
 

  
Abstract—Innovative technology approaches have been 

increasingly investigated for the last two decades aiming at 
human being long-term monitoring. However, current solutions 
suffer from critical limitations. In this paper, a complete system 
for contactless health-monitoring in home environment is 
presented. For the first time, radar, wireless communications, and 
data processing techniques are combined together enabling 
contactless fall detection and tag-less localization. Practical 
limitations are considered and properly dealt with. Experimental 
tests, conducted with human volunteer in a realistic room setting, 
demonstrate an adequate detection of the target’s absolute 
distance and a success rate of 94.3% in distinguishing fall events 
from normal movements. The volunteers were free to move in the 
whole room with no constraints in their movements. 
 

Index Terms—Fall detection, health monitoring, radar remote 
sensing, tag-less localization, Zigbee communication.  
 

I. INTRODUCTION 

HE senior citizen population of older than 60 years has 
been steadily increasing worldwide. This situation has 

resulted in a growing need for novel assistive technologies that 
enable routine long-term home monitoring [1]. Conventional 
approaches are based on devices attached to the patient’s 
body, involving pressing a button, e.g., worn as a necklace, in 
emergency situations [2], [3]. However, persons in such 
situation may already be unconscious or no longer reflexive 
enough to do so. The ideal solution is therefore a contactless 
health monitoring system, avoiding the need for actions by the 
elderly person. 

In the last two decades, attention has been focused mainly  
on contactless vital signs monitoring [4]. These academic 
developments are based on radar techniques implemented as a 
single device sensor, e.g., Continuous-Wave (CW) Doppler 
radar [5] or Ultra-Wide-Band Impulse-Radio (UWB-IR) radar 
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[6]. The capabilities of such devices are limited to heartbeat 
and respiration rate monitoring under “ideal conditions”, e.g., 
constrained to a single motionless person (i.e., seated or lying 
down). In recent years, remote fall detection has become a 
primary interest in connection to health monitoring in home 
environments [7]–[9]. Instances of such investigations are 
systems based on video cameras [10], floor vibration, and 
acoustic sensors [11], [12]. Besides privacy concerns, video 
camera systems are still troubled by issues related to low light 
environments, field of view, and image processing, resulting in 
a success rate of 90% using two cameras [10]. Successes in 
floor vibration and acoustic sensors are similarly limited due to 
environmental interference and background noise. Moreover, 
they are also less effective in detecting cases of “soft” human 
falls, defined as a fall after the individual collides with an 
object (table, chair, carpet, etc.) [11], [12].  

Due to the disadvantages of existing fall detection 
technologies, there is a need for further solutions. An 
alternative approach based on radar techniques has been 
demonstrated by the authors [13], [14]. The approach is able 
to detect fall events and to localize a person without the need 
for a radio frequency identification (RFID) tag on the person. 
However, to satisfy the spectrum mask requirements and to 
have a practical device, traditional radar architectures are not 
suitable solutions for this application and the waveform to be 
transmitted needs to be properly designed [15].  

In this work, a full system is proposed enabling indoor, non-
invasive fall detection and tag-less localization. It combines 
radar, wireless communications, and data processing 
techniques. Moreover, it has been designed to satisfy the 
European and Federal Communications Commission (FCC) 
UWB spectrum masks, and it can also be potentially connected 
to medical monitoring personnel to provide a prompt alert in 
the event of emergencies. 

In Section II the monitoring principle and underlying theory 
are presented. The sensor architecture is explained in Section 
III, and the experimental results are discussed in Section IV. 

