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Abstract Given the quest for mass reduction while

preserving proper vibration and acoustic comfort levels

in industrial machinery and vehicles, lightweight poroe-

lastic materials have gained a lot of importance. Often,

these materials are applied in a multilayered configura-

tion, which can consist of a number of acoustic, elas-

tic, viscoelastic and poroelastic layers. Among these,

poroelastic materials are the main focus of this paper.

A poroelastic material comprises two constituents, be-

ing the elastic solid constituent, also called the frame,

and the fluid filling the voids. Depending on the fre-

quency range of interest, the motion of both phases

can be strongly coupled. Poroelastic materials can dissi-

pate energy very effectively by structural, thermal and

viscous means. Considerable research effort has been

put in the development of robust models and predic-
tion techniques which are capable of accurately describ-

ing the damping phenomena of these materials. After a

broad introduction, this paper reviews the most com-

monly used models, ranging from simple empirical re-

lations to detailed models accounting for the coupled

behaviour of both phases and the CAE modelling tech-

niques currently being applied for the analysis of the

time-harmonic vibro-acoustic behaviour of these mate-

rials. Commonly used methods, such as the Finite El-

ement Method and the Transfer Matrix Method which

are mainly fitted for low-freqency and high-frequency

applications, respectively, are discussed as well as ex-

tensions to improve their efficiency and applicability.
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The two final sections pay special attention to the

promising Wave Based Method, a Trefftz-based tech-

nique, the application range of which was recently ex-

tended towards poroelastic problems.

Keywords Poroelastic materials · Biot theory · Wave

Based Method

1 Introduction

Growing customer expectations regarding vibro-

acoustic performance together with more restrictive

regulations on noise emission levels and human expo-

sure to noise, have forced design engineers to take the

vibro-acoustic behaviour of their products into account

in the development process. Customers judge thsound
quality emitted by products, and although this impres-

sion is often subjective, it contributes to a large extent

to the general appraisal of a product. As such, sound

quality has become a commercially important factor.

Moreover, an increasing number of studies demonstrate

that exposure to higher noise levels can constitute a

health hazard; it can for instance induce tinnitus, sleep

disturbance and hypertension. Noise exposure is on the

increase, implying it will be a major public health prob-

lem in the twenty-first century [1]. In consequence of the

increased understanding of the relation between expo-

sure to noise and health, European guidelines have been

set.

Since the vibro-acoustic properties of a product typ-

ically depend on the dimensions and the shape of the

product, it is particularly important to consider the

vibro-acoustic problem early on in the design phase.

Following the current ecological trends, lightweight de-

signs are preferred, to save material costs and to re-

duce fuel consumption. However, decreasing a compo-
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nent’s weight, while retaining its stiffness, may lead to

strongly reduced noise and vibration insulation proper-

ties. In the olden days, a product was mainly designed

to meet a few primary goals, such as strength, stiffness

and durability. At the end of the design cycle, secondary

features such as noise and vibration levels were evalu-

ated and tackled, often leading to heavy and costly add-

on solutions. Such a procedure is no longer sufficient to

obtain a high-performance, competitive product. Ma-

chine and vehicle manufacturers face the challenging

task to meet several, often conflicting, design require-

ments. Additionally, to remain competitive in a fast

moving market, the time to market has decreased.

Over the last decades, the advent of powerful Com-

puter Aided Engineering (CAE) tools, and the expo-

nential increase in computational power, have drasti-

cally changed the design and development process. Nu-

merical prediction techniques allow the design engineer

to evaluate the sensitivity of different parameters to the

design criteria, and limit the need for time-consuming

and expensive prototypes. Cost-saving measures can be

undertaken, leading to a more robust and optimised de-

sign and a faster product launch. Due to the increas-

ing importance of vibration comfort, noise emission and

sound quality, a vast amount of research is spent on

the development of faster and more cost-effective vibro-

acoustic prediction methods.

The modelling of the vibro-acoustic behaviour of

physical systems is far from trivial. In a general coupled

vibro-acoustic system, in which structural and poroe-

lastic components and acoustic cavities mutually in-

teract with each other, the system behaviour is typi-

cally determined by the coupled steady-state response

of each of the components. In an ideal setting, the de-

sign engineer would have a modelling tool at his dis-

posal, allowing calculations over the whole frequency

range of interest, which typically runs up to 20kHz. In

real life, however, this is not possible due to the lim-

itations of the current CAE tools at hand. Moreover,

there is a significantly different response in different

frequency regions. In general, three different frequency

regions can be identified, which are problem dependent:

Low frequency range – In the low frequency range, the

characteristic length of the studied problem is

smaller than or in the same order of magnitude as

the dominant physical wavelengths in the dynamic

response. In this frequency range, the response of

the system is determined by well-separated modes

and can be predicted by means of determinis-

tic approaches. For vibro-acoustic problems, ele-

ment based techniques, such as the Finite Element

Method (FEM) [2,3] and the Boundary Element

Method (BEM) [4,5] are most commonly applied.

Element based approaches divide the problem do-

main or its boundary into a large number of small

elements. Inside these elements, the field variables

are approximated using simple, often polynomial

functions. As wavelenghts shorten with increasing

frequency, the element sizes also need to decrease

to diminish the effect of interpolation and pollution

errors [6–8]. As a consequence, the number of de-

grees of freedom (DOFs) increases, as does the size

of the system matrices, limiting the practical use of

element based approaches to low frequency applica-

tions.

High frequency range – When the characteristic length

of studied problem is much larger than the dominant

physical wavelengths in the dynamic response, the

considered problem is located in the high frequency

range. Typically, the modal density and modal over-

lap are high and the system is very sensitive to

small variations in for instance material properties

and geometrical details. As small variabilities are

inevitable in real-life applications, the response of

one nominal system loses its meaning. As a result,

the spatially averaged response of a number of real-

isations is of interest together with its variance. In

this frequency range, statistical techniques are ap-

plied; for instance the Statistical Energy Analysis

(SEA) [9] is often used for vibro-acoustic analysis.

The SEA divides the problem domain into a small

number of subsystems in which a spatially averaged

estimate of the energy level is obtained. SEA is com-

putationally not demanding, but relies on a number

of assumptions, such as for instance a high modal

overlap and an energetic similarity of the different

subsystems. Since these assumptions are only met

above a certain frequency limit, the method is re-

stricted to the high frequency range.

Mid frequency range – In between the low and the high

frequency range, a frequency band exists for which

currently no mature and adequate prediction tech-

niques are available. However, for many applica-

tions, this mid frequency gap coincides with the fre-

quency range where the human hearing is highly

sensitive. Therefore, solutions are sought to bridge

(part of) this gap, and can be categorised into three

classes of approaches:

– Extend the frequency range of the deterministic

approaches. Optimised solvers [10] and domain

decomposition methods [11] can be applied to

the element based approaches, knowledge on the

dynamic problem can be incorporated [12,13],

etc. Trefftz approaches [14], which use exact so-

lutions of the governing differential equation(s)

to describe the field variables, can also be consid-
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ered in this category. The Wave Based Method,

which will be discussed in detail in this paper,

belongs to the family of Trefftz approaches.

– Extend the statistical methods towards lower fre-

quencies. Approaches belonging to this category,

for instance, try to get a better estimation of the

SEA parameters [15] or try to relax the assump-

tions imposed by SEA such that the modal en-

ergies in subsystems do not have to be similar

[16].

– Combine deterministic and statistical ap-

proaches. A last category of methods tries to

combine the best of two worlds, such that

a system which consists of both stiff, deter-

ministic components and flexible, statistical

components can be tackled. The hybrid Finite

Element/Statistical Energy Analysis, which

describes fully deterministic components via FE

and highly random components by SEA, is the

prime example [17,18].

Mass reduction has become an emerging trend in

the transportation as well as in the industrial machin-

ery sector. It is recognised as the only viable path

to save costs and to reduce the ecological footprint

of a product. Lightweight materials come to the fore,

such as composites and sandwich structures. These

material concepts are mainly designed for high static

stiffness and strength, and good impact resistance.

Given their low mass, a major bottleneck in their

widespread breakthrough is their strongly deteriorated

NVH (Noise Vibration Harshness) behaviour. In this

context, lightweight poroelastic materials have gained

a lot of importance. These materials provide excellent

damping properties and can be applied in stiff, multi-

functional, multi-layered structures, which are called

trim components.

Although, the focus in this review article is on the

application of poroelastic materials in vibro-acoustic

settings, poroelastic materials can be found in many

branches of engineering and physics. For instance, mod-

els for poroelastic materials are widely employed in the

field of geo-mechanics [19,20], oceanography [21] and

biological systems [22].

Concerning the application of poroelastic materials

in vibro-acoustic problem settings, the reference text-

book by Allard and Atalla [23] provides a good overview

of the developed theories, numerical methods and ap-

plications. Due to significant interactions between the

two phases, energy is dissipated in the material by ther-

mal and viscous means. Furthermore, due to irreversible

losses in the frame material, energy is also dissipated by

structural damping. Because of the complexity of the

interactions and the significance of these materials, a

great amount of research effort has been spent to for-

mulate mathematical models, and to develop numerical

prediction techniques to solve these models.

Most of the material parameters of poroelastic ma-

terials, taking into account dissipation phenomena, are

complex and frequency-dependent. The presence of

poroelastic layers in a vibro-acoustic model prohibits

efficient numerical solutions. Since two phases need to

be represented, the number of DOFs per FE node is

high. Additionally, the wavelengths in poroelastic ma-

terials are relatively short, requiring fine meshes even

at lower frequencies to obtain accurate solutions. By

combining several layers with different physical be-

haviour, near-field effects are present and should be ac-

curately taken into account. As a consequence, element-

based approaches are restricted to even lower frequen-

cies when poroelastic materials are present in the prob-

lem setting.

The objective of this paper is to give an overview

of the state-of-the-art of the models for poroelastic ma-

terials and the numerical prediction techniques applied

to solve vibro-acoustic problems containing poroelastic

materials. The paper is outlined as follows. Section 2

gives an overview of the models used to represent the

dynamic behaviour of a poroelastic material. Empirical

relations, equivalent fluid and equivalent solid models

and the theory of Biot are reviewed. Section 3 describes

analytical and numerical modelling techniques to pre-

dict the behaviour of a poroelastic material. Element

based descriptions and possible reduction schemes, the

Transfer Matrix Method and Trefftz approaches are de-

scribed together with their advantages and drawbacks.

Section 4 discusses the general modelling procedure of
the WBM, a promising indirect Trefftz method. Section

5 details the capabilities of the WBM for simulating

mid-frequency poroelastic problems and demonstrates

its use for 2D Cartesian, axisymmetric and 3D vibro-

acoustic problems.

2 Models for the acoustic analysis of

poroelastic materials

This section presents an overview of the different the-

ories to model the steady-state dynamic behaviour

of poroelastic materials in vibro-acoustic applications.

A time-harmonic motion with ejωt-dependence is as-

sumed, where j is the imaginary unit j2 = −1, ω=2πf

is the circular frequency and t is the time. Different

theories are presented, ranging from simple empirical

relations to complex models describing the interaction

between the two phases.
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2.1 Equivalent fluid representations

When it is assumed that the poroelastic material has a

rigid, motionless or a limp frame, only one wave type

can propagate in the porous material. Its general acous-

tic behaviour can be described using an equivalent fluid

model, governed by the Helmholtz equation [24]:

∇2peq(r) + k2
eq(ω)peq(r) = 0, (1)

where peq(r) is the acoustic pressure inside the poroe-

lastic material, the superscript eq indicates that the

variable is associated to an equivalent fluid description

and the frequency dependent wave number keq(ω) is

defined as

keq(ω) = ω

√
ρeq(ω)

Keq(ω)
, (2)

with

Keq(ω) =
K(ω)

φ
, (3)

ρeq(ω) =
ρ(ω)

φ
, (4)

the frequency dependent bulk modulus and density of

the equivalent fluid, respectively. The effective bulk

modulus K(ω) and the effective density of the fluid

ρ(ω) take into account thermal and viscous effects due

to the presence of the pores. The porosity φ is required

to represent the poroelastic layer as an homogeneous

isotropic fluid layer and is defined as the ratio of the

volume fraction of air in the open pores and the to-

tal volume of material. This quantity is sometimes also

called the effective porosity. Any fluid, which is fully

enclosed by the solid phase, is considered to be part

of the solid frame [25], since no relative motion exists

between both phases. Sound absorbing poroelastic ma-

terials generally have a high porosity, φ ≥ 0.95. From

ρeq(ω) and Keq(ω) also the characteristic impedance of

the fluid, Zeq,c, can be directly obtained:

Zeq,c(ω) =
√
ρeq(ω)Keq(ω). (5)

In general, the theory is valid as long as the wavelength

is much larger than the characteristic dimensions of the

pores, and as long as the fluid behaves as an incompress-

ible fluid at the microscopic scale. Different approaches

have been proposed to determine expressions for Kf (ω)

and ρf (ω).

2.1.1 Empirical relations

For simplicity reasons, empirical relations based on a

small number of parameters are still often used. Delany

and Bazley [26] provide a simplified model for fibrous

materials, based on the static flow resistivity σ of the

porous material. The flow resistivity is the specific flow

resistance per unit thickness and is expressed in Nsm−4.

According to many fibrous material measurements with

porosities close to 1, a good fit of the measured values of

k and Zc can be obtained using the following equations:

Zc = ρ0c0

(
1 + 9.08

(
1000

f

σ

)−0.75

−j11.9

(
1000

f

σ

)−0.73
)
,

(6)

k =
ω

c0

(
1 + 10.8

(
1000

f

σ

)−0.70

−j10.3

(
1000

f

σ

)−0.59
)
,

(7)

where ρ0 and c0 are the density of air and the speed

of sound in air. The empirical curves may be used with

confidence within the interpolating range 0.01 ≤ f
σ ≤ 1.

Miki, however, adapted the Delany-Bazley laws (6)-

(7) since he found that the real part of the surface

impedance sometimes becomes negative for low fre-

quencies, which is a non-physical result. He proposes

the following expressions [27]:

Zc = ρ0c0

(
1 + 5.50

(
1000

f

σ

)−0.632

−j8.43

(
1000

f

σ

)−0.632
)
,

(8)

k =
ω

c0

(
1 + 7.81

(
1000

f

σ

)−0.618

−j11.41

(
1000

f

σ

)−0.618
)
.

(9)

The same boundaries as for the Delany-Bazley laws are

applicable. Of course, one single relation does not pro-

vide a good prediction for all porous materials. Other

models exist, e.g. [28,29], however, the laws by Delany

and Bazley and Miki are most widespread.

2.1.2 Rigid frame models with straight pores

The exact solution of the propagation of sound in a

uniform, rigid, cylindrical tube was given by Kirch-

hoff [30], considering the linearised Navier-Stokes equa-

tions, the mass conservation equation, the ideal gas

law and the thermal conductivity equation. Although

these equations hold, they are in general unnecessar-

ily complicated to describe wave propagation in pores.

Zwikker and Kosten [24] used a simplified approach
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and treated thermal conductivity and viscosity sepa-

rately. They have shown that, at least in the limiting

cases of low and high frequencies, the correct results

can be expressed using a complex density and a com-

plex compressibility. The complex density accounts for

the viscous losses whereas the complex compressibility

(or equivalently bulk modulus) accounts for the ther-

mal dissipation. Later, a.o. Stinson [31] has validated

their approximation for a wide range of tube radii and

frequencies. The simplified equations can be found in

[23,31]. Closed form expressions for K(ω) and ρ(ω) can

be found for a cylindrical pore and a slit and read:

– Cylindrical pores:

ρ(ω) =
ρ0

1− 2
s
√
−j

J1(s
√
−j)

J0(s
√
−j)

, (10)

K(ω) =
γP0

1 + (γ − 1) 2
s
√
−jPr

J1(s
√
−jPr)

J0(s
√
−jPr)

, (11)

where γ is the ratio of specific heats, P0 is the ambi-

ent pressure of air, J0(z) and J1(z) are the ordinary

Bessel function of order zero and one, respectively,

Pr is the Prandtl number, with cp the specific heat

capacity at constant pressure, ηf the dynamic vis-

cosity and κ the thermal conductivity:

Pr =
cp
ηfκ

, (12)

and s is given by:

s =

√
ωρ0R2

0

ηf
, (13)

where R0 is the radius of the cylindrical pore.

– Slits:

ρ(ω) =
ρ0

1− tanh(s′
√
j)

s′
√
j

, (14)

K(ω) =
γP0

1 + (γ − 1)
tanh(s′

√
jPr)

s′
√
jPr

, (15)

where s′ is given by

s′ =

√
ωρ0a2

ηf
, (16)

with 2a the length of the slit.

The effective density for both the cylindrical pore and

the slit is shown as a function of s and s′, respectively,

in Figure 1. The behaviour of both curves is similar.

The viscous skin depth δ is given by

δ =

√
2ηf
ωρ0

(17)

and is approximately equal to the thickness of the layer

of air where the velocity distribution is influenced by

the viscous interaction with the rigid wall of the pore.

At low frequencies, the effect of viscous forces is impor-

tant everywhere in the pore. As the viscous skin depth

decreases with frequency, viscosity effects become more

and more negligible in the central part of the pore. Fig-

ure 1 clearly shows that the imaginary part of the ef-

fective density approaches zero for large values of s and

s′ and the real part tends to ρ0.

Similarly, the thermal skin depth δ′ is defined as:

δ′ =

√
2ηf

ωPrρ0
, (18)

also decreasing with frequency. The bulk modulus K of

air in a cylindrical pore and a slit is shown as a func-

tion of s and s′ in Figure 2. The real part equals P0

at low frequencies, being the isothermal asymptote and

evolves towards γP0 as the high frequency limit, repre-

senting the adiabatic asymptote. These expressions for

K(ω) and ρ(ω) can be directly used in an equivalent

fluid model, using formulas (3)-(4).

Similarly, analytical models can be derived for

porous materials with other simple pore morphologies.

Stinson [31] generalised the theory for cross sections of

arbitrary shape and applied it to rectangular tubes and

equilateral triangles.

It can be concluded that ρ(ω) and K(ω) can be

written in terms of a frequency- and shape-dependent

function F (ω):

ρ =
ρ0

F (ω)
, (19)

K =
γP0

γ − (γ − 1)F (ωPr)
. (20)

When considering more than one pore, the flow re-

sistivity σ in combination with the porosity φ can be

used to eliminate R0 and a in the expressions of s and

s′ respectively. For a material with n cylindrical pores

with radius R0 perpendicular to the surface per unit

area of surface, the porosity φ simply equals nπR2
0. It

can be shown by simple calculus that the flow resistivity

reads

σ =
8ηf
R2

0φ
, (21)

leading to

s =

√
8ωρ0

σφ
. (22)

Taking into account this expression of s, the following

definitions of the effective density and bulk modulus are
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Fig. 1 Ratio of the effective density of a fluid in a cylindrical pore and a slit, and the density in free air, ρ/ρ0 as a function
of s or s′ respectively.
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Fig. 2 Ratio of the bulk modulus in air in a cylindrical pore and a slit, and the atmospheric pressure P0, as a function of s
or s′ respectively.

found:

ρ = ρ0

(
1 +

σφ

jωρ0
Gc(s)

)
, (23)

K =
γP0

γ − (γ − 1)F (ωPr)
, (24)

where the subscript c indicates cylindrical pores and

F (ωPr) =
1

1 + σφ
jPrωρ0

Gc(s
√
Pr)

, (25)

Gc(s) =
−s
√
−j

4

J1(s
√
−j)

J0(s
√
−j)

1− 2
s
√
−j

J1(s
√
−j)

J0(s
√
−j)

. (26)

For a slit, a similar reasoning can be followed [23]:

σ =
3η

φa2
, (27)

leading to

s′ =

√
3ωρ0

σφ
. (28)

Expressions for ρ(ω) and K(ω) can be given, similarly

to expressions (23)-(24), using Gs(s
′) instead of Gc(s),

where the subscript s indicates that the pores have a

slit-shape:

Gs(s
′) =

√
js′ tanh(s′

√
j)

3
(

1− tanh(s′
√
j)

s′
√
j

) . (29)

As pointed out by Biot [32], it can be shown that Gs
and Gc have a very similar shape if s is replaced by

4/3s′. Consequently, Gc can be used to evaluate the

effective density and bulk modulus of rigid frame porous

material for pores of an arbitrary cross section if the

definition of s is altered:

s = c

√
8ωρ0

σφ
, (30)

where c is a shape factor depending on the cross section

of the straight pores [23,33].

When considering straight pores, all inclined with

an angle θ to the surface, the porosity is increased by a

factor 1
cos θ . Taking into account this increase in poros-

ity together with the longer distance acoustic waves

have to travel through the porous material, the flow
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resistivity is increased by 1
cos2 θ . This quantity is called

the tortuosity α∞, and will be generalised further on.

In earlier works the tortuosity is also referred to as the

structure form factor ks [24]. By using the tortuosity

for straight, oblique pores, s reads:

s = c

√
8ωρ0α∞
σφ

, (31)

and of course also the effective density is increased:

ρ = α∞ρ0

(
1 +

σφ

jωα∞ρ0
Gc(s)

)
, (32)

accounting for the fact that the fluid moves with a

greater speed on the microscopic scale than on the

macroscopic scale of propagation. Expression (24) still

holds, but F (ωPr) is given by:

F (ωPr)=
1

1 + σφ
jωρ0α∞Pr

Gc
√
Prs

. (33)

As a conclusion, when considering geometrically

simple pores such as cylinders or slits perpendicular or

inclined with a certain angle to the surface and assum-

ing propagation along the direction of the pores, vis-

cous and thermal effects can be analytically calculated

and taken into account. Viscous losses are accounted

for within the effective density ρ(ω), whereas thermal

losses are included in the effective bulk modulus K(ω).

At low frequencies, viscous forces are more important.

The effective density ρ(ω) takes into account the tran-

sition to inviscid flow as high frequency asymptote. The

frequency dependent effective bulk modulus K(ω) takes

into account the transition from isothermal behaviour

as low frequency limit to adiabatic behaviour as high

frequency limit.

2.1.3 Semi-phenomenological models

The pore geometry of a porous material is in gen-

eral highly complicated. As such, it is not possible to

straightforwardly calculate the viscous and thermal in-

teractions between the fluid in the pores and the skele-

ton material.

For common porous materials, due to the complex

microstructure, mostly phenomenological models are

being applied, using the same mechanisms as the an-

alytical models mentioned above. Attenborough [34]

stressed the importance of tortuosity and proposed the

use of two shape factors, validated for granular media. A

substantial improvement was, however, made by John-

son et al. [35] who introduced the concept of dynamic

tortuosity to account for the frequency-dependent vis-

cous effects in the pores. To take into account the com-

plexity of the pore shape, the concept of the viscous

characteristic length Λ was introduced. In a similar

fashion, a thermal characteristic length Λ′ has been in-

troduced by Champoux and Allard [36] in order to bet-

ter account for the thermal effects. Although further

improvements have been made, the so-called Johnson-

Champoux-Allard model is the most commonly used

theory today and is discussed here.

Johnson et al. [35] define the concept of tortuosity.

