
Optimization of CHR Propagation Rules

Peter Van Weert?

Department of Computer Science, K.U.Leuven, Belgium
Peter.VanWeert@cs.kuleuven.be

Abstract. Constraint Handling Rules (CHR) is an elegant, high-level
programming language based on multi-headed, forward chaining rules.
To ensure CHR propagation rules are applied at most once with the
same combination of constraints, CHR implementations maintain a so-
called propagation history. The performance impact of this history can be
significant. We introduce several optimizations that, for the majority of
CHR rules, eliminate this overhead. We formally prove their correctness,
and evaluate their implementation in two state-of-the-art CHR systems.

1 Introduction

Constraint Handling Rules (CHR) [1, 2] is a high-level committed-choice CLP
language, based on multi-headed, guarded multiset rewrite rules. Originally de-
signed for the declarative specification of constraint solvers, it is increasingly used
for general purposes, in a wide range of applications. Efficient implementations
exist for several host languages, including Prolog [3], Haskell, and Java [4].

An important, distinguishing feature of CHR are propagation rules. Unlike
most rewrite rules, propagation rules do not remove the constraints matched by
their head. To avoid trivial non-termination, each CHR rule is therefore applied
at most once with the same combination of constraints. This requirement stems
from the formal study of properties such as termination and confluence [1], and
is reflected in most current CHR implementations.

To prevent reapplication, a CHR runtime system maintains a so-called prop-
agation history, containing a tuple for each constraint combination that fired a
rule. Efficiently implementing a propagation history is challenging. Even with
the implementation techniques proposed in e.g. [5–7], maintaining a propaga-
tion history remains expensive. Our empirical observations reveal that the his-
tory often has a significant impact on both space and time performance. Existing
literature on CHR compilation nevertheless pays only scant attention to history-
related optimizations. This paper resolves this discrepancy by introducing several
novel approaches to resolve history-related performance issues. We show that,
for almost all CHR rules, the propagation history can be eliminated completely.
We either use innovative, alternate techniques to prevent rule reapplication, or
prove that reapplication has no observable effect. Experimental results confirm
the relevance and effectiveness of our optimizations.
? Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).

Overview Section 3 discusses non-reactive CHR rules—rules that are not re-
considered when built-in constraints are added—and shows that their history
can always be eliminated without affecting the program’s operational seman-
tics. More precisely, we prove that reapplication of non-reactive rules is either
impossible, or that it can be prevented using a novel, more efficient technique.

Section 4 introduces the notion of idempotence. We prove that reapplying
idempotent rules has no observable effect, and thus that their history can be
eliminated as well, even if the rule is reactive. Together, the optimizations of
Sections 3 and 4 cover the majority of the rules found in existing CHR programs.

We implemented the proposed optimizations in two state-of-the-art CHR im-
plementations. Section 5 reports on the significant performance gains obtained.
Section 6, finally, reviews some related work and concludes.

For self-containedness, we first briefly review CHR’s syntax and operational
semantics in Section 2. Gentler introductions are found for instance in [1, 5, 6].

2 Preliminaries

2.1 CHR Syntax

CHR is embedded in a host language H. A constraint type c/n is denoted by
a functor/arity pair; constraints c(x1, . . . , xn) are atoms constructed from these
symbols. Their arguments xi are instances of data types offered by H. Many
CHR systems support type and mode declarations for constraint arguments.

There are two classes of constraints: built-in constraints, solved by an under-
lying constraint solver of the host language H, and CHR constraints, handled by
a CHR program. A CHR program P, also called a CHR handler, is a sequence
of CHR rules. The generic syntactic form of a CHR rule is:

ρ @ Hk \ Hr ⇔ G |B

The rule’s unique name ρ is optional; if omitted a name is assigned implicitly.
The head consists of two conjunctions of CHR constraints, Hk and Hr. Their
conjuncts are called occurrences (kept and removed occurrences resp.). If Hk is
empty, the rule is a simplification rule. If Hr is empty, it is a propagation rule, and
‘⇒’ is used instead of ‘⇔’. If both are non-empty, the rule is a simpagation rule.
The guard G is a conjunction of built-in constraints, the body B a conjunction
of CHR and built-in constraints. A trivial guard ‘true | ’ may be omitted.

Example 1. Fig. 1 shows a classic CHR handler, called leq. It defines a sin-
gle CHR constraint, a less-than-or-equal constraint, using four CHR rules. All
three kinds of rules are present. All constraint arguments are logical variables.

reflexivity @ leq(X, X) ⇔ true.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. leq, a CHR program for the less-than-or-equal constraint.

The handler uses a built-in equality constraint =/2 (e.g. Prolog’s built-in uni-
fication). The first two rules remove redundant constraints. The antisymmetry

rule replaces the CHR constraints matched by its head with a built-in equality
constraint. The transitivity propagation rule adds implied CHR constraints.

Head Normal Form In the Head Normal Form of a CHR program P, de-
noted HNF(P), variables occur at most once in a rule’s head. For instance in
HNF(leq), the normalized form of the transitivity rule from Fig. 1 is:

transitivity @ leq(X, Y), leq(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

2.2 CHR’s Refined Operational Semantics

The behavior of most current CHR implementations is captured formally by the
refined operational semantics [8], commonly denoted as ωr. The ωr semantics
is formulated as a state transition system, in which transition rules define the
relation between subsequent execution states. The version presented here follows
[5, 6], which is a slight refinement of the original specification [8].