 

II. OPERATIONAL PRINCIPLE 

Fig. 1 shows a simplified block diagram of the proposed 
health monitoring system. It consists of a sensor, combining 
both radar and wireless communications features, and a base 
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station for data processing. A radar waveform is generated and 
sent to the target, and then its reflected echo, containing speed 
and absolute distance information, is collected by the receiver. 
The resulting baseband signals are digitized and transmitted 
wirelessly to a base station that consists of a Zigbee module, a 
laptop, and a microcontroller. The latter collects and transfers 
the data received of the Zigbee module to the laptop to 
determine remotely the target's absolute distance and to 
distinguish a fall event from normal movements (e.g., walking, 
sitting down). The data processing is not performed by the 
sensor in order to avoid complex processor on board, reducing 
costs, size, and also energy consumption. Moreover, this 
represents a flexible solution if multiple sensors will be used in 
the future. In fact, the base station should combine and process 
multiple information at the same time. 

The radar waveform is based on a hybrid approach 
presented by the authors in [15]. It consists of a single tone, at 
fISM = 5.8 GHz in the ISM band, alternated with a stepped 
frequency continuous wave (SFCW) waveform working in the 
UWB band, as shown in Fig. 2. Each tone lasts 1 s and it is 
used to continuously detect the speed of a person using the 
Doppler concept. The SFCW waveform is used to detect the 
target’s absolute distance. It consists of N = 40 coherent CW 
pulses (called burst) whose frequencies are increased from 
pulse to pulse by a fixed increment ∆f = 25 MHz. Each pulse is 
T = 50 µs long, resulting in a burst duration N·T of 2 ms, while 
its total band N·∆f is 1 GHz positioned between 6 and 7 GHz, 
enabling a smallest resolution of 15 cm. The full waveform is 
1.002 seconds. In comparison to [15], we introduce some 
changes in subsection B to tackle some practical issues.  

In this section, the waveform spectral analysis is first 
discussed. Next, these considerations are used to justify the 
choice of the waveform parameters, and to explain the 
operations of compensation and calibration in data processing. 
Moreover, the technique to distinguish fall events from normal 
movements is also described.  
 

 
Fig. 1.  Simplified block diagram of the health monitoring system.  
 

 
Fig. 2.  Designed radar waveform. 

A. Spectral Analysis 

Neglecting the initial amplitudes, the transmitted waveform 
can be expressed as:  
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for TD < t ≤ TW, with 0 ≤ n < N. If the waveform is reflected by 
a target at a distance D, the received signal will then be 
represented as: 
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The output of the IQ mixer (Fig. 1) can be modeled as the 
product of the received signal with a copy of the transmitted 
signal followed by a lowpass filter. For a quadrature sampling, 
it is given as: 
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for the SFCW signal, where  
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is the residual phase noise, which is negligible, while θ is the 
contribution of the phase shift at the target surface 
(approximately 180°) plus additional phase difference between 
the mixer and the antenna. Only one sample for pulse width T 
has been considered. In the case of a moving target, the range 
D can be written as: 
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for 0 ≤ t ≤ TD, and as 
 

( )nTtvDD nn += 0
                 (10) 

 
for TD < t ≤ TW, and DISM and D0 are defined as the ranges to 
the target at the particular time t = 0 and t = TD, respectively. 
Combining eqs. (9) and (10) with eqs. (6) and (7), the phase of 
the baseband signal becomes: 
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The last two equations are essential in the waveform design 

and for data processing, which consequently determines the 
hardware requirement and system complexity. Eq. (11) 
represents that the signal is proportional to the target’s speed, 
and it dictates also its sampling rate. On the other hand, eq. 
(12) is used to determine the target’s absolute distance. In 
particular, the first two terms represent the case of a stationary 
target since they are not influenced by speed, v(t). The first 
term represents a constant phase shift, which is not of any 
practical significance, while the second term is a multiplication 
between the rate of frequency change ∆f / T and the signal 
round-trip time 2D / c. The latter term provides the distance 
information. The remaining terms are undesirable. The third 
term represents the Doppler frequency shift due to target 
motion, which adds to the frequency shift of the second term, 
resulting in a shift of target distance from its true value. The 
fourth term exists due to the interaction of the frequency-
varying step waveform with the target’s motion, resulting in a 
spread of the target peak. Compensating these effects is 
difficult due to the unknown instantaneous target velocity. The 
final term is frequency-dependent, which adds a fixed 
frequency shift to the actual target distance. 

