61.26
5 60.69 0.10 60.69 60.63 60.75 60.36 61.02
6 61.24 0.10 61.24 61.18 61.30 60.90 61.54
7 61.50 0.09 61.50 61.44 61.57 61.13 61.81
8 60.87 0.10 60.88 60.81 60.94 60.54 61.16
9 61.07 0.09 61.07 61.01 61.13 60.65 61.37

10 61.76 0.10 61.76 61.69 61.82 61.44 62.09
11 59.81 0.10 59.81 59.75 59.88 59.47 60.18
12 58.39 0.10 58.39 58.32 58.45 58.06 58.77
13 60.77 0.09 60.77 60.71 60.83 60.46 61.04

Continued on next page
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Table B.4 - Cont.: Frac. HW for ATmega328P ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

14 61.82 0.09 61.82 61.76 61.88 61.48 62.14
15 62.60 0.09 62.60 62.54 62.66 62.27 62.93
16 62.79 0.09 62.79 62.72 62.85 62.43 63.09∑

61.11 1.17 61.16 60.75 61.83 58.39 62.79

Table B.5: Frac. HW for PIC16F1825 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 47.88 0.33 47.89 47.82 47.95 30.71 48.32
2 45.74 0.44 45.57 45.36 46.18 44.85 46.77
3 50.28 0.09 50.28 50.21 50.34 49.93 50.66
4 50.04 0.10 50.04 49.98 50.11 49.72 50.35
5 51.00 0.10 51.00 50.94 51.06 50.68 51.31
6 50.31 0.10 50.32 50.24 50.38 50.01 50.67
7 48.59 0.10 48.60 48.52 48.66 48.27 48.95
8 49.06 0.10 49.06 48.99 49.12 48.72 49.39
9 51.08 0.09 51.07 51.01 51.15 50.71 51.38

10 51.44 0.09 51.44 51.37 51.50 51.12 51.79
11 49.11 0.10 49.11 49.05 49.17 48.77 49.41
12 49.33 0.11 49.33 49.26 49.40 49.01 49.70
13 51.31 0.09 51.31 51.25 51.38 50.98 51.61
14 51.50 0.10 51.50 51.43 51.56 51.16 51.87
15 49.28 0.09 49.28 49.22 49.34 48.99 49.59
16 49.46 0.09 49.46 49.40 49.52 49.13 49.76∑

49.71 1.52 49.75 49.10 51.02 45.74 51.50
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Table B.6: Frac. HW for PIC16F1825 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 44.03 2.14 44.85 44.75 44.91 37.78 47.57
2 43.96 2.11 44.75 44.65 44.82 37.74 50.04
3 43.27 2.78 44.32 44.23 44.40 35.14 50.15
4 45.82 1.92 46.52 46.44 46.58 40.05 50.05
5 45.08 2.16 45.90 45.81 45.97 38.76 46.28
6 43.18 2.58 44.17 44.08 44.24 35.62 44.52
7 43.56 2.18 44.39 44.30 44.46 37.11 48.54
8 44.86 1.97 45.61 45.52 45.68 39.16 48.68
9 45.31 1.10 45.52 45.45 45.58 38.40 51.03

10 46.09 0.28 46.11 46.05 46.17 43.47 51.73
11 43.58 0.49 43.63 43.57 43.69 38.75 49.68
12 46.50 0.15 46.51 46.45 46.57 45.37 49.15
13 45.62 0.36 45.65 45.58 45.72 42.60 51.61
14 45.96 0.20 45.96 45.89 46.03 45.14 51.81
15 43.89 0.26 43.91 43.82 43.99 42.43 48.99
16 50.29 0.10 50.29 50.26 50.33 50.22 50.37∑

45.06 1.77 44.97 43.81 45.85 43.18 50.29

Table B.7: Frac. HW for PIC16F1825 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 48.29 0.13 48.29 48.21 48.38 47.83 48.76
2 49.80 0.12 49.81 49.72 49.88 49.43 50.20
3 50.14 0.11 50.15 50.06 50.22 49.81 50.49
4 49.81 0.11 49.82 49.74 49.88 49.41 50.18
5 51.33 0.12 51.33 51.25 51.40 50.94 51.69

