
Accepted Manuscript

Title: Crack propagation and fracture toughness of Ti6Al4 V
alloy produced by selective laser melting

Author: V. Cain L. Thijs J. Van Humbeeck B. Van
Hooreweder R. Knutsen

PII: S2214-8604(14)00030-X
DOI: http://dx.doi.org/doi:10.1016/j.addma.2014.12.006
Reference: ADDMA 23

To appear in:

Received date: 25-7-2014
Revised date: 27-11-2014
Accepted date: 12-12-2014

Please cite this article as: Cain V, Thijs L, Van Humbeeck J, Van Hooreweder
B, Knutsen R, Crack propagation and fracture toughness of Ti6Al4<ce:hsp
sp=0̈.25/̈>V alloy produced by selective laser melting, Addit Manuf (2014),
http://dx.doi.org/10.1016/j.addma.2014.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.addma.2014.12.006
http://dx.doi.org/10.1016/j.addma.2014.12.006


Page 1 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1 

Crack propagation and fracture toughness of Ti6Al4V alloy produced 

by selective laser melting 

V Cain
a,b

, L Thijs
c
, J Van Humbeeck

c
, B Van Hooreweder

d
 and R Knutsen

a
 

a
Centre for Materials Engineering, Department of Mechanical Engineering, University 

of Cape Town, South Africa 

b
Department of Mechanical Engineering, Cape Peninsula University of Technology, 

South Africa 

c
Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark 

Arenberg 44, B-3001 Leuven, Belgium  

d 
Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300b, B-3001 

Leuven, Belgium  

Corresponding author; V.Cain 

E-mail: cainv@cput.ac.za 

Ph: +2721 650 3173 

 

Abstract 

 

The fracture toughness (K1c) and fatigue crack growth rate (FCGR) properties of 

selective laser melted (SLM) specimens produced from grade 5 Ti6Al4V powder metal 

has been investigated.  Three specimen orientations relative to the build direction as 

well as two different post-build heat treatments were considered.  Specimens and test 

procedures were designed in accordance with ASTM E399 and ASTM E647 standard.  

The results show that there is a strong influence of post-build processing (heat treated 

versus ‘as built’) as well as specimen orientation on the dynamic behaviour of SLM 
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produced Ti6Al4V. The greatest improvement in properties after heat treatment was 

demonstrated when the fracture plane is perpendicular to the SLM build direction.  This 

behaviour is attributed to the higher anticipated influence of tensile residual stress for 

this orientation. The transformation of the initial rapidly solidified microstructure during 

heat treatment has a smaller beneficial effect on improving mechanical properties. 

 

Keywords: Selective laser melting, Ti6Al4V, fracture toughness, fatigue crack growth 

rate, microstructure 

 

1. Introduction 

 

Selective laser melting is an additive fabrication process in which successive layers of 

powder are selectively melted by the interaction of a high energy density laser beam. 

Molten and re-solidified material forms parts, while non-melted powder remains in 

place to support the structure [1].  This layer-wise production technique offers some 

advantages over conventional manufacturing techniques such as high geometrical 

freedom, short design and manufacturing cycle time and made-to-order components.   

Layer-wise production techniques have evolved rapidly in the last 10 years and SLM 

has changed from a rapid prototyping to an additive manufacturing technique. 

Consequently, the static and dynamic material properties must be sufficient to meet in 

service loading and operational requirements. It is well known that the SLM process is 

characterized by high temperature gradients leading to rapidly solidified, non-

equilibrium microstructures [2]. High localised thermal gradients and very short 

interaction times, which leads to rapid volume changes, causes substantial residual 
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stress development.  Furthermore, the option of changing the process parameters can 

have a strong influence on the microstructure, density and surface quality. As a result, 

the mechanical properties of SLM parts can differ substantially from one another and 

from those produced by conventional techniques. In this respect it is recognised that the 

advantages of SLM can only be realised when the mechanical behaviour of the final 

products is at least able to be matched to conventionally produced components of the 

same material.   