When a porous solid frame is filled with a non-viscous

fluid, the effective density of the fluid is determined by

the tortuosity:

ρ = ρ0α∞, (34)

being an intrinsic parameter of the poroelastic frame,

depending on the complex microstructure. The tortu-

osity takes into account the actual distance the acous-

tic waves have to propagate in the microstructure due

to the curvature of the pores through a layer to the

thickness of the layer. Whereas it can be directly calcu-

lated for simple pore geometries as explained in Section

2.1.2, this is obviously not possible for a complex mi-

crostructure. Most often the tortuosity is obtained via

measurements, but can also be retrieved by doing simu-

lations on actual microstructures [37,38]. According to

the Johnson-Champoux-Allard model the fluid density

can be written as:

ρf (ω) = ρ0α(ω), (35)

with α(ω), the dynamic tortuosity; a function to take

into account the frequency-dependent viscous effects

[35]. The viscous interaction between air and the pore

walls is known exactly at the low and the high frequency

asymptote. In the intermediate frequency regime a sim-

ple analytical function is used to approximate the vis-

cous interaction:

α(ω) = α∞

[
1 +

σφ

jωρ0α∞
GJ(ω)

]
, (36)

where GJ(ω) is a relaxation function which takes into

account the transition from microscale Stokes flow at

very low frequencies to inviscid flow as high frequency

asymptote:

GJ(ω) =

√
1 +

4jα2
∞ηfρ0ω

σ2Λ2φ2
, (37)

where Λ is the viscous characteristic length [35]. This

transition is, for rigid cylindrical pores, determined by

the pore radius and for slits determined by the length

of the slit. The viscous characteristic length provides a

characteristic dimension for arbitrary and more general

microstructures and is defined as:

Λ = 2

∫
V
v2
i (r)dV∫

A
v2
i (rw)dA

. (38)
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The integral in the denominator is performed over the

pore surfaces A of a representative volume of material,

vi(rw) is the velocity of the fluid on the pore surface,

the integral in the numerator is performed over the pore

volume V and the velocity vi(r) is the velocity inside

the pores. Smaller sections contribute to a larger extent

to Λ since velocity gradients are higher as compared to

larger sections [39].

In a similar way as for viscous effects, a function

α′(ω) can be used [40] to take into account thermal

effects:

K(ω) =
γP0

γ − (γ − 1)(α′(ω))−1
. (39)

Again, the thermal interaction is known exactly at low

and high frequencies. Champoux and Allard [36] have

shown that the equivalent bulk modulus is controlled

by different aspects of the pore geometry, introducing

the thermal characteristic length Λ′. Following their ap-

proach, α′(ω) is given by:

α′(ω) = 1 +
8ηf

jΛ′2Prωρ0

√
1 + jρ0

ωPrΛ′2

16ηf
, (40)

The thermal characteristic length is defined as:

Λ′ = 2

∫
V
dV∫

A
dA

, (41)

being twice the ratio of the pore volume to the pore sur-

face. Since no weighting is applied, the thermal charac-

teristic length will be larger than or equal to the viscous

characteristic length. Larger pore sections contribute

more to Λ′ than smaller pore sections. Similarly as for

tortuosity, the characteristic lengths of a porous ma-
terial are mostly obtained by dedicated measurements,

but can also be obtained by performing detailed simu-

lations on the real microstructure, e.g. see [41].

Using this model, the poroelastic material can

be described as an equivalent fluid, for which ther-

mal and viscous effects are accounted for. The semi-

phenomenological models only hold when the wave-

lengths are much larger than the pore size and have

been validated using homogenisation theory and a sep-

aration of scales, see e.g. [42].

Besides the Johnson-Champoux-Allard model using

5 parameters, Wilson [43] proposes to describe the vis-

cous and thermal dissipation using relaxation processes.

The model focuses on matching the intermediate fre-

quencies and does not fit the asymptotic behaviour at

low and high frequencies. The advantage with respect

to the previous formulations is that the expressions are

simpler and that one less parameter is required.

Also more advanced expressions with respect to the

Johnson-Champoux-Allard model can be found, which

take into account more parameters. Lafarge et al. [40]

indicate a lack of information at low frequencies for

thermal effects. Only 2 parameters (φ,Λ′) are used in

the Johnson-Champoux-Allard model to describe the

dynamic bulk modulus, whereas four parameters are

required to calculate the effective density (Λ,φ,α∞, σ).

They introduce a new parameter, k′0, the static thermal

permeability, to better describe thermal effects in the

low frequency range.

However, the real part of the dynamic density is

still not correct if ω tends to zero. A similar reasoning

holds for the dynamic bulk modulus. Pride et al. [44]

proposed a modified expression of the dynamic density

which was further improved by Lafarge [45]. The static

viscous tortuosity α0 is introduced and it was shown

that α0 ≥ α∞. In a similar fashion the static thermal

tortuosity α′0 is introduced to correct the effective bulk

modulus if ω tends to zero [40]. Those extended models

are, however, rarely used, as the new parameters should

be characterised, also requiring new developments on

the measurement side.

A comparison between a number of models can for

instance be found in [23,46,47].

2.1.4 Limp model

Beside equivalent fluid models which describe the dy-

namic behaviour of the materials when the frame if sup-

posed to be motionless, also the assumption of a limp

frame can be made. This means that the frame does not

resist to external excitations, which occur for poroelas-

tic media when the elasticity of the frame can be ne-

glected. Similarly to equivalent fluid models, only one

compressional wave type is accounted for. The resulting
governing equation can be obtained starting from the

Biot equations, which are explained in section 2.2, and

neglecting the stress tensor of the solid phase in vacuum

[23,48]. By combining the two resulting equations, one

obtains:

∇2pl(r) +
ρlimp
Keq

ω2pl(r) = 0, (42)

which is again a Hemholtz equation. The superscript l

indicates that a limp model is considered, and the limp

effective density ρlimp takes into account the inertia of

the frame:

ρlimp =
ρ̃ρeq

ρ̃+ ρeqγ̃2
. (43)

Expressions for ρ̃ and γ̃ are given in Section 3.1.4. The

difference between the equivalent fluid and the limp

model is mainly important at low frequencies, as il-

lustrated in [48]. An important difference is that the

equivalent fluid model does not allow for rigid body
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motion of the material, whereas the limp model does.

Generally, rigid frame material models should not be

used when the material is bonded to a vibrating struc-

ture. The limp material model can be used in this case,

if the bulk modulus of the fluid is much higher than the

bulk modulus of the frame in vacuum.

Doutres et al. [49] propose the frame stiffness influ-

ence (FSI) as a criterion to identify porous materials

for which the limp model can be used. The FSI is fre-

quency dependent and expresses the the influence of the

frameborne wave on the fluid phase displacement. For

two cases, aborsorption of a poroelastic layer attached

to a rigid backing and a sound radiation of a vibrating

plate with a poroelastic layer, critical values FSI are

derived, showing that the limp model can be used for

certain cases. Since only 1D simulations are considered,

the shear wave is not considered. The authors, however,

state that it seems realistic that the same criteria apply

to three-dimensional problems where the shear wave is

not mainly excited. The FSI criterion confirms that the

use of a limp model is less restrictive than the rigid

frame one.

2.1.5 Double porosity materials with a rigid frame

Other developments, which are not detailed here, in-

clude double porosity materials [50,51]. Double poros-

ity models are semi-phenomenological models account-

ing for media with two networks of pores of very dif-

ferent sizes. In this specific case three scales are consid-

ered: (i) the macroscopic scale of wave propagation, (ii)

the pores at the mesoscopic scale and (iii) the pores in

the frame material on the microscopic scale. By using

the homogenisation method for periodic structures and

using a separation of scales, it has been shown theo-

retically that the absorption coefficient of poroelastic

materials with a high flow resistivity can be increased

compared to a single porosity material for a wide fre-

quency range. Double porosity materials with a rigid

frame can be represented as an equivalent fluid with

effective density ρdp and effective bulk modulus Kdp,

where the subscript dp indicates double porosity quanti-

ties. Those macroscopic quantities depend on the static

permeability contrast between the micropores and the

pores at the mesoscopic scale and two regimes are rep-

resented: the low and the high permeability contrast

[51]. Atalla et al. [52] confirmed the results of Olny et

al. and validated the influence of several design param-

eters on the absorption coefficient. The work by Sgard

et al. [53] gives a nice summary of the developed theo-

ries and provides design rules to obtain the best noise

reduction using perforations.

2.1.6 Boundary and coupling conditions

Since the Helmholtz equation (1) is a second order

partial differential equation, one boundary condition

needs to be specified on each point of the boundary

of the domain to obtain a well-posed problem. Similar

boundary conditions as for purely acoustic problems

can be applied, however, taking into account the poros-

ity, included in ρeq(ω) and Keq(ω). Typical boundary

conditions and coupling conditions to an acoustic cav-

ity can be found, for instance, in [54]. The bound-

ary Γ eq can be subdivided into non-overlapping parts:

Γ eq = Γ eqv ∪Γ eqp ∪Γ
eq
Z ∪Γ

eqa
C ∪Γ eqeqC . On the three first

parts, the following residuals apply:

r ∈ Γ eqv : Reqv = Leqv (peq(r))− vn(r) = 0, (44)

r ∈ Γ eqp : Reqp = peq(r)− p(r) = 0, (45)

r ∈ Γ eqZ : ReqZ = Leqv (peq(r))− peq(r)

Zn(r)
= 0, (46)

where the quantities vn, p and Zn are, respectively,

the imposed normal velocity, pressure and normal

impedance. The velocity operator Leqv (•) is defined as:

Leqv (•) =
j

ρeqω

∂•
∂n

, (47)

where n is the local normal on the boundary, pointing

outwards.

On the interface Γ eqaC between an equivalent fluid

and an acoustic domain, the following residuals are ap-

plied:

r ∈ Γ eqaC :


Reqap (r) = pa(r)− peq(r) = 0,

Reqavn (r) =Lv(pa(r))

+ Leqv (peq(r)) = 0.

(48)

The first equation indicates the equilibrium between

the pressure in the acoustic and the poroelastic domain.

The second equation describes the continuity of acous-

tic velocity, taking into account the porosity.

On the interface Γ eqeqC between two equivalent fluid

domains with different material properties, indicated by

superscripts eq1 and eq2, the following coupling condi-

tions hold:

r ∈ Γ eqeqC :


Reqeqp (r) = peq1(r)− peq2(r) = 0,

Reqeqvn (r) =Leq1v

(
peq1(r)

)
+ Leq2v

(
peq2(r)

)
= 0.

(49)

The first equation takes into account the equilibrium of

forces. The second one imposes the continuity of acous-

tic velocity and takes into account the porosity of both

media.
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2.2 Theory by Biot

When the solid phase is not considered to be rigid or

limp, but elastic, the vibrations of the frame and the

mutual interaction between both phases also need to be

accounted for. The Biot theory [25,32,55], as adopted

by Johnson et al. [35], Champoux and Allard [36], and

as is presented in [23], is most commonly used to model

the fully coupled dynamic behaviour of poroelastic ma-

terials. This theory predicts the existence of three dif-

ferent types of coupled propagating waves: one shear

wave and two compressional waves. The Biot theory

applies a homogenised solid and a compressible fluid

continuum description on a macroscopic level. This is

justified in the case when the characteristic dimensions

of the material, e.g. the pore sizes, are small as com-

pared to characteristic dimensions on the macroscopic

level, typically the wavelengths of the different types

of waves which propagate through the material [56,57].

The interaction between both phases is described using

coupling parameters which are derived from measurable

macroscopic properties. Fluid-structure interaction oc-

curs throughout the whole material, and the different

waves can be strongly coupled.

According to the Biot theory, the momentum equa-

tions can be written as:

∇ · σs(r) =− ω2ρ1u
s(r)

− (ω2ρa − jωb(ω))(us(r)− uf (r)),

(50)

∇ · σf (r) =− ω2ρ2u
f (r)

− (ω2ρa − jωb(ω))(uf (r)− us(r)),

(51)

with σ•(r) the partial stress tensor and u•(r) the dis-

placement vector of phase •. The partial stress tensor

of the solid phase σs(r) is symmetric and gathers the

stress components acting on the solid part of the poroe-

lastic material and is denoted as:

σs(r) =

σsxx(r) σsxy(r) σsxz(r)

σsyx(r) σsyy(r) σsyz(r)

σszx(r) σszy(r) σszz(r)

 . (52)

The partial stress tensor of the fluid phase σf (r) con-

tains the stress components acting on the fluid part:

σf (r) =

σf (r) 0 0

0 σf (r) 0

0 0 σf (r)

 , (53)

with the scalar σf (r) proportional to the hydrostatic

fluid pore pressure pf (r):

σf (r) = −φpf (r). (54)

The first term in the right hand side of equation (50)

takes into account the inertia of the solid frame. The

density ρ1 = (1 − φ)ρs is the bulk density of the solid

phase. The second term in the right hand side depends

on the relative motion between the solid and the fluid

phase and contains two dynamic coupling effects. Due

to the viscosity of the fluid, viscous drag forces are gen-

erated between the fluid and the solid phase when both

phases move with a relative velocity with respect to

each other. The frequency dependent viscous drag b(ω)

accounts for this effect and is given by [35]:

b(ω) = σφ2GJ(ω). (55)

Secondly, due to the complex pore geometry, inertial

interactions occur between the two vibrating phases,

which can be taken into account by introducing an in-

ertial coupling term ρa, which depends on the porosity

and the tortuosity:

ρa = φρ0(α∞ − 1). (56)

Similarly, the first term in the right hand side of equa-

tion (51), with ρ2 = φρ0 the bulk density of the fluid

phase, takes into account the inertia of the fluid phase.

Due to the principle of action and reaction, the same

viscous and inertial interactions apply as in equation

(50), but with an opposite sign.

The constitutive relations are:

σs(r) = [A(ω)es(r) +Q(ω)ef (r)]I + 2Nes(r), (57)

σf (r) = [Q(ω)es(r) +R(ω)ef (r)]I, (58)

where I is the identity matrix, e•(r) is the volumetric

strain of phase •, also known as dilatation:

e•(r) = ∇ · u• =
∂u•x
∂x

+
∂u•y
∂y

+
∂u•z
∂z

, (59)

and es(r) is the symmetric strain tensor of the solid

phase:

es(r) =

 esxx esxy esxzesyx e
s
yy e

s
yz

eszx e
s
zy e

s
zz

 (60)

=


∂usx
∂x

1
2

(
∂usy
∂x +

∂usx
∂y

)
1
2

(
∂usz
∂x +

∂usx
∂z

)
1
2

(
∂usx
∂y +

∂usy
∂x

)
∂usy
∂y

1
2

(
∂usz
∂y +

∂usy
∂z

)
1
2

(
∂usx
∂z +

∂usz
∂x

)
1
2

(
∂usy
∂z +

∂usz
∂y

)
∂usz
∂z

 .
The parameter N is the second Lamé coefficient of the

solid frame, Q(ω) is a dilatational coupling factor de-

scribing fluid stress dependence on frame dilatation and

conversely frame stress dependence on fluid dilatation

and R(ω) can be interpreted as the fluid phase bulk

stiffness at zero frame dilatation. Expressions for the
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elastic constants N , R(ω), Q(ω) and A(ω) can be found

by using Biot’s ‘gedanken experiments’ [58]. Four inde-

pendent measurements in three tests are specified to

obtain these constants, and the dependence of the dif-

ferent parameters on the angular frequency is omitted

for the remainder of the text for the sake of clarity:

1. Jacketed compressibility test: the poroelastic spec-

imen is inserted in an impermeable, flexible jacket,

which is subjected to a hydrostatic pressure p′. The

pressure inside the jacket remains constant during

the test. The pressure p′ is transmitted to the solid

portions of the surface and σsxx = σsyy = σszz = −p′.
The dilatation of the solid phase is measured and

the bulk modulus Kb of the frame material at con-

stant pressure in air reads:

Kb = − p
′

es
. (61)

Often, Kb is referred to as the bulk modulus of the

frame in vacuo. The pore pressure remains constant,

leading to σf = 0N/m2. By using equations (57)-

(58), and eliminating p′ and ef one finds the follow-

ing relation:

Kb =
2

3
N +A− Q2

R
. (62)

indicating that A− Q2

R is the first Lamé coefficient

λ of the poroelastic material at constant pore pres-

sure.

2. Unjacketed compressibility test: the poroelastic

specimen is open and is subjected to an increase

of pressure in the air p′. In this case the pres-

sure p′ acts on both the solid and the fluid phase:

σsxx = σsyy = σszz = −(1 − φ)p′ and σfxx = −φp′.
Two bulk moduli are defined:

Ks =
−p′

es
, (63)

Kf =
−p′

ef
, (64)

where Ks is the bulk modulus of the elastic solid

from which the frame is made and Kf is the bulk

modulus of the air. By substituting these expres-

sions and the values for the stresses into (57)-(58)

and eliminating p′, es and ef and using equation

(62) leads to the three following expressions:

φ

(
Q+R

R

)
= 1− Kb

Ks
, (65)

Q

Ks
+

R

Kf
= φ. (66)

3. Pure shear test: If the material is subjected to a pure

shear loading, es and ef are zero and we obtain:

σsij = 2Nesij , (67)

σf = 0, (68)

indicating that N is the shear modulus of the ma-

terial and also the shear modulus of the frame since

the air does not contribute to the shear restoring

force.

By combining equations (62), (65) and (66), expressions

for A, Q and R are obtained in function of measurable

quantities:

A =
(1− φ)

(
1− φ− Kb

Ks

)
Ks + φKbKsKf

1− φ− Kb
Ks

+ φKsKf
− 2

3
N, (69)

Q =

(
1− φ− Kb

Ks

)
φKs

1− φ− Kb
Ks

+ φKsKf
, (70)

R =
φ2Ks

1− φ− Kb
Ks

+ φKsKf
. (71)

For typical poroelastic materials used in acoustic ap-

plications, the bulk modulus of the elastic solid from

which the frame is made Ks is very large as compared

to the bulk modulus of the porous material in vacuo Kb

and the bulk modulus of the fluid in the pores Kf . In

that case, the solid material can be treated as incom-

pressible and the expressions of the elastic constants

reduce to:

A = λ+
(1− φ)

2

φ
Kf , (72)

Q = (1− φ)Kf , (73)

R = φKf , (74)

with λ = Eν
(1+ν)(1−2ν) the first Lamé coefficient of the

solid phase material and E = Es(1 + jηl) the in vacuo

modulus of elasticity of the bulk solid phase, ν the

Poisson coefficient and ηl the loss factor to take into

account internal frictional losses. Taking into account

the Johnson-Champoux-Allard theory, the expression

of K(ω) (39) can be used to evaluate the bulk modu-

lus of the fluid in the pores Kf . The subscript f has

been added in this section to make a clear distinction

between the different bulk moduli.

Other ways to include structural damping are also

being applied, such as for instance the augmented

Hooke’s law [59–61]. The Lamé coefficients are then

augmented with complex and frequency dependent

damping functions which take into account relaxation

processes.

The substitution of the constitutive relations (57)-

(58) into the momentum equations (50)-(51) leads to



12 Elke Deckers et al.

the Biot equations:

N∇2us(r) +∇[(λ+
Q2

R
+N)es(r) +Qef (r)]

= −ω2(ρ̃11u
s(r) + ρ̃12u

f (r)),

(75)

∇[Qes(r) +Ref (r)] = −ω2(ρ̃12u
s(r) + ρ̃22u

f (r)), (76)

where ρ̃11 = ρ1 + ρa + b/jω, ρ̃12 = −ρa − b/jω and

ρ̃22 = ρ2 + ρa + b/jω [23]. The complex and frequency

dependent densities ρ̃11, ρ̃22 and ρ̃12 take into account

the total viscous and inertial energy dissipation caused

by the relative motion between the solid and the fluid

phase. The Biot equations (75)-(76) are expressed in

terms of the solid and the fluid displacement compo-

nents but other formulations exist. Some of them are

discussed in Section 3.1. As predicted by the Biot the-

ory, three different wave types can exist in poroelastic

materials: two compressional wave types and one shear

wave type. The wave numbers kl1 and kl2 associated

with the compressional waves are given by [23]:
kl1 =

√
A1

2 −
√

A2
1

4 −A2

kl2 =

√
A1

2 +

√
A2

1

4 −A2

,

with

{
A1 = ω2 ρ̃11R−2ρ̃12Q+ρ̃22P

RP−Q2

A2 = ω4 ρ̃11ρ̃22−ρ̃212
RP−Q2

,

(77)

where P = A+ 2N . The wave number associated with

the shear wave is given by [23]:

kt = ω

√
ρ̃11ρ̃22 − ρ̃2

12

Nρ̃22
. (78)

Each of the three waves propagates in the solid as well

as in the fluid phase of the poroelastic material. The

ratios of the fluid over the solid velocities of the different

wave types, µl1 , µl2 and µt, are given by [23]:

µl1 =
Pk2

l1
− ω2ρ̃11

ω2ρ̃12 −Qk2
l1

, (79)

µl2 =
Pk2

l2
− ω2ρ̃11

ω2ρ̃12 −Qk2
l2

, (80)

µt = − ρ̃12

ρ̃22
. (81)

2.2.1 Example

For the vibro-acoustic applications considered in this

review paper, the saturating fluid is air. The wave num-

bers are frequency dependent and complex, and can be

very different from one material to another, due to the

large variety of material properties. As an example, Fig-

ure 3 illustrates the physics of the different waves in a

melamine foam as a function of the dimensionless fre-

quency f/fc. The material properties of the foam and

air are given in Appendix A. The characteristic fre-

quency fc is given by [25]:

fc =
φσ

2πρ0
, (82)

and is for the considered melamine foam equal to

1240Hz. Whereas for this poroelastic material the in-

terval 0.1fc-10fc well captures the transition zone from

low to high frequency behaviour, this does not neces-

sarily hold for all combinations of frames and fluids. A

discussion is given in [62], including enhancements con-

sidering the effects of inertia and elasticity of the solid

phase and momentum exchange.

The slow and fast compressional wave types are indi-

cated by ‘Compressional-S’ and ‘Compressional-F’, re-

spectively. Whenever applicable, the associated prop-

erty for the equivalent fluid as described in Section

2.1.6, assuming a rigid frame, is also added to the fig-

ures. Similarly, curves associated to the compressional

wave that would propagate in the frame in vacuum are

added to the figures. The wave number of this compres-

sional wave in vacuum is given by [23]:

k′ = ω

√
ρ1

λ+ 2N
. (83)

For low values of f/fc, where the viscous forces are

strong, it can be seen from Figure 3 that there is no rel-

ative motion between the solid and the fluid for the fast

compressional wave and the shear wave. The modulus

is close to one, and the phase difference between the

solid and the fluid phase is close to zero. In addition,

the fast compressional wave and the shear wave have a

low attenuation coefficient in the low frequency range.

The slow compressional wave, on the other hand, has

a higher attenuation coefficient; the solid and the fluid

phase move close to out of phase. The fluid velocity is

higher than the solid velocity, as shown by the modulus.

For high dimensionless frequencies, the fast wave

mainly propagates in the fluid phase as reflected by the

high modulus, whereas the shear wave and the slow

wave propagate in both phases, but with a higher con-

tribution in the solid phase. As can be seen, the be-

haviour of the two compressional waves can be cap-

tured by the equivalent fluid model and the wave that

propagates in the frame in vacuum. When both longi-

tudinal waves are well decoupled, which may occur at

higher frequencies, the terminology ‘frame-borne’ wave

and ‘airborne wave’ is often used [23]. Note that the

curve for the equivalent fluid consistently aligns with

the wave with the highest contribution in the fluid
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Fig. 3 (a) Phase velocity, (b) attenuation coefficient, (c) modulus and (d) phase of µ• of the slow compressional
(Compressional-S), the fast compressional (Compressional-F) and the shear wave in a melamine foam as a function of the
dimensionless frequency f/fc. Where applicable, also the property associated with the equivalent fluid and the frame in
vacuum is shown.

phase. At higher frequencies, when acoustic excitation

is applied, the velocity of the frame will be negligible

compared to the velocity of the air and the equivalent

fluid model with a rigid frame can be used to represent

the dynamic behaviour of the material.

2.2.2 Boundary and coupling conditions

For a poroelastic material, three boundary conditions

have to be specified at each point of the boundary in

order to have a well-posed problem. Three types of

boundary conditions imposed on a poroelastic domain

are considered here, as well as coupling conditions be-

tween two different poroelastic layers and coupling con-

ditions between a poroelastic material and an acoustic

domain. The boundary Γ p = ∂Ωp of a poroelastic do-

main Ωp is can be subdivided into five non-overlapping

parts: Γ p = Γ pki
⋃
Γ pme

⋃
Γ pmi

⋃
Γ paC

⋃
Γ ppC . For a dis-

cussion on coupling conditions between a poroelastic

medium and an elastic medium or a septum, and open

and closed pores, the reader is referred to [63,64].

