
P015, Page 1

Residential buildings with heat pumps, a verified bottom-up model
for demand side management studies

Dieter Patteeuw1, Lieve Helsen1,∗

(1)Applied Mechanics and Energy Conversion, Department of Mechanical Engineering,
KU Leuven, Belgium, Email: lieve.helsen@kuleuven.be

1. ABSTRACT

The increasing use of intermittent renewable energy sources has reawakened the interest for de-
mand side management, among which thermostatically controlled loads are a much mentioned
option. One of these load types are residential buildings equipped with heat pumps, which can
shift electricity consumption in time without compromising indoor thermal comfort. A pre-
requisite for the widespread application of this technology is a thorough understanding of its
potential for demand side management. This type of studies needs models which on the one
hand are computationally efficient enough to be scaled up to a country’s building stock but on
the other hand are still a correct system representation. These issues are tackled by consider-
ing multiple levels of detail in reduced order models and verifying these models to a detailed
simulation model. A second step is the aggregation of buildings with different occupant behav-
ior. The aggregation’s performance is assessed by comparing the response to various electricity
price profiles. Results show that the proposed aggregated model is sufficiently accurate in repre-
sentating the considered buildings. The methodology presented in this paper can also be applied
to other building types, resulting in an aggregated and verified model of a country’s building
stock for demand side management studies.

Keywords: residential building, heat pump, demand side management, linear model, reduced
order model, aggregated model

2. INTRODUCTION

Demand side management (DSM) is the altering of consumer’s electricity demand in order to
obtain a more desirable load shape for utilities (Gellings, 1985). Strbac (2008) states that such
shifting of electricity demand can have numerous benefits such as reducing the need for back-
up power plants, grid investments and so on. He identified two main drivers for an increasing
potential of DSM, being the increase in renewable energy sources and the improvement of
information and communication technologies. Heat pumps are often regarded as a promising
technology for DSM, for example to increase voltage security (Wang et al., 2012) or to increase
the usage of wind energy (Hedegaard, Mathiesen, Lund, & Heiselberg, 2012). One of the
factors hampering its widespread application is a lack of understanding of the potential benefits
(Strbac, 2008) which requires appropriate models to enable estimating the potential. This paper
aims at presenting a model which can be used to study the flexibility potential of residential
buildings equipped with heat pumps. This can be done by means of co-optimization of the
presented model and state of the art electricity generation park models. Bruninx, Patteeuw,
Delarue, Helsen, and D’haeseleer (2013) showed the added value of this co-optimization, as it
can be used to assess the potential of applying DSM. The electricity generation park model is a
mixed integer linear optimization problem, which sets requirements for the building and heating
system model structure (see section 3.2.1 and section 3.2.2).

Studies on the DSM potential of buildings equipped with heat pumps tend to focus on either the
buildings energy demand or on the electricity generation park. The former studies focus on one

9th International Conference on System Simulation in Buildings, Liege, December 10–12, 2014



P015, Page 2

building or a limited cluster of buildings, using existing building performance simulation tools
(e.g. Kelly, Tuohy, and Hawkes (2013); Henze, Felsmann, and Knabe (2004)) or experiments
(e.g. Kok et al. (2012)). The disadvantage of these studies is that the electricity generation
system is simplified to a fixed electricity price profile, sometimes leading to spectacular cost
savings, going up to 57% (Henze et al., 2004). This potential benefit might diminish when the
market penetration of these flexible systems increases (Bruninx et al., 2013).

An increasing number of DSM potential studies models both electricity generation park and
buildings simultaneously. Typically, these studies start from an electricity generation park
model (Eq. (1)-(3)) in which the operational cost costop of generating electricity genj is min-
imized over a certain time period, with j being the time step. The flexibility in electricity
demand offered by the buildings with heat pumps, is modelled as follows. The heat pumps
cause an additional electricity demand P hp,tot

j which is limited by a linear state space model
(Eq. (4)) of building and hot water tank temperatures Tj , comfort constraints (Eq. (5)) and
power constraints (Eq. (6)). The overall model is hence the following optimization problem:

minimize
genj ,P

hp,tot
j ,Tj

∑
j

costop(genj) (1)

subject to ∀j : conop(genj) = 0 (2)

∀j : genj = demandj + P hp,tot
j (3)

∀j : P hp,tot
j = ss(Tj) (4)

∀j : comfort(Tj) ≥ 0 (5)

∀j : power(P hp,tot
j ) ≥ 0 (6)

in which equation (3) makes sure that at each time step, the total electricity generation genj

covers the traditional electricity demand demandj and the additional electricity demand P hp,tot
j .