Notation Sets, multisets and sequences (ordered multisets) are defined as usual.
We use S[i] to denote the i’th element of a sequence S, ++ for sequence con-
catenation, and [e|S] to denote [e]++S. The disjoint union of sets is defined as:
∀X,Y, Z : X = Y tZ ↔ X = Y ∪Z∧Y ∩Z = ∅. For a logical expression X and a
set V of variables, vars(X) denotes the set of free variables, and constraint pro-
jection is defined as πV (X)↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X) \ V .

Execution States An execution state of ωr is a tuple 〈A,S,B,T〉n. The role of
the execution stack A is explained below. The ωr semantics is multiset-based. To
distinguish between otherwise identical constraints, the CHR constraint store S
is a set of identified CHR constraints, denoted c#i, where each CHR constraint
c is associated with a unique integer number i, called a constraint identifier. The
projection operators chr(c#i) = c and id(c#i) = i are extended to sequences
and sets in the obvious manner. The integer n represents the next available
constraint identifier. The built-in constraint store B is a conjunction containing
all built-in constraints passed to the built-in solver. Their meaning is determined
by the built-in constraint theory DH (see e.g. [6] for a rigorous definition of DH).
The propagation history T, finally, is a set of tuples, each recording a sequence
of identifiers of CHR constraints that fired a rule, and the name of that rule.

Transition Rules Fig. 2 lists the transition rules of ωr. Execution proceeds by
exhaustively applying these transitions, starting from an initial execution state
〈Q, ∅, true, ∅〉1. The constraint sequence Q is called the initial query Q.

CHR constraints are assigned unique identifiers and added to S in Activate
transitions. The execution stack A is a sequence used to treat constraints as
procedure calls. The top-most element of A is called the active constraint. When
active, a CHR constraint performs a search for applicable rules. The ωr seman-
tics specifies that occurrences in a handler are tried in a top-down, right-to-left
order. To realize this order in ωr, identified constraints on the execution stack

1. Solve 〈[b|A], S,B,T〉n �P 〈S++A, S, b ∧ B,T〉n if b is a built-in constraint. For the
set of reactivated constraints S ⊆ S, the following bounds hold: lower bound: ∀H ⊆ S :
(∃K,R : H = K++R∧∃ρ ∈ P : ¬appl(ρ,K,R,B)∧appl(ρ,K,R, b∧B))→ (S∩H 6= ∅)
and upper bound: ∀c ∈ S : vars(c) 6⊂ fixed(B).

2. Activate 〈[c|A], S,B,T〉n �P 〈[c#n : 1|A], {c#n} t S,B,T〉n+1 if c is a CHR con-
straint (which has not yet been active or stored in S).

3. Reactivate 〈[c#i|A], S,B,T〉n �P 〈[c#i : 1|A], S,B,T〉n if c is a CHR constraint
(re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i : j|A], S,B,T〉n �P 〈B ++ A,K t S, θ ∧ B,T′〉n with S = {c#i} t
K tR1 tR2 t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching
substitution such that apply(ρ,K,R1 ++[c#i]++R2,B, θ) = B.

Let t = (ρ, id(K++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.

5. Propagate 〈[c#i : j|A], S,B,T〉n �P 〈B ++ [c#i : j|A], S \ R, θ ∧ B,T′〉n with S =
{c#i} tK1 tK2 t R t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a
matching substitution such that apply(ρ,K1 ++[c#i]++K2, R,B, θ) = B.

Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.

6. Drop 〈[c#i :j|A], S,B,T〉n �P 〈A, S,B,T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i :j|A], S,B,T〉n �P 〈[c#i :j+1|A], S,B,T〉n if the current state cannot
fire any other transition.

Fig. 2. The transition rules of the refined operational semantics ωr.

are occurrenced. If an occurrenced identified CHR constraint c#i : j is active,
only matches with the j’th occurrence of c’s constraint type are considered. In-
terleaving a sequence of Default transitions, all applicable rules are thus fired in
Propagate and Simplify transitions. A rule is applicable if the store contains
matching partner constraints for all remaining occurrences in its head. Formally:

Definition 1. Given a conjunction of built-in constraints B, a rule ρ is applica-
ble with sequences of identified CHR constraints K and R, denoted appl(ρ,K,R,B),
iff a matching substitution θ exists for which apply(ρ,K,R,B, θ) is defined. The
latter partial function is defined as apply(ρ,K,R,B, θ) = B iff K ∩ R = ∅ and,
renamed apart, ρ is of form “ρ @ Hk \ Hr ⇔ G |B” (Hk or Hr may be empty)
with chr(K) = θ(Hk), chr(R) = θ(Hr), and DH |= B→ πvars(B)(θ ∧G).

If the top-most element of A is a built-in constraint, this constraint is passed
to the built-in solver in a Solve transition. As this may affect the entailment of
guards, all CHR constraints for which additional rules might have become appli-
cable have to be put back on the execution stack. These then cause Reactivate
transitions to reinitiate searches for applicable rules. Constraints with fixed ar-
guments are not reactivated, as no additional guards can become entailed.

Definition 2. A variable v is fixed by constraint conjunction B, or v ∈ fixed(B),
iff DH |= ∀θ((π{v}(B)∧π{θ(v)}(θ(B)))→ v = θ(v)) for any variable renaming θ.