Boundary conditions For each kind of boundary, three

residual error functions can be defined:

– kinematic boundary conditions along Γ pki; the

displacement components are prescribed:

r ∈ Γ pki :


Rpusn(r) = usn(r)− ūsn(r) = 0,

Rpuss(r) = uss(r)− ūss(r) = 0,

Rp
ufn

(r) = ufn(r)− ūfn(r) = 0,
(84)

with ūsn(r), ūss(r) and ūfn(r) the prescribed values of

the displacement components of the solid phase in

the normal and tangential direction to the boundary

and the prescribed value of the displacement of the

fluid phase in the normal direction to the boundary,

respectively. Using this type of boundary condition,

fixed edges and imposed displacements (e.g. piston

movement [65]) can be represented.

– mechanical boundary conditions along Γme; the

stress resultants are prescribed:
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r ∈ Γ pme :


Rpσsn(r) = σsn(r)− σ̄sn(r) = 0,

Rpσss (r) = σss(r)− σ̄ss(r) = 0,

Rp
σf

(r) = σf (r)− σ̄f (r) = 0,

(85)

with σ̄sn(r), σ̄ss(r) and σ̄f (r) the prescribed values of

the stress resultant components of the solid phase in

the normal and tangential direction to the bound-

ary and the prescribed hydrodynamic stress of the

fluid phase, respectively. Using this condition, for

instance an imposed acoustic pressure can be ac-

counted for.

– mixed boundary conditions along Γ pmi:

r ∈ Γ pmi :


Rpusn(r) = usn(r)− ūsn(r) = 0,

Rp
ufn

(r) = ufn(r)− ūfn(r) = 0,

Rpσss (r) = σss(r)− σ̄sns(r) = 0.

(86)

For sliding edge boundary conditions [63] the pre-

scribed values of ūsn(r), ūfn(r) and σ̄ss(r) are zero.

Coupling conditions Coupling conditions are condi-

tions imposed between two different media. Coupling

conditions between an acoustic cavity, in which the be-

haviour is governed by the acoustic Helmholtz equation

and a poroelastic material and the coupling conditions

between two different poroelastic domains are consid-

ered.

On the interface Γ paC in between an acoustic and a

poroelastic subdomain the four following coupling con-

ditions are imposed:

r ∈ Γ paC :


Rpaσsn(r) = σsn(r) + (1− φ)pa(r) = 0,

Rpa
σf

(r) = σf (r) + φpa(r) = 0,

Rpaσss (r) = σss(r) = 0,

Rpau (r) = Lv(pa(r))

− jω
(
(1− φ)usn(r) + φufn(r)

)
= 0.

(87)

The first condition requires that the normal stress act-

ing on the solid phase of the porous material is equal

to −(1−φ) times the pressure pa(r) of the acoustic do-

main on the interface Γ paC . The second equation gives a

similar relation for the stress acting on the fluid phase

of the poroelastic material. Consequently, the total nor-

mal stress σtn(r) = σsn(r) + σf (r) equals −pa(r) on the

interface. Since the air in the acoustic cavity is con-

sidered to be non viscous, the shear stress of the solid

phase of the poroelastic material σss(r) has to be zero on

the interface. The final condition represents the conti-

nuity of the normal volume velocity where the velocity

operator is defined as:

Lv =
j

ρ0ω

∂

∂n
, (88)

with n the normal direction of the boundary. The first

three boundary conditions are imposed on the poroe-

lastic domain, the last one on the acoustic domain.

To ensure continuity between two different poroelas-

tic domains, continuity conditions between the approx-

imations in each of the subdomains need to be imposed.

Since in both subdomains, three decoupled Helmholtz

equations are considered, six continuity conditions have

to be imposed. This leads to the following six residuals

[23]:

r ∈ Γ ppC :



Rp1p2usn
(r) = us,p1n (r) + us,p2n (r) = 0,

Rp1p2uss
(r) = us,p1s (r) + us,p2s (r) = 0,

Rp1p2
ufn

(r) = φp1(uf,p1n (r)− us,p1n (r))

+ φp2(uf,p2n (r)− us,p2n (r)) = 0,

Rp1p2σsn
(r) = (σs,p1n (r) + σf,p1(r))

− (σs,p2n (r) + σf,p2(r)) = 0,

Rp1p2σss
(r) = σs,p1s (r)− σs,p2s (r) = 0,

Rp1p2
σf

(r) = σf,p1(r)
φp1

− σf,p2(r)
φp2

= 0.

(89)

where superscripts p1 and p2 indicate the two different

materials. Three conditions have to be imposed on the

first problem domain and the other three on the second

poroelastic subdomain. Logically, the continuity condi-

tions are affected by the porosities of the layers.

2.2.3 Material properties characterisation

The models discussed in the previous sections require

a number of material parameters, and the accuracy of

the outcome of course depends on the accuracy with

which the material parameters are retrieved. As ded-

icated tests are required for each of the parameters,

the characterisation process can be time consuming. A

discussion of all characterisation methods for the differ-

ent parameters is beyond the scope of this paper. An

overview of testing procedures can be found a.o. in [23,

39,66–69].

2.2.4 Transversally isotropic and anisotropic

poroelastic materials

The focus in this review article is on models to predict

the behaviour of isotropic poroelastic materials. This

section briefly discusses the modelling of transversally

and more general anisotropic poroelastic materials.

Whereas poroelastic materials are often modelled as

being isotropic, this is in reality of course not the case.

The manufacturing processes influence the microstruc-

ture of the poroelastic medium and induce a certain

degree of anisotropy in the macroscopic properties of

the material. Commonly, materials are considered as

being transversally isotropic, for instance due to the
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layered structure of fibrous material or due to the ef-

fect of gravity when growing a foam. Wave propagation

in transversally isotropic materials is described in e.g.

[70,71] where the axis of symmetry is perpendicular to

the surface.

Biot [25] also initiated works on the acoustic prop-

agation in orthotropic and anisotropic materials. The

textbook by Carcione [72] covers various aspects of

anisotropy. Hörlin and Göransson [73] derive constitu-

tive relations for anisotropic porous materials assum-

ing that the frame material itself is isotropic and that

the anisotropy results from the microstructure geome-

try. They present two formulations together with their

associated weak formulations to be used in a finite el-

ement environment and also indicate the potential to

increase the efficiency of the materials by exploiting

the anisotropy and optimising the alignment. As shown

numerically by Göransson et al. [74] and Lind Nord-

gren et al. [75] for fictitious materials, the influence of

anisotropy can be significant and the orientation of dif-

ferent layers with respect to each other can be opti-

mised to achieve for instance noise reduction at certain

frequencies. The numerical models are still expensive,

but they are becoming feasible thanks to the increasing

computational resources.

At present, the degree of anisotropy in existing

porous material is still unclear. Moreover, not all im-

plications of the anisotropy are yet fully discovered.

An important step to investigate the consequences of

anisotropy is the further experimental characterisation

of the anisotropic properties of these materials.

2.2.5 Double porosity materials with an elastic frame

In Section 2.1.5, the idea of rigid frame materials with

double porosity was mentioned. However, if a double

porosity material is attached to a vibrating structure,

also structural effects should be accounted for. Bécot

et al. [76] suggest to substitute Kf and ρf in the Biot

model by Kdp and ρdp, assuming that the viscous and

thermal effects in double porosity materials are not

modified due to deformations of the frame. Analyti-

cal expressions are derived and validated against mea-

surements, indicating a good correlation. Dazel et al.

[77] use a similar reasoning but use the transversely

isotropic models of Khurana et al. [71]. The models take

into account the effects of double porosity and effects

due to frame deformation.

2.3 Equivalent solid models

Similarly as for rigid frame materials, but under differ-

ent boundary conditions and/or excitation frequencies,

one can assume that no wave propagates in the fluid

phase. At very low frequencies, when the wavelength is

much larger than the thickness of the poroelastic mate-

rial, under structural excitations, the rigid frame mate-

rials can not be used. However, it can be assumed that

the acoustic pressure is the same on both sides of the

sample. In that case one may assume that the pressure

field is uniform inside the poroelastic material and one

may apply an equivalent solid description; by assuming

that σf (r) is zero in equation (58) and by substitut-

ing ef (r) by −QR es(r) in (57), one simply retrieves the

elastic constitutive relations. When frequency increases,

and the wavelengths are no longer much larger than the

thickness of the poroelastic sample, one should use a

model considering two phases, also accounting for the

fluid phase. In vibro-acoustic applications, equivalent

solid models are not often used, since one considers rel-

atively high frequencies and often acoustic excitations.

However, an example can be found in [78] and further

discussions on the use and the validity of equivalent

plate models is given in [79].

3 Numerical prediction techniques for the

modelling of poroelastic materials

In parallel with refinements to the theory of Biot, nu-

merical approaches have been developed to predict the

dynamic response of poroelastic materials. Only for

simple 1D applications, exact analytical solutions can

be found. For more general problems, numerical ap-

proaches are mainly applied. In this overview, they

are divided into three categories: element based ap-

proaches, transfer matrix approaches and Trefftz based

approaches.

3.1 Element-based prediction techniques

Element-based techniques are very well suited to tackle

arbitrarily shaped systems and are most commonly

used to solve vibro-acoustic problems in the low-

frequency range. Whereas the Finite Element Method

(FEM) [2,3] discretises the whole problem domain into

a large number of small problems, the Boundary Ele-

ment Method (BEM) [4,5] only discretises the bound-

aries of the problem. The use of BEM consequently

leads to a lower number of DOFs and a smaller system

to solve, but comes with fully populated and frequency

dependent matrices, impeding the use of efficient sparse

solvers. Consequently, the BEM is mainly applied for

problems with a high volume to boundary ratio, and is

also particularly interesting for unbounded problems,

since the formulation inherently takes into account the
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radiation conditions at infinity. Although mainly FE

schemes have been developed to model poroelastic ma-

terials within vibro-acoustic problems, e.g. Tanneau et

al. presented a BEM formulation for the modelling of

the full Biot equations in 2D [80]. The focus of this sub-

section will, however, be on FE approaches. This section

starts with a generalised mathematical formulation of

the problem, continuing with the modelling procedure

of the FEM. Thereafter, it gives an overview of the

method’s properties. The last part provides a thorough

overview of the state of the art in the modelling of the

steady state dynamics of poroelastic materials.

3.1.1 Generalised problem

Consider a general interior steady-state dynamic prob-

lem as given in Figure 4. The mathematical description

of the dynamic behaviour inside the problem domain Ω

consists of a number of NDE coupled differential equa-

tions, which can be generally described in the following

formalism:

Dj(v(r)) = Fj(r), r ∈ Ω, j = 1, ..., NDE . (90)

In this equation, Dj(•) is a general domain differ-

ential operator and v(r) = [v1(r), · · · , vNDE (r)]T is a

vector containing the NDE dynamic field variables. The

right hand side Fj represents non-homogeneous forcing

terms.

x

y r

G

G

G
2

1

i

W

Fig. 4 General interior steady-state dynamic problem de-
scription.

On the problem boundary Γ =
⋃
i Γi = ∂Ω, a num-

ber of NBC boundary conditions need to be defined to

obtain a well-posed problem. The set of NBC boundary

conditions on the problem boundary Γi can be written

in the general form:

Bi,l(v(r)) = Bi,l(r), r ∈ Γi, l = 1, ..., NBC , (91)

with Bi,l(•) a general boundary differential operator

and Bi,l(r) an imposed boundary field. Note that the

subscript •,l denotes a counter, and not a derivation of

the parameter • with respect to the parameter l.

The differential equations (90) together with the ap-

plied boundary conditions (91) define unique field vari-

ables vj(r).

3.1.2 The FEM modelling procedure

The general modelling procedure of the FEM, as ap-

plied to a general set of coupled differential equations,

consists of the following four steps, which will be ex-

plained afterwards:

A. Discretisation of the problem domain into nodes and

elements,

B. Approximation of the field variables by means of

polynomial shape functions,

C. Construction of the FE system matrices via a

weighted residual formulation of the differential

equations and boundary conditions,

D. Solution of the system of equations, yielding the

nodal values and postprocessing of the dynamic

variables.

Discretisation of the problem domain In a first step,

the problem domain is discretised into a large number

of small elements which are interconnected by a network

of nfe nodes. Figure 5 illustrates the principle.
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Fig. 5 FE discretisation of a bounded problem domain into
elements.

Field variable expansion The steady-state dynamic

field vj(r) in each of the elements is approximated by a

solution expansion v̂j(r) in terms of nfe (polynomial)

shape functions Nfj :

vj(r) ' v̂j(r) =

nfe∑
fj=1

Nfj (r)vfj

= Nj(r)vj.

(92)

The nodal values vfj belonging to each of the nodes

nfe are gathered in the vector of the degrees of freedom

vj. The row vector Nj collects the nfe shape functions

Nfj . These shape functions are defined per element.

Each shape function has a nonzero value in only one

element. Moreover, each shape function has a value of

1 for only one DOF of the element and is zero at all

others.
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Construction of the system of equations The polyno-

mial shape functions do not satisfy the underlying dif-

ferential equations, nor the imposed boundary condi-

tions. By applying a weighted residual formulation,

these errors are orthogonalised with respect to a set

of weighting functions t̃(r) and minimised:

NDE∑
j

∫
Ω

t̃(r) [Dj(v(r))−Fj(v(r))] dΩ = 0. (93)

Through application of the divergence theorem, this

strong integral formulation is transformed into integrals

over both the domain Ω and its boundary Γ :

NDE∑
j

[∫
Ω

WΩ,j (̃t(r))OΩ,j(v(r))dΩ

−
∫
Ω

t̃(r)Fj(v(r))dΩ (94)

+

∫
Γ

WΓ,j (̃t(r))OΓ,j(v(r))dΓ

]
= 0,

with W•(?) and O•(?) domain and boundary resid-

ual dependent operators. Since O•(?) is generally of

lower order than D•(?), this formulation is referred to

as the weak integral formulation.

In a Galerkin weighted procedure, as often applied

in the FEM, the weighting functions t̃j(r) in the vector

t̃(r) are expanded in terms of the same locally defined

shape functions as for the field variable vj(r):

t̃j(r) =

nfe∑
fj=1

Nfj (r)t̃fj

= Nj(r)̃tj.

(95)

Substitution of the field variable expansion (92)

and the weighting function expansion (95) yields an

algebraic equation linking the unknown nodal values

to each other. The enforcement that these equations

should hold for any combination of the weighting func-

tions results in a matrix system of equations. Neumann

and Robin boundary conditions can be applied through

these boundary residuals. By means of row and column

elimination, Dirichlet boundary conditions can be ap-

plied such that the final system reads:

[D] {u} = f , (96)

where D represent the dynamic system matrix, u the

vector of unknown nodal values and f represent loading

vectors, containing externally applied forces originating

from Fj in (90).

Solution and postprocessing In a final step, the sys-

tem matrix of equation (96) is solved for the unknown

nodal values. The backsubstitution of these values in

the field variable expansions (92) leads to an expres-

sion of the approximation of the field variables v̂j(r)

inside the problem domain. Derivative quantities, such

as acoustic velocities and structural displacements and

stresses can be obtained by applying differential oper-

ators to the shape functions. Note however that this

always comes with a loss of spatial resolution as they

consist of derivatives of the polynomial shape functions.

3.1.3 FEM Properties

The discretisation strategy of the FEM and the use of

simple polynomial interpolation functions has its ad-

vantages and disadvantages. This leads to the following

characteristics:

Problem discretization and degrees of freedom – The

FEM divides the problem domain into a large

number of small elements. The DOFs in an FE

model are the nodal values of the field variables,

and inside the elements, the dynamic field is

approximated using simple polynomial shape

functions. As frequency increases and wavelengths

shorten, the FE mesh needs to be refined to retain

a similar accuracy as driven by interpolation and

pollution errors [6–8].

Problem geometric complexity – Due to the fine dis-

cretization typically necessary to capture the wave-

length, the FEM has almost no restrictions regard-

ing the geometrical complexity.

System matrix properties – In general, the system ma-

trices of the FEM are real-valued, large, frequency

independent and sparsely populated with a banded

structure. These properties allow for an efficient so-

lution and a reuse of the matrices for different fre-

quencies. Nevertheless, for some problems, the ma-

terial properties are complex and frequency depen-

dent. In this case, the FE matrices, which are com-

plex, have to be recalculated for each frequency,

hampering the efficient solution and also the appli-

cability of modal reduction schemes.

Accuracy of derivative variables – Since the FEM

commonly applies polynomial shape functions to

approximate the primary response variables, the

higher order derived quantities are approximated

with a lower spatial resolution.

Computational performance – Although the FE matri-

ces are in general sparse and symmetric, because of

the large number of FE degrees of freedom, the solu-

tion of the FE models is computationally demand-

ing. The CPU time required to build and solve the
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system is proportional to N∆2, with N the num-

ber of DOFs and ∆ the bandwidth of the system

matrix.

3.1.4 FEM for poroelastic materials

When considering FE approaches, a wide range of for-

mulations can be found. When the poroelastic material

is represented by an equivalent fluid or a limp material,

the problem can be modelled as if it were an acoustic

problem, solving a Helmholtz equation with a complex

and frequency dependent speed of sound and density,

see for instance [81,82]. This implies that, as compared

to standard acoustic FE schemes, the matrices need to

be recalculated for every frequency, but nevertheless,

only one DOF per node is required to represent the

dynamic fields.

The formalism of the FEM can also be used to deal

with the full Biot equations. This subsection gives an

overview of the different formulations which have been

presented over time and zooms in on the properties of

poroelastic FEM systems and the typical problems with

them. Finally, a number of approaches to alleviate these

problems are presented.

Formulations Over the years, several formulations have

been presented to deal with the full Biot equations:

(us,uf )-formulation – This formulation is based on the

equations as given in Section 2.2 and applies the dis-

placements of both phases as primary variables. The

formulation was used by Kang and Bolton [83] for

2D poroelastic problems, coupled to acoustic cavi-

ties. Later, this approach was extended to 3D poroe-

lastic problems [84]. It requires 4(6) displacement

DOFs per node for 2(3)D simulations.

First (us,w)-formulation – In his later work, Biot de-

veloped a second representation of his theory for

poroelasticity [55]. This formulation is called the

mixed displacement formulation and uses w(r) =

φ(uf (r)−us(r)), the fluid flow components relative

to the solid skeleton measured in terms of volume

per unit area of the bulk medium, as a primary field

variables instead of the fluid displacements. More-

over, the stress components σt(r) and pf are used

instead of σs(r) and σf (r). This leads to the fol-

lowing expressions:

∇ [(λ+N +Keq)e
s(r) +Keqe

w(r)]

+N∇2us(r) = ω2(ρtu
s(r) + ρ0w(r)),

(97)

∇ [φKeqe
s(r) + φKeqe

w(r)] =

− ω2

(
ρ2u

s(r) +
ρ̃22

φ
w(r)

)
,

(98)

with ew = ∇·w(r) the volume of fluid which escapes

from the pores of a unit volume of bulk material,

ρt = ρ1+ρ2 the total density andKeq = Kf/φ corre-

sponds to the compressibility of the equivalent fluid

model. This formulation simplifies the coupling con-

ditions between two layers of different poroelastic

materials. By using this formulation, the displace-

ment components us(r) and w(r) of the two lay-

ers have to be equal to each other at the interface.

When the (us,uf )-formulation is used, the coupling

conditions are more complex since the porosities of

both layers should be taken into account. However,

performance is similar to the (us,uf )-formulation,

requiring also 4(6)DOFs per node for 2(3)D calcu-

lations.

Second (us,w)-formulation – An alternative (us,w)-

formulation can be derived by using the stress com-

ponents σs(r) and σf (r) [85,86]:

∇
[(
λ+

Q2

R
+N +Q

)
es(r) +

Q

φ
ew(r)

]
+N∇2us(r) = ω2

(
ρ1u

s(r) +
ρ̃12

φ
w(r)

)
,

(99)

∇ [φKeqe
s(r) + φKeqe

w(r)] =

− ω2

(
ρ2u

s(r) +
ρ̃22

φ
w(r)

)
.

(100)

This formulation simplifies the coupling conditions

between two layers of different poroelastic materi-

als as well. Performance is similar to the (us,uf )-

formulation and the previously mentioned (us,w)-

formulation, as it also requires 4(6)DOFs per node

for 2(3)D calculations.

(us,pf ,ϕf )-formulation – Göransson [87] formulated

the problem based on the solid displacements, the

fluid pore pressure p(r) = −φσf (r) and the fluid

displacement scalar potential ϕf (r) as primary vari-

ables. The fluid scalar potential is defined by:

uf (r) = ∇ϕf (r). (101)

As such, the vector potential of the Helmholtz de-

composition of a vector field is neglected, excluding

the rotational motion of the fluid phase. The three

governing equations read:

φ2

R
pf (r) + φ∇2ϕf (r) +

φQ

R
es(r) = 0, (102)

φ∇pf (r)− ω2
(
ρ̃22∇ϕf (r) + ρ̃12u

s(r)
)

= 0, (103)

N∇2us(r) +∇
(
A+N − Q2

R

)
es(r)

−φQ
R
∇pf (r) = −ω2

(
ρ̃11u

s(r) + ρ̃12∇ϕf (r)
)
.

(104)

Due to the introduction of the scalar potential, a

fully symmetric finite element problem is obtained,
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even when coupled to an elastic material or an ex-

terior fluid. The method leads to 5 DOFs as com-

pared to 6 for the (us,uf )-formulation for 3D cal-

culations. However, the fluid is forced to be irrota-

tional since only the curl-free component and not

the divergence-free component of the Helmholtz de-

composition of a vector field is taken into account.

Even though the fluid is assumed to be non-viscous

in the linear acoustic approximation, due to the in-

teraction between the frame and the fluid, the fluid

may be set into rotational motion. This is the case

when there are strong viscous and inertial inter-

actions with the solid phase. This is particularly

important when materials with a high tortuosity

and/or a high flow resistivity are considered.

(us,pf )-formulation – This formulation was used by

Atalla et al. [88,89] and depends on the fluid pore

pressure instead of the fluid displacements. Start-

ing from the momentum equation (51) and using

−φ∇pf (r) = ∇ · σf (r), the vector of fluid displace-

ments uf (r) can be written as:

uf (r) =
φ

ρ̃22ω2
∇pf (r)− ρ̃12

ρ̃22
us(r). (105)

The stress tensor of the frame in vacuo σ̂s(r) is

introduced, which is independent of the fluid dis-

placement vector uf (r):

σ̂s(r) = σs(r) + φ
Q

R
pf (r)I

=

(
A− Q2

R

)
es(r)I + 2Nes(r).

(106)

By substituting equations (105) and (106) into equa-

tions (50) and (58), the Biot poroelasticity equa-

tions in terms of (us,pf ) variables are given by:

∇ · σ̂s(r) + ω2ρ̃us(r) + γ̃∇pf (r) = 0, (107)

∇2pf (r) + ω2 ρ̃22
R pf (r)−ω2γ̃ ρ̃22φ2 ∇ · us(r) = 0, (108)

with

ρ̃ = ρ̃11 −
ρ̃2

12

ρ̃22
, (109)

and

γ̃ = φ

(
ρ̃12

ρ̃22
− Q

R

)
. (110)

The advantages of this formulation are that the

number of degrees of freedom is decreased to 3(4)

per node for 2(3)D simulations and it leads to sim-

pler coupling and boundary conditions [63]. Con-

sequently, it is computationally cheaper than the

previous approaches.

(us,ut)-formulation – Dazel et al. [90] propose an alter-

native displacement formulation, based on a strain

decoupling, in terms of the solid displacement vector

us and uW = φ(uf + Q
Rus), which is the apparent

displacement for the pressure of the fluid phase tak-

ing into account the motion of the solid phase. The

equations of motion read:

∇ · σ̂s(r) = −ρsω2us(r)− ρeqγω2uW(r), (111)

Keq∇ζ(r) = −ρeqγω2us(r)− ρeqω2uW(r), (112)

with ζ(r) = ∇·uW(r) and ρs = ρ1+ρ2

(
Q2

R

)
−ρ12

γ′2

φ2

with γ′ = φ
(

1 + Q
R

)
. Unlike the (us,uf )-equations,

there are no stress-coupling terms involved as each

stress tensor is a function of the associated dis-

placement only. By using this approach, simpler ex-

pressions for the constitutive coefficients and wave

numbers are obtained as compared to the (us,uf )-

formulation. The formulation is also very well-fitted

to derive limp and equivalent fluid descriptions.