B. Waveform Design 

The proper choice of the parameters T, TD, and N allows to 
satisfy the spectrum masks while simultaneously having 
sufficient transmit power to track a person in a typical room 
setting.  

The waveform has been designed to monitor continuously 
the speed of the target and to determine its absolute distance 
every TD = 1 s. Assuming a maximum target movement/falling 
speed of 2 m/s, the I/Q baseband signals containing speed 
information should be acquired at least with a sample rate of 
about 6.5 ms. This value is defined considering the Nyquist 
theorem and eqs. (5) and (11), where fISM is 5.8 GHz. 
Experimental evaluations on human volunteers have failed to 

demonstrate significant improvements even when the sample 
time is decreased below 7.2 ms. This indicates that the 
maximum speed produced by the subjects' movements is about 
1.8 m/s, lower than the 2 m/s initial assumption. However, a 
sample rate of 4 ms has been chosen providing a sufficient 
margin to detect movements of humans with different weights.  

To avoid losses in speed samples and to simultaneously 
determine the target’s corresponding distance, the N CW 
pulses are sent, every one second, in between speed samples. 
This involves a maximum burst interval N·T of 4 ms. In order 
to have an unambiguous range of 5 m, the increment ∆f from 
the second term of eq. (12) should be fixed to 30 MHz. This 
theoretical value cannot be used in practice since the third and 
fifth terms shift the target position outside the unambiguous 
range. The third, and consequently the fourth term, can be 
neglected by properly choosing the burst duration N·T such 
that the target is considered static during this interval, i.e., 
speed v(t) = 0. The burst interval of 2 ms is sufficiently short 
to consider the static target assumption true. Moreover, this 
ensures also that the downconverted signals of the SFCW 
waveform consist of I/Q direct current (DC) levels. This means 
that only two samples can be acquired per pulse width T fixing 
the sample time of SFCW waveform to 50 µs. 

On the contrary, the fifth term, which is not negligible, is 
compensated through a calibration procedure, resulting, for the 
presented sensor, in about 1 m fixed shift from the correct 
target distance. These considerations resulted in ∆f to be fixed 
at 25 MHz to enable a 6 m coverage, 5 m for the desired target 
range and another 1 m allowance to cater for the fixed shift.  

C. Data Processing 

The digitized I/Q baseband signals are processed remotely 
in the base station using Matlab. The samples are first related 
as in eq. (5), and then split as according to category to be 
processed separately, namely whether the samples serve for 
speed monitoring or for absolute distance detection.  

A movement classification based on a Least Square Support 
Vector Machine (LS-SVM) approach [16] is applied to 
analyze the speed samples in order to distinguish falls from 
normal movements. The key relies on the different changes in 
speed experienced during a fall or a normal movement. During 
a fall, in fact, the speed continuously increases until the sudden 
moment when the fall stops abruptly. During a normal 
movement, the Doppler signal experiences a controlled 
movement. More precisely, while a person is sitting or lying 
down, the speed first gradually increases, and then decreases to 
a smooth stop, whereas during a walk, instead, the speed is 
quite constant over time. The acquired speed signals, or 
activities, are used to build a data set. Before learning a model, 
the raw radar data is preprocessed. Each activity is grouped in 
a segment of 2 seconds, considered sufficient to cover the 
details of the activities. Given such segments, the data is then 
transformed using Fast Fourier Transform (FFT) from which 
only the magnitude spectrum is retained. Two alternatives have 
been considered, namely 1) to compute the FFT directly on the 
complete segment and 2) to use the Short Time FFT (STFT). 