When a rule fires, its body is executed. By putting the body on the activation
stack, the different conjuncts of the body are activated (for CHR constraints) or

:- chr constraint up to(+int), fib(+int,+int).

up to(U) ⇒ fib(0,1), fib(1,1).

up to(U), fib(N - 1,M1), fib(N,M2) ⇒ N < U | fib(N + 1,M1 + M2).

Fig. 3. This handler, referred to as fibbo, performs a bottom-up computation of all
Fibonacci numbers up to a given number. All constraint arguments are fixed integers.

solved (for built-in constraints) in a left-to-right order. Control only returns to
the original active constraint after the body is completely executed.

Derivations For a CHR operational semantics ω, an ω-derivation D is a (possibly
infinite) sequence of ωr states, with D[1] an initial execution state for some query
Q, and D[i]�PD[i+ 1] valid ω transitions. We use the notational abbreviation
σ1�?

P σn to denote a finite derivation [σ1, . . . , σn].

3 Non-reactive Propagation Rules

Section 3.1 introduces non-reactive CHR rules, rules that are never matched by
a reactivated constraint, and illustrates that a substantial portion of CHR rules
is non-reactive. In Section 3.2, we prove that the history of certain non-reactive
propagation rules can be eliminated, as CHR’s operational semantics ensures
these rules are never matched by the same constraint combination. For the re-
maining non-reactive rules, we introduce an innovative, more efficient technique
to prevent rule reapplication in Section 3.3, and prove its soundness.

3.1 Introduction: From Fixed to Non-reactive CHR

Non-reactive CHR constraints are never reactivated when built-in constraints
are added. Formally:

Definition 3. A CHR constraint type c/n is non-reactive in a program P under
a refined operational semantics ω?r (ωr or any of its refinements: see further) iff
for any Solve transitions of the form 〈[b|A],S,B,T〉n�P 〈S++ A,S, b ∧ B,T〉n
in any ω?r -derivation D the set of reactivated constraints S ⊆ S does not contain
constraints of type c/n. A rule ρ ∈ P is non-reactive iff all constraint types that
occur in its head are non-reactive in P.

The simplest instances are so-called fixed constraints. A CHR constraint type
c/n is fixed iff vars(c) ⊆ fixed(∅) (see Definition 2) for all constraints c of this
type. Clearly, if all constraint arguments are fixed, no additional rule becomes
applicable when adding built-in constraints. Which CHR constraints are fixed is
derived from their mode declarations, or using static groundness analysis [9].

Example 2. The fibbo handler depicted in Fig. 3, performs a bottom-up com-
putation of all Fibonacci numbers up to a given number. The constraint decla-
rations1 specify that all arguments are fixed instances of the host language’s int
type (the ‘+’ mode declaration indicates a constraint’s argument is fixed).
1 The syntax is inspired by that of the K.U.Leuven CHR system [3, 6].

:- chr constraint fib(+int,?int).

memoization @ fib(N,M1) \ fib(N,M2) ⇔ M1 = M2.

base_case @ fib(N,M) ⇒ N ≤ 1 | M = 1.

recursion @ fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

Fig. 4. A CHR handler that computes Fibonacci numbers using a top-down computa-
tion strategy with memoization.

Under ωr, a CHR constraint type is non-reactive iff it is fixed. The following
example though shows why the class of non-reactive constraints should be larger:

Example 3. Fig. 4 contains an alternative Fibonacci handler, this time using a
top-down computation strategy with memoization. The fib/2 constraint is not
fixed, and is typically called with a free (logical) variable as second argument—
hence also the ‘?’ mode declaration. Reactivating fib/2 constraints is neverthe-
less pointless, as there are no guards constraining its second argument. Addi-
tional built-in constraints therefore never result in additional applicable rules.

All theoretical results in this section apply to non-reactive rules only. Under
ωr, however, constraints such as fib/2 are not non-reactive. As using unbound,
unguarded arguments to retrieve results is very common in CHR, a minor re-
finement ωr is required to increase the practical relevance of our results.

In general, CHR constraints should only be reactivated if extra built-in con-
straints may cause more guards to become entailed. We therefore reintroduce
the concept of anti-monotonicity [7, 10]:

Definition 4. A conjunction of built-in constraints B is anti-monotone in a set
of variables V iff ∀B1, B2((πvars(B)\V (B1 ∧B2)↔ πvars(B)\V (B1))

→ ((DH 6|= B1 → B)→ (DH 6|= B1 ∧B2 → B)))
Definition 5. A CHR program P is anti-monotone in the i’th argument of a
CHR constraint type c/n, if and only if for every occurrence c(x1, . . . , xi, . . . , xn)
in HNF(P), the guard of the corresponding rule is anti-monotone in {xi}.

Any CHR program is anti-monotone in both fixed and unguarded constraint
arguments. Moreover, several typical built-ins are anti-monotone in their ar-
guments. In Prolog, for instance, var(X) is anti-monotone in {X}. Using anti-
monotonicity, we now define ω′r, a slight refinement of ωr2:

Definition 6. Let delay varsP(c) denote the set of variables in which P is not
anti-monotone that occur in an (identified) CHR constraint c. Then ω′r is ob-
tained from ωr by replacing the upper bound on the set of reactivated constraints
S in its Solve transition with “ ∀c ∈ S : delay varsP(c) 6⊂ fixed(B)”.