These studies tend to oversimplify the building: a heat pump is often considered to have a
constant coefficient of performance (COP) while solar heat gains and thermal energy storage in
the building structure are often neglected. Regarding the COP, only two studies could be found
that have a more complicated representation of the COP, namely by considering the COP either
linearly (Good, Navarro-espinosa, Mancarella, & Karangelos, 2013) or non-linearly (Wang et
al., 2012) dependent on ambient air temperature. Solar heat gains are sometimes indirectly
included by considering these as part of the model’s white noise (Callaway, 2009; Kamgarpour
et al., 2013). In order to shift a heat pump’s electricity demand in time without compromising
the users’ comfort, some thermal energy storage must be present in the system. This can be
either in storage tanks (active thermal storage) or in the building structure itself (passive thermal
storage). Some authors focussing on active thermal energy storage in domestic hot water tanks
(Barton et al., 2013; Kondoh, Lu, Member, & Hammerstrom, 2011) or high capacity space
heating systems (Long, Xu, & He, 2011; Meibom et al., 2007) consider buildings as providers
of a fixed thermal energy demand profile, hereby neglecting the energy storage potential of the
building structure.

In order to determine the DSM potential of passive energy storage, the building structure is in
some cases represented by two (Pedersen, Andersen, Nielsen, Stæ rmose, & Pedersen, 2011;
Wang et al., 2012) or three thermal capacities (Hedegaard & Balyk, 2013). In general though,
only one thermal capacity is considered (Good et al., 2013; Hedegaard et al., 2012; Muratori,
Roberts, Sioshansi, Marano, & Rizzoni, 2013). Modelling the building structure as one thermal
capacity allows statistical aggregation techniques in order to study the DSM potential of large
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Figure 1: The aim of the paper is to develop an aggregated model which is derived from a
detailed building simulation (emulator) model. Section 4.1 compares multiple reduced order
models to this emulator model. In section 4.2 the aggregated model is compared to a large set
of these reduced order models.

sets of buildings (Malhame, 1985; Kamgarpour et al., 2013; Callaway, 2009). Another advan-
tage is that the model becomes similar to that of other thermostatically controlled loads, such
as fridges and freezers, allowing similar modelling techniques (Lu & Vanouni, 2013; Mathieu,
Dyson, & Callaway, 2012). One could argue which level of detail is needed to describe the
transient behaviour of a building. This is discussed in section 3.2.1.

The aim of this paper is to present a set of equations in the form of Eq. (4)-(6) that accurately
represents the DSM potential of thousands of buildings equipped with heat pumps. In order to
achieve feasible computation times, an aggregated, reduced order model of these buildings is
required. This paper presents three levels of modelling detail and a procedure to verify the top-
level aggregated, reduced order model (see figure 1). The highest level of detail can be found
in the building performance simulation model, which acts as the emulator model. From this, a
reduced order model (ROM) is deducted. A second level of simplification aggregates multiple
of these ROMs, based on their occupants behaviour. The results section shows the comparison
between the different levels of details, linking the performance of the most detailed model to
the top-level aggregated ROM model. The discussion section elaborates on this comparison, to
support the conclusions in the conclusion section.

3. METHODOLOGY

This section describes three levels of modelling detail (Figure 1). The first model (section 3.1)
is a fully physical model which acts as an emulator model. From this, multiple reduced order
models are deduced (section 3.2). The final level of simplification is the aggregation of multiple
buildings by a mathematical operation on the comfort bounds (section 3.3).

3.1. Emulator model

A detailed emulator model of the building is developed using the IDEAS library in Modelica,
described by Baetens et al. (2012). This modelling environment has been verified and validated
using the BESTEST methodology (Judkoff & Neymark, 1995). The parameters for the sin-
gle zone building are taken from Reynders, Diriken, and Saelens (2014), who interpreted the
parameters of a typical post 2005 built Belgian dwelling as described in the TABULA project
(Cyx, Renders, Van Holm, & Verbeke, 2011). The building has a floor surface of 270 m2 and
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Figure 2: Hydraulic scheme of the heating system, based on De Coninck et al. (2014). A
modulating air coupled heat pump supplies heat for domestic hot water (DHW) via a storage
tank and space heating (SH) via a radiator.

a protected volume of 741 m3. The combination of infiltration and ventilation cause 1.5 air
changes per hour. The exterior walls, roof and windows have a U-value of 0.4 W

m2K
, 0.5 W

m2K

and 1.4 W
m2K

respectively. In each cardinal direction, the building has an average of about 10m2

window surface, resulting in a percentage glazing of 22%. The Belgian climate is considered,
based on the measurements in Uccle and distributed by Meteonorm (METEONORM Version
6.1 Edition 2009, 2009).

The heating system is also modelled using the IDEAS library. It consists of a modulating
air coupled heat pump supplying both warm water to a radiator for space heating (SH) and a
domestic hot water (DHW) tank(Figure 2). All components are based on physical equations,
while the parameters for these components are determined from either manufacturer data or
empirical correlations. A full description of the heat pump model, along with a validation of
the domestic hot water tank model is described by De Coninck, Baetens, Saelens, Woyte, and
Helsen (2014). The model for the radiator is described by Baetens et al. (2012). The heat
pump and radiator are sized to meet 80% of the design heat demand of 8900W , in accordance
with the code of good practice in Belgium (“Code van goede praktijk voor de toepassing van
warmtepompsystemen in de woningbouw”, 2004).

Table 1: Multiple buildings are considered having a different number of occupants with each
their own DHW tank for supplying domestic hot water.