 

In recent years, much research has focused on optimising the SLM process.  Kruth et al. 

[3] concentrated on studying the SLM part and material properties specifications in 

order to improve the quality of the resulting products.  In another study Yasa et al. [4] 

focused on how the mechanical properties obtained with SLM may differ from the ones 

of bulk material.  At present, Ti-alloys can be processed with high repeatability and 

hence low variation in material density and mechanical properties.  Vilaro et al. [5] 

studied the effect of applying specific heat treatments to SLM produced Ti6Al4V in 

order to produce a preferred final microstructure.  Furthermore Thijs et al. [2] 

concentrated on the effects on density that varying scanning parameters and scanning 

strategies could have. Moreover, quasi-static material properties such as tensile strength, 

hardness, and impact toughness have been well characterised [3] and are reported to 

match those of conventional wrought materials.  On the other hand, substantial 

complexities arise when attempting to characterise the dynamic mechanical behaviour 

since crack initiation and propagation is critically sensitive to the interaction between 

fracture path, orientation, microstructure and loading conditions.  In addition, residual 

stresses which arise as a result of the rapid localised temperature fluctuations during the 
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SLM process strongly influence crack initiation and growth. A previous study has 

shown that these residual stresses have detrimental effects on the mechanical behaviour 

of SLM parts [6]. The knowledge of these properties and the underlying failure 

mechanisms remains limited, and consequently there is insufficient confidence in being 

able to predict fatigue life.  Nevertheless, a few studies have reported the potential for 

SLM parts to meet the fatigue life requirements. In a study by Van Hooreweder et al. 

[1], nearly fully dense (>99%) SLM-Ti6Al4V specimens were produced with fracture 

toughness and fatigue crack growth properties similar to those of mill annealed vacuum 

arc remelted (VAR) Ti6Al4V parts. More recently, a study by Leuders et al. [7] 

investigated the influence of two building orientations and three post-build treatments. 

The post-build annealing treatments were performed at 800° and 1050°C (for 2 hours) 

and a hot isostatic pressing (HIP) process was performed at 920°C at a pressure of 1000 

bar for 2 hours.  All specimens were furnace cooled. Although residual porosity was 

noted to assist crack growth, residual stresses and their subsequent elimination proved 

to have a substantial influence on fatigue properties. The post-build annealing 

treatments in the range 800°-1050°C not only relieve residual stress, but also modify the 

as-built rapidly solidified microstructure which comprises of fine acicular martensite 

(’ phase). The latter microstructure is highly directional as a result of the imposed 

solidification mode during the vertical layer by layer build process. The purpose of the 

annealing treatment is to generate the preferred lamellar + equilibrium structure 

which provides a more desirable combination of strength and toughness. However, it is 

important that the annealing treatment does not result in excessive grain growth as was 

reported by Vrancken et al. [8] when heat treating above the  transus temperature and 

Leuders et al. [7] for the annealing treatment at 1050°C. 
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The present work considers different post-SLM processing heat treatment compared to 

those studied by Leuders et al. [7] and introduces a third building orientation in order to 

more comprehensively evaluate the influence of anisotropy on mechanical properties.  

Post-SLM processing heat treatment is directed at reducing residual stress and 

transforming the as-built martensitic microstructure.  In this regard, stress relief heat 

treatment has been performed at 650°C whereas for the annealing heat treatment, 

specimens were soaked at 890°C.  The maximum annealing heat treatment temperature 

does not exceed the -transus temperature as advised in the work of Vrancken et al. [8].  

Furthermore only material with >99% density has been evaluated.  The mechanical 

properties, including tensile, fracture toughness and fatigue crack growth rate 

measurements, were determined for the as-built (AB), stress relieved (SR) and annealed 

(HT) conditions. 