Continued on next page
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Table B.7 - Cont.: Frac. HW for PIC16F1825 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

6 50.51 0.11 50.51 50.43 50.59 50.16 50.90
7 48.77 0.12 48.77 48.68 48.85 48.35 49.18
8 49.33 0.14 49.33 49.23 49.43 48.89 49.76
9 50.87 0.13 50.87 50.78 50.96 50.49 51.27

10 51.44 0.11 51.44 51.37 51.51 51.11 51.87
11 49.25 0.11 49.24 49.17 49.33 48.84 49.61
12 49.68 0.12 49.68 49.61 49.77 49.26 50.13
13 51.14 0.11 51.14 51.06 51.21 50.73 51.49
14 51.54 0.12 51.54 51.47 51.62 51.12 51.90
15 49.35 0.13 49.35 49.26 49.44 48.94 49.72
16 50.09 0.13 50.07 50.00 50.16 49.68 50.89∑

50.08 0.98 49.95 49.34 50.94 48.29 51.54

Table B.8: Frac. HW for MSP430F5308 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 64.84 0.06 64.84 64.80 64.89 64.61 65.09
2 62.49 0.06 62.49 62.45 62.53 62.27 62.69
3 66.48 0.06 66.48 66.43 66.52 66.25 66.68
4 61.80 0.06 61.80 61.76 61.85 61.58 62.03
5 60.80 0.06 60.80 60.75 60.84 60.60 61.03
6 62.36 0.06 62.36 62.32 62.40 62.11 62.59
7 60.20 0.07 60.19 60.15 60.24 59.92 60.42
8 60.60 0.07 60.60 60.56 60.65 60.36 60.82
9 65.78 0.06 65.79 65.74 65.83 65.54 65.97

10 60.04 0.06 60.04 59.99 60.08 59.81 60.29

Continued on next page
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Table B.8 - Cont.: Frac. HW for MSP430F5308 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

12 65.91 0.06 65.91 65.87 65.95 65.72 66.17
13 61.11 0.06 61.11 61.06 61.15 60.89 61.37
14 65.81 0.06 65.81 65.77 65.86 65.61 66.05
15 63.05 0.39 63.05 63.01 63.10 42.05 63.28
16 65.16 0.06 65.16 65.12 65.21 65.00 65.35∑

63.10 2.35 62.49 60.95 65.47 60.04 66.48

Table B.9: Frac. HW for MSP430F5308 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 63.50 0.32 63.56 63.42 63.65 61.88 73.63
2 60.86 1.00 60.72 60.64 60.81 60.44 77.33
3 65.25 0.32 65.26 65.17 65.32 64.83 75.86
4 60.56 0.48 60.63 60.40 60.95 58.11 62.53
5 59.56 0.44 59.70 59.47 59.81 56.77 61.73
6 60.02 1.37 59.58 59.53 59.75 59.29 74.03
7 58.36 0.65 58.58 58.25 58.74 54.23 60.99
8 58.82 0.61 59.03 58.70 59.18 55.22 61.46
9 67.62 3.09 66.24 65.71 68.18 65.27 79.93

10 57.06 1.62 56.67 56.55 56.81 56.33 73.16
12 64.98 1.22 64.72 64.66 64.79 64.51 79.65
13 58.27 0.83 58.33 57.94 58.55 57.15 70.11
14 65.37 1.14 65.14 65.06 65.26 63.13 79.71
15 61.52 0.47 61.59 61.40 61.69 60.44 70.48
16 64.75 1.61 64.23 64.14 64.60 63.95 79.16∑

61.77 3.23 60.86 59.19 64.87 57.06 67.62
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Table B.10: Frac. HW for MSP430F5308 ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 64.77 0.07 64.77 64.73 64.82 64.54 65.01
2 61.77 0.07 61.77 61.72 61.81 61.54 62.10
3 66.40 0.07 66.40 66.35 66.45 66.09 66.66
4 60.85 0.07 60.85 60.81 60.90 60.63 61.14
5 59.80 0.07 59.80 59.75 59.85 59.55 60.03
6 61.81 0.07 61.81 61.77 61.86 61.56 62.05
7 59.25 0.07 59.25 59.21 59.30 58.96 59.51
8 59.65 0.07 59.65 59.60 59.70 59.43 59.93
9 65.19 0.07 65.19 65.15 65.24 64.95 65.40