Household size [Persons] 1 2 3 4 5 6
Number of households (25 case) 8 8 4 3 1 1
Number of households (100 case) 32 32 16 12 4 4
Daily DHW demand at 50 ◦C [liter] 62.5 125 162 200 237 300
DHW tank size [liter] 120 160 160 200 300 300
DHW tank UA [W/K] 0.117 0.098 0.098 0.085 0.085 0.077

Since the model is aimed to be scaled up in order to represent thousands of buildings, also var-
ious numbers of occupants per house are considered. To this aim, 25 buildings are considered,
each having the same building structure, but with different number of occupants and different
occupant behaviour (Table 1). For the aggregation method, the aggregated model was compared
to 100 ROMs, each having again the same building model but different occupant behaviour. The
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household size determines the daily DHW demand, which is based on Peuser, Remmers, and
Schnauss (2010). This daily demand determines the size of the DHW tank. The parameters of
the tanks are based on the Vitocell 100-W gamma of Viessmann.

3.2. Reduced order model

The reduced order model describes the dynamic behaviour of both building and heating system
with fewer equations and detail than the emulator model. This ROM is the set of linear equations
(4)-(6) that still describes the flexibility in electricity use provided by the presented system. In
order to obtain profiles of how the ROM performs with respect to the emulator model (figure
5), the optimization problem (Eq. (1)-(6)) is reduced to:

minimize
Php,tot
j ,Tj

∑
j

costj · P hp,tot
j (7)

subject to ∀j : P hp,tot
j = ss(Tj) (8)

∀j : comfort(Tj) ≥ 0 (9)

∀j : power(P hp,tot
j ) ≥ 0 (10)

in which costj is the electricity cost at time step j (Figure 8(a)). Thus given a specific electricity
price profile, the optimization gives a resulting electricity consumption and temperatures, which
can be compared to the emulator model.

A linear model of the building was already developed by Reynders et al. (2014) and is described
shortly in section 3.2.1. This paper mainly focuses on the reduced order model of the heating
system. Table 2 summarizes various aspects of the heating systems that can be modelled in
different ways. Section 3.2.2 describes in detail the multiple representations for the heat pump.
Section 3.2.3 focuses on the DHW tank and finally section 3.2.4 describes the radiator model.

Table 2: Component model description for the emulator model. Per component two options for
the reduced order model (ROM) are considered. Tamb is the ambient air temperature. P hp is
the electrical power used by the heat pump.

Component Emulator model ROM option 1 ROM option 2
Heat pump Interpolation of Constant COP, COP from correlation,
COP manufacturer data average from correlation function of Tamb

Heat pump Interpolation of mixed integer formulation linear in P hp (Eq.16-19)
modulation manufacturer data (Eq.12-15) + post processing
DHW storage multiple layers fully mixed with mixed fully mixed with
tank with energy integer constraint linear constraint

balance equation (Eq.22-23) (Eq.24-29)
Radiator radiator formula no radiator model linearised heat transfer

and one thermal and one thermal
capacity capacity (Eq.30)

3.2.1. Building model

Reynders et al. (2014) deducted a linear model with five states (Figure 3(a)) by performing
system identification on the emulator model described in section 3.1. These five states are the
indoor operative temperature Tair and the temperature of inner walls Twi, roof Troof , floor Tf and

9th International Conference on System Simulation in Buildings, Liege, December 10–12, 2014



P015, Page 6

(a) Linear building model. (b) Comparison of indoor temperature for linear (Grey-box) and detailed
physical (White-box) model

Figure 3: The linear model (left) comprises of five thermal capacities and hence five states. It
is a model able to approximate the behaviour of the detailed physical model (right). Source:
Reynders et al. (2014).

exterior walls Twe. The thermal capacities and heat transfer coefficients associated with these
states have the same indices. Inputs to the model are the ambient air temperature Te, ground
temperature Tground and the heat gains due to solar irradiation, internal gains and radiators.
Multiple linear models were considered, from which the five states model clearly outperforms
the rest. This model shows an RMSE error of only 0.3 ◦C on a two day ahead prediction of the
indoor operative temperature of the detailed physical model. Figure 3(b) shows the comparison
between both models. The linear model can be written in the following state space structure for
a certain time step j:

Ṫj = A · Tj +B · Uj (11)

in which Tj and Uj are vectors with the above mentioned states and inputs respectively. The
parameters in the matricesA andB were determined from system identification. This five states
model is used as part of the ROM in this paper.

3.2.2. Heat pump model

This paper focuses on modulating heat pumps for which the performance strongly depend on
the supply and source temperature, and on the modulation. Verhelst, Logist, Van Impe, and
Helsen (2012) studied multiple representations of the heat pump COP based on these variables,
among which non-linear representations. Since the ROMs discussed in this paper are intended
to be combined with electricity generation park models (Bruninx et al., 2013), a non-linear
representation is out of the question, hence only linear and mixed integer representations of
heat pump performance are allowed. The two remaining options for this framework are thus
a constant COP or a COP that is a function of the ambient air temperature only. The heat
pump integrated in the emulator model can supply warm water to both space heating (SH) and
domestic hot water (DHW), hence the decision variables are the electric power of the heat pump
to supply space heating P hp,sh

j or domestic hot water P hp,dhw
j at time step j. The most detailed

mixed integer representation of the heat pumps performance is the set of equations (12)-(15).
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The equations for the domestic hot water supply are analogous to (12)-(14).