Most rules in general-purpose CHR programs are non-reactive under ω′r. Sev-
eral CHR systems, including the K.U.Leuven CHR and JCHR systems [3, 4], im-
plement ω′r. Doing so, may already improve performance considerably (see [10]).
In the following two subsections, we prove that for non-reactive CHR rules the
expensive maintenance of a propagation history can always be avoided.
2 We refer to [7, Appendix A] for a formal proof that ω′r is indeed an instance of ωr.

:- chr constraint account(+client id, +float), sum(+client id, ?float).
:- chr constraint gen(+client id), sum(+float), get(?float).

sum balances @ sum(C, Sum) ⇔ gen(C), get(Sum).

generate @ gen(C), account(C,B) ⇒ sum(B).

simplify @ sum(B1), sum(B2) ⇔ sum(B1 + B2).

retrieve @ get(Q), gen(), sum(Sum) ⇔ Q = Sum.

Fig. 5. CHR rules computing the sum of the account balances of a given client. These
rules may be part of some larger CHR handler modeling a banking application.

3.2 Propagation History Elimination

Because non-reactive CHR constraints are only active once, non-reactive propa-
gation rules often do not require a history:

Example 4. The sum/2 constraint in Fig. 5 computes the sum of a client’s ac-
count balances using a common CHR programming idiom to compute aggregates:
a (typically non-reactive) propagation rule generates a number of constraints,
from which, after simplification to a single constraint, the result can be retrieved.

When the active gen/1 constraint considers the generate rule, it iterates
over candidate account/2 partner constraints. Assuming this iteration does not
contain duplicates (a property formalized shortly in Definition 8), the generate

rule never fires with the same constraint combination under ωr, even if no prop-
agation history is maintained. Indeed, the generate rule only adds sum/1 con-
straints, which, as there is no get/1 constraint yet in the store (the body of the
sum balances rule is executed from left to right), only fire the simplify rule.

The history, however, is not superfluous for all non-reactive CHR rules, as
shown by the following example:

Example 5. Reconsider the fibbo handler of Fig. 3. If an up to(U) constraint is
told, the first rule propagates two fib/2 constraints. After this, the second rule
propagates all required fib/2 constraints, each time with a fib/2 constraint
as the active constraint. Next, control returns to the up to(U) constraint, and
advances to its second occurrence. Some mechanism is then required to prevent
the second (non-reactive) propagation rule to add erroneous fib/2 constraints.

So, non-reactive propagation rules can match the same constraint combi-
nation more than once. This occurs if one or more partner constraints for an
active constraint in rule ρ were added by firing ρ or some earlier rule, whilst the
same constraint was already active. We say these partner constraints observe the
corresponding occurrence of the active constraint in ρ (cf. also [9]). Formally:

Definition 7. Let the k’th occurrence of a rule ρ’s head be the j’th occurrence
of constraint type c/n. Then this occurrence is unobserved under a refined oper-
ational semantics ω?r iff for all Activate or Default transitions of the form3:

〈A0,S,B,T〉 �P 〈[c#i :j|A],S,B,T〉
3 We use ‘ ’ to denote that we are not interested in the identifier counter.

(A0[1] = c#i or A0[1] = c#i : j − 1) the following holds: ∀(ρ, I) ∈ T : I[k] 6= i,
and similarly for all transition sequences starting with a Propagate transition

〈A,S,B,T〉 �P 〈B++A,S′,B′,T′〉 �?
P 〈A,S′′,B′′,T′′〉

with A[1] = c#i :j, ∀(ρ, I) ∈ T′′\T′ : I[k] 6= i.

Let ω†r denote the semantics obtained from ω′r by adding the following condi-
tion to its Propagate and Simplification transitions: “ If the j’th occurrence
of c is unobserved under ω′r, then T′ = T ”. Also, to prevent trivial reapplica-
tion in a consecutive sequence of Propagate transitions (see e.g. Example 4),
propagation in ω†r is defined to be duplicate-free:

Definition 8 (Duplicate-free Propagation). Propagation in a refined op-
erational semantics ω?r is duplicate-free iff for all ω?r -derivations D of a CHR
program P where the j’th occurrence of c is kept, the following holds:

if

σ1�P σ2�?
P σ

′
1�P σ

′
2 is part of D

σ1 = 〈[c#i :j|A],S, . . .〉 and σ′1 = 〈[c#i :j|A],S′, . . .〉
σ1�P σ2 is a Propagate transition applied with constraints H ⊆ S
σ′1�P σ

′
2 is a Propagate transition applied with constraints H ′ ⊆ S′

between σ2 and σ′1 no Default transition occurs of the form
σ2�?

P 〈[c#i :j|A], . . .〉 �P 〈[c#i :j + 1|A], . . .〉 �?
P σ

′
1

then H 6= H ′.

The following theorem establishes the equivalence of ω†r and ω′r, thus proving
the soundness of eliminating the history of unobserved CHR rules:

Theorem 1. Define the mapping function α† as follows:
α†(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is not unobserved}〉n

If D is an ω′r derivation, then α†(D) is an ω†r derivation. Conversely, if D is an
ω†r derivation, then there exists an ω′r derivation D′ such that α†(D) = D′.
Proof. See [11]. �

Implementation The main difficulty in the implementation of this optimiza-
tion is deriving that a rule is unobserved (enforcing duplicate-free propagation is
typically straightforward, as shown in Section 3.3). The abstract interpretation-
based late storage analysis of [9], which derives a similar observation property,
can be adapted for this purpose. The details are beyond the scope of this paper.