When the bulk modulus of the porous material in

vacuo Kb and the effective bulk modulus of air Kf

are much smaller than Ks, which is the case for

most commonly used poroelastic materials in vibro-

acoustic applications, the bulk modulus of the elas-

tic solid from which the skeleton is made of uW(r)

is equal to the total displacement of the porous ma-

terial ut(r) = φuf (r) + (1 − φ)us(r) and γ′ sim-

plifies to 1. As such, the coupling conditions be-

tween a poroelastic material and an acoustic, elas-

tic or poroelastic domain simplify. Similarly as for

the (us,uf )-formulation 4(6) DOFs are required per

node for 2(3)D calculations.

(us,pf ,ϕf ,ψf )-formulation – This approach improves

the (us,pf ,ϕf )-formulation by Göransson [87] by

also taking into account the fluid vector potential

ψf (r) as a primary field variable [91]. The fluid dis-

placement vector is Helmholtz decomposed into a

scalar and a vector potential:

uf (r) = ∇ϕf (r) +∇×ψf (r). (113)
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The governing equations read:

φ2

R
pf (r) + φ∇2ϕf (r) + φ∇ · ∇ ×ψf (r)

+
φQ

R
∇ · us(r) = 0,

(114)

φ∇pf (r)− ω2
(
ρ̃22

(
∇ϕf (r) +∇×ψf (r)

))
− ω2ρ̃12u

s(r) = 0,
(115)

N∇2us(r) +∇(A+N − Q2

R
)es(r)

− φQ

R
∇pf (r) = −ω2 (ρ̃11u

s(r)

+ρ̃12(∇ϕf (r) +∇×ψf (r))
)
.

(116)

When deriving the weak form of these equations,

equation (115) is weighted with a function which is

also written as a Helmholtz decomposed field. Con-

sequently, this equation splits into two equations in

the weak formulation as shown in [91]. This formula-

tion leads to symmetric matrices and the potentials

in the weak form of this formulation do not appear

in the boundary integrals. It is able to represent

the same results as obtained by the (us,uf ) and the

(us,pf ) formulation. The computational cost is in-

creased (6(8)DOFs per node for 2(3)D calculations),

but the method may be useful for benchmark pur-

poses and possibly for eigenvalues problems.

Due to the lower number of degrees of freedom and the

simplified coupling conditions, the (us,pf )-formulation

is most commonly used. However, (us,uf ) and (us,ut)-

approaches are better suited for standard eigenvalue

problems, since contrarily to the (us,pf )-formulation,

except for parameter dependence, the angular fre-

quency only appears in the numerator.

Specific properties The use of the FEM for poroelastic

materials is mainly limited to low frequency calcula-

tions due to their high computational cost. The rea-

son is threefold: firstly, the FE matrices have to be

recalculated for each frequency due to the frequency-

dependent parameters. Secondly, the number of un-

knowns per node is relatively high. Finally, the physics

of poroelastic materials involve short wavelengths. To

resolve these, often extremely fine meshes are needed.

Since the dimensions of the computational domain are

often large as compared to the wavelengths, the nu-

merical dispersion error, also known as pollution error,

becomes significant, leading to even more restrictive re-

quirements on the mesh discretisation [78].

Extended frequency range To alleviate these problems,

several approaches have been proposed and are being

developed. Whenever possible, symmetries should be

exploited. Axisymmetric FE models for poroelastic me-

dia can be found in [92]. For cylindrical coordinates,

instead of using full 3D models, an harmonic expansion

has also been proposed for the circumferential direc-

tion [93]. Besides, hierarchical elements have been ap-

plied [60,65,94]. Linear and quadratic finite elements

are however widely used, due to their simplicity.

Another approach is the use of modal reduction

schemes. However, because of the complex behaviour

of the two coupled phases, with high frequency depen-

dent dissipation mechanisms, the calculation of a modal

base is not trivial. Dazel et al. were the first to use gen-

eralised complex modes, including non-linearities. The

technique applies Taylor expansions for the frequency

dependent parameters and solves the eigenvalue prob-

lem in a generalised state space. It has been applied

for 1D [95] and 3D cases [96]. Whereas it leads to a

reduction of the number of degrees of freedom, the cal-

culation of the modes proved very difficult. This has

instigated an interest in real, decoupled modal vectors.

Sgard et al. [97] calculate the uncoupled, undamped

modes of each phase. This, however, neglects the im-

portance of the coupling terms. Davidson and Sand-

berg [98] propose to calculate in a first step the decou-

pled modes of both phases and then calculate interface-

dependent Lanczos vectors for each mode to construct

coupled modes. While providing good results for the

shown example in terms of reduction, the efficiency

is, however, not discussed. Dazel et al. [99] developed

a reduction scheme based on normal modes obtained

from the (us,ut)-formulation, showing promising per-

formance for 1D and 2D problems. By using a free

interface Component Mode Synthesis, coupled prob-

lems (2 poroelastic layers and an acoustic-poroelastic

problem) have been studied [100] for 1D problems. The

efficiency of the method still needs to be studied for

2D and 3D examples, involving shear waves. Rumpler

[101] rewrites the constitutive equations in the (us,uf )-

formulation, and proposes the use of real coupled nor-

mal modes, based on the conservative poroelastic eigen-

value problem. Also a selection criterion is presented,

since the modal base would become too large [102]. The

method can be used in combination with Padé approx-

imants for fast multiple frequency sweeps [103]. The

approach gives promising results for 3D coupled acous-

tic poroelastic problems, but still needs to be validated

for more complex and for structurally excited poroe-

lastic problems. Recently, Dazel et al. [104] proposed

a reduced order model based on a decoupled normal

mode basis calculated with a (us, pf )-model and com-

pleted with static response vectors of the non-preserved

modes. The approach shows a significant reduction in

terms of DOFs and in terms of computation time. More-
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over, the authors claim that the method is more effi-

cient than other existing modal reduction techniques

for poroelastic materials.

3.2 Transfer matrix approaches

At higher frequencies, the Transfer Matrix Method

(TMM) is widely used to predict the transmission loss

of multilayer structures [23,105,106]. Assuming an in-

finitely extended material layer, it models the propaga-

tion of a plane wave through a layered structure, con-

sisting of e.g. porous, elastic and acoustic layers.

This section starts with a description of the prob-

lem and the general modelling procedure. Thereafter,

it gives an overview of the limitations of the method

and a state of the art of the extensions that have been

developed to overcome them.

3.2.1 Problem description

The TMM models the propagation of a plane wave

through a multilayer of infinite lateral dimensions. Con-

sidering Figure 6, a plane wave impinges upon the

multilayer at an angle θ. Because of the infinite layer

assumption, the problem geometry is 2D, i.e. in the

(x1, x3)-plane.

...
θ
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Fig. 6 Infinitely extended multilayer with an impinging
plane wave at angle θ.

The sound propagation from the point A to the

point B through a multilayer material with thickness∑
l hl is governed by a transfer matrix T.

3.2.2 The TMM modelling procedure

The general modelling procedure of the TMM con-

sists of the following steps, which will be explained in

more detail and with a specific application to acous-

tic/poroelastic problems:

A. Partitioning of the multilayer in L layers,

B. Expression of the wave propagation through layer l,

C. Calculation of the layer transfer matrices,

D. Assembly of global transfer matrix through interface

and termination conditions.

Partitioning of the multilayer In a first step, the mul-

tilayer is divided into l separate layers. For each layer

l, the propagating wave field can be decomposed in an

incident and a reflected field. This means that for each

wave type two constants should be known or, alterna-

tively, two independent field variables. Since the prop-

agation through the multilayer can be described using

a low number of degrees of freedom, the method results

in a very low computational load.

An acoustic layer only sustains one propagating

wave type. It is thus completely defined in each point

x3 by two variables:

va(x3) = [pa(x3), va3 (x3)]
T
, (117)

using the acoustic pressure and the acoustic velocity in

the x3-direction, respectively.

A poroelastic material, on the other hand, can sus-

tain three different wave types: two dilatational waves

and one shear wave. Therefore the complete wave field

is only uniquely defined using six independent variables:

vp(x3) =
[
vs1(x3), vs3(x3), vf3 (x3) ,

σs33(x3), σs13(x3), σf33(x3)
]T
,

(118)

where vs1(x3), vs3(x3) and vf3 (x3) represent the velocity

in the solid phase in the x1- and x3-direction and the

velocity in the fluid phase in the x3-direction, respec-

tively.

Expression of the wave propagation When travelling

under an angle θ in free air, the incident plane wave

also has a trace x1-component. The wave number kx1

can be easily calculated as:

kx1 = ka sin θ. (119)

For each of the propagating wave types •, the x3-

component can then be determined using the dispersion

relation

k•,3 =
√
k2
• − k2

x1
. (120)

The wave propagation of the field variables vl in a layer

l can be generally described in the following format:

vl(x3) = Γl(x3)Wl, (121)

with Γl(x3) the propagating wave functions and Wl

the vector containing a linear combination of the am-

plitudes of the propagating waves in the ±x3-direction.
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For an acoustic layer, the wavenumber k3 reads:

ka,3 =
√
k2
a − k2

x1
, (122)

and the vector Γa is:

Γa(x3) =

[
e(−jka,3x3) e(jka,3x3)

ka,3
ρ0ω

e(−jka,3x3) −ka,3ρ0ω
e(jka,3x3)

]
. (123)

For a poroelastic layer, because of the three prop-

agating wave types, the expressions are more compli-

cated. The wavenumber components kl1,3, kl,2,3 and kt,3
are:

k•,3 =
√
k2
• − k2

x1
• = l1, l2, t. (124)

The vector Γp is described in Eq. (125).

Calculation of the layer transfer matrices Setting an

arbitrary coordinate system at side Bl, the wave field

at both sides of the layer, i.e. at Al (x3 = −hl) and Bl
(x3 = 0) can be evaluated.{

vl(Al) = Γl(−hl)Wl,

vl(Bl) = Γl(0)Wl.
(126)

After elimination of Wl, the layer transfer matrix Tl

can be easily calculated as:

Tl = Γl(−hl)Γl(0)−1. (127)

Assembly of the global transfer matrix Since not all

types of transfer matrices have the same dimensions

(e.g. 2× 2 for fluid layers and 6× 6 for poroelastic lay-

ers), the global transfer matrix cannot be calculated

using a simple matrix product of the layer transfer ma-

trices. The global transfer matrix T is assembled from

the transfer matrices Tl of the separate layers, sup-

plemented with interface conditions between the layers

and termination conditions at the excitation and the

opposite side.

The continuity conditions over the interface between

two layers can generally be written in the following ma-

trix form:

I(l−1)(l)v(l−1)(B(l−1)) + J(l−1)(l)vl(Al) = 0, (128)

with I(l−1)(l) and J(l−1)(l) the mutual coupling matrices

between layer (l − 1) and layer l. The combination of

transfer matrices of each layer and interface conditions

between subsequent layers, leads to the global trans-

fer matrix, relating the variables on both sides of the

multilayer.

The assembled transfer matrix T0 can then be con-

structed from the transfer and interface matrices of the

separate layers. The total set of wave propagation and

interface equations then reads:

T0v0 = 0, (129)

where

T0 =


If1 Jf1T1 0 · · · 0 0

0 I12 J12T2 · · · 0 0
...

...
...

...
...

0 0 0 · · · J(L−2)(L−1)T(L−1) 0

0 0 0 · · · I(L−1)L J(L−1)LTL

 , (130)

with If1 and Jf1 the coupling matrices between the free

acoustic field and the first layer on the excitation side

and

v0 = [vf (A),v1(B1), · · · ,vL(BL)]
T
. (131)

The matrix T0, however, is not square. Additional

conditions are necessary to have a well-posed prob-

lem. Both on the excitation and the termination side

additional information has to be provided about the

impedance, mutually linking the field variables.

On the termination side, two types are possible:

rigid wall backing or semi-infinite fluid termination.

For a rigid wall backing, all velocity components are

set to zero. Adding these new conditions to the system

of equations gives

Ttv0 =

[
T0

0 · · · 0 RL

]
v0 = 0, (132)

where Tt represents the transfer matrix T0, extended

with termination conditions and RL is a matrix which

consists of a diagonal matrix in the velocity components

and an all-zero matrix in the pressure/stress compo-

nents.

For a semi-infinite fluid termination, the coupling

to a fluid is applied for the variables at the termination

side. Adding these new equations gives:

Ttv =


T0

0
...

0

0 · · · 0 ILf JLf

0 · · · 0 −1 ZB
cos θ


[

v0

v(B)

]
= 0, (133)

On the excitation side, information about the sur-

face impedance of the layer is necessary. This can be in-

troduced by adding a new equation to the global trans-

fer matrix such that[
−1 Zs 0 · · · 0

Tt

]
v0 = 0, (134)

where the surface impedance Zs can be calculated by

Zs = −det Tt1

det Tt2
, (135)
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Γp(x3) =


ωkx1

cos (kl1,3x3) −jωkx1
sin (kl1,3x3) ωkx1

cos (kl2,3x3)
−jωkl1,3 sin (kl1,3x3) ωkl1,3 cos (kl1,3x3) −jωkl2,3 sin (kl2,3x3)
−jωkl1,3µl1 sin (kl1,3x3) ωkl1,3µl1 cos (kl1,3x3) −jωkl2,3µl2 sin (kl2,3x3)
−Dl1 cos (kl1,3x3) jDl1 sin (kl1,3x3) −Dl2 cos (kl2,3x3)

2jNkx1
kl1,3 sin (kl1,3x3) −2Nkx1

kl1,3 cos (kl1,3x3) 2jNkx1
kl2,3 sin (kl2,3x3)

−El1 cos (kl1,3x3) jEl1 sin (kl1,3x3) −El2 cos (kl2,3x3)

· · ·

· · ·

−jωkx1
sin (kl2,3x3) jωkt,3 sin (kt,3x3) −ωkt,3 cos (kt,3x3)

ωkl2,3 cos (kl2,3x3) ωkt cos (kt,3x3) −jωkx1
sin (kt,3x3)

ωkl2,3µl2 cos (kl2,3x3) ωkx1
µt cos (kt,3x3) −jωkx1

µt sin (kt,3x3)
jDl2 sin (kl2,3x3) 2jNkt,3kx1

sin (kt,3x3) −2Nkt,3kx1
cos (kt,3x3)

−2Nkx1
kl2,3 cos (kl2,3x3) N(k2t,3 − k2x1

) cos (kt,3x3) −jN(k2t,3 − k2x1
) sin (kt,3x3)

jEl2 sin (kl2,3x3) 0 0

 ,
(125)

where D• = (P +Qµ•)(k2x1
+ k2•,3)− 2Nk2x1

and E• = (Rµ• +Q)(k2x1
+ k2•,3) for • = l1, l2.

with Tt1 and Tt2 the matrices obtained by removing

the first and second column from Tt respectively.

The resulting matrix T, when equipped with the

appropriate impedance and termination relations, is an

(L + 2) × (L + 2) matrix which relates the dynamic

behaviour of both sides of the multilayer.

Applied to a coupled acoustic/poroelastic problem,

the continuity conditions, formulated in (87), can be

written in the following matrix form:

Ipavp(Bp) + Jpfva(Aa) = 0, (136)

where

Ipa =


0 (1− φ) φ 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , (137)

and

Jpa =


0 −1

(1− φ) 0

0 0

φ 0

 . (138)

For an acoustic-poroelastic interface, the matrices

are switched, i.e. Jpa becomes Iap and Ipa becomes

Jap.

When coupling two layers of the same nature (e.g.

two fluid layers), the global transfer matrix is equal

to the product of the separate transfer matrices of the

layers. However, for poroelastic layers, this does not

hold since the interface conditions are influenced by the

porosities of the layers (89).

In this case, the assembled transfer matrix T0 can

be written as a matrix multiplication:

T0 = Tp1Ip1p2Tp2, (139)

where

Ipp =



1 0 0 0 0 0

0 1 0 0 0 0

0
(

1− φp,2
φp,1

)
φp,2
φp,1

0 0 0

0 0 0 1 0
(

1− φp,2
φp,1

)
0 0 0 0 1 0

0 0 0 0 0
φp,2
φp,1


. (140)

A more elaborated overview of the theory of the

TMM, including other domain types and interface con-

ditions, can be found in [23].

3.2.3 Extensions

Due to the many assumptions made, either on the ma-

terial side (homogeneous, infinitely extended flat inter-

face), or on the wave field (plane waves) or on the trans-

mission path, it may be hard to get accurate results in

several cases. Therefore, extensions have been devel-

oped to enhance the applicability of the TMM over its

original assumptions.

Infinite extent – Due to the infinite extent assumption,

the TMM is only applicable for layers of finite extent

when higher frequencies are considered. Also, when

applied to finite structures, the method is mainly

useful when locally reacting materials are consid-

ered. This means that the local impedance does not

depend on the angle of incidence [23].

To account for finite size effects at lower frequen-

cies, Villot [107] applies a spatial windowing correc-

tion to the radiation efficiency. Ghinet and Atalla

[108] developed the Finite Transfer Matrix method

(FTMM) with an alternative correction factor for

the radiation efficiency. The FTMM has been ap-

plied to calculate transmission loss and absorption

of flat finite multilayer structures [109].
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Both approaches only account for the geometrical

finite size effect. Note that these extensions still

do not account for finite size effects caused by the

boundary conditions.

Plane wave excitation – The TMM in its original form

models the transmission of a plane wave through a

multilayer material. However, the method can be ex-

tended to more complex load cases by representing

the source (e.g. a mechanical point force or an acous-

tic point source) as a superposition of plane waves

in the wave number domain. For each wave num-

ber component, the TMM can be applied. There-

after, the results are recombined using the two-

dimensional inverse Fourier transform [23,110].

Transmission path – The TMM assumes that trans-

mission between two layers only happens through

the material layer. However, when the structure

is stiffened or point connections are present, these

can act as sound bridges and provide an additional

transmission path from excitation to receiver side.

In a first order approximation, these two transmis-

sion paths can be considered decoupled and the stiff-

eners infinitely stiff [111]. However, as Legault and

Atalla [112,113] show, the decoupled approaches are

highly approximative and next to effects of the stiff-

ness, there are also non-negligible effects of period-

icity and mass of the stiffeners.

Isotropy / Homogeneity – The TMM is originally de-

rived for an assembly of laterally infinite, homoge-

neous isotropic layers. Khuruna et al. [71] extended

the application range to transversely isotropic ma-

terials. Recently, Verdière et al. [114] extended the

framework to heterogeneous materials in the form

of patchworks.

Combined techniques – The TMM can be readily ex-

ploited in other numerical models. This gives rise

to a number of hybrid approaches in which the

full modelling of the trim layer can be done using

the TMM. In a hybrid coupling between FEM and

TMM, the expensive explicit modelling of the multi-

layer can be replaced by a TM model, while the de-

tailed vibroacoustic system model can still be done

using the FEM [115,116]. By combining the TMM

and the SEA, the effects of a sound package, i.e.

equivalent damping and added mass, can be esti-

mated using the TMM and used further in an SEA

approach [23,110]. The TMM also works very well

with modal approaches, where for each mode differ-

ent transfer parameters can be applied, based on a

superposition in the wavenumber domain [23,110].

Curvature – So far, the flat panel assumption of the

TMM remains one of the major restrictions of the

use of the TMM. Nevertheless, this effect is mainly

present below the first ring frequency. In some cases,

e.g. aircraft fuselages, the curvature is low enough

to be neglected in a first order approximation [117].

3.2.4 Applications

Using the TMM, acoustic indicators such as absorp-

tion coefficients and transmission loss can be straight-

forwardly predicted [23].

This ease of use and the method’s low compu-

tational requirements are distinct advantages of the

TMM. Notwithstanding its sometimes crude approxi-

mations and inherent limitations, this makes the TMM

a very convenient method to predict trends and quali-

tative results. It is therefore often used in the industrial

practice [118,119].

3.3 Trefftz approaches

Trefftz methods are, similarly to element based tech-

niques, deterministic approaches but apply different

domain discretisation strategies and different approx-

imation functions. Exact solutions of the governing

equations are used to approximate the field variables,

leading to a smaller system of equations and higher

convergence rates. Whereas Trefftz approaches are

widely available in literature for structural and acous-

tic problems, applications for poroelastic materials are

less common. A complete overview of existing Trefftz

methods is not the scope of this paper. However, a clas-

sification of and a discussion on different Trefftz meth-

ods, their advantages and disadvantages, are given in

[120].

When considering equivalent fluid problems, gov-

erned by a single Helmholtz equation, existing Trefftz-

based approaches for acoustics can be easily adapted,

taking into account the effective bulk modulus and

the density. Examples can be found in [121,122]. The

former applies the Partition of Unity Finite Element

Method (PUFEM) [13] to predict the sound field in

an interior cavity containing poroelastic materials. The

PUFEM enriches standard Finite Elements by includ-

ing exact solutions of the governing Helmholtz equa-

tion, in this case plane waves propagating in different

directions. The latter applies the WBM, detailed in Sec-

tion 4, to predict the sound field above a patchwork of

poroelastic materials.

For 2D incompressible biphasic media, Trefftz finite

elements have been applied in [123]. In hybrid Trefftz

FE methods, the Trefftz elements are based on a clas-

sical FE discretisation of the problem domain, but the

field variable expansion functions satisfy the governing
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differential equations. Also for poroelastic media, re-

cently hybrid-Trefftz elements have been applied, with

a focus on geomechanical applications [124–126].

For vibro-acoustic applications, the Method of Fun-

damental Solutions has been applied to poroelastic me-

dia [127]. Plane waves impinging on poroelastic scat-

terers are considered and each of the three poroe-

lastic wave types is modelled using a distribution

of monopoles. Recently, the Discontinuous Galerkin

Method [128] has been extended for absorbing poroelas-

tic materials described by the Biot theory [129]. Within

this method, the governing equations are formulated as

a first-order system and the solution and the numerical

flux at the interfaces between elements is discussed. The

solutions are implemented in function of the three Biot

waves. For a simple 2D problem, excellent accuracies

have been reported.

Recently, the Wave Based Method has also been ex-

tended for poroelastic problems. Given the potential of

this method, its general modelling concept and proper-

ties are detailed in Section 4. The specific application

of the WBM to the Biot equations and its hybrid ex-

tension are discussed in Section 5.

4 The Wave Based Method

The WBM [130] is a deterministic numerical modelling

method, which belongs to the family of Trefftz ap-

proaches [14]. It is designed for solving steady-state

dynamic problems, described by a (set of) Helmholtz

equation(s), and can be applied to bounded as well as

(semi-)unbounded problem domains. Contrarily to ele-

ment based approaches, which divide the problem do-

main or the boundary of the problem domain into a

large number of small elements, the WBM partitions

the problem domain into a small number of large sub-

domains. Instead of using simple approximating poly-

nomials, the WBM expresses the field variables as a

weighted sum of so-called wave functions, which are ex-

act solutions of the governing differential equation(s).

The degrees of freedom are the contribution factors of

the wave functions in this expansion. The WBM is an

indirect approach since the contribution factors are not

the dynamic field variables themselves. The wave func-

tions fulfill the dynamic equations a priori, but the re-

sulting dynamic field(s) may violate the boundary and

continuity conditions. Minimising these errors using a

weighted residual formulation leads to a system of lin-

ear equations which can be solved for the unknown wave

function contribution factors. In a post-processing step,

the field variables and derived variables can be deter-

mined in the points of interest.

This section explains the modelling procedure of

the WBM and gives an overview of its current state

of the art and its application areas. A first subsection

describes the generalised Helmholtz problem definition.

Next, the four steps involved in the WB modelling pro-

cedure are detailed. Thereafter, the typical properties

of the WB models and their strengths and weaknesses

are compared to element based approaches. Finally, the

application areas of the WBM and its current state of

the art are discussed. An overview of the WB modelling

procedure and application areas can also be found in

[131,132].