10 58.60 0.07 58.60 58.55 58.64 58.36 58.85
12 65.36 0.07 65.36 65.31 65.41 65.11 65.58
13 60.16 0.07 60.16 60.11 60.21 59.90 60.40
14 65.55 0.07 65.55 65.50 65.60 65.31 65.79
15 62.37 0.07 62.37 62.32 62.42 62.10 62.59
16 64.74 0.40 64.75 64.70 64.79 43.37 64.95∑

62.42 2.68 61.81 59.98 64.98 58.60 66.40

Table B.11: Frac. HW for STM32F100R8 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 49.49 0.07 49.49 49.44 49.54 49.23 49.70
6 49.15 0.07 49.15 49.11 49.20 48.90 49.39
8 49.84 0.07 49.84 49.79 49.89 49.59 50.11
9 49.64 0.07 49.64 49.59 49.68 49.41 49.89

10 49.49 0.07 49.49 49.45 49.53 49.22 49.73
11 49.36 0.07 49.36 49.31 49.40 49.10 49.58
12 49.39 0.07 49.39 49.34 49.43 49.16 49.66
13 49.29 0.07 49.29 49.24 49.33 49.01 49.50
14 49.73 0.07 49.73 49.69 49.78 49.50 49.99

Continued on next page
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Table B.11 - Cont.: Frac. HW for STM32F100R8 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

15 49.58 0.07 49.59 49.54 49.63 49.37 49.82
16 49.52 0.07 49.52 49.48 49.57 49.29 49.80∑

49.50 0.20 49.49 49.37 49.61 49.15 49.84

Table B.12: Frac. HW for STM32F100R8 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 49.44 0.06 49.44 49.40 49.49 49.12 49.72
6 49.08 0.06 49.09 49.04 49.13 48.85 49.31
8 49.93 0.06 49.93 49.89 49.98 49.69 50.17
9 49.64 0.06 49.64 49.60 49.69 49.40 49.86

10 49.42 0.06 49.42 49.38 49.46 49.18 49.65
11 49.42 0.06 49.42 49.38 49.46 49.21 49.64
12 49.48 0.06 49.48 49.44 49.53 49.27 49.71
13 49.22 0.06 49.22 49.18 49.26 49.02 49.45
14 49.83 0.06 49.83 49.79 49.88 49.63 50.05
15 49.58 0.06 49.58 49.54 49.63 49.37 49.80
16 49.57 0.06 49.57 49.52 49.61 49.36 49.81∑

49.51 0.25 49.48 49.42 49.61 49.08 49.93

Table B.13: Frac. HW for STM32F100R8 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 49.69 0.07 49.69 49.65 49.74 49.46 49.90
6 49.20 0.07 49.21 49.16 49.25 48.97 49.43
8 49.70 0.07 49.70 49.66 49.75 49.45 49.93
9 49.67 0.07 49.67 49.62 49.72 49.45 49.90

10 49.50 0.07 49.50 49.45 49.55 49.30 49.71

Continued on next page
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Table B.13 - Cont.: Frac. HW for STM32F100R8 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

11 49.34 0.07 49.34 49.30 49.39 49.08 49.58
12 49.33 0.07 49.33 49.28 49.38 49.10 49.64
13 49.29 0.07 49.29 49.24 49.33 49.04 49.53
14 49.67 0.07 49.67 49.62 49.71 49.44 49.91
15 49.72 0.07 49.72 49.68 49.77 49.52 49.92
16 49.65 0.07 49.65 49.60 49.70 49.46 49.89∑

49.52 0.20 49.65 49.34 49.68 49.20 49.72

B.2 Inter-device distance

Table B.14: Frac. inter-device distance for measured microcontrollers.