∀j : P hp,sh
j = Pmin,hp,sh

j · zhp,shj + P int,hp,sh
j (12)

∀j : 0 ≤ P int,hp,sh
j ≤ (Pmax,hp,sh

j − Pmin,hp,sh
j ) · zhp,shj (13)

∀j : Q̇hp,sh
j = COP i,sh

j · Pmin,hp,sh
j · zhp,shj + P int,hp,sh

j · (COP a,sh
j − COP i,sh

j ) (14)

∀j : zhp,shj + zhp,dhwj ≤ 1 (15)

This representation has the advantage of being directly convertible to control signals for the
heat pump and the pumps connecting the heat pump to the DHW tank and space heating by
means of the integer variables zhp,dhwj and zhp,shj that can only be zero or one. It is also possible
to take into account a different COP at full load COP a,sh

j and at minimal modulation COP i,sh
j .

The power that the heat pump consumes does not violate the working constraints, it is either
off or between the maximal Pmax,hp,sh

j and minimal Pmin,hp,sh
j modulating power. The integer

power level P int,hp,sh
j is a dummy variable to cope with these constraints. The disadvantage

is the number of integers used, since these are known to cause the calculation time to explode.
Solvers for mixed integer linear problems can typically handle problems with up to 105 integers,
however when exceeding this order of magnitude, this becomes a lot harder (Koch et al., 2011).
Considering a time horizon of 48 hours with two integers each hour per house, this would limit
the number of buildings in one optimization problem to 104 buildings.

Another option to represent the heat pump is a linear model (16)-(19), in which the electric
power of the heat pump towards space heating or domestic hot water can vary between 0 and
Pmax,hp
j , as long as the sum of the two remains below Pmax,hp

j . Linear optimization models are
computationally very efficient to solve, the optimization takes only some seconds on a regular
laptop while the mixed integer representation (12)-(15) can easily take minutes to hours to solve.
This linear model consists of the following equations:

∀j : P hp,sh
j + P hp,dhw

j ≤ Pmax,hp
j (16)

∀j : P hp,sh
j , P hp,dhw

j ≥ 0 (17)

∀j : Q̇hp,sh
j = COP sh

j · P
hp,sh
j (18)

∀j : Q̇hp,dhw
j = COP dhw

j · P hp,dhw
j (19)

The disadvantage of the linear optimization model is the extra effort needed to derive control
signals for the individual heat pump and circulation pumps, respecting the lower modulation
level of the heat pump. To this aim, a post processing is applied in order to obtain feasible pro-
files for ’scheduled operation’ as explained by Kosek, Costanzo, Bindner, and Gehrke (2013).
Since multiple buildings are controlled at once, the electricity demand per building can be redi-
vided among the buildings, as long as the sum of these electricity demands remains the same.
In this way, some buildings that require less than the minimal modulation of the heat pump, are
switched off and this difference is made up for in other buildings. The buildings from which the
heat pumps were switched off, are compensated for this fact in a later time step.

3.2.3. Domestic hot water tank

The central component in the DHW model is the DHW tank. This tank can either be modelled
as perfectly stirred or perfectly stratified. The latter storage tank model was not considered in
this study, since it was noticed in the simulations of the emulator model, that the heat exchanger
usually destroys the thermal stratification. The tank is thus assumed to be a perfectly stirred
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water tank, meaning that all water in the tank is at the same temperature T tank
j at time step j.

The water in the DHW tank can either be heated up by the heat pump, Q̇hp,dhw
j or by a back up

electrical heater Q̇aux1,dhw
j . Heat is extracted from the DHW tank through demand for hot water

Q̇dem
j and heat loss to the surroundings. The discretized version of the energy balance for the

DHW tank leads to the following equation:

∀j : ρcpVtank
T tank
j+1 − T tank

j

∆t
= Q̇hp,dhw

j + Q̇aux,dhw
j − Q̇dem

j − UA · (T tank
j − T surr

j ) (20)

with ρ[kg/m3] and cp[J/kgK] the density and heat capacity of water and Vtank[m3] the vol-
ume of the tank. With ∆t the time step of the optimization, the time derivative of T tank

j is

approximated as
T tank
j+1 −T tank

j

∆t
. The term UA · (T tank

j − T surr
j ) determines the heat loss to the

surroundings, which is at temperature T surr
j . The thermal conductance UA[W/K] is that of the

insulation around the DHW tank, which is the dominant resistance to heat transfer.

The temperature of the cold tap water T cold and the temperature of the supplied DHW T dem are
both assumed to be constant. A lower boundary for the temperature of the water in the DHW
tank stems from the demand for a comfortable temperature of DHW. Since the tank is perfectly
stirred, the whole tank must be heated up to at least T dem when the occupants desire hot water.
In the meantime, the water in the tank can get as low as T cold:

∀j : T tank
j ≥ T dem · hwdj + T cold · (1− hdwj) (21)

with hwds,j a binary parameter which is 1 when hot water is demanded in time step j and 0
when this is not the case. The water in the DHW tank can be at a higher temperature than what
is demanded, in which case a three way valve is used to mix it with the cold water to the desired
temperature. Given the constant T cold and T dem and the fact that the whole tank is above T dem

in case of DHW demand, Q̇dem
j is independent of the tank temperature (Patteeuw, Bruninx,

Delarue, D’haeseleer, & Helsen, 2013).