4.1 Generalised Helmholtz problem

Consider a general interior/exterior steady-state dy-

namic problem as given in Figure 7. It is assumed that

the mathematical formulation of the physics inside the

problem domain Ω gives rise to, or can be cast by ap-

plying for instance the Helmholtz decomposition theo-

rem [133] into a number of NH (modified) second-order

Helmholtz equations:

∇2uj(r)+k2
juj(r) = Qj(r), r ∈ Ω, j = 1, ..., NH . (141)

In this equation, ∇2 is the Laplacian operator, uj(r) is

the dynamic field variable of the jth Helmholtz equa-

tion, and kj is the physical wave number of the jth

Helmholtz equation, which is determined by the physi-

cal properties of the medium inside the problem domain

Ω. Qj(r) represents non-homogenous forcing terms.

The vector u(r) = [u1(r), ..., uNH (r)]T , contains theNH
number of considered dynamic field variables.
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Fig. 7 General steady-state dynamic problem description.

The problem boundary Γ = ∂Ω consists of two

parts in case the problem domain is unbounded: the

finite part of the boundary, Γb, and the boundary at

infinity, Γ∞. For a bounded domain, obviously, only Γb
has to be considered. The finite part of the boundary
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can be divided into non-overlapping parts: Γb =
⋃
i Γi,

on which different boundary conditions can be imposed.

On each point of the boundary, NH number of bound-

ary conditions need to be defined to obtain a well-posed

problem. The set of NH boundary conditions on a gen-

eral boundary Γi can be written in the general form:

Hi,l(u(r)) = Hi,l(r), r ∈ Γi, l = 1, ..., NH , (142)

with Hi,l(•) a general boundary differential operator

and Hi,l(r) an imposed boundary field. Note that the

subscript •,l denotes a counter and not a derivation of

the parameter • with respect to coordinate l. The NH
number of field variables inside the problem domain

are coupled through the boundary conditions. At the

boundary at infinity Γ∞, non-reflecting boundary con-

ditions are imposed, ensuring that the resulting wave

field is purely outgoing and no energy is reflected back

into the problem domain:

H∞,l(u(r)) = 0, r ∈ Γi, l = 1, ..., NH . (143)

The Helmholtz equation(s) (141) together with the ap-

plied boundary conditions (142), and (143) for an un-

bounded problem, define unique field variables uj(r).

Once these field variables are known, derived quanti-

ties can be obtained.

4.2 The WBM modelling procedure

The general modelling procedure of the WBM, as ap-

plied to a general Helmholtz problem, consists of the

following four steps which will be explained afterwards:

A. Partitioning of the considered problem domain into

convex subdomains,

B. Selection of a suitable set of wave functions for each

subdomain,

C. Construction of the WB system matrices via a

weighted residual formulation of the boundary and

interface conditions,

D. Solution of the system of equations, yielding the

wave function contribution factors and postprocess-

ing of the dynamic variables.

Partitioning of the problem domain When applied to

bounded problems, the convexity of the considered do-

main is a sufficient condition for the WB approxima-

tions to converge towards the exact solution of the prob-

lem under study [130]. When the considered problem

domain is non-convex, it is, in a first step, partitioned

into a number of convex subdomains. When applied

to unbounded problems, an initial partitioning of the

unbounded domain into a bounded and an unbounded

region by a truncation curve Γt precedes the partition-

ing into convex subdomains [120]. Figure 8 illustrates

the principle. The unbounded region exterior to Γt is

considered as one unbounded subdomain.
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Fig. 8 WB partitioning of an unbounded problem. Subdo-
main interfaces are shown in dotted lines (· · · ).

Following this approach, the total problem domain

Ω is subdivided into NΩ number of non-overlapping

subdomains Ω(α) (α = 1, . . . , NΩ), which may be

bounded or unbounded. On the interface Γ
(α,β)
I be-

tween two subdomains Ω(α) and Ω(β), created in the

partition procedure, continuity conditions need to be

imposed:

H(α,β)
I,l (u(α)(r),u(β)(r)) = 0, r ∈ Γ (α,β)

I

l = 1, ..., 2NH ,
(144)

with u(α)(r) and u(β)(r) the dynamic field variables

in the two adjacent subdomains and H(α,β)
I,l (•, ?) =

H(α)
I,l (•) +H(β)

I,l (?) a general boundary differential oper-

ator expressing the continuity constraints on the fields

• and ? and their derived quantities. In order to ob-

tain a well-posed system, one continuity condition is

imposed for each of the NH dynamic variables on each

subdomain.

Field variable expansion The steady-state dynamic

field(s) u
(α)
j (r) in each of the problem subdomains Ω(α),

α = 1, ..., NΩ , are approximated by a solution expan-

sion û
(α)
j (r) in terms of n

(α)
j wave functions Φ

(α)
wj :

u
(α)
j (r) ' û(α)

j (r) =

n
(α)
j∑

wj=1

u(α)
wj Φ

(α)
wj (r) + û

(α)
p,j (r)

=Φ
(α)
j (r) u

(α)
j + û

(α)
p,j (r).

(145)

The wave function contribution factors u
(α)
wj belonging

to each of the wave functions Φ
(α)
wj (r) are gathered in
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the vector of degrees of freedom uj
(α). The row vector

Φ
(α)
j collects the n

(α)
j wave functions Φ

(α)
wj .

In accordance with the Trefftz principle [14], each of

the wave functions Φ
(α)
wj (r) exactly satisfies the homoge-

neous part of the associated governing Helmholtz equa-

tion (141). In the case of an unbounded subdomain,

the wave functions are selected to additionally inher-

ently fulfill the non-reflecting boundary condition (143)

at Γ∞. The term û
(α)
p,j represents a particular solution

resulting from the combined source terms Qj(r) in the

right hand side of the inhomogeneous Helmholtz equa-

tion (141). Depending on the studied problem, these

particular solutions usually take the form of dynamic

fields generated by sources or forces in a homogeneous

medium which extends to infinity. Consequently, irre-

spective of the values of the wave function contribution

factors, the expansion (145) always satisfies the associ-

ated governing Helmholtz equation (141).

Nevertheless, different sets of wave functions can

be found, fulfilling these conditions. Several alternative

definitions have been proposed in literature (e.g. plane

waves [134], the function sets as proposed by Herrera

[135],...).

Desmet [130] has proposed to select wave number

components based on the characteristic dimensions of

the problem at hand. For instance, for a bounded dy-

namic problem, the smallest rectangle (or rectangular

box) circumscribing the considered 2D (3D) problem

domains is selected. The combinations of cosine and/or

sine functions in one (two) direction(s) and an exponen-

tial function in the second (third) direction are used as

wave functions. The wave number component(s) associ-

ated with the cosine or sine functions are selected such

that an integer number of half wavelengths fits into the

corresponding bounding box dimension(s). The second

(third) wave number component belonging to the ex-

ponential function is then selected such that the dis-

persion relation holds. As such, standing waves in one

(two) directions are obtained, multiplied by a propagat-

ing or evanescent component in the second (third) di-

rection. Desmet [130] has shown that this set is conver-

gent. Since evanescent components are used in the wave

function sets, also near field effects can be captured.

The applied sets of wave functions within the WBM

for the solution expansions for 2D and 3D bounded and

unbounded subdomains, and for various dynamic equa-

tions, can be found in the papers cited in Section 4.4

and in Section 5.

Construction of the system of equations Within each

subdomain Ω(α), the proposed solution expansion

(145) always exactly satisfies the Helmholtz equation(s)

(141), irrespective of the values of the unknown contri-

bution factors u
(α)
wj . In case an unbounded subdomain

is considered, the wave functions also fulfill the radi-

ation condition (143) at Γ∞. However, the resulting

dynamic field(s), such as for instance displacements,

stresses etc. , which can be obtained by applying an

appropriate differential operator to the dynamic field

variables u(r), may violate the imposed boundary con-

ditions on the finite part of the boundary Γb and inter-

face conditions. The system of matrices is constructed

by minimising these errors by applying a weighted resid-

ual approach. The residuals on the boundaries and in-

terfaces of subdomain Ω(α) are orthogonalised with re-

spect to a set of weighting functions t̃
(α)
• (146).

The first term comprises the continuity conditions

between two subdomains Ω(α) and Ω(β) and the sec-

ond term expresses the imposed boundary conditions on

subdomain Ω(α). Similarly as in the FEM, the weight-

ing function t̃
(α)
• (r) for each type of boundary and

continuity condition can be derived from the underly-

ing weighting functions t̃
(α)
j (r) with the same physical

meaning as the field variables u
(α)
j :

t̃
(α)
• (r) = T•

(
t̃(r)

)
, (147)

with t(r) the vector containing the weighting functions

for the different components t
(α)
j , and T•(?) a problem

and boundary condition dependent specific operator,

generally determined based on a variational analysis of

the considered problem [136]. Similarly to the Galerkin

weighted procedure, as often applied in the FEM, the

weighting functions t
(α)
j (r) are expanded in terms of the

same wave functions as for the field variable u
(α)
j (r):

t
(α)
j (r) =

n
(α)
j∑

wj=1

t̃(α)
wj Φ

(α)
wj (r) = Φ

(α)
j t

(α)
j . (148)

Substitution of the field variable expansion (145) and

the weighting function expansion (148) yields an alge-

braic equation, linking the unknown contribution fac-

tors of each wave function of subdomain Ω(α) to the un-

known contribution factors of adjacent subdomains. For

each subdomain Ω(α), a similar algebraic equation can

be constructed. The enforcement that these NΩ equa-

tions should hold for any combination of the weighting

functions results in a matrix system of equations of the

following shape:

[A]{u} = b, (149)

with u the vector containing all nw =
∑NΩ
α=1

∑NH
j=1 n

(α)
j

unknown wave function contribution factors, A the sys-

tem matrix and b the right-hand side vector, resulting

from non-zero boundary conditions H̄i,l(r) and partic-

ular solution terms û
(α)
p,j (r).
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NΩ∑
β=1,β 6=α

NH∑
l

∫
Γ

(α,β)
I

t̃
(α)
I,l (r)H(α,β)

I,l (û(α)(r), û(β)(r))dΓ +
∑
i

NH∑
l

∫
Γ

(α)
i

t̃
(α)
i,l (r)

[
Hi,l(û(α)(r))−Hi,l(r)

]
dΓ = 0. (146)

Solution and postprocessing In a final step, the system

matrix of equation (149) is solved for the nw number of

unknown wave function contribution factors. The back-

substitution of these values in the field variable expan-

sions (145) leads to an analytical expression of the ap-

proximation of the field variables û
(α)
j (r) in each of the

subdomains Ω(α). Derivative quantities, such as acous-

tic velocities and structural displacements and stresses

can be easily obtained by applying differential opera-

tors to the wave function sets.

4.3 WBM Properties

The FEM and the WBM both belong to the family of

deterministic approaches. Nevertheless, due to the fun-

damentally different choice of approximation functions

and domain discretisations, a different modelling proce-

dure and different properties are obtained. This section

briefly highlights the advantages and disadvantages of

the WB modelling approach.

Problem discretization and degrees of freedom –

Contrarily to the FEM, the WBM partitions the

domain into a small number of large subdomains,

which are frequency independent. The only pre-

requisite is that the bounded subdomains have to

be convex [130]. The applied wave functions are

frequency dependent, and they are exact solutions

of the governing equations. The DOFs are the

contribution factors of each of the wave functions

and do not have a direct physical meaning. To

obtain a finer spatial resolution of the dynamic

field, the number of wave functions is increased,

while keeping the domain decomposition the same.

Problem geometric complexity – For the WBM all

subdomains need to fulfill the convexity require-

ment. Non-convex domains have to be partitioned

into an as small as possible number of large, con-

vex subdomains. As the number of subdomains in-

creases, so does the number of interfaces and con-

sequently the integration length, leading to an in-

crease in computational load. Consequently, the

WBM shows its full efficiency for geometrically sim-

ple problems. To increase the applicability of the

method, two recent developments partially relax

those constraints: the multilevel framework [137,

138] and hybrid approaches [136,139]. The multi-

level framework alleviates the problem of multiple

scatterers or inclusions. For such problems, the par-

titioning into convex domains could lead to a very

large number of subdomains if it is at all feasible.

The multilevel framework treats each of the objects

in the problem domain as different levels which con-

sider only the reflection and scattering of one object.

By using the superposition theorem, the results of

each of the levels are combined. Hybrid approaches

combine the best of two worlds and use the ability

of element-based techniques to tackle the geometri-

cally complex parts of the problem at hand, and the

WBM to deal in a more efficient way with the large,

convex parts of the problem domain. The multilevel

and hybrid approaches are discussed in somewhat

more detail in Section 4.4.

System matrix properties – In contrast to FE matri-

ces, the WB matrices are always complex, frequency

dependent and fully populated. The matrices have

a limited size but need to be reconstructed for every

frequency of interest. As is common for Trefftz ap-

proaches, also the WBM yields ill-conditioned ma-

trices [140,141]. However, Desmet [130] has shown

that, despite this ill-conditioning, an accurate so-

lution can be obtained by applying direct solution

methods if the WB matrices satisfy both Picard con-

ditions [142,143].

Accuracy of derivative variables – Since derivatives of

wave functions are again wave functions, with the
same spatial resolution, derivative variables are pre-

dicted with the same spatial resolution as the pri-

mary variables.

Construction of the system matrices – Building the

WB models involves the evaluation of integrals of

highly oscillatory functions and is computationally

more demanding than the construction of the FE

matrices, which only requires the integration of sim-

ple polynomial functions. Due to the ill-conditioning

of the WB matrices, these integrations must be per-

formed carefully to obtain a sufficient accuracy of

the matrix coefficients. Numerical integration by

applying the Gauss-Legendre integration rule, was

shown to be the most efficient for the kind of in-

tegrals to be solved for a WB scheme, since an ef-

ficient matrix multiplication [136] can be applied.

This numerical integration technique is applied with

a fixed number of quadrature points per smallest
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wavelength resulting from the selected wave num-

ber components in the wave function sets.

Computational performance – Since the WB matrices

are fully populated, the required CPU time is pro-

portional to N3. Despite the fact that the construc-

tion of the WB matrices is computationally more de-

manding than the construction of the FE matrices,

and the ill-conditioning of the WB matrices prevents

the use of fast iterative solvers, due to the difference

in size, the solution of the WB system of equations is

computationally much less demanding than the so-

lution of the FE system of equations. Furthermore,

since the WBM uses a Trefftz basis, it exhibits a

high convergence rate, which makes the WBM ap-

propriate to tackle problems for an increased fre-

quency range.

4.4 WBM state of the art

The concept of the WBM has been introduced by

Desmet [130] and since then has been the topic of con-

tinuous research. This section gives a short overview

of the problem types that can currently be tackled by

the WBM and discusses two different enhancements to

overcome some of the WBM’s limitations and to in-

crease its applicability and versatility: the multilevel

approach and hybrid-approaches.

Current capabilities of the ‘basic’ version of WBM

As it is already indicated in Section 4.2, every dy-

namic problem, of which the mathematical formulation

is given by or can be cast into a (number of) Helmholtz

equation(s), can be tackled by the WBM. So far, the

WBM has been applied to the following problem types:

Interior acoustic problems – The WBM was originally

developed for simple interior acoustic problems [130]

and was further continued by Van Hal [136,144,

145]. Furthermore, the method was extended to 3D

problems [146].

Exterior acoustic problems – Pluymers [144,147] in-

troduced the concept of the initial partitioning of

the problem by the truncation boundary Γt into a

bounded and an unbounded subdomain and defined

2D unbounded wave function sets, not only sat-

isfying the homogeneous Helmholtz equation, but

also complying with the Sommerfeld radiation con-

dition at Γ∞ [148]. This work was extended to

3D unbounded acoustic problems [149] and semi-

unbounded problems [150,151].

Plate bending problems – This topic was profoundly

studied by Vanmaele et al. [152] using the Kirch-

hoff theory for thin plates. The presence of stress

singularities, occurring in corner points of the plate

domain was identified, and special purpose enrich-

ment functions were included in the wave function

set to incorporate this behaviour [153].

Plate membrane problems – Vanmaele et al. [154]

studied membrane problems after casting the Navier

equations into two Helmholtz equations.

Assemblies of flat shells – When two flat plates are con-

nected to each other at a certain angle, the in and

out of plane displacement components may greatly

influence each other. Vanmaele [155] combined the

WB approximation fields for membrane and bend-

ing behaviour to model shell behaviour for assem-

blies consisting of several flat plates.

Coupled vibro-acoustic problems – The WB develop-

ments for bounded acoustic and structural models

are combined to predict the coupled response of an

interior vibro-acoustic problem [136,120,130].

Poroelastic material modelling – Desmet [130] touched

upon this topic and indicated a possible way to

decouple the dynamic Biot equations into three

Helmholtz equations. Lanoye et al. [122] developed

a WB procedure to study patchworks of porous ma-

terials using an equivalent fluid representation. Fur-

ther developments in this area are presented in Sec-

tion 5 [156–159].

Multilevel WBM In the case an unbounded problem

geometry contains several scatterers, the WBM loses

it attractiveness. The truncation Γt needs to enclose

all scatterers and inside this truncation, the convex-

ity requirement may lead to a very large number of

subdomains. When, for instance, a number of circular

scatterers are considered, it is even impossible to obtain

convex subdomains. The same holds for a bounded sub-

domain with (a number of) inclusion(s). To overcome

these difficulties, the concept of multi-level modelling

was introduced for multiple scattering problems. The

procedure is depicted in Figure 9. Each of the scatterers

in the problem setting is considered as a different level.

In every level, the scattering of just one particular ob-

ject is taken into account. These different levels can be

modelled using the existing unbounded WB methodol-

ogy. By applying the superposition principle and linking

all levels together via a weighted residual approach, a

fully coupled numerical model is obtained. As such, dy-

namic problems containing a number of scatterers can

be tackled in a much more efficient way.

The concept was first proposed by Van Genechten

et al. [137] for 2D acoustic scattering problems. Later,

Bergen [151] extended the concept for 3D acoustic scat-

tering problems. The multi-level concept is, however,

not restricted to unbounded problems. Bounded prob-
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Fig. 9 Concept of the multi-level approach [160].

lems, containing a number of inclusions, can be tackled

in a completely similar way. Each of the inclusions is

studied in a different level, and the surrounding domain

is taken into account in an additional, separate level.

The ‘bounded level’ describes the dynamic fields in the

bounded domain without inclusions. Van Genechten et

al. [138] have applied the multi-level for bounded sub-

domains with inclusions to 2D acoustic applications

and 2D plate membrane problems. Vergote [160] has

extended the procedure for plate bending problems.

Hybrid WB methods The second class of enhancements

applies the combined use of two numerical methods for

one problem under study. Each method is applied ac-

cording to its own strengths. This way, a strong hybrid

approach can be obtained, taking benefit of the best

properties of two approaches:

Hybrid Finite Element - Wave Based Method (FE-

WBM) – Whereas the WBM is extremely efficient

for large problem domains with a simple geome-

try, the FEM has almost no restrictions regard-

ing the geometrical complexity of a problem do-

main, but it suffers from dispersion and pollution er-

rors. A hybrid Wave Based-Finite Element Method

is developed to benefit from the strengths of both

approaches. The main idea is explained in Fig-

ure 10. The WBM and the FEM are applied in

non-overlapping regions. Large, geometrically sim-

ple parts of the problem domain are modelled by

the WBM, whereas the FEM focusses on geomet-

rically complex regions. The hybrid FE-WBM ap-

proach was proposed by Van Hal [136], who devel-

oped two ways of coupling the methods together on

the interfaces: a direct and an indirect coupling ap-

proach and applied this procedure for 2D bounded

acoustic problems. Pluymers [144] extended the ap-

proach towards 3D bounded acoustic problems and

validated it for several problems of industrial com-

plexity. Vanmaele [155] applied the hybrid method-

ology to the modelling of membrane problems and

1. original FE mesh

2. computationally more efficient
hybrid FE-WB model

3. model refinement with saved
computational resources

Fig. 10 Concept of hybrid FE-WBM approach [136].

for combined plate-beam problems. Van Genechten

et al. [139] developed a hybrid WB-FEM for vibro-

acoustic problems, modelling the acoustic domain

with the WBM and the structural part with the

FEM. Van Genechten [161] also proposed to use a

modal reduction in the FE subdomain, for a fur-

ther speed up of the hybrid approach. Bergen [151]

proposed a hybrid approach for 2D acoustics, where

a finite domain is modelled by the FEM and cou-

pled to an unbounded WB domain outside a cir-

cular truncation Γt. This approach can be seen as

an efficient alternative to the classical Dirichlet-to-

Neumann-map (DtN) [162]. Recently, a hybrid FE-

WBM was proposed for poroelastic domains [163].

Finally, Jonckheere et al. [159] developed a hybrid

approach to model trimmed vibro-acoustic prob-

lems. The WBM is applied to the acoustic part of

the problem whereas the FEM allows the modelling

of the trim layer. This procedure is further detailed

in Section 5.2.

Hybrid Boundary Element - Wave Based Method (BE-

WBM) – By analogy with the hybrid FE-WBM,

recently, a hybrid BE-WBM has been developed,

which can be deployed for unbounded acoustic prob-

lems, containing geometrically simple as well as

complex scatterers. In such a setting, the multilevel

WB approach still loses its efficiency, since a large

number of subdomains are required in the levels con-

taining the geometrically complex scatterers. Atak

et al. [164] proposed the hybrid BE-WBM, where

the geometrically simple levels are described by the

WBM and the complex scatterers, which would re-

quire a large number of WB subdomains, are gath-

ered in one level which is described by the BEM.

Hybrid WBM-SEA – At high frequencies, the effect of

variability on for instance material properties and

problem geometry, which are inevitably present in

a real system, have to be accounted for. The study

of one deterministic model is no longer representa-

tive to predict the response for a number of prod-

ucts. Typically space- and frequency-averaged re-

sponses are then calculated by applying a statistical

approach such as the SEA [9]. However, when com-



Modelling techniques for vibro-acoustic dynamics of poroelastic materials 31

bining different problem types, especially in built-up

structures, some parts of the problem may still be-

have deterministically, whereas other parts already

behave statistically. As such, the cost of a full deter-

ministic model can no longer be justified, but also

the SEA can no longer be applied on the full system.

Shorter and Langley [18] propose a hybrid FE-SEA

to handle this type of mixed problems. Vergote [165]

substitutes the FE part in such an approach for the

WBM, offering an increased efficiency in the mid-

frequency range.

5 Development of the WBM for poroelastic

materials

This section presents the application of the WBM to

poroelastic problems, as described by the theory of

Biot. A first subsection explains how the Biot equa-

tions can be decoupled and which wave functions should

be selected to describe the field variables. 2D Carte-

sian and axisymmetric problems are considered. The

weighted residual formulation is explained and two

numerical validation cases show the efficiency of the

method. The second subsection explains the hybrid cou-

pling of acoustic wave based domains and poroelastic fi-

nite elements. The (us,uf )- and the (us,pf )-formulation

are considered. The latter shows more efficient results.

5.1 The WBM for the Biot equations

As indicated in Section 4, the WBM can applied to dy-

namic problems of which the mathematical formulation

gives rise to or can be cast into a (number of) Helmholtz

equation(s). The WBM modelling procedure, presented

in Section 4.2, remains unchanged. Consequently, the

first step consists of the partitioning of the considered

problem domain into a number of convex subdomains

and adequate coupling conditions have to be specified

on the interfaces, as discussed in Subsection 5.1.1. In

order to apply the WBM for poroelastic materials, the

Biot equations (75)-(76) need to be decoupled; this is

the topic of subsection 5.1.2. Subsections 5.1.3 and 5.1.4

discuss the selection of wave functions for 2D Cartesian

and axisymmetric subdomains, respectively. The next

subsection discusses the construction and solution of

the WB system of equations. The efficiency and accu-

racy of the approach are illustrated by means of two

numerical validation cases.

5.1.1 Partitioning of the problem domain and

poroelastic interface conditions

In a general poroelastic problem, the domain Ω may be

non convex. According to the WB modelling procedure,

a non-convex domain Ω has to be divided into NΩ non-

overlapping convex subdomains Ω(α), α = 1, ..., NΩ .