Microcontroller X s Md Q1 Q3 Xmin Xmax

ATmega328P 44.31 0.63 44.32 43.88 44.78 42.43 46.66
PIC16F1825 21.29 0.93 21.16 20.72 21.75 18.70 24.54
MSP430F5308 46.35 0.84 46.41 45.78 46.99 44.06 48.48
STM32F100R8 47.69 0.25 47.72 47.53 47.87 46.63 48.63

B.3 Intra-device distance

Table B.15: Frac. intra-device distance for ATmega328P ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 2.37 0.10 2.37 2.30 2.44 1.90 2.84
2 2.22 0.10 2.22 2.16 2.29 1.78 2.64
3 2.29 0.10 2.30 2.23 2.36 1.85 2.73
4 2.30 0.10 2.30 2.23 2.36 1.85 2.71

Continued on next page
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Table B.15 - Cont.: Frac. intra-device distance for ATmega328P ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

5 2.30 0.10 2.30 2.24 2.37 1.86 2.72
6 2.34 0.10 2.34 2.27 2.40 1.88 2.76
7 2.31 0.10 2.31 2.24 2.37 1.90 2.75
8 2.33 0.10 2.33 2.26 2.40 1.89 2.79
9 2.29 0.10 2.28 2.22 2.35 1.83 2.76

10 2.25 0.09 2.25 2.19 2.31 1.76 2.75
11 2.46 0.10 2.46 2.39 2.53 2.01 2.97
12 2.57 0.10 2.57 2.50 2.64 2.13 3.05
13 2.28 0.10 2.28 2.21 2.34 1.85 2.70
14 2.16 0.09 2.16 2.09 2.22 1.73 2.58
15 2.18 0.09 2.18 2.12 2.25 1.75 2.64
16 2.26 0.10 2.26 2.19 2.32 1.83 2.68∑

2.31 0.10 2.29 2.26 2.33 2.16 2.57

Table B.16: Frac. intra-device distance for ATmega328P ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 7.46 0.13 7.46 7.37 7.54 6.89 8.04
2 9.82 0.16 9.83 9.72 9.92 9.17 10.47
3 7.97 0.13 7.97 7.89 8.06 7.31 8.67
4 9.52 0.17 9.53 9.41 9.63 7.76 10.16
5 9.24 0.15 9.24 9.14 9.35 8.55 9.94
6 7.96 0.23 7.92 7.80 8.10 7.20 8.96
7 8.41 0.16 8.42 8.31 8.51 6.03 9.02
8 9.67 0.21 9.68 9.53 9.81 8.71 10.59
9 11.54 0.20 11.55 11.41 11.67 10.71 12.35

10 9.32 0.15 9.32 9.22 9.42 8.61 9.92
11 7.00 0.13 7.00 6.91 7.09 6.36 7.56

Continued on next page
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Table B.16 - Cont.: Frac. intra-device distance for ATmega328P ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

12 9.81 0.13 9.80 9.72 9.89 9.23 10.43
13 9.11 0.16 9.11 9.00 9.22 8.37 9.81
14 9.72 0.16 9.71 9.61 9.83 9.11 10.63
15 10.92 0.19 10.93 10.79 11.05 10.13 11.90
16 12.34 0.17 12.35 12.24 12.46 11.52 13.14∑

9.36 1.43 9.42 8.30 9.81 7.00 12.34

Table B.17: Frac. intra-device distance for ATmega328P ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 6.40 0.14 6.40 6.31 6.49 5.77 6.95
2 6.47 0.13 6.47 6.38 6.56 5.85 7.09
3 6.43 0.14 6.43 6.34 6.52 5.71 7.04
4 6.88 0.14 6.88 6.78 6.97 6.13 7.51
5 6.66 0.14 6.66 6.57 6.75 5.94 7.26
6 6.74 0.14 6.74 6.65 6.84 6.10 7.33
7 6.87 0.14 6.87 6.78 6.96 6.27 7.51
8 7.01 0.14 7.01 6.91 7.10 6.36 7.65
9 7.08 0.15 7.09 6.98 7.18 6.38 7.76

10 6.52 0.14 6.52 6.42 6.61 5.91 7.07
11 6.66 0.14 6.67 6.57 6.76 6.02 7.29
12 7.10 0.14 7.10 7.01 7.20 6.40 7.72
13 6.95 0.14 6.95 6.85 7.04 6.39 7.61
14 6.38 0.14 6.38 6.29 6.48 5.78 6.95
15 6.72 0.14 6.72 6.62 6.81 6.07 7.29
16 6.76 0.15 6.76 6.67 6.87 6.16 7.52∑