The heat pump can deliver heat up to a maximum temperature T hp
max, typically 60 ◦C, which is

lower than the maximum allowed temperature of the DHW tank T tank
max , typically 90 ◦C. This

difference introduces the need for a boolean variable zdhwj and the following constraints

∀j : T tank
j +

∆t

ρ · Vtank · cp
· Q̇hp,dhw

j ≤ (1− zhwd
j ) · T hp

max + zhwd
j · T tank

max (22)

∀j :
Q̇hp,dhw

j

COP hp,dhw
j

≤ (1− zhwd
j ) · P hp

max (23)

When zhwd
j is zero, the temperature of the DHW tank is lower than T hp

max and the heat pump’s
output is limited by either the temperature up to which it can heat, Eq. (22), or by its maximal
electrical power, Eq. (23). In case zhwd

j is one, the temperature of the DHW tank is higher than
T hp
max and the heat pump’s output is zero through Eq. (23). In that case, Eq. (22) becomes an

upper constraint on the temperature of the DHW tank.

The boolean zhwd
j makes the problem a mixed integer linear problem, with the above mentioned

problems. A linear alternative for the model is defining the tank temperature T tank
j as the sum of

a temperature which is influenced by the heat pump T hp
j and a temperature difference influenced

by the auxiliary heater dT aux
j (the latter for the temperature range above 60 ◦C). The model
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hence becomes:

∀j : ρcpVtank
T hp
j+1 − T

hp
j

∆t
= Q̇hp,dhw

j + Q̇aux1,dhw
j − Q̇hp,dem

j − UA · (T hp
j − T surr

j ) (24)

∀j : ρcpVtank
dT aux

j+1 − dT aux
j

∆t
= Q̇aux2,dhw

j − Q̇aux,dem
j − UA · (dT aux

j ) (25)

∀j : Q̇hp,dem
j + Q̇aux,dem

j = Q̇dem
j (26)

∀j : Q̇aux1,dhw
j + Q̇aux2,dhw

j = Q̇aux,dhw
j (27)

∀j : T hp
max ≥ T hp

j ≥ T dem · hwdj + T cold · (1− hdwj) (28)

∀j : (T tank
max − T hp

max) ≥ dT aux
j ≥ 0 (29)

The heat demand Q̇dem
j for supplying DHW has to be extracted either from the heat pump

influenced temperature Q̇hp,dem
j or from the auxiliary influenced temperature Q̇aux,dem

j . The
heat pump can hence only heat up T hp

j to T hp
max. The auxiliary heater can supply heat to both the

heat pump influenced temperature (Q̇aux1,dhw
j ) and the auxiliary heater influenced temperature

(Q̇aux2,dhw
j ).

3.2.4. Heat emission system

The heat emission system is a radiator, that is modelled as a thermal capacity Crad at a temper-
ature T rad

j :

∀j : Crad

T rad
j+1 − T rad

j

∆t
= Q̇hp,sh

j + Q̇aux,sh
j − (UA)rad · (T rad

j − T zone
j ). (30)

The thermal capacity of the radiator Cp,rad is the sum of the thermal capacities of the radiator’s
dry mass and water content. The constant overall heat transfer coefficient (UA)rad is attained
by linearising the radiator formula around the design supply temperature.

3.3. Aggregated model

In order for a building model to represent thousands of buildings, the same building model
is considered multiple times, each time with a different user behaviour. The motivation to
model multiple buildings with different user behaviour, is to attain a reasonable load diversity
in order to avoid an unrealistically high peak load. In the field of electricity distribution systems,
Kersting (2012) concluded that considering the electricity demand of 70 buildings is enough to
represent the load diversity of a much larger cluster of buildings. In this paper, some margin
was taken and 100 buildings were considered. The number of inhabitants in each building was
chosen in such a way that it represents the population structure in Belgium (FOD economy
Belgium, 2008), see Table 1.

The methodology presented in this section can be applied for any occupancy schedule. For
this study in particular, time profiles of how many occupants are present and awake in the
building were extracted from the model of Richardson, Thomson, and Infield (2008). This data
is processed in order to get the thermal comfort limits for the building: if at least one occupant is
present and awake during at least half an hour, the lower temperature set-point becomes 20 ◦C
instead of 16 ◦C. Based on Peeters, Dear, Hensen, and D’haeseleer (2009), an upper bound
for the indoor operative temperature is on average 24 ◦C. The hot water demand at 60 ◦C is
inspired by Peuser et al. (2010), namely 50 litre per person for the first two inhabitants and
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Figure 4: Concept of the aggregation. For multiple buildings with identical building structure
but different user behaviour, the actual lower temperature limits are determined from the oc-
cupant’s temperature set-points. The aggregated model then has the same building structure,
but a lower bound for the indoor operative temperature which is the mean of the actual lower
temperature limits of the larger cluster of buildings.