Also when different poroelastic materials are present,

a corresponding division into subdomains is required.

To ensure continuity along the poroelastic interfaces

Γ
(α,β)
I between two subdomains Ω(α) and Ω(β), con-

tinuity conditions between the approximations in each

of the subdomains need to be explicitly imposed. Since

in both subdomains, three decoupled Helmholtz equa-

tions are considered, six continuity conditions have to

be imposed. This leads to the following six residuals

[23]:

r ∈ Γ (α,β)
I :

R
(α,β)
usn

(r) = u
s(α)
n (r) + u

s(β)
n (r) = 0

R
(α,β)
uss

(r) = u
s(α)
s (r) + u

s(β)
s (r) = 0

R
(α,β)

ufn
(r) = φ(α)

(
u
f(α)
n (r)− us(α)

n (r)
)

+ φ(β)
(
u
f(β)
n (r)− us(β)

n (r)
)

= 0

R
(α,β)
σsn

(r) = (σ
s(α)
n (r) + σf(α)(r))

− (σ
s(β)
n (r) + σf(β)(r)) = 0

R
(α,β)
σss

(r) = σ
s(α)
s (r)− σs(β)

s (r) = 0

R
(α,β)

σf
(r) = σf(α)(r)

φ(α) − σf(β)(r)
φ(β) = 0

, (150)

The first three conditions are imposed on subdomain

Ω(α), the last three on subdomain Ω(β). Together with

the boundary conditions (84)-(86), three conditions are

defined on each point of the boundary of each subdo-
main, leading to a well-posed problem description.

5.1.2 Decoupling of the Biot equations

Two possible decompositions for displacements in the

solid phase are presented, which are valid for isotropic

materials:

A. By applying the divergence operation and the curl

operation to the Biot equations [166], the displace-

ment field can be decomposed into two dilatational

strains, es1(r) and es2(r), and a rotational strain,

Ωs(r):

us(r) = ∇
(
− 1

k2
l1

es1(r)− 1

k2
l2

es2(r)
)

+∇× 1

k2
t

Ωs(r).

(151)

In this decomposition, the dilatation of the solid

phase es(r) = es1(r)+es2(r) and the rotational strain
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of the solid phase Ωs(r) is given by the curl of the

displacement of the solid phase:

Ωs(r) = ∇× us(r). (152)

B. The second transformation is based on the

Helmholtz decomposition of a vector field [133]

which states that any vector field can be decom-

posed into an irrotational and a solenoidal part,

provided that this vector field is piecewise differen-

tiable. This transformation is discussed in [23] and

leads to a decomposition into two scalar potentials,

ϕs1(r) and ϕs2(r), and a vector potential, ψs(r):

us(r) = ∇
(
ϕs1(r) + ϕs2(r)

)
+∇×ψs(r). (153)

By substituting these expressions in the Biot equations,

three decoupled Helmholtz equations are found, repre-

senting the two longitudinal wave types and the shear

wave which can propagate in poroelastic materials:(
∇2ςs1(r) + k2

l1ς
s
1(r)

) (
∇2ςs2(r) + k2

l2ς
s
2(r)

)
= 0, (154)

∇2χs(r) + k2
tχ

s(r) = 0, (155)

in which ςs(r) = ςs1(r) + ςs2(r) is either the steady-state

volumetric strain es(r) or the scalar potential ϕs(r) and

χs(r) is either the steady-state rotational strain Ωs(r)

or the vector potential ψs(r). Expressions for the wave

numbers kl1 , kl2 and kt are given in equations (77)-(78).

According to the WB principle, each of those three

strain (potential) fields in a convex subdomain Ω(α), is

then approximated by a set of wave functions, which are

exact solutions of the accompanying Helmholtz equa-

tion. Since the wave function sets are different in Carte-

sian coordinates and in cylinder coordinates, these will

be discussed separately.

5.1.3 Wave function selection for 2D Cartesian

poroelastic problems

Consider a 2D poroelastic convex subdomain Ω(α) in a

Cartesian coordinate system as shown in Figure 11. It

is assumed that the poroelastic field variables are in-

dependent of the z-coordinate. Consequently, χs(r) =

χs(r) ·ez, with ez the unit vector normal to the consid-

ered xy-plane. Equation (155) can then be written as a

scalar Helmholtz equation:

∇2χs(r) + k2
tχ

s(r) = 0. (156)

Each of the three variables, ςs
(α)

1 (r), ςs
(α)

2 (r) and

χs
(α)

(r) in subdomain Ω(α) is approximated by a so-

lution expansion in terms of n
(α)
• wave functions Φ

(α)
w•

W
(a)

x
y

L

L

x

y

Fig. 11 2D WB subdomain in cartesian coordinates.

(w• = 1, ..., n
(α)
• ):

ςs
(α)

1 (r) ' ς̂s(α)

1 (r) =

n(α)
ς1∑

wς1=1

u(α)
wς1

Φ(α)
wς1

(r)

= Φ
(α)
wς1

(r)u
(α)
wς1

ςs
(α)

2 (r) ' ς̂s(α)

2 (r) =

n(α)
ς2∑

wς2=1

u(α)
wς2

Φ(α)
wς2

(r)

= Φ
(α)
wς2

(r)u
(α)
wς2

χs
(α)

(r) ' χ̂s(α)

(r) =

n(α)
χ∑

wχ=1

u(α)
wχΦ

(α)
wχ (r)

= Φ
(α)
wχ(r)u

(α)
wχ

, (157)

The wave function contribution factors u
(α)
w• belonging

to each of the wave functions are gathered in the vec-

tors of degrees of freedom u
(α)
w• . The row vectors Φ

(α)
w• (r)

collect the n
(α)
• wave functions Φ

(α)
w• (r). Each wave func-

tion Φ
(α)
w• (r) exactly satisfies the corresponding homoge-

neous Helmholtz equation in (154) and (155). For two-

dimensional bounded domains, for each of the three
variables, four sets of wave functions are introduced,

indicated by superscripts a, b, c and d:

n
(α)
•∑

w•=1

u(α)
w• Φ

(α)
w• (r) =

n
a(α)
•∑

w•=1

ua(α)
w• Φa(α)

w• (r)

+

n
b(α)
•∑

w•=1

ub(α)
w• Φ

b(α)
w• (r) +

n
c(α)
•∑

w•=1

uc(α)
w• Φ

c(α)
w• (r)

+

n
d(α)
•∑

w•=1

ud(α)
w• Φd(α)

w• (r),

(158)

with n
(α)
• = n

a(α)
• + n

b(α)
• + n

c(α)
• + n

d(α)
• , where • can

be ςs1 , ςs2 or χs. The wave functions are defined as:

Φ
a(α)
w• (x, y) = sin(k

a(α)
xw• x)e−jk

a(α)
yw• y

Φ
b(α)
w• (x, y) = cos(k

b(α)
xw• x)e−jk

b(α)
yw• y

Φ
c(α)
w• (x, y) = e−jk

c(α)
xw•x sin(k

c(α)
yw• y)

Φ
d(α)
w• (x, y) = e−jk

d(α)
xw• x cos(k

d(α)
yw• y)

, (159)
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The only requirement for these wave functions to be

exact solutions of one of the three Helmholtz equations

in (154) and (155) is that the wave number components

in (159) satisfy the associated dispersion relation:

(
k
a(α)
xw•

)2

+
(
k
a(α)
yw•

)2

=
(
k
b(α)
xw•

)2

+
(
k
b(α)
yw•

)2

=(
k
c(α)
xw•

)2

+
(
k
c(α)
yw•

)2

=
(
k
d(α)
xw•

)2

+
(
k
d(α)
yw•

)2

= k2
j ,

(160)

with kj one of the three physical wave numbers, kl1 ,

kl2 or kt. Similarly as proposed for acoustic and vibro-

acoustic problems [130], the following wave number

components are selected:

(
k
a(α)
xw• , k

a(α)
yw•

)
=
(
k
b(α)
xw• , k

b(α)
yw•

)
=

(
w

(α)
•,1π

L
(α)
x

,±
√
k2
j −

(
k
a(α)
xw•

)2
)
,

(161)

(
k
c(α)
xw• , k

c(α)
yw•

)
=
(
k
d(α)
xw• , k

d(α)
yw•

)
=

(
±
√
k2
j −

(
k
c(α)
yw•

)2

,
w

(α)
•,2π

L
(α)
y

)
,

(162)

where w
(α)
•,1 = 0, 1, 2, . . . and w

(α)
•,2 = 0, 1, 2, . . .. The con-

stants L
(α)
x and L

(α)
y are the dimensions of the smallest

rectangular bounding box circumscribing the consid-

ered subdomain Ω(α) as illustrated in Figure 11. The

wave number components associated with the cosine

and sine are selected such that an integer number of

half wavelenghts fits into the corresponding dimension

of the bounding box. The other wave number compo-

nents, associated with the exponential functions are se-

lected such that the dispersion relation holds. Standing

waves are obtained in one direction as combined with

propagating or evanescent components in the other di-

rection. The latter are useful to take into account near

field effects. Desmet [130] has shown that this set of

wave functions forms a complete set, and that the WBM

will converge towards the exact solution of the problem,

given that the subdomains are convex. As compared to

the wave function sets for acoustic problems, both the

sine and cosine functions are included. By using both

sets, the system becomes more ill conditioned and the-

oretically, the inclusion of both sets is not required for

convergence. However, if only one set is included, the

convergence for structural problems can be rather slow.

Vanmaele [155] has shown by numerous validation cases

that the inclusion of both sets leads to a faster conver-

gence for structural problems where the displacement

field is represented by a similar combination of strain

or potentials.

5.1.4 Wave function selection for axisymmetric

poroelastic problems

In case rotational symmetry is present in the problem

setting, a large amount of computational effort can be

saved by explicitly enforcing the symmetry conditions.

This is especially the case for axisymmetric problems.

When the geometry, the boundary and loading condi-

tions, and the material properties are independent of

the circumferential angle, the solution of the problem

is also independent of θ. It is then sufficient to consider

just a section in (r,z)-coordinates instead of a full 3D

model as illustrated in Figure 12.

x

y

z

y

r

q

z
W

(a)

L

Lr

Fig. 12 WB subdomain in axisymmetric coordinates.

For an axisymmetric problem, the displacement as-

sociated with the vector potentials can only have com-

ponents in the r- and the z-direction. Consequently

χs(r) = χs(r) · eθ, with eθ the unit vector in the θ-

direction. By working out the Laplacian operator in

cylindrical coordinates on a scalar or a vector field,

equations (154) and (155) can be rewritten as:[
1

r

∂

∂r

(
r
∂ςs1(r, z)

∂r

)
+
∂2ςs1(r, z)

∂z2
+ k2

l1ς
s
1(r, z)

]
[

1

r

∂

∂r

(
r
∂ςs2(r, z)

∂r

)
+
∂2ςs2(r, z)

∂z2

+k2
l2ς

s
2(r, z)

]
= 0,

(163)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2

)
χs(r, z)

+ k2
tχ

s(r, z) = 0.

(164)

In order to apply the WBM, all wave functions in the

set have to fulfill the axisymmetric scalar and vector

Helmholtz equation. Similarly as for Cartesian coordi-

nates, each of the three field variables ςs
(α)

1 (r), ςs
(α)

2 (r)

and χs
(α)

(r) in a poroelastic subdomain Ω
(α)
pe can be

approximated according to equation (157). Each of the

wave functions Φw•(r) has to inherently satisfy one of

the three associated homogeneous equations as defined
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in (163) or (164). In [158] a detailed derivation of com-

plete axisymmetric wave function sets for acoustic and

poroelastic subdomains is presented. For axisymmetric

poroelastic bounded domains, three sets of wave func-

tions are distinguished, indicated by superscripts s, t

and u:

n
(α)
•∑

w•=1

u(α)
w• Φ

(α)
w• (r, z) =

n
(α)
•,s∑

w•,s=1

u(α)
w•,sΦ

(α)
w•,s(r, z)

+

n
(α)
•,t∑

w•,t=1

u(α)
w•,tΦ

(α)
w•,t(r, z) +

n
(α)
•,u∑

w•,u=1

u(α)
w•,uΦ

(α)
w•,u(r, z),

(165)

with n
(α)
• = n

(α)
•,s + n

(α)
•,t + n

(α)
•,u and • = ς1, ς2, χ. The

wave functions are defined as:
Φ

(α)
wς?,s(r, z) = J0(k

(α)
rwς?,sr) cos(k

(α)
zwς?,sz)

Φ
(α)
wς?,u(r, z) = J0(k

(α)
rwς?,ur) sin(k

(α)
zwς?,uz)

Φ
(α)
wς?,t(r, z) = J0(k

(α)
rwς?,tr) e

−jk(α)
zwς?,t

z

, (166)

where ?=1,2 and
Φ

(α)
wχ,s(r, z) = J1(k

(α)
rwχ,sr) cos(k

(α)
zwχ,sz)

Φ
(α)
wχ,u(r, z) = J1(k

(α)
rwχ,ur) sin(k

(α)
zwχ,uz)

Φ
(α)
wχ,t(r, z) = J1(k

(α)
rwχ,tr) e

−jk(α)
zwχ,t

z

, (167)

with J0(z) and J1(z) the ordinary Bessel functions of

first kind and zeroth and first order, respectively. Al-

though the inclusion of both the sine and the cosine

set is not strictly necessary for theoretical convergence,

also here they are included to obtain a better conver-

gence, following the same reasoning as for Cartesian

coordinates. For acoustic axisymmetric problems, in a

similar way, only the s- and t-sets are included. The

wave number components are given by:

(
k

(α)
rwς?,s , k

(α)
zwς?,s

)
=
(
k

(α)
rwς?,u , k

(α)
zwς?,u

)
=

(√
k2
l?
−
(
k

(α)
zwς?,s

)2

,
b
(α)
ς?,1

π

L
(α)
z

)
(
k

(α)
rwς?,t , k

(α)
zwς?,t

)
=

(
λ
b
(α)
ς?,2

,±
√
k2
l?
−
(
k

(α)
rwς?,t

)2
) (168)

with ? = 1, 2 and

(
k

(α)
rwχ,s , k

(α)
zwχ,s

)
=
(
k

(α)
rwχ,u , k

(α)
zwχ,u

)
=

(√
k2
t −

(
k

(α)
zwχ,s

)2

,
b
(α)
χ,1π

L
(α)
z

)
(
k

(α)
rwχ,t , k

(α)
zwχ,t

)
=

(
λ
b
(α)
χ,2
,±
√
k2
t −

(
k

(α)
rwχ,t

)2
) (169)

with b
(α)
•,1 = 0, 1, 2, ... and the coefficients b

(α)
•,2 =

0, 1, 2, ... are associated with positive roots, λ
b
(α)
•,2

, of

J1(L
(α)
r r), with • = ς1, ς2, χ. The wave functions that

are strictly zero, for instance the sine functions with

wave number component zero, are excluded from the

resulting wave function sets. L
(α)
r and L

(α)
z are the di-

mensions of the smallest rectangular bounding box cir-

cumscribing the poroelastic problem subdomain Ω(α)

as illustrated by Figure 12.

5.1.5 Construction and solution of the system of

equations

With the use of the selected wave functions in the

previous sections, the governing Biot equations are

always exactly satisfied, irrespective of the values of

the unknown wave function contribution factors. How-

ever, the resulting dynamic fields may violate the im-

posed boundary and interface continuity conditions.

Each field variable a(α)(r), which can be the stresses

and displacements in both phases, can be written in

terms of the strain or potential fields by applying the

corresponding differential operator:

a(α)(r) = L(α)
a

 ςs(α)
1 (r)

ς
s(α)
2 (r)

χs(α)(r)

 . (170)

The differential operators for the normal and tangential

displacements and the stresses in both the solid and

the fluid phase are defined as follows for 2D Cartesian
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coordinates:

L(α)
usn

=

[
cl1

∂

∂γ
(α)
n

, cl2
∂

∂γ
(α)
n

, ct
∂

∂γ
(α)
s

]
, (171)

L(α)
uss

=

[
cl1

∂

∂γ
(α)
s

, cl2
∂

∂γ
(α)
s

, − ct
∂

∂γ
(α)
n

]
, (172)

L(α)

ufn
=

[
cl1µl1

∂

∂γ
(α)
n

, cl2µl2
∂

∂γ
(α)
n

, ctµt
∂

∂γ
(α)
s

]
, (173)

L(α)
σsn

=

[
cl1(2N

∂2

∂γ
2(α)
n

+ (A+ µl1Q)∇2) ,

cl2(2N
∂2

∂γ
2(α)
n

+ (A+ µl2Q)∇2), (174)

2ctN
∂2

∂γ
(α)
n ∂γ

(α)
s

]
,

L(α)
σss

=

[
2Ncl1

∂2

∂γ
(α)
n ∂γ

(α)
s

, 2cl2N
∂2

∂γ
(α)
n γ

(α)
s

,

ctN(
∂2

∂γ
2(α)
s

− ∂2

∂γ
2(α)
n

)

]
,

(175)

L(α)

σf
=
[
cl1(Q+ µl1R)∇2, cl2(Q+ µl2R)∇2, 0

]
,(176)

where cl1 , cl2 and ct depend on whether the strain

(151) or the potential (153) formulation is used:

strains : cl1 = − 1

k2
l1

cl2 = − 1

k2
l2

ct =
1

k2
t

(177a)

potentials : cl1 = 1 cl2 = 1 ct = 1 (177b)

The differential operators for the displacements and the

stresses in both the solid and the fluid phase for axisym-

metric coordinates read:

Lusr =

[
cl1

∂

∂r
, cl2

∂

∂r
, − ct

∂

∂z

]
, (178)

Lusz =

[
cl1

∂

∂z
, cl2

∂

∂z
, ct

(
1

r
+

∂

∂r

)]
, (179)

Lufr =

[
cl1µl1

∂

∂r
, cl2µl2

∂

∂r
, − ctµt

∂

∂z

]
, (180)

Lufz =

[
cl1µl1

∂

∂z
, cl2µl2

∂

∂z
, ctµt

(
1

r
+

∂

∂r

)]
, (181)

Lσsrr =

[
cl1

(
−k2

l1 (A+ µl1Q) + 2N
∂2

∂r2

)
,

cl2

(
−k2

l2 (A+ µl2Q) + 2N
∂2

∂r2

)
, (182)

2ctN

(
∂2

∂r∂z

)]
,

Lσsrz =

[
2cl1N

∂2

∂r∂z
, 2cl2N

∂2

∂r∂z
,

ctN

(
− 1

r2
+

1

r

∂

∂r
+

∂2

∂r2
− ∂2

∂z2

)]
,

(183)

Lσszz =

[
cl1

(
−k2

l1 (A+ µl1Q) + 2N
∂2

∂z2

)
,

cl2

(
−k2

l2 (A+ µl2Q) + 2N
∂2

∂z2

)
, (184)

2ctN

(
1

r

∂

∂z
+

∂2

∂r∂z

)]
,

Lσf =
[
−cl1k2

l1(Q+ µl1R),

− cl2k2
l2(Q+ µl2R), 0

]
.

(185)

The boundary and interface residuals of the porous ma-

terial can be expressed in terms of wave functions using

the same differential operators. The mutual coupling

between the three wave field components is entirely con-

tained within the conditions specified along the bound-

aries and interfaces. For each subdomain Ω(α), the er-

ror residual functions are weighted with respect to some

arbitrary weighting functions, indicated by •̃. The re-

sulting expression is given in Equation (186). This

weighted residual formulation very generally considers

all kinds of possible boundary conditions, when only

poroelastic subdomains are considered. If also acoustic

or elastic subdomains are considered, of course the as-

sociated weighted residuals should be added. On each

boundary of subdomain Ω(α) three residuals are im-

posed. The first six integrals result from the kinematic,

mixed and mechanical boundary conditions. As can be

seen, on every boundary Γ•, exactly the three residuals

belonging to this boundary are evaluated. The two last

terms in this equation result from interfaces between

the considered subdomain Ω(α) and adjoining subdo-

mains Ω(β). It is supposed that the problem geometry
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∫
Γ

(α)
ki

⋃
Γ

(α)
mi

σ̃
s(α)
n (r)R

(α)
us
n

(r)dΓ +
∫
Γ

(α)
ki

σ̃
s(α)
s (r)R

(α)
us
s

(r)dΓ +
∫
Γ

(α)
ki

⋃
Γ

(α)
mi

σ̃f(α)(r)R
(α)

uf
n

(r)dΓ −
∫
Γ (α)
me

ũ
s(α)
n (r)R

(α)
σs
n

(r)dΓ

−
∫
Γ (α)
me

⋃
Γ

(α)
mi

ũs(α)
s (r)R

(α)
σs
s

(r)dΓ −
∫
Γ (α)
me

ũf
(α)

n (r)R
(α)

σf
(r)dΓ

+

NΩ∑
β=1,β 6=α

[ ∫
Γ

(α,β)
I

(σ̃s
(α)

n (r)R
(α,β)
us
n

(r) + σ̃s(α)
s (r)R

(α,β)
us
s

(r) + σ̃f(α)(r)R
(α,β)

uf
n

(r))dΓ
] (186)

−
∑NΩ

β=1,β 6=α

[ ∫
Γ

(α,β)
I

(ũ
s(α)
n (r)R

(α,β)
σs
n

(r) + ũ
s(α)
s (r)R

(α,β)
σs
s

(r) + ũ
f(α)
n (r)R

(α,β)

σf
(r))dΓ

]
= 0.

can consist of NΩ subdomains. Each two subdomains

may or may have not an intermediate interface, which

is taken into account by the summation. For every in-

terface, in total six residuals are evaluated. One set is

evaluated on the considered subdomain Ω(α), the other

set is evaluated on the adjacent subdomain Ω(β); so

for every interface either the first set or the second set

is taken into account. The weighting functions ã (with

a=usn, uss, u
f
n, σsn, σss , σ

f ) are expressed in terms of the

same set of wave functions as used in the field variable

expansions:

ã(r) = La

 ς̃s1(r)

ς̃s2(r)

χ̃s(r)

 (187)

with

ς̃s1(r) = Φ(α)
wςs1

(r)ũ(α)
wςs1

(188)

ς̃s2(r) = Φ(α)
wςs2

(r)ũ(α)
wςs2

(189)

χ̃s(r) = Φ(α)
wχs (r)ũ(α)

wχs (190)

Substituting the field variable expansions and the

weighting function expansions into the weighted resid-

ual formulation for subdomain Ω(α)(r), yields an alge-

braic equation which links together the wave function

contribution factors of subdomain Ω(α) and those of

the adjacent subdomains. This procedure is repeated

for each subdomain. Since these equations should hold

for any weighting function and thus for every possible

combination of ũ
(α)
w•i

, a fully populated, complex and

generally nonsymmetric system of frequency dependent

equations (191) is obtained.

The matrices A(•,•) are the system matrices, the

matrices C(•,•) are the coupling matrices, linking the

wave functions of two adjacent subdomains and f (•)

are the loading vectors resulting from non-homogeneous

kinematic, mechanical or mixed boundary condition.

For axisymmetric problems, the weighted residual for-

mulation is given in [158].

5.1.6 Accuracy and efficiency

In [156,158] various numerical examples indicate the

potential of the WBM for 2D Cartesian and axisymmet-

ric coordinates, respectively. The authors have selected

two cases to discuss its potential in this review paper.

All WB routines are implemented in Matlab R2010a

and the resulting systems of equations are solved using

Gaussian elimination. The FE predictions are obtained

using COMSOL3.5, a commercial software package, ca-

pable of handling weak integral forms. The FE mod-

els use a (us,uf )-formulation. Cubic Lagrangian finite

elements are used and the models are solved using a

direct UMFPACK solver. Subsequent FE meshes are

constructed adaptively, based on the L2 norm of the

prediction errors. Calculation times always include the

construction and the solution time of the system ma-

trices since the models are frequency dependent.