6.73 0.24 6.73 6.50 6.89 6.38 7.10
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Table B.18: Frac. intra-device distance for PIC16F1825 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 1.63 0.12 1.64 1.55 1.71 1.05 2.20
2 1.95 0.39 1.92 1.59 2.30 0.99 3.20
3 1.49 0.11 1.49 1.42 1.56 0.98 2.04
4 1.53 0.11 1.53 1.45 1.60 0.99 2.03
5 1.55 0.11 1.55 1.48 1.62 1.04 2.08
6 1.56 0.12 1.56 1.48 1.64 1.07 2.11
7 1.58 0.11 1.58 1.50 1.66 1.09 2.21
8 1.75 0.12 1.75 1.66 1.83 1.23 2.32
9 1.39 0.11 1.39 1.32 1.47 0.92 1.93

10 1.44 0.11 1.44 1.37 1.51 0.96 1.97
11 1.49 0.11 1.49 1.42 1.56 0.99 2.00
12 1.76 0.12 1.76 1.69 1.84 1.20 2.38
13 1.50 0.11 1.50 1.42 1.58 0.98 2.01
14 1.45 0.11 1.45 1.38 1.53 0.96 1.94
15 1.39 0.11 1.39 1.32 1.47 0.95 1.97
16 1.44 0.11 1.44 1.37 1.51 0.89 1.92∑

1.56 0.15 1.51 1.45 1.59 1.39 1.95

Table B.19: Frac. intra-device distance for PIC16F1825 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 6.77 1.42 6.27 6.18 6.40 5.64 11.55
2 10.55 1.49 10.18 9.67 10.41 6.27 15.25
3 7.95 2.32 7.13 7.03 7.24 6.51 15.64
4 6.27 1.47 5.75 5.65 5.86 3.03 11.05
5 7.10 1.75 6.48 6.38 6.59 5.85 12.71
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Table B.19 - Cont.: Frac. intra-device distance for PIC16F1825 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

6 8.35 2.26 7.50 7.40 7.62 2.58 15.21
7 7.20 1.64 6.62 6.52 6.74 5.96 12.42
8 6.80 1.46 6.25 6.15 6.38 5.62 11.35
9 7.07 0.90 6.91 6.82 7.00 6.32 13.17

10 6.48 0.26 6.46 6.37 6.54 2.45 8.75
11 6.90 0.28 6.87 6.79 6.96 6.31 10.91
12 5.76 0.16 5.75 5.66 5.85 2.93 6.70
13 7.30 0.25 7.28 7.18 7.36 6.62 9.88
14 6.88 0.19 6.89 6.80 6.97 2.37 7.67
15 7.43 0.23 7.41 7.31 7.53 3.06 8.78
16 3.05 0.10 3.05 2.99 3.11 2.65 3.33∑

6.99 1.50 6.99 6.70 7.34 3.05 10.55

Table B.20: Frac. intra-device distance for PIC16F1825 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 4.18 0.16 4.18 4.07 4.29 3.46 4.92
2 7.90 0.45 8.03 7.47 8.28 6.60 9.05
3 3.32 0.14 3.32 3.22 3.42 2.60 4.04
4 4.12 0.16 4.11 4.00 4.22 3.43 4.85
5 3.73 0.15 3.74 3.64 3.83 3.00 4.54
6 3.96 0.14 3.97 3.87 4.05 3.22 4.79
7 4.16 0.15 4.16 4.07 4.26 3.47 4.88
8 4.61 0.15 4.61 4.50 4.71 3.91 5.36
9 3.76 0.14 3.76 3.66 3.86 3.04 4.43

10 3.48 0.15 3.48 3.38 3.58 2.84 4.18
11 3.72 0.14 3.72 3.63 3.82 3.09 4.40
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Table B.20 - Cont.: Frac. intra-device distance for PIC16F1825 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

12 4.39 0.14 4.38 4.29 4.48 3.69 5.04
13 3.78 0.14 3.77 3.69 3.87 3.15 4.41
14 3.75 0.14 3.75 3.65 3.85 3.13 4.46
15 4.00 0.14 4.00 3.91 4.09 3.31 4.64
16 3.99 0.13 3.99 3.89 4.08 3.35 4.57∑