 

In the latter case, the segment is first chopped into 50% 
overlapping frames which are each multiplied with a Hamming 
window after which the FFT is computed on each of these 
frames. As opposed to the FFT, the STFT can represent time 
dependent structures and results in higher performance in case 
of signals that experience a gradual change in velocity. In the 
LS-SVM framework a choice concerning a kernel function 
must be made. A kernel function can be seen as a similarity 
function which defines how signals are compared. For the first 
option, the LS-SVM is used in combination with a linear and 
Radial Basis Function (RBF) kernel on the FFT data, while to 
handle the STFT data, the LS-SVM is combined with the 
Global Alignment (GA) kernel. Prior to the learning phase, the 
data was standardized such that each dimension has zero mean 
and unit standard deviation. 

The target’s range profile is determined applying the 
Inverse Fast Fourier Transformer (IFFT). However, this 
operation has as main challenge the distinction of the target’s 
reflection from the effects of backscattering and cross-
coupling between the two antennas. The latter involve strong 
reflections that overwhelm the much weaker reflected/received 
signal, resulting in the inability to acquire any meaningful 
target information. Besides, the presence of cluttering due to 
furniture in a practical environment must also be considered. 
Both factors can be eliminated by a compensation that consists 
in determining an environmental range profile, characterizing 
the total contribution from both cross-coupling and cluttering. 
Its magnitude is then subtracted from the range profiles 
obtained with the target in the room. Then, the range profile is 
shifted by a fixed value to compensate for the effect of the fifth 
term in eq. (12). This value is obtained through calibration 
using a flat metal plate, placing it at a well-known distance 
from the antennas to evaluate its range profile. The value of its 
corresponding peak is read and subtracted from this calibrated 
distance, thus yielding θn. 

However, it has to be noted that this operation can be only 
successful if the backscattering and crosstalk are strongly 
reduced, as explained in the next section. 
 

III.  SENSOR ARCHITECTURE 

Fig. 3 shows the overall sensor block. It consists of three 
main parts, namely the radar module, the AT86RF231 Zigbee 
module, and the microcontroller. The sensor block is 
combined with two-element dual-band antennas, designed to 
operate at both the radar and Zigbee ISM frequency bands. As 
will be explained in subsection B, the main challenge is to 
reduce the backscattering and crosstalk effects while 
presenting also a semispherical radiation pattern. No off-the-
shelf antennas are available dealing with such challenges. A 
wideband circulator with one antenna could represent a more 
compact solution. However, although it does not experience 
the cross talk, the mismatch between the antenna and its feed 
line involves a strong reflection that overwhelms the reflected 
signal. This effect cannot be reduced below a practical value 

(i.e., -30 dB) in the whole radar bandwidth as it was possible 
with the cross talk in the case of two antennas. 

The microcontroller controls the RF switch to connect 
alternately the radar transmitter and the Zigbee module to the 
transmitter antenna, labeled TX in Fig. 3. However, the latter is 
used by the Zigbee module both to transmit and to receive 
frames. In fact, the sensor may receive commands from the 
base station. This happens to synchronize base station and 
sensor after power-on. 

Batteries provide the power supply to the sensor.  
We will now detail the radar module and the antenna design. 

As the Zigbee module is an off-the-shelf component, it is not 
further described. 

A. Sensor 

The radar module integrates a Fractional-N PLL with a 
wideband VCO, a 5.8 – 7 GHz wideband Wilkinson power 
divider, an RF switch, a low noise amplifier (LNA), a gain 
block, an In-phase and Quadrature (IQ) mixer, and baseband 
filters and amplifiers. The microcontroller programs the 
synthesizer of the PLL to generate the radar waveform, 
described in Section II.B, with a maximum transmit power 
level of + 2 dBm. A 5.8 GHz single tone is produced at every 
1 s interval, immediately followed by this SFCW waveform. 
The sensor requires about 30 µs to generate a new frequency, 
by which the first 20 µs is to program the PLL, while another 8 
µs is to take into account the VCO maximum settling time. 
The combined LNA and gain block is chosen to provide a total 
gain of about 30 dB to avoid saturation of the gain block. This 
is considering that the two antennas present a cross-coupling 
of about -35 dB within the operation bandwidth and that the 
target could move very close to the antennas, producing a high 
reflection and thus high received power.  