30 litre per person for the following number of inhabitants. For each number of inhabitants,
one or two tap moments are generated during the periods the occupants are present. These
tap moments are distributed in such a way that the sum of the hot water demand for all 100
buildings corresponds to the profile denoted by Peuser et al. (2010). This aggregated hot water
tapping profile was measured from a very large apartment building in Germany.

A cluster of hundred building models, even if all these models are linear, is still a large problem
to solve. A method is thus needed to reduce the number of buildings, namely by aggregation. In
this paper, a new methodology is presented to aggregate building models which have the same
physical parameters but different user behaviour. This methodology is illustrated in figure 4.
Assume that the 32 households consisting of one person from Table 1 have the same building
structure and the same hot water storage tank. Most of the models for these 32 households will
be similar, except for the fact that these will have different temperature set-points for the indoor
air temperature and domestic hot water, along with different internal heat gains in the building
and different heat demand for domestic hot water.

The principle of the aggregation is explained for the case of space heating in figure 4. For each
of the 32 buildings with one occupant, the actual lower bound for the indoor air temperature
is determined. Thus not the set-point is taken as a lower bound, but the lowest temperature
possible if thermal comfort is to be attained. This actual lower bound is determined by taking
into account the warm-up and cool-down curve of the building. This bound is thus dependent
occupant behaviour, ambient air temperature, building parameters and heating system parame-
ters. The aggregated model then consists of one building model for which the lower temperature
bound is the average of the 32 actual lower temperature bounds. The internal heat gains are av-
eraged over the 32 internal heat gain profiles. A similar procedure is followed for domestic hot

9th International Conference on System Simulation in Buildings, Liege, December 10–12, 2014



P015, Page 11

Figure 5: The verification is performed as follows: the outcome of multiple ROMs are com-
pared to a reference emulator model. The reference emulator model tries to track the electricity
consumption profile from the ROM as closely as possible.

water: the actual lower bounds for the storage tank temperatures is determined along with the
average hot water demand. As there are 6 cases of number of inhabitants, and hence 6 different
hot water storage tanks, the aggregated model consists of 6 building models that represent the
100 building models. But these 6 building models could easily represent a thousand or more
buildings, since the procedure is the same. The similarity between the two levels of detail is
illustrated in section 4.2.

3.4. Summary

The methodology section gives an overview of all modelling levels needed to come up with
an aggregated, reduced order model of buildings equipped with heat pumps. The aim of these
models is a co-optimization with electricity generation park models in order to investigate the
potential for demand side management. Hence, simplifications are needed with respect to the
detailed physical model. Whether the simplifications presented in the methodology section can
be justified, is discussed in the following section.

4. RESULTS AND DISCUSSION

The results and discussion section is split up into two parts. The first section compares the
reduced order model to the emulator model, which is done for multiple user behaviours and
multiple hot water storage tank sizes. The second section shows the performance of the aggre-
gation.

4.1. Verification w.r.t. emulator model

The reduced order model is verified with respect to the emulator model as shown in figure 5. For
multiple electricity price profiles, the ROM is used in the optimization (Eq. (7)-(10)) determin-
ing optimal system operation for a time period of 48 hours. From this optimization, profiles for
the electricity consumption, indoor air temperature, COP, etc can be obtained. The verification
is done by letting the emulator model track this electricity consumption profile with an interme-
diate post-processing in some cases. The resulting profiles for indoor air temperature and hot
water storage tanks are then compared, as shown in figure 6. In the ROM, the thermal comfort
constraints are always met, since these are a constraint in the optimization. Thermal comfort is
not always met for the emulator model. As shown in table 2, there are multiple ROM options
for all the components. All these model options were compared for three electricity price pro-
files, namely in the shape of a sine wave with a mean value of 0.10EUR

kWh
and an amplitude of

0.01, 0.02 and 0.05EUR
kWh

. The results for the three electricity price profiles did not show much
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(a) Average indoor operative temperature.
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(b) Average DHW tank temperature.

Figure 6: Comparison of some average temperatures over all 25 buildings in case of the ROM
and the emulator (Emu) model. The reduced order model approximates the detailed simulation
model well, but there is still a (steady-state) deviation between both models.

difference though, therefore the results of this section are only discussed for the electricity price
profile with an amplitude of 0.02EUR

kWh
, as shown in Figure 8(a).

Results reference case. As reference case, all model options 2 of table 2 are chosen. So the
reference ROM consists of a heat pump with a COP that is a function of the ambient air tem-
perature and has no modulation constraints. The lack of modulation constraints is corrected by
performing a post-processing on the electricity demand profile as explained in section 3.2.2.
In the reference model, the radiator is also included with a constant UA value and a thermal
capacity. Finally, this reference ROM also has the linear, fully mixed model for the domestic
hot water tank. Figure 6 shows the indoor operative temperature and DHW tank averaged over
the 25 buildings. As can be seen from the figure, these buildings react upon the price profile
(Figure 8(a)), preheating the zone and DHW tank when the price is low.