2D Cartesian multilayer problem As an illustration,

this review paper discusses the multilayer example pre-

sented in [156]. It consists of three poroelastic layers as
shown in Figure 13. The top and the bottom layer con-

tain the same polyurethane foam and the middle layer

consists of a carpet material. All material properties

are given in Appendix A. On all boundaries, except for

the top one, sliding edge conditions (86) are imposed.

On the top layer an acoustic pressure with the shape

p(x) = 2x3−3x2 + 1[N/m2] excites the system, leading

to the following mechanical boundary conditions on the

top layer: σf(3) = −φ(3)pa, σ
s(3)
y = −(1 − φ(3))pa and

σsxy = 0[N/m2].

Figure 14 shows the contour map of the absolute

value of the relative flux at 600Hz in the multilayer. The

results are nicely continuous over the domain interfaces,

indicated by dashed lines.

Figure 15 shows frequency response functions of re-

spectively usy and σf obtained in two different points in

subdomains Ω(1) and Ω(2). The FE results are obtained

applying 6 adaptive refinements, leading to approxi-

mately 330.000 DOFs per frequency line. The results

of both methods coincide, indicating a good accuracy
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
A(1,1) C(1,2) · · · C(1,NΩ)

C(2,1) A(2,2) · · · C(2,NΩ)

...
...

. . .
...

C(NΩ,1) C(NΩ,2) · · · A(NΩ,NΩ)

 ·


[u
(1)
wς1

u
(1)
wς2

u
(1)
wχt

]T

[u
(2)
wς1

u
(2)
wς2

u
(2)
wχt

]T

...

[u
(NΩ)
wς1

u
(NΩ)
wς2

u
(NΩ)
wχt

]T

 =


∑
β f (1,β)∑
β f (2,β)

...∑
β f (NΩ,β)

 (191)
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Ω(1) and Ω(2) applying both the FEM and the WB potentials formulation.
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u
s(α)
y (r))[m] at 600Hz.

is obtained. To compare the convergence rate of the

different methods, the relative prediction error |ε| of a

variable a is calculated as a function of CPU time. This

prediction error is averaged over N response points in

the poroelastic domain:

|ε| = 1

N

N∑
j=1

εj with εj =
|a(rj)− aref (rj)|
|aref (rj)|

(192)

Table 1 FEM reference data for the multilayer problem

200Hz 400Hz
dofs cputime [s] dofs cputime [s]

1,285,260 779 1,157,736 691

For this example, 36 equally distributed response points

are considered in each problem domain. Figures 16 and

17 show convergence curves of ufy(r) and σsxy(r) at 200

and 400Hz, respectively. Eight adaptive refinements are

performed on the first FE mesh, which consists of 5688

degrees of freedom. The finest FE models are used as

a reference. Details of these models are given in Ta-

ble 1. For the WBM, the number of wave functions is

gradually increased. The relative prediction error is cal-

culated for ufx and σsxy in each poroelastic subdomain.

A high convergence rate and good accuracies are ob-

tained with the WBM, which stagnates at the accuracy

of the FE reference model.

For some of the problems presented in [156], the con-

vergence of the WBM is hampered by the matrix condi-

tion number. The convergence curves start stagnating

before the accuracy of the FE reference is reached. En-

gineering accuracy is, however, always obtained in a

very short calculation time.

Axisymmetric problem case Whereas in [158] a number

of convergence studies are performed to validate the ef-

ficiency of the axisymmetric WBM, examples of more

practical interest are discussed here: the Kundt’s tube,

as shown in Figure 18. The set-up, dimensions and ma-

terial properties are inspired by the paper of Vigran
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Fig. 16 Convergence curves of ufx(r) and σsxy(r) at 200 Hz in each of the three subdomains, calculated with the WB potential
formulation and the FEM.
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Fig. 17 Convergence curves of ufx(r) and σsxy(r) at 400 Hz in each of the three subdomains, calculated with the WB potential
formulation and the FEM.

Fig. 18 Problem description Kundt tube set-up.

et al. [167]. The poroelastic material is a polyurethane

foam Fireflex of which the properties are given in Ap-

pendix A. The poroelastic sample is a cylinder of 5cm

thickness, indicated by a grey rectangle on Figure 18.

The Kundt tube has a diameter of 4cm and the sample

is glued onto a rigid backing, applying fixed boundary

conditions (85). The white rectangle in the figure in-

dicates the acoustic domain. On the top edge of the

acoustic domain, a normal velocity of zero is imposed,

taking into account that the tube is rigid. The acous-

tic domain is excited with a normal velocity of 1 m/s,

imposed on the right hand side of the domain. The x-

marks show the positions of two microphones, which

are separated by 5cm. In this way, the two-microphone

method can be studied, measuring the acoustic pressure

at the two nodes and applying the formulas developed

for this measurement procedure in order to determine

the absorption coefficient. The damping in the acous-

tic domain is small, but needs to be taken into account

when precise measurements, and consequently simula-

tions, are required. The first order high frequency ap-

proximation of the acoustic wave number is then given

by [168]:

k =
ω

c0

[
1 +

1

2
(1− j) δ

Λ

(
1+

γ − 1√
Npr

)]
, (193)

with c0 the speed of sound in free air. As the value for

Λ the tube radius is taken. This wave number k is taken

into account in the acoustic domain of the problem.
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In this numerical example, the influence of two dif-

ferent ways of mounting the sample in the tube is com-

pared. In a first set-up, the sample is free to slide along

the wall of the tube, applying sliding edge boundary

conditions (86). In a second set-up, the sample is glued

to the side wall, applying fixed boundary conditions

(85).

Figures 19 and 20 show contour plots of the dis-

placement field usz(r) and the acoustic stress field σf (r)

within the poroelastic domain obtained with the WBM.

The (a) figures show the results for a poroelastic sam-

ple which is allowed to slide along the side wall of the

tube, applying mixed boundary conditions, and the (b)

figures show the same dynamic variables obtained for

a fixed sample. The figures show that for the sliding

edge boundary conditions a perfect 1D behaviour is ob-

tained. This is to be expected, since the shear wave is

not excited. For this simple set-up analytical formulas

could be employed to predict the dynamic fields. For the

second setup, a more complex behaviour is obtained.

By calculating the absorption coefficient α, the in-

fluence of different boundary conditions can be verified.

The absorption coefficient is given by:

α = 1− |R|2, (194)

with R the reflection coefficient. The reflection coef-

ficient is calculated using the obtained pressure field

p(p1) and p(p2) at the microphone locations [168]:

R =
ejkd1 − ejkd2p(p1)/p(p2)

e−jkd2p(p1)/p(p2)− e−jkd1
, (195)

with d1 and d2 the distances from the poroelastic-

acoustic interface to the microphone positions p1 and

p2, respectively. Figure 21 shows the absorption coeffi-

cient obtained with the WBM and the FEM for both

configurations of boundary conditions and for a fre-

quency range between 250Hz and 5000Hz in steps of

25Hz. In case sliding edge boundary conditions are ap-

plied, the absorption coefficient can be exactly calcu-

lated [23]. The exact absorption curve is also shown in

Figure 21(a).

The effect of the presence of the shear wave is clear

when comparing Figure 21(a) and Figure 21(b), indi-

cating the importance of the mounting conditions. The

shear wave is not present when sliding edge boundary

conditions are imposed. The effect of imposing fixed

edge boundary conditions is that the sample exhibits

a stiffer behaviour, shifting the peak in the absorption

curve related to a resonance in the poroelastic material

towards higher frequencies. The obtained results are in

good agreement with the results obtained by Vigran

et al. [167], indicating the possibility of the method to

predict/evaluate measurement outcomes.

5.1.7 Stress singularities in poroelastic domains

As indicated by Vanmaele [155] for structural dynamic

problems, the accuracy of the WBM deteriorates when

singularities are present in the dynamic fields. These

problems originate from the fact that the wave func-

tions are smooth and have difficulties capturing local

steep gradients. As indicated by Sinclair [169], infinite

values of stresses are physically impossible, but indi-

cate that no finite stresses can be computed by the

linear theory of elasticity. Three types of linearization

are made in the classical elasticity: the relationship be-

tween stresses and strains are linear, the strains depend

linearly on the displacement gradients and the deflec-

tions are small. Singularities violate all three of these

assumptions. Nevertheless they comply with all of the

field equations. Due to the simplification of the gov-

erning equations, compliance with the assumptions be-

comes unpoliced by the theory itself.

In general, two classes of singularities can be dis-

tinguished. The first class originates from concentrated

loads applied over regions with a vanishingly small area,

which typically leads to non-homogenous Helmholtz

equations and a particular solution is necessary. The

second class considers singularities that originate from

discontinuities. It is this second class that we consider

here. Discontinuity singularities can be expected at the

corner points. Typically, this kind of singularity arises

when the internal angle formed by the two sides of a

corner exceeds a critical value, which depends on the

imposed boundary conditions.

Vanmaele proposed the use of special purpose en-

richment functions, also called corner functions (CF),

to account for the singular behaviour in the vicinity

of a corner for structural dynamic problems [155]. By

adding these corner functions to the regular wave func-

tion sets, convergence problems were remedied. Since

a poroelastic material consists of both a solid and a

fluid phase, it is expected that singularities can arise in

variables related to the solid phase and in variables re-

lated to the fluid phase. This section briefly summarises

the work on stress singularities on poroelastic materials,

without going into details.

Analytical solutions are sought which asymptoti-

cally describe the dynamic fields in the near vicinity of a

corner. The aim of an asymptotic analysis is twofold: (i)

a criterion can be defined to determine when singulari-

ties will be present, and (ii) enrichment functions which

accurately represent the singular behaviour close to the

corner point can be identified. For the asymptotic anal-

ysis, a 2D infinite wedge domain is studied, as shown

in Figure 22. The solutions of the infinite wedge do-

main only exactly describe the dynamic fields when the



40 Elke Deckers et al.

z [m]

r 
[m

]

 

 

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

2

4

6

8

10
x 10

−6

(a) Sliding edge boundary conditions

z [m]

r 
[m

]

 

 

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.5

1

1.5

2

2.5

3
x 10

−5

(b) Fixed edge boundary conditions

Fig. 19 Contour of the amplitude of usz(r) [m] at 2500Hz with two different types of boundary conditions.
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Fig. 21 Absorption coefficient of the porous material obtained with a Kundt tube set-up for two types of boundary conditions,
as calculated with the WBM and the FEM.

edges extend to infinity. However, they present a good

approximation for the actual behaviour in the vicinity

of the corner of a finite problem domain as long as the

same boundary conditions are imposed on both sides of

the wedge as for the real finite problem.

The analytical solutions of interest need to satisfy:

A. The governing equations.

B. The imposed boundary conditions.

C. The regularity requirements at the vertex.

In [157] the mathematical derivation of the analyt-

ical solutions is given. It is shown that exact solutions

fulfilling the Biot equations and the boundary condi-

tions can only be found when sliding edge boundary

conditions are imposed on both sides of the wedge. It

can be concluded that for this combination of boundary

conditions, stress singularities are present in the solid

phase of the material if the internal angle is larger than

90◦. An analytical description of the dynamic fields in

the vicinity of a singular corner is given. Although not

discussed in that paper, additionally, singularities in the

fluid displacement fields exist for sliding edge boundary

conditions when the internal angle is larger than 180◦

[170].

An important remark when applying special pur-

pose enrichment functions within the WBM, is that

they do not form a Trefftz-complete set. Consequently,

by only using corner functions in the wave function

set, the convergence towards the exact solution of the
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problem is not ensured. As such, corner functions can

only be used in combination with the conventional set

of wave functions. For each corner of the problem do-

main where a singularity exists, a set of corner func-

tions will be added to the field variable expansion of

the bounded subdomain(s) to which the corner belongs.

Unlike wave functions, corner functions are not neces-

sarily restricted to one subdomain. Similarly as for reg-

ular wave functions the same corner functions are also

applied as weighting functions.

Assessment of the beneficial effect of corner functions

To show the adverse effect of singularities and the ben-

eficial effect of corner functions, the problem setting

shown in Figure 23 is considered. The problem geome-

try consists of a 2D rectangular acoustic subdomain Ωa,

containing air, and a triangular poroelastic subdomain

Ωpe consisting of a polyurethane foam. The material

properties of both subdomains are given in Appendix

A. Boundaries Γ1, Γ3 and the left half side of Γ2 are

rigid boundaries, equation (44) with v̄n = 0. On the

right hand side of Γ2 a normal velocity with amplitude

1m/s is imposed, exciting the acoustic cavity. On the

coupling edge ΓC , the coupling conditions (87) are im-

posed. The edges Γ ′1 and Γ ′2 of the poroelastic domain

are sliding edges with imposed conditions (86). Stress

singularities exist in the bottom corner of the poroelas-

tic domain as it is larger than 90◦.

To illustrate the beneficial effect of corner functions

and the adverse effect of singularities, Figure 24 shows

contour plots of the predicted shear stress field σsxy(x, y)

at 200Hz calculated with the WBM. In Figure 24(a)

only the regular wave functions are used in the wave
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Fig. 23 Problem geometry of a rectangular air cavity cou-
pled with a triangular poroelastic domain

function expansion while in Figure 24(b) the same num-

ber of wave functions have been used and three spe-

cial purpose enrichment functions have been added. By

adding the appropriate enrichment functions, the ac-

curacy and the stability of the WBM are clearly im-

proved. In order to more clearly illustrate the adverse

effect of the singular corner on the WB predictions in

the whole poroelastic field, twelve contour lines between

1N/m2 and 46N/m2 are added to the figures. These

lines clearly show the presence of irregularities in the

WBM prediction which do not appear when adding the

three special purpose enrichment functions. As shown

in [157], also the convergence improves by adding these

special purpose enrichment functions. In general, the

convergence rate and the stability is improved, while

only a small increase of computational effort is incurred.
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Fig. 24 Predicted stress field σsxy(x, y)[N/m2] at 200 Hz.
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5.2 Hybrid models

As discussed earlier, the FEM and the WBM have their

own specific strengths and weaknesses through their

fundamental differences in modelling approach.

The FEM is a very flexible technique, capa-

ble of tackling very complex geometries. However,

with increasing frequency, the computational efficiency

strongly deteriorates through interpolation and pollu-

tion errors [6–8]. These errors are inherent to the poly-

nomial approximation functions used. The WBM, on

the other hand, makes use of wave functions which are

exact solutions to the governing differential equation

and therefore does not introduce errors when represent-

ing the field. Often a low number of wave functions is

sufficient to accurately capture the field, leading to a

high efficiency. The system matrices are per definition

complex valued and frequency dependent. Therefore,

the introduction of frequency dependent material pa-

rameters does not affect the performance. Nevertheless,

the geometrical flexibility is limited.

This section of the paper treats the details of the

hybrid FE-WBM for trimmed vibro-acoustic problems,

combining the poroelastic FEM and the acoustic WBM

in a fully coupled model. Subsection 5.2.1 motivates

the development of this hybrid approach. Thereafter,

in subsection 5.2.2, the coupling terms for the hybrid

system of equations are derived, both for the (us,uf )-

and for the (us,pf )-formulation. The efficiency and ac-

curacy of the approach are illustrated by means of two

numerical examples.

5.2.1 Motivation

In many industrial vibro-acoustic applications, a trim

layer consists of a multitude of very thin, stacked lay-

ers, often with inclusions or stiffeners, thus requiring

a geometrically flexible technique. Problem geometries

like these are the strength of the FEM.

The surrounding acoustic cavity, however, is often

geometrically quite simple. Moreover, the dissipation

mechanisms in the coupled system, which have evanes-

cent waves with a high decay rate and hence very lo-

cal effects, require additional mesh refinements in the

acoustic FE model. This leads the coupled acoustic

models to be even more refined than the uncoupled

ones. In practical applications even longer calculation

times are needed as a result. The WB solution expan-

sion by definition contains evanescent wave functions

which can capture these near-field effects. Furthermore,

the acoustic FE model, which typically can be decom-

posed into frequency independent submatrices, loses its

efficiency because of the frequency dependent and com-

WB Domain FE Domain
p( )a

us

n

c

ufus

pf

p
( )a

G

Fig. 25 Direct hybrid FE-WBM coupling approach.

plex valued material properties of the trim. The system

matrix for the WBM is inherently frequency dependent,

complex valued and cannot be decomposed into fre-

quency independent matrices. Therefore, the coupling

to a material with frequency dependent damping phe-

nomena does not impair the method’s performance,

contrarily to the acoustic FEM, where the computa-

tional effort substantially increases.

The hybrid FE-WB approach is thus a best-of-two-

worlds strategy for problems involving acoustic cavities

and localised damping layers; the FEM covers the com-

plexly layered trim, while the efficiency of the WBM is

exploited in the acoustic domain.

5.2.2 Direct hybrid coupling strategy

By using a direct coupling strategy (see Figure 25), the

mutual interactions between the acoustic cavity and the

poroelastic material can be directly introduced into the

weighted residual formulations and thus into the un-

coupled systems of equations (96)-(149). This way, the

coupling does not introduce additional variables (e.g.

Lagrange Multipliers [171]) and the coupling terms are

easy to interpret since they have a physical meaning.

The coupling terms are derived from the mathemat-

ical formulation of the acoustic/poroelastic interaction

(87) by using a weighted residual Galerkin approach.

The field variables and weighting functions are derived

from the expansion for the WBM (145)-(148) and for

the FEM (92) and (95) and read:{
pa(r)

p̃a(r)

= Φ
(α)
a (r)u

(α)
a + û

(α)
p,a(r)

= Φ
(α)
a (r)ũ

(α)
a

, (196){
us(r)

ũs(r)

= Nus(r)us

= Nus(r)ũs
, (197){

uf (r)

ũf (r)

= Nuf
(r)uf

= Nuf
(r)ũf

, (198){
pf (r)

p̃f (r)

= Npf
(r)pf

= Npf
(r)p̃f

. (199)

The derived coupling terms differ for the two presented

formulations and are therefore treated separately.
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Note that for the ease of notation, the spatial (r)-

dependency of all field variables, error residuals, shape

functions, wave functions and particular solution terms

is omitted in the remainder of this subsection.

5.2.3 Hybrid (us,uf ) FE-WBM

On the coupling interface between the acoustic WB

model and the poroelastic FE model, the coupling

conditions (87) have to be imposed. Considering the

(us,uf )-formulation, the weak integral form is given in

[83] and contains the following two boundary integrals:

−
∫
ΓpaC

ũs [σs.n] dΓ, (200)

−
∫
ΓpaC

ũf
[
σf .n

]
dΓ. (201)

Consequently, it is a natural choice to impose the first

two coupling coupling conditions in (87), expressing the

equilibrium of stresses on the interface, on the FE part.

The fourth condition, the continuity of the normal vol-

ume velocity, is imposed on the WB part, leading to

the weighted boundary residual:∫
ΓpaC

p̃aRpau dΓ =

∫
ΓpaC

p̃a [Lv(pa)

−jω
[
(1− φ)usn + φufn

]]
dΓ.

(202)

The three resulting boundary integrals (200)-(202) are

discussed below:

−
∫
ΓpaC

ũs[σs.n]dΓ – By considering the second condi-

tion of (87), it is clear that the integral involving

the shear stress components vanishes. By using the

second condition of (87) and expanding the expres-

sion for the distributed loading on the solid phase in

terms of the WB wave functions and the FE shape

functions, the weighted residual formulation for the

solid phase is extended with the following term:

−
∫
ΓpaC

ũs[σs.n]dΓ

=

∫
Γ
p(α)
C

(1− φ) ũsnp
adΓ,

=ũTsn

[∫
Γ
p(α)
C

(1− φ) Nus

TΦ(α)
a u(α)

a dΓ

+

∫
Γ
p(α)
C

(1− φ) Nus

T û(α)
p,adΓ

]
,

=ũTsn

[
−Cuu

sa u(α)
a + cuu

sa

]
,

(203)

with Γ
p(α)
C = ∂Ωp ∩ ∂Ω(α) being the interaction

surface between the poroelastic medium and the

WBM domain Ω(α).

−
∫
ΓpaC

ũf
[
σf .n

]
dΓ. – Analogously to the solid phase

(203), the weighted residual formulation of the fluid

phase is extended with a distributed loading term

using the third condition of (87):

−
∫
ΓpaC

ũf
[
σf .n

]
dΓ

=

∫
Γ
p(α)
C

φũfnp
adΓ,

=ũTfn

[∫
Γ
p(α)
C

φNuf

TΦ(α)
a u(α)

a dΓ

+

∫
Γ
p(α)
C

φNuf

T û(α)
p,adΓ

]
,

=ũTfn

[
−Cuu

fa u(α)
a + cuu

fa

]
.

(204)

∫
Γ
p(α)
C

p̃a
[
Lv(pa)− jω

[
(1− φ)usn + φufn

]]
dΓ – The

continuity between the out-of-plane deformation

and the normal acoustic particle displacement leads

to the final contributions to the coupled system of

equations:∫
Γ
p(α)
C

p̃a [Lv(pa)

− jω
[
(1− φ)usn + φufn

]]
dΓ

=ũ(α)
a

T

[∫
Γ
p(α)
C

Φ(α)
a

T
Lv(Φ(α)

a )u(α)
a dΓ

+

∫
Γ
p(α)
C

Φ(α)
a

T
Lv(û(α)

p,a)dΓ

− jω

∫
Γ
p(α)
C

(1− φ)Φ(α)
a

T
NususndΓ

− jω

∫
Γ
p(α)
C

φΦ(α)
a

T
Nuf

ufndΓ

]
,

=ũ(α)
a

T
[
Cuu

aa u(α)
a − cuu

aa

+ jωCuu
sa
Tus + jωCuu

fa
Tuf

]
.

(205)

These relations should hold for any weighting func-

tion ũ
(α)
a , ũsn or ũfn. Therefore, only the expressions

between brackets are introduced into the coupled sys-

tem of equations in terms of wave function contribution

factors ua and the nodal values for the displacement

fields us and uf , in the solid and the fluid phase, re-

spectively:Aaa + Cuu
aa jωCuu

sa
T jωCuu

fa
T

Cuu
sa Duu

ss Duu
sf

Cuu
fa Duu

fs Duu
ff

ua

us

uf

 =

 ba + cuu
aa

fuu
s + cuu

sa

fuu
f + cuu

fa

 , (206)
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where Aaa and ba represent the uncoupled WBM sys-

tem matrices, Duu
• and fuu

• are the uncoupled FEM

system matrices and Cuu
• and cuu

• are the mutual cou-

pling matrices.

5.2.4 Hybrid (us,pf ) FE-WBM

When using the (us,pf )-formulation for the poroelastic

FE model, the coupling is again made directly through

the boundary integrals of the FEM and the boundary

residuals of the WBM. The weak integral form is given

in [88] and contains the following two boundary inte-

grals:

−
∫
ΓpaC

ũs
[
σt.n

]
dΓ, (207)

−
∫
ΓpaC

p̃f
[
φ
(
ufn − usn

)]
dΓ, (208)

On the WB model, the following residual applies:∫
ΓpaC

p̃a
1

jω
Rpau dΓ =

∫
ΓpaC

p̃a
[

1

jω
Lv(pa)

−
[
(1− φ)usn + φufn

]]
dΓ.

(209)

Note that the WBM residuals have been orthogonalised

on a pressure-displacement-basis (as is done in the in-

ternal poroelastic coupling between the solid and fluid

phase), instead of pressure-velocity, as was done so far

in the WBM [146]. This choice will become clear below.

Moreover, the equivalence dynamic equilibrium condi-

tions for the fluid phase (87) should hold:

σf + φpa = pa − pf = 0, (210)

which is in a pure FE model satisfied through the as-

sembly.

Equation (209) contains a normal gradient of the

fluid phase pressure pf inside the term ufn (105). Im-

posing this results in a loss of accuracy over the inter-

face, since the polynomial shape functions of the FE

submodel have to be spatially derived.

The substitution of (210) into the weighting func-

tions p̃a of equation (209) and the combination with

(208) reveals the opportunity to eliminate the first two

of three resulting integrals:

−
∫
ΓpaC

p̃f
[
φ
(
ufn − usn

)]
dΓ

+

∫
ΓpaC

p̃f
[
φ
(
ufn − usn

)]
dΓ

+

∫
ΓpaC

p̃f
[

1

jω
Lv(pa)− usn

]
dΓ.