4.18 1.04 3.98 3.74 4.16 3.32 7.90

Table B.21: Frac. intra-device distance for MSP430F5308 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 4.20 0.08 4.20 4.15 4.25 3.85 4.55
2 4.12 0.08 4.12 4.07 4.17 3.72 4.49
3 4.25 0.08 4.25 4.20 4.30 3.86 4.60
4 4.35 0.08 4.35 4.30 4.40 3.98 4.69
5 4.34 0.08 4.34 4.29 4.40 3.98 4.70
6 4.28 0.08 4.28 4.23 4.33 3.93 4.60
7 4.46 0.08 4.46 4.41 4.51 4.10 4.82
8 4.56 0.08 4.56 4.50 4.61 4.20 4.95
9 4.03 0.07 4.03 3.98 4.08 3.68 4.37

10 4.30 0.08 4.30 4.24 4.35 3.95 4.66
12 4.17 0.07 4.17 4.11 4.22 3.82 4.49
13 4.40 0.08 4.40 4.35 4.45 4.07 4.76
14 4.10 0.08 4.10 4.05 4.15 3.76 4.47
15 4.32 0.08 4.32 4.27 4.38 3.93 4.68
16 4.16 0.08 4.16 4.11 4.21 3.80 4.54∑

4.27 0.14 4.28 4.16 4.34 4.03 4.56
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Table B.22: Frac. intra-device distance for MSP430F5308 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 7.55 0.91 7.41 7.30 7.59 6.88 27.25
2 9.01 1.94 8.34 8.09 9.04 7.54 29.83
3 7.25 0.38 7.17 7.08 7.31 6.66 14.61
4 7.45 0.55 7.36 7.26 7.50 5.86 17.66
5 7.64 0.76 7.48 7.38 7.64 6.96 16.68
6 10.89 1.98 10.23 9.64 11.42 8.89 25.35
7 8.12 0.89 7.90 7.78 8.14 6.20 22.42
8 8.20 0.94 7.99 7.86 8.22 7.40 20.37
9 11.32 4.12 9.56 8.57 12.54 7.75 30.42

10 11.65 2.84 10.58 9.92 12.20 9.13 32.60
12 8.49 2.11 7.83 7.62 8.37 7.17 26.76
13 9.01 1.75 8.40 8.15 9.09 6.14 27.05
14 8.33 1.39 7.88 7.67 8.34 6.93 22.51
15 7.81 1.13 7.56 7.44 7.78 5.96 36.49
16 9.00 1.69 8.39 8.02 9.17 7.48 23.00∑

8.78 1.42 8.33 7.73 9.01 7.25 11.65

Table B.23: Frac. intra-device distance for MSP430F5308 ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

1 6.47 0.09 6.47 6.41 6.54 6.05 7.07
2 6.20 0.09 6.20 6.14 6.26 5.82 6.63
3 6.39 0.09 6.40 6.33 6.45 6.00 6.82
4 6.78 0.09 6.78 6.72 6.84 6.37 7.22
5 6.75 0.09 6.75 6.69 6.81 6.26 7.21
6 6.35 0.09 6.35 6.29 6.41 5.91 6.74
7 6.85 0.09 6.85 6.79 6.91 6.41 7.29
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Table B.23 - Cont.: Frac. intra-device distance for MSP430F5308 ICs at 90 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

8 6.92 0.09 6.92 6.86 6.98 6.48 7.35
9 6.22 0.09 6.22 6.16 6.27 5.82 6.68

10 6.70 0.09 6.70 6.64 6.76 6.30 7.10
12 6.28 0.09 6.28 6.22 6.34 5.83 6.74
13 6.67 0.09 6.67 6.60 6.73 6.23 7.14
14 6.14 0.09 6.14 6.08 6.20 5.68 6.59
15 6.54 0.60 6.52 6.46 6.58 6.07 25.41
16 6.11 0.09 6.11 6.05 6.17 5.74 6.53∑

6.49 0.27 6.47 6.25 6.73 6.11 6.92

Table B.24: Frac. intra-device distance for STM32F100R8 ICs at 20 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 5.46 0.08 5.46 5.41 5.51 5.15 5.79
6 5.50 0.07 5.50 5.45 5.55 5.15 5.82
8 5.61 0.08 5.61 5.56 5.66 5.28 5.99
9 5.63 0.08 5.62 5.57 5.68 5.24 5.99