The bipolar I/Q baseband signals are then acquired and 
digitized by an ADC inside the microcontroller. Since it works 
with unipolar signals, between 0 and 3.2 V, the outputs of the 
mixer are bandpass filtered, amplified and then a 1.6 V DC 
level is added to position the signals to the center of ADC's 

 
Fig. 3.  Block diagram of the sensor.  



 

 
 

Fig. 4.  Fabricated prototype of the proposed two-element bow-tie 
antenna. 
 

 
Fig. 5.  Measured antenna S-parameters. 

dynamic range. The lowpass filter serves both as an 
antialiasing filter and as a charge reservoir for the ADC’s 
switched capacitor input stage. 

The 10-bit ADC requires about 20 µs to acquire the samples 
and to digitize the two I/Q components before the next 
frequency can be generated. These acquired and digitized 
samples, containing the target's information, are then sent to 
the base station. This transmission must be properly managed 
while simultaneously acquiring the monitoring signals. Since 
the Zigbee protocol only transmits frames containing bytes, 
each of the acquired 10 bit samples should be ordered into two 
bytes. However, since the I and Q samples are acquired at the 
same time, they can be mapped in 3 bytes. Sampling the signal 
containing speed information at 250 Hz for a duration of 1 s, 
and considering the I/Q components, the sensor is expected to 
accumulate 502 samples. This translates into 753 bytes. The 
transmission of these frames must be executed in between 
speed sampling instants. For that reason, the speed samples are 
mapped in frames of 75 bytes, 25 I samples and 25 Q samples. 
The transmission of such frames requires about 2.6 ms each, 
much shorter than the duration of the acquisition period. Each 
frame is therefore filled after 100 ms and then transmitted 
before the next new sample is acquired. However, the 
transmission of the last 3 speed bytes is achieved with the 
transmission of the 80 I/Q burst samples, i.e. 120 bytes. This 
involves the transmission of two consecutive frames, each with 
63 and 60 bytes, respectively. The former, containing also the 
last 3 speed bytes, is transmitted immediately after the 
acquisition of the first new I/Q speed, while the latter is 
transmitted after the acquisition of the second I/Q speed 
samples.  

The 5.8 GHz tone is generated immediately after the SFCW 
waveform. However, the first I/Q speed samples are acquired 
after about 2 ms after the acquisition of the last burst samples. 
This is done to hold the 4 ms speed sampling time as a 
constant. 

B. Antenna 

Regarding the antennas for the sensor, two identical dual-
band antennas based on the coplanar waveguide (CPW) bow-
tie have been designed for the sensor. According to the system 
requirements, the antennas are to be used for target monitoring 
between 5.8 and 7 GHz, and for sensor-to-base station 
communication at 2.45 GHz. Besides resonance prerequisites, 
a set of stringent design requirements is imposed, which 
includes size compactness and radiation characteristics. 
Firstly, the backscattering within the frequency band where the 
sensor is used to locate the target and to determine its speed 
must be strongly reduced to enable maximum forward power 
towards the target. A failure in doing so will obviously limit 
the forward transmit power, resulting in a weak reflection from 
the target, and in a waste of energy. Moreover, since the sensor 
is intended to be mounted either to the wall or to the ceiling, 
the relative reflection of the wall or ceiling will bury the much 
weaker target’s reflection.  

Another challenge that arises when attempting to arrive at a 
compact system size is the problem of the inter-element 
antenna cross-coupling. As was explained earlier, such large 
cross-coupling enables the power "overflow" from the 
transmitting antenna to the adjacent receiving element 
involving a strong reflection. These two undesired effects 
therefore involve the decrease of the total receiver’s gain to 
avoid the saturation both of the amplifiers and of the ADC. 
Thus, the longer the distance to the target is, the weaker is the 
reflection such that it is no longer perceptible by the ADC’s 
resolution, as it is buried in the noise. 