The indoor operative temperature of the ROM shows an almost constant deviation from the
emulator model. This is due to two factors, namely a deviation in tracking of the electricity
consumption profile and losses in the distribution pipes. Firstly, the emulator model consumes
5% less electricity than the ROM, as shown in figure 8(b). Secondly, the lack of a distribution
pipe model in the ROM causes an additional 5% difference in thermal energy supplied. Regard-
ing the thermal comfort in the reference ROM, only the temperatures in periods when thermal
comfort is demanded, are important. The distribution of indoor operative temperature when
occupants are present is shown in figure 7. The indoor operative temperature drops regularly
below the demanded temperature of 20 ◦C but rarely below 19 ◦C. This deviation is clearly no-
ticeable in figure 6: the indoor operative temperature in the emulator model is between 0.5 ◦C
and 1 ◦C lower than in the ROM. This causes a substantial thermal discomfort of 3.96Kh per
building per day with respect to 20 ◦C. When taking a reference temperature of 19.5 ◦C for the
thermal discomfort, this value is 1.04Kh.

For the DHW tank model, the error of the ROM tends to become larger in time. This is mainly
due to a small underestimation of the heat pump’s COP, which tends to build up as the simulation
time is longer. Figure 7 shows the distribution of temperatures when the occupants tap DHW
from the tank. As can be seen from the figure, the temperature at which the DHW is tapped
is never below 45 ◦C. The total discomfort for DHW with regard to the reference of 50 ◦C is
0.87Kh per building per day.

Another important aspect of the comparison between ROM and emulator model is how good
the emulator model is able to track the electricity consumption profile as determined by the
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Figure 7: Histogram of temperature during comfort periods for the 25 buildings. The indoor
air temperature that should be above 20 ◦C (left). The temperature of the domestic hot water
when this is tapped from the tank, should be above 50 ◦C (right).
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Figure 8: The variation in electricity price (left) induces a reaction of the reduced order model
(right). The emulator model (Emu) is not always able to attain the electricity consumption that
the reduced order model (ROM) determined.

ROM. This tracking performs well (Figure 8(b)), except when the electricity demand peaks
significantly. The emulator model is not able to attain this electric power, especially when
starting up. This causes the total electricity consumption of the emulator model to be 4.8%
lower than that of the ROM.

Discussion reference case. Table 3 shows the deviation of various ROMs compared to the emu-
lator model. The RMSE on the electric power is about 200W per building, which is acceptable
given the average power usage of 3500W per building when a heat pump is switched on. In
the reference case, the deviation of the indoor operative temperature is about 0.8 ◦C. Do note
that the deviation of the building linear model with respect to the emulator model is already
0.3 ◦C (Reynders et al., 2014) (Figure 3). The addition of a ROM for the heating system seems
to increase the error on the indoor operative temperature. The DHW tank temperature in the
emulator model was usually about 2.7 ◦C lower than in the ROM, but this did not have a large
effect on DWH comfort.

Results and discussion of comparison with other ROM options. Table 3 shows the deviation of
various ROM options compared to the emulator model. The cases presented are variations of
some aspects of the ROM. There are two other linear models, namely the ’No radiator’ case,
which leaves out the radiator model, and the ’Constant COP’ case, which takes a constant COP
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Table 3: Four results of the verification, the first three being the root mean square errors (RMSE)
on electric power[W/building]-indoor operative temperature[ ◦C]-DHW tank temperature[ ◦C]
and the last being the calculation time of the ROM optimization [sec]. These quantities are
shown for two chosen time steps (15 and 60 minutes).

Time step 15 min 60 min
Reference 208-0.80-2.75-8 375-0.71-3.50-1
No radiator 170-0.90-2.70-5 320-1.05-3.36-1
Constant COP 195-0.73-2.54-6 380-0.60-2.55-1
DHW tank integer 217-0.81-2.62-7200 425-0.70-3.16-7200
Switch SH/DHW 185-0.77-3.01-7200 290-0.70-1.96-7200
Modulation 210-0.71-2.80-7200 (150-0.74-1.35-20)
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Figure 9: The indoor operative temperature in the case of the reduced order model with (w)
and without (w/o) a radiator model included. The ROM without radiator overestimates the rate
at which the indoor temperature can rise and drop.

instead of a COP as a function of the ambient air temperature. The other cases include integer
variables. In the ’DHW tank integer’ case, the higher limit for the DHW tank temperature is
given by equations (22)-(23). The ’Switch SH/DHW’ case introduces one integer variable to
force the heat pump to supply either SH or DHW during a time step. In the final ’Modulation’
model, the heat pump model includes boundaries for minimal modulation as given by equations
(12)-(15). Table 3 shows that using a smaller time-step lowers the root mean square error
(RMSE) on the electric power, but does not always lower the RMSE on the temperatures.

As radiators have a relatively small time constant compared to that of the building structure,
one could suggest to neglect it’s thermal capacity. Leaving out the radiator lowers the error on
the electric power but increases the error on the indoor temperature significantly. As figure 9
shows, this increase is mainly due to different dynamical behaviour, which can be explained by
the absence of the thermal capacitance associated to the emission system. Hence the radiator
model is not negligible for the dynamic aspects of the model.