 

2. Materials and Methods 

 

2.1 Materials 

 

Standard tensile and compact-tension (CT) specimens were manufactured from grade 5 

Ti6Al4V spherical powder for the determination of tensile, fracture toughness (K1c) and 

fatigue crack growth rate (FCGR) properties.  The powder particle size ranged between 

15μm and 45μm. Figure 1 designates the bi-directional scanning strategy (x-y plane) 

and the Z-axis building direction that was used to produce all specimens via the SLM 

process. After scanning the perimeter, the first layer is scanned in zigzag formation and 

each scanning direction for the successive layer is rotated by 90°. 
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The full set of tensile specimens and the CT specimens were manufactured respectively 

in one build-platform to avoid potential variances associated with powder quality.  The 

orientation of the CT specimens on the build-platform, as well as their geometry, is 

shown in Figure 2 (a, b).  

 

For the determination of K1c, the thickness of the sample, B is equal to 12.5 mm, whilst 

FCGR specimens have a thickness B equal to 6.25 mm.  Other than this difference in B 

value, specimens have the same geometry.  The crack length is specified as a. The 

dimensions of the test specimens are similar to the ones applied in a previous study by 

Van Hooreweder et al. [1].  The CT specimens in Figure 2(a) are labelled according to 

ASTM E399 standard: axis direction perpendicular to the notch plane followed by the 

axis direction in which the crack is expected to propagate.  Consequently, three different 

specimen geometries arise, namely XZ, ZX and XY.  The XZ and ZX specimens were 

built individually on the platform whereas for the XY specimens a continuous block 

extending in the Z direction was produced from which the individual specimens were 

later sliced by electric discharge machining (EDM).  In all cases the specimens were 

slightly oversized and were machined to final dimensions prior to mechanical testing.  

The crack notch was machined by EDM.  The machined surface roughness (Ra) was 

measured using an optical profilometer and in all cases the Ra values conformed to the 

ASTM E399 and ASTM E647 standards.  The density was measured for all the 

specimens using the Archimedes method which indicated > 99% density in all cases.  

The SLM build approach for the tensile specimens was the same as the CT specimens 

and the two test orientations are indicated in Figure 3. Similar density to the CT 

specimens was recorded. 
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2.2 Heat treatment 

 

In the case where heat treatment was applied to the as-built specimens, two different 

processes were considered.  For the stress relief (SR) treatment, specimens were soaked 

at 650 ˚C for 4 hours.  The annealing treatment was performed at 890 ˚C for 2 hours and 

was based on the work by Vrancken et al. [8].  All heat treatments were carried out in a 

horizontal tube furnace under a protective argon atmosphere and specimens were 

furnace cooled.  Heat treatments were performed prior to final machining. 

 

2.3 Mechanical testing 

 

Tensile testing, fracture toughness (K1c) and FCGR measurements were performed for 

the respective AB, SR and HT conditions and three specimens were evaluated for each 

test variable. Tensile tests were performed according to ASTM E8/E 8M standard.  The 

growth of pre-cracks and the measurement of FCGR was performed on a 160 kN 

Schenk servo-hydraulic machine. For the preparation of pre-cracks, a 7 mm long pre-

crack was developed at the notch root by fully reversed cyclic loading at 7 Hz. The 

crack length was monitored visually using a camera system.  After pre-crack 

development, fracture toughness was measured in tension at a displacement speed of 1 

mm/min until failure of the specimen occurred.  The fracture toughness test conditions 

adhered to the ASTM E399 standard.  Pre-crack lengths were confirmed after fracture 

using a Mitutoyo non-contact precision optical measuring system.   
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Fatigue crack growth rate (FCGR) experiments were carried out according to the ASTM 

E647 standard.  Prior to commencing the FCGR evaluation, a 1mm long pre-crack was 

developed at the notch root by fully reversed cyclic loading at 5 Hz.  The actual FCGR 

was determined using a cyclic load in tension (R = 0.1) with a fixed amplitude ∆P and a 

fixed cycle frequency of 5 Hz. The crack propagation was monitored visually with the 

aid of a camera system and the raw data was translated to a crack length (a) versus 

number of cycles (N) curve.  Due to the visual nature of the measuring technique there 

exists the possibility of a slight error in readings (up to 5%).  The da/dN ratios were 

then calculated for each curve and ∆K values were determined.  The Paris parameters C 

and m were determined from the da/dN versus ∆K plot according to the Paris equation. 