3.3 Optimized Reapplication Avoidance

Non-reactive CHR rules that are not unobserved, such as the second rule in the
fibbo handler of Example 5, do require some mechanism to prevent reapplica-
tion. Moreover, even if a rule is unobserved, this does not mean the compiler’s
analysis is capable of deriving it. In this section we therefore present a novel,
very efficient technique that prevents the reapplication of any non-reactive prop-
agation rule without maintaining a costly propagation history.

The central observation is that, when a non-reactive rule is applied, the active
constraint is always more recent than its partner constraints:

Lemma 1. Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive rule,
and D an arbitrary ω′r derivation with this program. Then for each Simplify or
Propagate transition in D of the form

〈[c#i :j|A],S,B,T〉n�P 〈A′,S′,B′,T t {(ρ, I1 ++[i]++I2)}〉n (1)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.
Proof. Assume i′ = max(I1tI2) with i′ ≥ i. By Definition 1 of rule applicability,
i′ 6= i, and ∃c′#i′ ∈ S. This c′#i′ partner constraint must have been stored in an
Activate transition. Since i′ = max(I1t{i}tI2), in D, this transition came after
the Activate transitions of all other partners, including c#i. In other words, all
constraints in the matching combination of transition (1) were stored prior to
the activation of c′#i′. Also, in (1), c#i is back on top of the activation stack.
Because c is non-reactive, and thus never put back on top by a Reactivate
transition, the later activated c′#i′ must have been removed from the stack
in a Drop transition. This implies that all applicable rules matching c′ must
have fired. As all required constraints were stored (see earlier), this includes the
application of ρ in (1). By contradiction, our assumption is false, and i′ < i. �

Let ω‡r denote the semantics obtained from ω′r by replacing the propagation
history condition in its Simplify and Propagate transitions with the following:

If ρ is non-reactive, then ∀i′ ∈ id(H1∪H2) : i′ < i and T′ = T. Otherwise,
let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

Propagation in ω‡r is again duplicate-free, as defined by Definition 8. Similarly
to Theorem 1, the following theorem proves that ω′r and ω‡r are equivalent:

Theorem 2. Define the mapping function α‡ as follows:
α‡(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n

If D is an ω′r derivation, then α‡(D) is an ω‡r derivation. Conversely, if D is an
ω‡r derivation, then there exists an ω′r derivation D′ such that α‡(D) = D′.
Proof. See [7] or [11]. �

Implementation The standard CHR compilation scheme (see e.g. [5, 6]) gen-
erates for each occurrence a nested iteration that looks for matching partner
constraints for the active constraint. If a matching combination is found, and
the active constraint is not removed, the constraint iterators are suspended and
the rule’s body is executed. Afterwards, the nested iteration is simply resumed.

Example 6. Fig. 6(a) shows the generated code for the second occurrence of the
up to/1 constraint in Fig. 3. For the query up to(U), the propagation history
for the corresponding rule would require O(U) space. Because all constraints
are non-reactive, however, no propagation history has to be maintained. Simply
comparing constraint identifiers suffices.

If all iterators return candidate partner constraints at most once, propagation
is guaranteed to be duplicate-free (see Definition 8). Most iterators used by CHR
implementations have this property. If not, a temporary history can for instance
be maintained whilst the active constraint is considering an occurrence.

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

foreach fib(N-1,M1)#id1 in ...

if N < U

if id < id1 and id < id2
. . .

(a) Efficient reapplication avoidance
using identifier comparisons

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

if id < id2 and N < U

foreach fib(N-1,M1)#id1 in ...

if id < id1
. . .

(b) After Loop-invariant Code Motion

Fig. 6. Pseudocode for the second occurrence of the up to/1 constraint of Fig. 3.

Loop-invariant Code Motion Most CHR compilers perform so-called Loop-
invariant Code Motion optimization to check guard entailment as soon as possi-
ble (e.g. ‘N < U ’ in Fig. 6(b)). Contrary to a propagation history check, identifier
comparisons enable additional code motion, as illustrated in Fig. 6(b). This may
prune the search space of candidate partner constraints considerably.

Note furthermore that Lemma 1 does not only apply to propagation rules,
but also to simplification and simpagation rules. Whilst maintaining a history
for non-propagation rules is pointless, comparing partner constraint identifiers
in outer loops is not, as they may avoid redundant iterations of nested loops.

4 Idempotence

Constraints in CHR handlers that specify traditional constraint solvers, such as
the leq/2 constraint of Example 1, typically range over unbound variables, and
are thus highly reactive. Without a history, constraint reactivations may cause
reactive propagation rules to fire multiple times with the same combination. For
constraint solvers, however, such additional rule applications typically have no
effect, as they only add redundant constraints that are immediately removed.
For such rules, the propagation history may be eliminated as well.

Example 7. Suppose the reactive transitivity propagation rule of Fig. 1 is
allowed to fire a second time with the same constraint combination matching its
head, thus adding a leq(X,Z) constraint for the second time. If the earlier told
duplicate is still in the store, this redundant leq(X,Z) constraint is immediately
removed by the idempotence rule. Otherwise, the former duplicate must have
been removed by either the reflexivity or the antisymmetry rule. It is easy
to see that in this case X = Z, and thus that the new, redundant leq(X,Z)
constraint is again removed immediately by the reflexivity rule.