(211)

Consequently, the coupling conditions do not contain

terms with ufn anymore. This leaves coupling condition

(210) to be imposed. As indicated before, in a pure

FEM procedure, this would be enforced during matrix

assembly, since both acoustic and fluid phase pressure

are primary variables [88]. In a hybrid context, how-

ever, this a priori elimination is not possible due to the

indirect nature of the WBM. Therefore, the pressure

continuity is enforced on the WB model:

∫
Γ
p(α)
C

ũan
(
pa − pf

)
dΓ. (212)

Equations (207), (211) and (212) lead to following

coupling terms between an acoustic WB model and a

poroelastic FE model using the (us,pf )-formulation:

−
∫
ΓpaC

ũs
[
σt.n

]
dΓ – On the interface, the shear stress

components should again be zero and the normal

component of the total stress σtn should be equal

to −pa. By expanding the expression for the dis-

tributed loading of the solid phase in terms of the

wave function and shape function expansions, the

right hand side of the original weighted residual for-

mulation for the solid phase is extended with the

following term:

−
∫
ΓpaC

ũs
[
σt.n

]
dΓ

=

∫
Γ
p(α)
C

ũsnp
adΓ,

=ũTsn

[∫
Γ
p(α)
C

Nus

TΦ(α)
a u(α)

a dΓ

+

∫
Γ
p(α)
C

Nus

T û(α)
p,adΓ

]
,

=ũTsn

[
−Cup

sa u(α)
a + cup

sa

]
.

(213)

∫
ΓpaC

p̃f
[

1

jω
Lv(pa)− usn

]
dΓ – The continuity be-

tween the out-of-plane deformation and the normal

acoustic particle displacement leads to the final
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contributions to the coupled system equations:∫
Γ
p(α)
C

p̃f
[

1

jω
Lv(pa)− usn

]
dΓ,

=p̃Tf

[∫
Γ
p(α)
C

1

jω
Npf

TLv(Φ(α)
a )u(α)

a dΓ

+

∫
Γ
p(α)
C

1

jω
Npf

TLv(û(α)
p,a)dΓ

−
∫
Γ
p(α)
C

Npf

TNususndΓ

]
,

=p̃Tf

[
Cup

fa u(α)
a − cup

fa + Bup
fa us

]
.

(214)

∫
Γ
p(α)
C

ũan
(
pa − pf

)
dΓ – The pressure continuity be-

tween the fluid phase and the acoustic cavity gives:∫
Γ
p(α)
C

ũan
(
pa − pf

)
dΓ

=ũTa

[∫
Γ
p(α)
C

1

jω
Lv(Φ(α)

a )TΦ(α)
a u(α)

a dΓ

+

∫
Γ
p(α)
C

1

jω
Lv(Φ(α)

a )T û(α)
p,adΓ

−
∫
Γ
p(α)
C

1

jω
Lv(Φ(α)

a )TNpf
pfdΓ

]
,

=ũTa

[
Cup

aa u(α)
a − cup

aa + Cup
af pf

]
.

(215)

These relations should hold for any weighting func-

tion ũ
(α)
a , ũsn or p̃f . Therefore, only the expressions

between brackets are introduced into the coupled sys-
tem of equations in terms of the wave function con-

tribution factors ua and the nodal values for the solid

phase displacement field us and the fluid phase pressure

distribution pf :Aaa + Cup
aa 0 Cup

af

Cup
sa Dup

ss Dup
sf

Cup
fa Dup

fs + Bup
fa Dup

ff

ua

us

pf

 =

 ba + cup
aa

fup
s + cup

sa

fup
f + cup

fa

 . (216)

where Aaa and ba represent the uncoupled WBM sys-

tem matrices, Dup
• and fuu

• are the uncoupled FEM

system matrices and Cup
• and cup

• are the mutual cou-

pling matrices.

Note that for the (us, pf )-approach, additional en-

try Bup
fa in the uncoupled poroelastic matrices are nec-

essary, contrarily to the hybrid approach using the

(us,uf )-formulation (206). The uncoupled FEM system

matrices thus cannot be straightforwardly used. Nor-

mally, this does not pose a problem, since the coupling

degrees of freedom are known. However, if information

about for instance the weighting procedure in the FE

submodel is not available when using closed source com-

mercial software for the FEM matrix system assembly,

the extra term Bup
fa may introduce practical difficulties.

Partitioned solution strategy As conventionally done in

hybrid FE-WB models [144,172] a matrix partitioning

procedure is used for the solution of a coupled system

of equations in order to benefit from efficient solvers,

which differ for sparse and dense matrix systems.

5.2.5 Numerical examples

This section evaluates the performance of the hybrid

FE-WBM for the modelling of trimmed acoustic prob-

lems by two examples.

In a first example, the concept of both hybrid ap-

proaches is illustrated by means of a simple, cube-

shaped cavity with a thick layer of poroelastic mate-

rial on the bottom. In a second example, the influence

of a thin multilayered poroelastic material on a convex

cavity with non-parallel walls is studied. All used mate-

rial properties, which are available from literature, are

listed in Appendix A.

In all examples, the hybrid FE-WBM is compared

with results obtained with the FEM, both in the

(us,uf )- and in the (us,pf )-formulation. This compari-

son is done in terms of calculation times and accuracy.

For the FEM reference models and for the hybrid FE

submodels Comsol 4.1 is used. The WB routines are

implemented in Matlab R2010a. For all operations with

respect to the solution of sparse system matrices (pure

FEM systems and hybrid FEM subsystems), Nastran

2010 is used as a solver in order to have a comparable
solution time. The operations related to the solution

of dense system matrices (hybrid WB subsystems) are

performed using Matlab’s backslash, i.e. by Gaussian

elimination. All calculations are performed on a Linux-

based 2.66GHz Intel Xeon system with 32 GB RAM.

Example 1: single layer in cavity with parallel walls

The first example considers a rigid acoustic cavity (1m

× 1m × 0.7m) with parallel walls. On the bottom of

the cavity, a thick layer (thickness 0.2m) of a poroelas-

tic Fireflex material is placed. The poroelastic layer has

sliding edge boundary conditions and is acoustically ex-

cited with a symmetric boundary condition of v = 1m/s

on the top surface of the cavity (indicated as a black

plane in Figure 26).

Because of the symmetry and the sliding edge poroe-

lastic boundary conditions, no Poisson effects are ex-

cited and the 3D solution behaves uni-axially. An ana-

lytical solution is available. This solution serves as the

reference for a full 3D solution.
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Table 2 Example 1 – Model properties for the hybrid FE-WB models.

FEM WBM

Form. Order
Elements DOF

(
DOF

thickness

)
DOF

3D ∼ 1D 3D ∼ 1D 3D ∼ 1D
(us,uf ) 2 9× 9× 8 8 36822 (102) 34 144 2
(us,pf ) 2 9× 9× 8 8 24548 (68) 34 144 2

Fig. 26 Example 1 – Acoustic cavity ���� with a velocity
excitation �� (v = 1m/s) and a poroelastic Fireflex layer ����
with sliding edge boundary conditions.

For the hybrid FE-WBM, the model properties are

given in Table 2. For both the (us,uf )- and (us, pf )-

formulation, the same mesh with quadratic elements

(9× 9× 8) was used. Apart from the actual 3D model

data, the table also gives the equivalent data if the prob-

lem would be solved in 1D with the same accuracy. In

this case, the poroelastic material can be described us-

ing two scalar variables, either us and uf or us and

pf . For a purely 1D-WB model, two propagating wave

functions suffice. Figure 27 shows the absolute value of

the predicted pressure field at 500Hz, obtained using

three approaches: the analytical solution and the two

hybrid FE-WB approaches, using the (us,uf )- and the

(us,pf )-formulation with quadratic elements in the FE

submodel. A good agreement can be observed. In or-

der to assess the differences as related to the analytical

model, the relative error ε on the pressure prediction is

calculated as:

ε(r) =

∣∣∣∣p•(r)− pref (r)

pref (r)

∣∣∣∣ , (217)

where • represents the type of hybrid technique. The

analytical solution is used as a reference.

Figure 27 also shows the relative prediction error.

It shows that a good accuracy is obtained and that in

this case both hybrid approaches give results of a simi-

lar accuracy. However, although only slightly visible on

Figure 27, contrarily to what was shown for the pure

FEM [64], the accuracy is not exactly the same for the

(us,uf )- and the (us,pf )-formulation for the same dis-

cretisation. This will be indicated further in the follow-

ing example.

Example 2: multilayer in cavity with non-parallel walls

The second example further demonstrates the appli-

cability of the method on a convex cavity (1.122m

× 0.82m × 0.982m) with non-parallel walls (Figure

28). The walls of the acoustic cavity are considered

rigid and the cavity is excited by an acoustic volume

source with an amplitude of 1m3/s, located in the point

(1.03,0.12,0.3), indicated by the concentric circles. The

air inside the cavity is in contact with a poroelastic

multilayer placed at the bottom. The material prop-

erties of this multilayer are specified in Appendix A.

The multilayer constists of a stack of 0.025m Fireflex

on top of 0.025m carpet material. Sliding edge bound-

ary conditions are imposed on the boundaries of the

poroelastic material layers which are in contact with

the cavity walls.

z

y x

Fig. 28 Example 2 – Geometry with an acoustic cavity ����
with a multilayer (sliding edge boundary conditions) con-
sisting of Carpet material ���� and Fireflex ���� excited by an
acoustic volume source ©• with q = 1m3/s.
The post-processing point for the frequency response is indi-
cated by •.

The first validation for this problem case consid-

ers the frequency response of the acoustic pressure in

a response point (0.35,0.8,0.1), indicated by •, for a

frequency range from 50 to 650Hz. The WB curves are

obtained using 150 to 382 wave functions. Both FE sub-

models in the hybrid approaches use the same mesh

(8 × 8 × 10 elements), which consists of 38148 poroe-

lastic degrees of freedom for the (us,uf )-formulation
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Fig. 27 Example 1 – Acoustic pressure pa(r) (Amplitude) [Pa] and Relative error ε [-] at 500Hz.
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Fig. 29 Example 2 – Sound Pressure Level [dB] and relative error ε [-] for a response point at (0.35,0.80,0.10) from 50 to 650
Hz.

and 25432 for the (us, pf )-formulation. The reference

FEM calculations are performed on a cubic mesh with

hexahedral Lagrangian elements (7 × 7 × 7 elements

in the acoustic cavity and 7 × 7 × 8 elements in the

poroelastic domain), resulting in a total of 10648 acous-

tic and 50336 poroelastic degrees of freedom, using the

(us,pf )-formulation. In addition to the actual frequency

response, also the error relative to the reference solution

is studied. The relative error ε(rj) is defined in equation

(217).

Figure 29 shows an excellent prediction accuracy,

even with a small distance (5cm) to the near field of

multilayer and to the hybrid coupling interface. This

indicates that the evanescent functions in the WBM

can efficiently model the near field effects caused by

the presence of the trim, even though the WBM is a

global technique. The figure of the relative error ε for

this point further illustrates that the hybrid (us,uf )

FE-WBM and the hybrid (us, pf ) FE-WBM do not pro-

duce results of the same accuracy, even though the same

mesh discretisation is used. For the largest part of the

frequency band, the hybrid (us, pf ) FE-WBM performs

best.

To further investigate this accuracy difference be-

tween formulations which is contrary to earlier stud-

ies in the pure FEM [64], and to assess the gain in

efficiency, the convergence of the hybrid FE-WB ap-

proaches is studied and compared to their pure FE

counterpart models with matching interface discreti-

sations. To avoid averaging out of possible outliers, a

global quadratic error estimator < δ > is defined simi-

larly to (217):

< δ >=

√∑n
i=1 |p•(ri)2 − (pref (ri))2|∑n

i=1 |(pref (ri))2|
. (218)
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In this case, the acoustic pressure data at 450Hz in

n = 512 uniformly distributed points is used. Model

refinements are made both in the acoustic and in the

poroelastic domain. The model properties for all FE

and hybrid FE-WB models and the reference model are

listed in Table 3 and Table 4.

Figure 30 compares the convergence behaviour of

the hybrid FE-WB methods to that of the FEM for

different refinement strategies for the (sub)model(s).

To this extent, the quadratic error estimator < δ > is

shown as a function of the CPU time. This CPU time

is the sum of the time required for system build-up,

solution and post-processing.

The curves for the pure FE models confirm earlier

observations on poroelastic FE models: the accuracy of

the pure FE models using the (us,uf )- and the (us,pf )-

formulation is the same for the same mesh discretisa-

tion. The required CPU time, however, is different since

the (us,pf )-formulation only has 4 degrees of freedom

per node whereas the (us,uf )- has 6.

When the FE- and WB submodels are coherently

refined, Figure 30(a) is obtained. This figure clearly

shows the benefits of the hybrid approach. The accu-

racy has increased one order for a given computational

cost or, for the same prediction accuracy, the compu-

tational cost has decreased one or even two orders for

higher accuracies.

The convergence behaviour of hybrid FE-WBM

for acoustic/poroelastic problems shows two important

characteristics. Firstly, the convergence, especially for

the hybrid (us,uf ) FE-WBM, is not necessarily mono-

tonic. Secondly, in the hybrid FE-WBM, both formu-

lations give a different accuracy, contrarily to the pure

FEM.

The cause for the non-monotonic convergence be-

haviour can be investigated by refining one submodel

while keeping the other submodel fixed. Figure 30(b)

shows the convergence of the hybrid model by keeping

the number of wave functions constant and by increas-

ing the number of elements in the FE submodel. Two

WB models with a constant number of wave functions

– T3 and T5 – are studied while refining the FE sub-

model. A clear stagnation can be observed. However,

for the model T5, the stagnation occurs at a lower er-

ror level than for T3, indicating that the WB submodel

limits the accuracy in this case. Figure 30(c) shows the

complementary curves for two constant FE discretisa-

tions Q2 and Q3. Again stagnation occurs. In this case,

a higher number of wave functions makes no sense if the

FE model cannot follow the increased spectral content

of the WB model.

Figure 30(c) also shows that the non-monotonic

convergence behaviour originates from the WBM sub-
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Fig. 30 Example 2 – Acoustic pressure pa(r): Relative error
< δ > [−] as a function of CPU time at 450Hz.

model and its ill-conditioned system matrices. The fact

that the hybrid (us,pf ) FE-WBM does exhibit semi-

monotonicity for this case, can be interpreted as an in-

dication of higher stability.

The difference in accuracy for different poroelas-

tic formulations also originates from the WBM. As

an indirect Trefftz-approach, the WBM exhibits ill-
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Table 3 Example 2 – Model properties for the FE models.

Discretisation poroelastic/Acoustic DOF

FE model
Element

(us,uf ) (us,pf )
Order poroelastic Acoustic

Q1 2 2× 2× 2 2× 2× 2 900/125 600/125
Q2 2 4× 4× 4 4× 4× 4 4860/729 3240/729
Q3 2 6× 6× 6 6× 6× 6 14196/2197 9464/2197
Q4 2 8× 8× 8 8× 8× 8 31212/4913 20808/4913
Q5 2 10× 10× 10 10× 10× 10 58212/9261 28808/9261
Q6 2 12× 12× 12 12× 12× 12 97500/15625 65000/15625

Reference 3 7× 7× 8 7× 7× 7 – 50336/10648

Table 4 Example 2 – Model properties for the hybrid FE-WB models.

Hybrid Element
Formulation

Nodal DOF (FEM) /
submodel order poroelastic Wave functions (WBM)

FEM (Q1-5) 2 see Table 3 (us,uf ) 900,4860,14196,31212,58212
FEM (Q1-5) 2 see Table 3 (us,pf ) 600,3240,9464,20808,38808
WBM (T1-6) – – Acoustic 54,170,382,636,1006,1398

conditioned system matrices [146]. This means that

the result is highly susceptible to small changes in the

matrix coefficients. Although all different submodels –

acoustic WB with either poroelastic (us,uf ) or poroe-

lastic (us,pf ) – describe the same physics and apply ex-

actly the same wave functions, the ill-conditioned char-

acter influences the coupling conditions and thus the

solution.

When comparing the efficiency of the hybrid

methodologies to standard FE implementations, it is

clear that a nice gain is obtained, revealing the poten-

tial of the proposed approach.

6 Conclusion

This paper gives an overview of modelling theories

and numerical prediction techniques to describe the

steady-state dynamic behaviour of poroelastic materi-

als. Poroelastic materials can be described using two

homogenised phases on a macroscopic level: the solid

phase and the fluid phase.

A first class of theories describes the propagation of

sound in those materials using the Helmholtz equation,

by using a complex and frequency dependent density

and a complex bulk modulus. There are a number of

approximations available in literature to calculate these

equivalent properties. Simple empirical relations, such

as the laws of Delany and Bazley and Miki are detailed.

If it is assumed that the solid frame is rigid and con-

sequently motionless and the pores have simple geome-

tries, analytical expressions for the equivalent density

and bulk modulus can be derived. It is shown that the

equivalent density accounts for viscous losses, whereas

the equivalent bulk modulus takes into account ther-

mal losses. When the pore geometry is more complex,

analytical expressions cannot be retrieved. In that case,

mostly semi-phenomenological models are used. These

models apply a relaxation function to take into account

the transition from microscale Stokes flow at very low

frequencies to inviscid flow as high frequency asymp-

tote. The concept of tortuosity, and viscous character-

istic length is introduced. In a similar fashion, a relax-

ation function is defined to account for the transition

from isothermal behaviour as low frequency limit to

adiabatic behaviour as high frequency limit using the

thermal characteristic length. This model, which is fur-

ther used in this review paper, is often referred to as the

Johnson-Champoux-Allard model. More complex mod-

els also exist, but are not commonly applied, due to

the higher number of material parameters to be iden-

tified. Beside rigid frame equivalent fluid models, also

limp models can be applied. In this case the stiffness of

the frame can be neglected and again the propagation

of sound through the material can be described using

a Helmholtz equation. Also double porosity materials,

consisting of two networks of pores at a different scale,

can be modelled in a one-wave formalism.

When taking into account the elasticity of the

frame, the Biot theory is applied. The poroelastic

medium is described using a macroscopic description

of two homogenised phases: the elastic solid phase and

the fluid phase. Both phases mutually interact and the

Johnson-Champoux-Allard model is used to account for

viscous and thermal losses. The theory by Biot predicts

the presence of three propagating waves in a poroelastic

material: two compressional waves and one shear wave.

Different numerical prediction techniques are being

applied to predict the steady-state response of poroe-

lastic materials in a vibro-acoustic setting. In the lower
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frequency range, the Finite Element Method is most

commonly applied. It divides the problem domain into

a large number of small elements in which the dy-

namic variables are approximated using simple polyno-

mial functions. A number of formulations are discussed

in this paper, which use different primary variables.

For higher frequencies the method loses its attractive-

ness since the number of elements should be increased

to be able to accurately capture the dynamics of the

three wave types. Reduction schemes to overcome the

large computation costs of finite element models are

also discussed. Straightforward modal reduction tech-

niques are, however, not applicable due to the complex

and frequency dependent material properties.

At higher frequencies, the Transfer Matrix Method

is widely used to predict the transmission loss of mul-

tilayer structures consisting of an arbitrary lay-up of

acoustic, poroelastic and elastic layers. This method as-

sumes layers of an infinite extent and uses a plane wave

description for the wave propagation through a layer.

Transfer matrices, interface and termination conditions

are combined in a global transfer matrix which can be

used to relate dynamic quantities on both sides of the

multilayer. The ease of use and the method’s low com-

putational requirements are its distinct advantages. It

is often used to predict trends and works well for lo-

cally reacting materials. However at lower frequencies,

or when the effect of boundary conditions is important,

it is often not sufficiently accurate. Extenstions to the

method to partially overcome these restrictions are re-

viewed.

Recently, Trefftz methods are being applied to pre-

dict the behaviour of poroelastic materials as governed
by the Biot equations. Trefftz methods are determin-

istic methods which increase the achievable frequency

range of element based prediction techniques by em-

bedding a priori known information of the physics of

the problem into the numerical model. This review pa-

per discusses one of those promising methods, the Wave

Based Method, in detail. The Wave Based Method par-

titions the problem domain into convex subdomains.

Within each subdomain the dynamic field variables are

approximated using a weighted sum of wave functions

which exactly fulfill the dynamic equations. In the case

of the Biot equations, the three wave types are explic-

itly accounted for. The dynamic field do not comply

with the imposed boundary and interface conditions.

These errors are minimised using a weighted residual

approach, resulting in a system of matrices which may

be solved for the unknown wave function contribution

factors. The resulting matrices are small, and the con-

vergence of the method is high. Advantages and draw-

backs of the method are discussed. So far the method

has been applied for two-dimensional and axisymmet-

ric poroelastic problems. A number of validation cases

are included in the paper. It can also be used in a hy-

brid scheme with the Finite Element Method to effec-

tively model acoustic cavities with trim components.

The Wave Based Method is used to efficiently model the

acoustic domain, whereas the Finite Element Method

can be used to model the trim layers in great detail. The

(us,uf )-formulation and the (us, pf )-formulation have

been used; the latter has shown to be the most efficient

and more stable in combination with the acoustic Wave

Based Method.
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A Material properties

This appendix collects the material data used in the examples
in this paper. Table 5 shows the air properties used.

Table 5 Material properties of air.

Air properties

Thermal conductivity kc = 2.57 · 10−2W(mK)
Specific heat cp = 1.005 · 103J/(kgK)
Gas constant Rgas=286.7m2/(s2K)
Temperature T=293.15K
Ratio of specific heats γ=1.4

Fluid kinematic viscosity νf=15.11·10−6m2/s
Fluid density ρ0=1.205kg/m3

Table 6 summarises the data of the poroelastic mate-

rials used in this review paper. The material properties of

melamine have been experimentally determined by the de-

partment of physics of KU Leuven, as described in [173]. In

the calculations, the average values of the material proper-

ties have been used. The polyurethane material properties are

taken from [60]. An arbitrary loss factor ηl has been added, as

the augmented Hooke’s law has not been applied. The carpet

material properties are taken from [63]. The fireflex material

data are taken from [167]. It is a poluyrethane foam, which

is fabricated by Recticel, Belgium.
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Table 6 Material properties of the poroelastic media used
in this review paper.

Melamine [173]
Young’s modulus E = (260± 13 + j(30± 3))kPa
Shear modulus N = (95± 9 + j(6± 0.5)) kPa
Bulk density ρ1 = (9.4± 1)kg/m3

Porosity h ≥ 0.95

Viscous characteristic length Λ = (166± 17) · 10−6m

Thermal characteristic length Λ′ = (249± 25) · 10−6m
Static flow resistivity σ = (9500± 600)kg/(m3s)
Tortuosity α∞ = 1.01± 0.11

Polyurethane foam material [60]

Young’s modulus Es = 70 · 103Pa
Loss factor ηl = 0.265
Poisson ratio ν = 0.39
Bulk density ρ1 = 22.1kg/m3

Porosity h = 0.98

Viscous characteristic length Λ = 1.1 · 10−4m

Thermal characteristic length Λ′ = 7.42 · 10−4m
Static flow resistivity σ = 3.75 · 103kg/(m3s)
Tortuosity α∞ = 1.17

Carpet material [63]

Young’s modulus Es = 20 · 103Pa
Loss factor ηl = 0.5
Poisson ratio ν = 0
Bulk density ρ1 = 60kg/m3

Porosity h = 0.99

Viscous characteristic length Λ = 1.5 · 10−4m

Thermal characteristic length Λ′ = 2.2 · 10−4m
Static flow resistivity σ = 20 · 103kg/(m3s)
Tortuosity α∞ = 1

Fireflex [167]

Young’s modulus E =4.3·105+j·1·105Pa
Shear modulus N=1.6·105+j·3·104Pa
Bulk density ρ1=30kg/m3

Porosity h = 0.93

Viscous characteristic length Λ=10·10−6m

Thermal characteristic length Λ′=100·10−6m
Static flow resistivity σ=80·103kg/(m3s)
Tortuosity α∞ = 2.5
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