 

The microstructure of the AB, SR and HT conditions was examined by preparing 

metallographic sections perpendicular and parallel to the SLM build direction (Z-axis) 

in order to account for the anisotropic grain growth during the SLM process.  The 

metallographic specimens were etched after conventional grinding/polishing in a 

mixture of 100 ml distilled water, 2 ml HF and 5 ml HNO3 (Krolls reagent) and they 

were examined using brightfield light microscopy. 

 

3. Results 

 

3.1. Tensile testing 

The tensile mechanical properties of the material are shown in Figure 4 and are listed in 

Table 1.  No significant difference was observed between the XY an XZ specimen 

orientations.  Very little necking of the specimens was noticed during testing. 
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The AB tensile specimens showed an average ultimate tensile strength of 1248 MPa 

with an average elongation at failure of about 6 %.  After applying the SR heat 

treatment at 650˚C the average ultimate tensile strength dropped to 1171 MPa with a 

slight increase in elongation at failure.  In the case of the high temperature annealing 

heat treatment at 890˚C (HT condition), the average ultimate tensile strength further 

decreased quite substantially to just below 1000 MPa whilst the elongation at fracture 

surprisingly also reduced. 

 

3.2 Fracture toughness 

 

Table 2 summarises the K1C values for the three different AB, SR and HT conditions for 

the respective specimen orientations.  In most cases post-SLM processing heat 

treatment increases the fracture toughness of the material with the largest difference 

illustrated by the ZX orientation.  It is worth pointing out that the pre-crack for the AB 

specimens in the ZX orientation demonstrates an undesirable crack front (Figure 5) 

compared to the classical thumbnail crack profile in Figure 6. 

 

3.3 Crack propagation 

 

The results of the FCGR experiments are represented by the Paris curves shown in 

Figure 7.  Figure 7 (a) - (c) displays the effect of specimen process condition for each 

specimen orientation, whereas Figure 7 (d) - (f) shows the effect of specimen orientation 

for each specimen process condition.  It must be noted that the experimental work did 

not include the determination of the threshold  K values.  
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For the XY specimen orientation the AB condition shows the slowest crack 

propagation, whereas the SR condition demonstrates the fastest crack propagation.  For 

the XZ orientation it is clear that the worst case crack growth rates are found for the 

specimens in the AB condition. For the HT and SR condition there is no noticeable 

difference between their FCGR behaviour.  Similarly, for the ZX specimen orientation 

the highest crack growth rates are observed for the AB condition.  Overall it is shown 

that the AB condition of the XZ and ZX specimens exhibit the highest crack growth 

rates, while for the HT condition not only is the behaviour better than the AB condition, 

but the spread is smaller (Figure 7(f)).  The resulting Paris exponents (m), the Paris 

crack growth rate constants (C) and the correlation factor (R
2
) between data and linear 

fit is tabulated for all of the specimens in Table 3.  The correlation factor improves 

when specimens have undergone a post processing treatment, inferring that there is 

more scatter in the AB data relative to the SR and HT data.  The greater scatter for the 

AB data could be a result of the variable residual stress distributions introduced by the 

SLM process. 

 

3.4 Microstructure 

 

The bi-directional scanning strategy is clearly recognisable from the checkerboard 

pattern displayed by the plane (XY) perpendicular to the build direction (Z-axis) as 

indicated in Figure 8.   

 

The microstructure parallel to the build direction is indicated in Figure 9.   
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As is common for the SLM production of Ti6Al4V specimens, a columnar grain 

structure is clearly visible which arises as a result of the epitaxial growth caused by the 

successive layer deposition.  The heat treatments in this study were designed to avoid 

significant grain growth by maintaining the maximum temperature below the -transus 

temperature (approximately 1000°C). 