We say the leq/2 constraint of the above example is idempotent. With
live(T,S) = {(ρ, I) ∈ T | I ⊆ id(S)}, idempotence is defined formally as:

Definition 9. A CHR constraint type c/n is idempotent in a CHR program P
under a refined semantics ω?r iff for any state σ = 〈[c|A],S,B,T〉n in a ω?r deriva-
tion D with c a CHR constraint, the following holds: if earlier in D a state
〈[c′|A′],S′,B′,T′〉n′ occurs with DH |= B → c = c′, then σ�?

P 〈A,S′′,B′′,T′′〉n′′

with S′′ = S, live(T′′,S) = live(T,S), and DH |= πvars(B)∪vars(D[1])(B′′)↔ B.

In other words, an idempotent constraint c for which a syntactically equal
constraint c′ was told earlier in the same derivation, is removed without mak-
ing any observable state change. Since ‘�?

P’ denotes a finite derivation, telling
duplicate idempotent CHR constraints also does not affect termination.

We do not consider arbitrary, extra-logical host language statements here,
and assume all built-in constraints b are idempotent, that is: ∀b : DH |= b∧b↔ b.
By adding “ If DH |= (B∧ b)↔ B, then S = ∅ ” to the Solve transition of ωr (or
any of its refinements from Section 3), we avoid redundant constraint reactiva-
tions when idempotent built-in constraints are told. This is correct, as Solve’s
upper bound on S already specifies that any matching already possible prior to
b’s addition may be omitted from S. Most CHR systems already implement this
optimization. Denote the resulting semantics ωidemr .

Definition 10. A CHR rule ρ ∈ P is idempotent under ωidemr iff all CHR
constraint types that occur in its body are idempotent in P under ωidemr .

We now prove that an idempotent propagation rule may be fired more than
once with the same combination of constraints, without affecting a program’s
operational semantics. Let ωidem

′

r denote the semantics obtained by adding the
following phrase to the Simplify and Propagate transitions of ωidemr :

If the rule ρ is idempotent, then T’ = T; otherwise, . . . (as before)

Assuming furthermore that propagation for ωidem
′

r is duplicate-free4 in the sense
of Definition 8, the ωidem

′

r semantics is equivalent to ωidemr . More precisely:

Theorem 3. If D′ is an ωidem
′

r derivation, then there exists an ωidemr derivation
D with D[1] = D′[1] such that a monotonic function α can be defined from the
states in D to states in D′ for which

- α(D[1]) = D′[1]
- if α(D[i]) = D′[k] and α(D[j]) = D′[l] with i < j, then k < l
- if α(〈A,S,B,T〉n) = 〈A′,S′,B′,T′〉n′ , then DH |= πvars(B)∪vars(D[1])(B′)↔ B,

A′ = A, S′ = S, and live(T′,S) = live(T,S) \ {(ρ, I) ∈ T | ρ is idempotent}.

Conversely, if D is an ωidemr derivation, then an ωidem
′

r derivation D′ exists with
D′[1] = D[1] for which a function with these same properties can be defined.
Proof Sketch. An ωidem

′

r derivation D′ only differs from the corresponding ωidemr

derivation D when a Propagate transition fires an idempotent propagation rule
ρ using a combination of constraints that fired ρ before. This ωidem

′

r transition
has form σ0 = 〈A,S,B,T〉n �P 〈B ++ A,S,B,T〉n = σ1. Because ρ’s body
B is idempotent, it follows from Definition 9 that the remainder of D′ begins
with σ1�?

P σ
′
0 = 〈A,S,B′,T′〉n, with DH |= πvars(B)∪vars(D[1])(B′) ↔ B, and

live(T′,S) = live(T,S). Because σ′0 is thus essentially equivalent to σ0, we simply
omit states σ1 to σ′0 in the corresponding ωidemr derivation D.

Given above observations it is straightforward to construct the mapping func-
tion α and the required derivations for both directions of the proof. �

4 In this case a finite number of duplicate propagations would also not be a problem.

For multi-headed propagation rules, reapplication is often cheaper than main-
taining and checking a history. The experimental results of Section 5 confirm this.
Of course, reapplying a body can be arbitrarily expensive. To estimate the cost
of reapplication versus the cost of maintaining a history, heuristics can be used.

4.1 Deriving Idempotence

The main challenge lies in automatically deriving that a CHR constraint is idem-
potent. A wide class of idempotent CHR constraints should be covered:

Example 8. Many constraint solvers contain a rule such as:

in(X,L1,U1) \ in(X,L2,U2) ⇔ L2 ≤ L1, U2 ≥ U1 | true.

Here, ‘in(X,L,U)’ denotes that the variable X lies in the interval [L, U]. The in/3
constraint is probably idempotent (it depends on the preceding rules). There
is an important difference though with the leq/2 constraint in Example 7: by
the time the constraint is told for the second time, the earlier told duplicate
may now be replaced with a syntactically different constraint—in this case: a
constraint representing a smaller interval domain.

Theorem 4 provides a sufficiently strong syntactic condition for determining
the idempotence of a CHR constraint. It uses arbitrary preorders on the con-
straint’s arguments. For the three arguments of the in/3 constraint in Example 8
for instance, the preorders =, ≤ and ≥ can be used respectively.