These considerations, plus the objective for a 5 x 5 m 
equivalent room area coverage lead to the following design 
requirements: (1) a compact antenna footprint, approximately 
equivalent to the overall sensor's size; (2) an antenna 
beamwidth of approximately 60° for a wide coverage in the 
azimuth plane; and (3) a minimum gain of approximately 6 dB 
with unidirectional forward radiation.  

The designed antennas are shown in Fig. 4. Each bow-tie 
element is fabricated on a 1.524 mm thick Rogers RO4003 
substrate, with a relative permittivity εr of 3.38 and loss 
tangent tanδ of 0.021. Two identical antennas are then secured 
onto 18.5 mm thick foam substrates with εr = 1.05 prior to 
placement on a common ground plane sized at 112 x 42 mm. 
Besides minimizing antenna back radiation, such arrangement 
enables bandwidth broadening across 6 to 7 GHz. The close-
proximity placement of the antennas are almost certain to 
induce cross-coupling, thus a 39 x 31 x 1 mm vertical wall is 
introduced between the two antennas, placed 19.5 mm from 
each element.  

The designed antenna combination has successfully 
achieved its intended purpose. In fact, the use of the common 
ground plane reduces strongly the backscattering, while the 
use of the metal wall suppresses the cross-coupling (S21) 
besides maintaining a satisfactory reflection coefficient (S11), 
as shown in Fig. 5. For this fabricated prototype, the S11 results 
between 6.6 GHz and 7 GHz are indeed slightly above -10 dB. 



 

However, the highest/worst S11 within this range is -7 dB, 
which translates to a maximum of 20% reflected RF power. 
This is mainly due to both the soldering and the difficulty of 
realizing a completely flat foam spacer. Similarly for the 
system, this means that a maximum of 20% less power is 
transmitted, resulting in a lower target-reflected signal detected 
by the receiver. This may produce an error in absolute distance 
detection when the target is really far away from the antenna, 
i.e., more than 5 m. At these distances, reflections from the 
target received within the 6.6 – 7 GHz band will not be 
perceptible by the receiver despite the sufficient signal 
amplitudes received in the 6 – 6.6 GHz band. This then 
potentially causes a wrong target location interpretation in the 
range profile. However, the measurements indicated this is not 
a problem in a 5 x 5 m2 sized room.  
 

IV. EXPERIMENTAL RESULTS 

Experimental evaluations have been conducted with real 
human volunteers who are allowed to move freely in the whole 
room. The sensor has been fixed to the wall at 1.5 m of height. 
Furniture and metallic shelves are deliberately included to 
enable the existence of clutter and reflections, mimicking a 
typical room setting. Falls are mimicked with two different 
human volunteers, with a similar 1.75 m height but different 
weights, to enable the evaluation of different fall speeds. The 
first and second subjects’ weighs are 90 kg and 75 kg, 
respectively. However, only frontal falls have been evaluated 
at different locations at radial distances in the whole room, 
using an inflated mattress to avoid injuries. Also, only one 
person was present in the room at a time. 

The prototype implementation of the proposed system is 
proven to be accurate as illustrated in the following results. 

A. Tag-less localization 

Fig. 6a represents an initial range profile of a person at 4 m 
away from the antennas, prior to the compensation and 
calibration process. The peak, which is supposed to indicate 
the target's absolute distance, is totally overwhelmed by the 
undesired reflections originating from the clutter and the 
antenna’s cross-coupling. In particular, the latter is the most 
dominant effect as emphasized by the strong peak at 90 cm. 
This indicates also the position of the two antennas in the 
range profile, which in theory should be at 0 m. The peak 
therefore results shifted in range due to the effect of the fixed 
frequency shift θn, whose value can be read and used during 
calibration. 

After applying the compensation and the calibration steps, 
the target’s peak can be perfectly distinguished as shown in 
Fig. 6b.  