 

The metal powder solidifies to form the  phase which subsequently transforms during 

cooling.  Closer inspection of the microstructure in Figure 10 (a) exhibits the 

martensitic morphology consisting of fine ’ plates.  When heated to 650˚C (SR 

condition) the AB martensitic structure partially decomposes towards acicular  as 

indicated by the slight coarsening seen in Figure 10(b).  On the other hand, when heated 

to 890˚C (HT condition) the reformed  phase upon subsequent cooling forms the 

Widmanstätten / structure shown in Figure 10(c). 

 

4. Discussion 

 

The ultimate tensile strength and yield strength are substantially reduced after heat 

treatment relative to the AB condition. This behaviour is consistent with the 

transformation of the initial  martensite structure.  The more relaxed and coarser 

microstructure constituents associated with the Widmanstätten morphology in the 

annealed HT condition results in the lowest strength.  However, unlike the findings of 

Leuders et al. [7] where the elongation at fracture was increased by nearly an order of 

magnitude (from 1.5% to 11.6%) after annealing at 1050°C, there was very little change 

in tensile ductility in our case.  This may be due to the better initial AB ductility and the 
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lower annealing temperature compared to the test conditions imposed by Leuders et al. 

[7]. 

 

In the as-built (AB) condition the fracture toughness (K1c) is highest for the XY 

specimens (28MPa.m
½
) and decreases for the XZ specimens (23MPa.m

½
) with the 

lowest values recorded for the ZX specimens (16MPa.m
½
).  The fact that the same 

microstructure constituents exist in all the specimens suggests that microstructure 

anisotropy and/or residual stress anisotropy plays critical roles in controlling the 

fracture toughness behaviour of the differently oriented specimens.  If microstructure 

morphology only is considered, then it may be expected that the lowest fracture 

toughness should be demonstrated by the XZ specimen orientation since the crack path 

cleaves down the length of the columnar grains (akin to chopping wood along the 

grain).  In comparison, the ZX specimen might be expected to display the highest 

fracture toughness since the crack path is perpendicular to the columnar grain structure 

whereas the XY specimen could behave in a somewhat intermediate fashion.  However, 

the actual results are quite different to this argument.  When residual stress is 

considered, there are two strong indicators to suggest that the ZX specimen should 

demonstrate the lowest fracture toughness.  In the first instance, the study by 

Rangaswamy et al. [9] concerning the measurement of residual stresses in AISI316 

stainless steel and Inconel 718 samples produced by a similar net-shaping process, 

indicates that the residual stresses are practically uniaxial with high stresses in the 

growth (Z) direction.  More particularly, their study shows very low residual x- and y-

component stresses whereas the residual z-component stress is compressive up to values 

approximating 400MPa.  Of course compressive residual stress will enhance fracture 
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resistance when the stress is acting to close to the crack, but Rangaswamy et al. [9] have 

shown that a profile of the z-component stress across the x- and y-directions manifests 

in high tensile z-component stresses close to the specimen free surfaces in each case (up 

to 200 MPa).  This means that for the ZX specimen, the residual stress along the 

specimen centre-line may act to reduce the applied tensile load, but the tensile residual 

stresses near the lateral edges (free surfaces) of the fracture plane will substantially add 

to the applied tensile load thereby giving rise to a reduction in fracture toughness.  This 

leads to the second indicator which may be argued to account for the lowest fracture 

toughness for the as-built (AB) ZX specimen.  Figure 5 displays an unfavourable pre-

crack front for the ZX specimen where the crack is longer close to the free surfaces 

compared to the specimen centre-line.  This particular crack morphology can be 

accounted for by applying the same deductions illustrated above for the residual stress 

measurements presented by Rangaswamy et al [9].  In fact, recent analysis by Vrancken 

et al. [10] using the contour method for measuring the residual stress in the fracture 

plane supports the presence of high tensile residual stress around the perimeter of the 

(AB) ZX specimens.  Due to the fact that the intention of SLM is to manufacture net 

shape parts it is not viable to machine or cut away part of the component that might 

relieve some of the residual stresses.  If one then combines the suggested contributions 

of the microstructure morphology and the residual stress condition, it is reasonable to 

expect that the (AB) ZX specimen orientation could possess the lowest fracture 

toughness (dominated by tensile residual stresses perpendicular to the fracture plane 

near the free surfaces) despite the favourable grain orientation relative to the crack path.  