Let bi(B) and chr(B) denote the conjunction of built-in respectively CHR
constraints that occur in a constraint conjunction B. Then:

Theorem 4. A CHR constraint type c/n is idempotent in P under ωidemr if for
preorders C1, . . . ,Cn:

1. There exists a rule of the form “c(y1, . . . , yn) \ c(x1, . . . , xn) ⇔ G | true.”
in HNF(P) with DH |= (x1 C1 y1 ∧ . . . ∧ xn Cn yn)→ G.
Let ρ be the first such rule occurring in the HNF(P) sequence.

2. All rules in HNF(P) prior to ρ that contain an occurrence of c/n have a
trivial body ‘true’, and do not contain any removed occurrences apart from
possibly that c/n occurrence.

Consider a set of n mutually distinct variables V = {x1, . . . , xn}. For all removed
occurrences of c/n in HNF(P) that can be renamed to the form

Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G |B
(Hk, Hr1 , and Hr2 may be empty), such that ¬∃c(y1, . . . , yn) ∈ Hk ∪ chr(B) :
DH |= G ∧ bi(B)→ (x1 C1 y1 ∧ . . . ∧ xn Cn yn), define Φ = πV (G ∧ bi(B)). For
each of these occurrences, either DH |= Φ↔ false, or conditions 3 and 4 hold:

3. There exists a rule in HNF(P) that can be renamed such that it has form
“c(x1, . . . , xn)⇔ G |B”, with bi(B) = B and DH |= Φ→ (G ∧B).
Let ρ′ be the first such rule occurring in the HNF(P) sequence.

SWI JCHR total # n-headed propagation rules
history non-react history non-react non-react+ rules n = 1 n = 2 n = 3 n > 3

fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%) 3 1 - 1 -
fibbo(3000) timeout timeout 542 464 (85%) 153 (28%) 3 1 - 1 -
floyd-warsh(30) 11,631 9,706 (83%) 368 188 (51%) 186 (51%) 21 3 2 1 -
interpol(8) 5,110 1,527 (30%) 43 41 (95%) 37 (86%) 5 - 2 - -
manners(128) 849 561 (66%) 328 322 (98%) 317 (97%) 8 - - 1 -
nsp grnd(12) 547 169 (31%) 10 6 (60%) 5 (50%) 3 1 1 - -
nsp grnd(36) 81,835 10,683 (13%) 1,434 502 (35%) 494 (34%) 3 1 1 - -
sum(1000,100) 6,773 3,488 (51%) 215 135 (63%) N/A 4 - 1 - -
turing(20) 10,372 7,387 (71%) 761 280 (37%) 276 (36%) 11 1 4 1 5
wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%) 44 - 4 - -

Table 1. Benchmark results (in average milliseconds) for non-reactive CHR rules.

4. All rules in HNF(P) prior to ρ′ that contain an occurrence of c/n can be
renamed to “Hk \Hr⇔G |B” with Hk++Hr = H1 ++[c(x1, . . . , xn)]++H2,
such that either

- DH |= Φ→ ¬G; or
- Hr ⊆ [c(x1, . . . , xn)] ∧ (bi(B) = B) ∧ DH |= (Φ ∧G)→ B; or
- ∃c(y1, . . . , yn) ∈ H1 ∪H2 : DH |= (Φ ∧G)→ (x1 C1 y1 ∧ . . . ∧ xn Cn yn).

Proof Sketch. By Definition 9, we have to show that adding a c/n constraint
makes no essential changes to the execution state if a duplicate constraint was
added earlier in the same derivation. The proof considers two cases: either the
duplicate constraint, or a constraint derived from it, is still in the store, or it
has been removed. We show that, if the theorem’s conditions hold, in both these
cases the newly told duplicate is removed, and that it only makes idempotent
state changes before that. The complete, formal proof can be found in [11]. �

5 Evaluation

We implemented the optimizations introduced in this paper in the K.U.Leuven
CHR system [3, 6] for SWI-Prolog, and in the K.U.Leuven JCHR system [4]
for Java, and evaluated them using typical CHR benchmarks and constraint
solvers5. Benchmark timings are given in Tables 1 and 2. The history columns
give the reference timings (in milliseconds) when using a propagation history.

The non-react columns in Table 1 contain the results when the optimiza-
tions of Section 3 are used. For the non-react+ measurements, loop-invariant
code motion was applied to the identifier comparisons (see Section 3.3; currently
only implemented in JCHR6). Only for the sum benchmark the the history was
eliminated using the optimization of Section 3.2 (code motion is of course not ap-
plicable (N/A) in this case). Table 2 shows the results for the idempotence-based
history elimination of Section 4.

Significant performance gains are measured all optimizations. The selected
benchmarks run about two times faster on average, and scale better as well. Even
5 Information on the benchmarks and the platform used is found in [11, Appendix B].
6 In JCHR, after code motion, identifier comparisons are integrated in the constraint

iterators themselves. These iterators moreover exploit the fact that the stored con-
straints are often sorted on their identifiers. This can further improve performance.