10 5.50 0.08 5.50 5.45 5.55 5.17 5.84
11 5.47 0.08 5.47 5.42 5.53 5.07 5.80
12 5.40 0.07 5.41 5.35 5.45 5.07 5.76
13 5.58 0.08 5.58 5.53 5.63 5.21 5.97
14 5.34 0.07 5.34 5.30 5.39 4.98 5.72
15 5.49 0.08 5.49 5.44 5.54 5.15 5.81
16 5.67 0.08 5.66 5.61 5.72 5.30 6.04∑

5.51 0.10 5.50 5.47 5.59 5.34 5.67
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Table B.25: Frac. intra-device distance for STM32F100R8 ICs at −30 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 7.98 0.08 7.98 7.92 8.03 7.60 8.35
6 7.86 0.08 7.86 7.81 7.91 7.44 8.24
8 7.86 0.08 7.86 7.81 7.92 7.48 8.23
9 7.83 0.08 7.83 7.78 7.89 7.44 8.25

10 7.79 0.08 7.79 7.74 7.85 7.42 8.16
11 7.72 0.08 7.72 7.67 7.78 7.32 8.13
12 7.72 0.08 7.72 7.67 7.78 7.34 8.14
13 7.72 0.08 7.72 7.67 7.77 7.35 8.09
14 7.76 0.08 7.76 7.71 7.82 7.36 8.10
15 7.90 0.08 7.90 7.84 7.95 7.51 8.33
16 8.01 0.08 8.01 7.95 8.06 7.64 8.41∑

7.83 0.10 7.83 7.74 7.88 7.72 8.01

Table B.26: Frac. intra-device distance for STM32F100R8 ICs at 85 ◦C.

ID X s Md Q1 Q3 Xmin Xmax

2 9.97 0.09 9.97 9.91 10.03 9.44 10.38
6 10.10 0.09 10.10 10.04 10.16 9.62 10.51
8 10.10 0.09 10.10 10.04 10.16 9.47 10.52
9 9.99 0.09 9.99 9.93 10.05 9.46 10.42

10 9.97 0.09 9.97 9.92 10.03 9.20 10.40
11 10.08 0.09 10.08 10.02 10.14 9.44 10.50
12 9.97 0.09 9.98 9.92 10.03 9.35 10.40
13 10.03 0.09 10.03 9.97 10.09 9.36 10.47
14 9.82 0.09 9.82 9.76 9.88 9.22 10.24
15 9.92 0.09 9.92 9.86 9.98 9.14 10.38
16 10.56 0.09 10.56 10.50 10.62 9.85 10.99∑

10.05 0.19 9.99 9.97 10.09 9.82 10.56
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B.4 Intra-device min-entropy

Table B.27: Frac. intra-device min-entropy for ATmega328P.

Temp. [◦C] X s Md Q1 Q3 Xmin Xmax

−30 2.39 0.08 2.38 2.35 2.43 2.25 2.58
20 2.81 0.12 2.80 2.76 2.84 2.65 3.15
90 3.44 0.13 3.45 3.35 3.53 3.17 3.63

Table B.28: Frac. intra-device min-entropy for PIC16F1825.

Temp. [◦C] X s Md Q1 Q3 Xmin Xmax

−30 2.00 0.57 2.20 1.47 2.48 1.23 2.82
20 1.92 0.22 1.87 1.77 1.97 1.69 2.52
85 2.34 0.14 2.36 2.21 2.40 2.14 2.69

Table B.29: Frac. intra-device min-entropy for MSP430F5308.

Temp. [◦C] X s Md Q1 Q3 Xmin Xmax

−30 5.49 0.85 5.23 4.89 5.57 4.63 7.71
20 5.22 0.17 5.22 5.10 5.33 4.95 5.55
90 6.22 0.25 6.26 5.98 6.38 5.87 6.66

Table B.30: Frac. intra-device min-entropy for STM32F100R8.

Temp. [◦C] X s Md Q1 Q3 Xmin Xmax

−30 5.45 0.08 5.47 5.40 5.50 5.29 5.57
20 6.75 0.12 6.73 6.70 6.85 6.55 6.91
85 6.62 0.16 6.60 6.52 6.74 6.31 6.86
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