The residual stress condition relative to the fracture plane, for reasons interpreted from 

the work of Rangaswamy et al. [9] and Vrancken et al. [10], is similar for the XZ and 
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XY specimens, but the microstructure anisotropy is expected to be slightly more 

favourable towards resisting crack propagation in the case of the XY specimen.  This 

analysis is consistent with the reported fracture toughness values for the AB specimens 

as function of specimen orientation.  

 

After application of the stress relief heat treatment the fracture toughness values are 

within reasonable agreement for all the specimen orientations suggesting that the 

dominant residual stress effect argued above has been eliminated.  Of course the 

columnar grain structure is still maintained, but the heat treatment may have sufficiently 

altered the planarity of the grain-to-grain interfaces to reduce the grain anisotropy 

effect.  This detailed view of the microstructure and its influence on crack propagation 

remains to be investigated and is the topic of future research.  In the case of the 

annealed HT condition, one might expect a similar agreement in the fracture toughness 

values for the respective orientations but, despite the overall increase in fracture 

toughness (Table 2), there is a 20% difference between the highest (XZ and ZX) and the 

lowest (XY) K1c values.  There are once again likely to be detailed microstructural 

aspects that might account for this behaviour, but the difference in K1c values between 

the specimen orientations is substantially less than the 75% difference in the case of the 

AB specimens.  Although annealing heat treatments offer the most favourable fracture 

toughness properties, it is once again reinforced in this study that the role of residual 

stresses, and consequently stress relief heat treatments, is critically important in 

influencing the competitiveness of parts produced by the SLM process.  Knowles et al. 

[11] and Leuders et al. [7] have reported a substantial decrease in residual stress levels 

in SLM Ti6Al4V specimens after heat treatment (650ºC for 4 hours and 800ºC for 2 
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hours respectively).  Leuders et al. [7] also concluded that higher temperature heat 

treatments did not provide any further favourable reduction in residual stress. 

The fatigue crack growth rate (FCGR) behaviour very closely mimics the fracture 

toughness properties for the respective specimen orientations and process conditions.  In 

the same way as for the fracture toughness values for the AB condition, the AB-XY 

specimen demonstrates the lowest FCGR (Figure 7(d)).  The ZX and XZ specimens in 

the same condition have quite similar yet higher FCGR’s.  Correspondingly, there is 

more noticeable improvement in the FCGR resistance for the ZX and XZ specimens 

after heat treatment compared to the XY specimen, which if anything, displays slightly 

poorer FCGR resistance after heat treatment.  Notwithstanding the fact that the more 

subtle influences of microstructure development as function of heat treatment remain to 

be investigated, the role of residual stress, and in particular the anisotropic influence of 

this residual stress, has been comprehensively accounted for in this study by comparing 

three different specimen orientations (relative to the build direction) and superimposing 

the influence of stress relief and annealing heat treatments. 

 

Finally, the FCGR results from our study are compared to the results reported in the 

open literature (Figure 11). 

 

Overall, there is a close correlation between the respective trend lines.  For example, in 

the study by Leuders et al. [7] it is reported that the AB-ZX specimens possess the 

lowest FCGR resistance and there is a marked improvement with heat treatment.  Of 

particular interest in Figure 11 is the inclusion of FCGR data for conventional wrought 
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Ti6Al4V [12].  The FCGR trendlines reported for SLM Ti6Al4V are not significantly 

different to the conventional wrought Ti6Al4V alloy. 

 

5. Conclusions 

The consideration of SLM build orientation and process condition has highlighted the 

sensitivity of mechanical properties to the anisotropic microstructural and residual stress 

effects that arise from the highly directional and rapid transient nature of the SLM 

manufacturing process.  In particular, the following findings are highlighted: 

 

 The effect of the relationship between build direction and fracture plane on the 

fracture toughness and fatigue crack growth rate is most noticeable when 

material is tested in the as-built condition and may be accounted for by the 

anisotropic residual stress distribution. 