SWI JCHR
#

SWI JCHR
#

history idempotence hist. idempot. history idempotence hist. idempot.

interval(21) 22,622 17,611 (78%) 8 5 (62%) 15/27 eq(35) 3,465 1,931 (56%) 47 19 (40%) 1/4
interval(42) timeout timeout 54 28 (52%) 15/27 leq(70) 3,806 1,236 (32%) 85 35 (41%) 1/4
nsp grnd(12) 547 164 (30%) 10 6 (60%) 2/3 nsp(12) 1,454 1,036 (71%) 12 8 (67%) 2/3
nsp grnd(36) 81,835 10,485 (13%) 1,365 496 (36%) 2/3 nsp(36) timeout timeout 1,434 621 (43%) 2/3
timepoint(16) 1,684 1,312 (78%) 404 317 (78%) 2/7 minmax(15) 4,826 3,631 (75%) 133 82 (61%) 6/54

Table 2. Benchmark results (in average milliseconds) for idempotent propagation rules.
The ‘#’ columns give the number of propagation rules over the total number of rules.

though no numbers are shown, it is moreover clear that the space complexity of
the propagation histories has become optimal. Unoptimized, the worst-case space
consumption of a propagation history is linear in the number of rule applications
(cf. Example 6). Using our optimizations, histories consume no space at all. In
extreme cases, this even improves the space complexity of the entire handler.

6 Conclusions

Related Work A preliminary version of this paper covering only Section 3.3
of the present paper appeared in [7]. The present paper completes this earlier
work by introducing propagation history elimination based on unobservedness
and idempotence, and by providing a more extensive experimental evaluation.

Section 3.2 can be seen as an extension and formalization of an optimization
briefly presented in [5]. This ad-hoc optimization was restricted to fixed CHR
constraints, and lacked a formal correctness proof.

Since the propagation history contributes to significant performance issues
when implementing CHR in a tabling environment (see e.g. [12]), [13] proposes
an alternative set-based CHR semantics, and argues that it does not need a
propagation history. Our results, however, show that abandoning CHR’s familiar
multiset-based semantics is not necessary: indeed, our optimizations eliminate
the history-related performance issues whilst preserving the ωr-semantics.

Conclusions Whilst there is a vast research literature on CHR compilation and
optimization, propagation histories never received much attention. Maintaining
a propagation history, however, comes at a considerable runtime cost, both in
time and in space. In this work, we resolved this discrepancy by introducing
several innovative optimization techniques that circumvent the maintenance of
a history for the majority of CHR propagation rules:
• For non-reactive CHR propagation rules, we showed that very cheap con-

straint identifier comparisons can be used. These comparisons can moreover
be moved early in the generated nested iterations, thus pruning the search
space of possible partner constraints. We also formally identified the class of
non-reactive rules for which the history can simply be eliminated.
• Whilst rules in general-purpose CHR programs are mostly non-reactive,

CHR handlers that specify a constraint solver are typically highly reactive.
We therefore introduced the concept of idempotence, and found that most
rules in the latter handlers are idempotent. We showed that if a propagation

rule is idempotent, the rule may safely be applied more than once matching
the same combination of constraints. Interestingly, reapplication is mostly
cheaper than maintaining and checking a history. We also presented a suffi-
cient syntactic condition for the idempotence of a CHR constraint.

We proved the correctness of all our optimizations and analyses in the for-
mal framework of CHR’s refined operational semantics [8], and implemented
them in two state-of-the-art CHR systems [3, 4]. Our experimental results show
significant performance gains for all benchmarks containing propagation rules.

Acknowledgments The author thanks Tom Schrijvers for his invaluable aid
in the implementation of the optimizations in the K.U.Leuven CHR system.
Thanks also to Bart Demoen and the anonymous referees of CHR 2008 and
ICLP 2008 for their useful comments on earlier versions of this paper.

References

1. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1–3) (1998) 95–138

2. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Sub-
mitted to Journal of Theory and Practice of Logic Programming (2008)

3. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: Implementation and
application. In: CHR 2004: Selected Contributions, Ulm, Germany (2004) 8–12

4. Van Weert, P., Schrijvers, T., Demoen, B.: K.U.Leuven JCHR: a user-friendly,
flexible and efficient CHR system for Java. In: CHR 2005: Proc. 2nd Workshop on
Constraint Handling Rules, Sitges, Spain (2005) 47–62

5. Duck, G.J.: Compilation of Constraint Handling Rules. PhD thesis, University of
Melbourne, Australia (December 2005)

6. Schrijvers, T.: Analyses, optimizations and extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Belgium (June 2005)

7. Van Weert, P.: A tale of histories. In: CHR 2008: Proc. 5th Workshop on Constraint
Handling Rules, Hagenberg, Austria (2008) 79–94

8. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined
operational semantics of Constraint Handling Rules. [14] 90–104

9. Schrijvers, T., Stuckey, P.J., Duck, G.J.: Abstract interpretation for Constraint
Handling Rules. In Barahona, P., Felty, A., eds.: PPDP ’05: Proc. 7th Intl. Conf.
Princ. Pract. Declarative Programming, Lisbon, Portugal, ACM (2005) 218–229

10. Schrijvers, T., Demoen, B.: Antimonotony-based delay avoidance for CHR. Tech-
nical Report CW 385, K.U.Leuven, Dept. Computer Science (July 2004)

11. Van Weert, P.: Optimization of CHR propagation rules: Extended report. Technical
Report CW 519, K.U.Leuven, Dept. Computer Science (August 2008)

12. Schrijvers, T., Warren, D.S.: Constraint Handling Rules and tabled execution. [14]
120–136

13. Sarna-Starosta, B., Ramakrishnan, C.: Compiling Constraint Handling Rules for
efficient tabled evaluation. In Hanus, M., ed.: PADL 2007. Volume 4354 of LNCS.,
Nice, France, Springer (January 2007) 170–184

14. Demoen, B., Lifschitz, V., eds.: ICLP 2004. Volume 3132 of LNCS. Springer,
Saint-Malo, France (September 2004)