However, it should be noted that the radar has a range 
resolution of 15 cm. It means that any target’s physical 
distance will be rounded to the nearest location/resolution 
provided by the radar. This also establishes the maximum error 
in localization of 7.5 cm. 
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Fig. 6.  Range profile of a target at 4 m away the antennas before (a) and after 
(b) compensation and calibration.  

B. Fall detection 

A data set was built containing 70 activities measured from 
two persons. In particular, 20 walking signals have been 
acquired for each person, who was allowed free movement in 
the whole room, and 30 fall signals have been acquired with 
each subject located at known distances from the antennas. 
Figs. 7a and 7b show the speed signals respectively during a 
walking and a fall movement. The LS-SVM model is trained 
using the data of a single person (target 1) and then validated 
using the data from the other person (target 2). This process is 
repeated two times since data from two persons was available.  
The results of the classification are shown in Table I. It can be 
seen that the GA kernel, that incorporates time dependent 
information, presents a success rate in distinguishing fall 
events from normal movements of 94.3% outperforming the 
linear and RBF kernels. This is expected since falls exhibit a 
time dependent structure as the speed increases continuously 
until the sudden moment when it stops abruptly. An alternative 
method called Dynamic Time Warping (DTW) combined with 
a Euclidean distance measure is frequently used to classify 
sequences of vectors. In order to compare the LS-SVM with 
GA solution to this standard method an additional experiment 
was included. The results show that the GA kernel slightly 
outperforms the DTW alternative on this data set. 

By reducing further the crosstalk, it will be possible to 
increase the total receiver gain and consequently to improve 
the accuracy of velocity detection, besides the detection range 
extension. Also the system's sampling rate influences the 
accuracy of the speed detection, i.e., the higher it is, the more 
accurate is its detection. However, this will significantly 
complicate the system since the duration of the SFCW pulses 
must be shortened and the ADC sample rate increased. This 
will involve higher power consumption and a larger number of 
transmitted frames to the base station. However, it should be 
noted that in this application the main goal is to detect the 
changes in speed and not to determine how accurate is the 
value of the instantaneous speed. 



 

0 1
0

1.6

3.2

V
o

lt
ag

e 
(V

)

Time (s)

 

 

I channel
Q channel

 
(a) 

0 1
0

1.6

3.2

V
o

lt
ag

e 
(V

)

Time (s)

 

 

I channel
Q channel

 
(b) 

Fig. 7.  Speed signal during (a) a walking movement and during (b) a fall 
event. The frequency of the signal is proportional to the radial velocity of the 
person during the movement. An inflating mattress has been used when 
invoking falls. For that reason, the corresponding speed signals do not stop 
suddenly but there is also the effect of the rebounds on the mattress. 

 
TABLE I 

FALSE POSITIVES AND SUCCESS RATE USING FOUR CLASSIFICATION MODELS 

Target 1 Target 2 Classification 
model % False 

Positives 
% Success 

Rate 
% False 
Positives 

% Success 
Rate 

LS-SVM lin 15 85.7 10 82.9 

LS-SVM RBF 15 80 15 85.7 

LS-SVM GA 0 94.3 0 94.3 

DWT 10 91.4 0 94.3 

 

V. CONCLUSION 

A radar-based system has been proposed as a new approach 
for contactless fall detection and tag-less localization in in-
door environment. This is inline with the growing need for 
novel health care solutions. The full system combining radar, 
wireless communications, and data processing techniques has 
been analyzed and described. The prototype implementation 
has been designed to satisfy the European and Federal 
Communications Commission (FCC) UWB spectrum masks. 
Practical problems, such as backscattering and crosstalk, have 
been also addressed. Experimental evaluations with real 
human subjects have demonstrated accurate detection of the 
target’s absolute distance and fall events.  

Next step is to combine multiple sensors in a wireless sensor 
network configuration, in order to monitor multiple persons 
and to increase the accuracy and coverage area, beyond one 
room. The final application is automated remote monitoring in 
private homes, although it can also be adopted for nurse call 
solutions in nursing homes.  
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