 Low temperature stress relief and annealing heat treatments improve fracture 

toughness and fatigue crack growth resistance relative to the as-built condition 

and at the same time contribute to the elimination of the influence of anisotropy. 

 The uniaxial tensile properties are much less influenced by specimen orientation 

relative to build direction. 
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Note: Please retain colors on figures supplied (4, 5, 6, 7 and 11) 

 

Figure 1: Scanning strategy (bi-directional) used to produce test specimens [2] 

 

 

2(a) 

2(b) 

Figure 2: (a) CT specimen orientations on the build-platform and (b) CT specimen geometry. The lines visible 

on (a) schematically represent the successive layers of powder. 

Figure
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3(a) 

 

3(b) 

Figure 3: Build orientation for XY and XZ tensile test specimens. 

 

 

Figure 4:  Tensile stress-strain curves for SLM-Ti6Al4V in the AB, SR and HT conditions.  Dashed lines = XY 

and solid lines = XZ 
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Figure 5: Uneven crack growth front for specimen ZX along the crack plane XY. 

 

Figure 6: Thumbnail crack growth front for specimen XZ along the crack plane ZY. 
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Figure 7 is given in both JPEG and TIFF format 

JPEG format 

7(a) 

7(b) 
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7(c) 

7(d) 
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7(e) 

7(f) 

Figure 7: Crack growth da/dN versus stress intensity range dK for (a) the XY specimen orientation, (b) the XZ 

specimen orientation, (c) the ZX specimen orientation, (d) the AB condition, (e) the SR condition and (f) the 

HT condition. 

TIFF format 
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Figure 8:  XY plane of SLM Ti6Al4V sample illustrating the checkerboard pattern. 

 

 

Figure 9: Columnar prior  grains in microstructure section parallel to SLM build direction (BD). 
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10(a) 

10(b) 

10(c) 

Figure 10:  Microstructure perpendicular to the build direction in the (a) AB condition, (b) SR condition and (c) 

HT condition. 
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Figure 11: Comparison of slowest and fastest crack growth data with previous studies. 
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Table 1: Summary of tensile mechanical properties for AB, SR and HT specimens. 

 σy [MPa] σUTS [MPa] εf [%] 

 

AB (XY) 

AB (XZ) 

SR (XY) 

SR (XZ) 

HT (XY) 

HT (XZ) 

 

 

1093 ± 64 

1125 ± 22 

1145 ± 17 

1132 ± 13 

973 ± 8 

964 ± 7 

 

 

1279 ± 13 

1216 ± 8 

1187 ± 10 

1156 ± 13 

996 ± 10 

998 ± 14 

 

 

6 ± 0.7 

6 ± 0.4 

7 ± 2.7 

8 ± 0.4 

3 ± 0.4 

6 ± 2 

 

 

Table 2: Fracture toughness values for the as-built and heat treated XY, XZ and ZX specimen 

orientations. 

K1c (MPa.m
½
) XY XZ ZX 

AB 28 ± 2  23 ± 1 16 ± 1 

SR 28 ± 2 30 ± 1 31 ± 2 

HT 41 ± 2  49 ± 2 49 ± 1 

 

Table 3: Paris parameters and relevant correlation factors 

  m C (m.cycle) R
2
 

XY-AB 3,37 5,79E-12 0.74 

XY-HT 3,83 2,04E-12 0.91 

XY-SR 5,84 9,93E-15 0.91 

XZ-AB 4,17 7,51E-12 0.84 

Table
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XZ-HT 3,11 1,71E-11 0.95 

XZ-SR 3,24 1,16E-11 0.93 

ZX-AB 4,41 2,08E-12 0.78 

ZX-HT 2,94 2,58E-11 0.87 

ZX-SR 3,35 8,85E-12 0.90 

 