Figure 10 shows the COP of the emulator model as compared to that of the ROM with variable
COP. Note the large peaks in COP of the former model when the heat pump is switched on.
This is because the distribution pipes are still cold at this point in time, allowing a high thermal
power at condenser side. A part of this gain in COP is thus directly lost due to intermittent
heating of these distribution pipes. As can be seen in Table 3, using a constant COP (3.8 for
space heating and 2.4 for DHW) has an overall positive impact on the performance of the ROM,
albeit limited in some cases. This is because the constant COP model approximates the COP of
the emulator heat pump model 4% better than the reference case. Note that this constant COP
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Figure 10: The COP in the reference ROM is either a function of the ambient temperature (var)
or constant (ct). As the optimization sometimes chooses to operate the heat pump for only fifteen
minutes, the COP in the emulator model can become very high. However, a part of this extra
produced heat is lost when the heat distribution system cools down again.

is the average of the COP in the reference case, which changes as a function of the ambient air
temperature. The results of the COP are in line with Verhelst et al. (2012), who studied multiple
COP formulations, from which there were two linear representations: a constant COP and a
COP that is function of the ambient air temperature only. When no electricity price profile was
considered, a constant COP formulation performed better, since this formulation did not cause
peaks in the electric power of the heat pump. When an optimization towards minimal cost was
considered, both COP formulations performed equally.

The cases with integer variables ’DHW tank integer’, ’Switch SH/DHW’ and ’Modulation’ do
not show a significant improvement to the performance of the reference model (Table 3). The
far longer calculation time (in most cases the maximum calculation time of 7200 seconds) is
not worth the minor extra detail these integer variables add. Another possible advantage of the
’Modulation’ case, namely the abolishment of a post-processing phase as the electricity usage
is conform with the real heat pump constraints, is questionable. The linear reference model (8
seconds) with post processing as discussed in section 3.2.2 (5 seconds) takes up 13 seconds in
total, which is a lot faster than the ’Modulation’ model.

The results for the case ’Modulation’ with a time-step of 60 minutes are put between brackets
because it is a special case. When the heat pump would operate at its lower modulation limit
(30% of maximal power) for an hour to supply hot water to the DHW tank, the temperature
would exceed the upper limit. So the solution attained is one in which the back-up electrical
resistance heater covers all DHW demand. As one can note from the table, the model for this
alternative heating performs well for the DHW tank temperature.

4.2. Performance of aggregation

As explained in section 3.3, the aim of the aggregation is reducing the number of building ROMs
needed. 100 building models with a different number of inhabitants and different user behaviour
are aggregated to 6 building models. The way to determine the accuracy of this aggregated
model, is to examine whether it attains the same total electricity cost with respect to an identical
electricity price profile. Figure 11(a) shows how the total electricity cost per dwelling changes
with respect to a higher amplitude of a sine wave electricity price profile around a mean price
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Figure 11: The total electricity cost per dwelling in case of the original model consisting of 100
buildings and the aggregated model consisting of 6 buildings. In the aggregated case, the total
cost is about 1% to 3.5% higher than is possible to attain with the larger cluster of buildings.

of 0.10EUR
kWh

. As this amplitude increases, the building structure and DHW tank are increasingly
used as energy storage, lowering total electricity cost. The aggregated building model shows
the same trend, and predicts this cost with an error between 1% and 3.5%. This decrease in total
electricity cost has the downside of increasing the energy consumption, as figure 11(b) shows.
The electricity consumption of the aggregated model also shows the same trend, being between
0.5% and 4% higher than in the original model.

The comparison between the 100 buildings model and the aggregated 6 buildings model was
also performed for random and wholesale market profiles on top of the sine wave electricity
price profiles. Figure 12 plots the relative difference in total electricity cost and mean indoor
operative and DHW tank temperature between the aggregated and the original model. The
aggregated model overestimates the total electricity cost with about 1% to 3.5%, the indoor
temperature with −2% to 2% and the DHW tank temperature with 4% to 8%.

A check was also performed, whether the 100 buildings model would be able to track the elec-
tricity usage of the aggregated model. This was performed for all price profiles, by minimizing
the deviation given the constraints of the 100 buildings model. This check proved to be suc-
cessful: the deviation on the profile is lower than 0.1%.

Discussion The model with 100 buildings has a slightly higher potential for DSM than the
aggregated model: it can lower the electricity cost per building and attain lower energy losses in
doing so. This is because the model with 100 buildings has more options to shift some energy
demand, as there will always be more opportunities to make a small change in very specific
cases. Nevertheless the aggregated model comes very close to the larger model. Since the
aggregated model always overestimates electricity cost and consumption, one could say that the
aggregated model can act as an lower boundary for the performance of the larger model. In
other words, the aggregated model is always a small underestimation of the flexibility potential.

5. CONCLUSION

The aim of this paper is to present a verified, aggregated building stock model, useful for study-
ing the potential of DSM programmes for residences equipped with heat pumps. The mathemat-
ical form of the model is chosen such that it can be combined with electricity generation park
models (Bruninx et al., 2013). Multiple reduced order models were studied, where the fully lin-
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Figure 12: Difference in total cost, indoor operative temperature (SH) and DHW tank temper-
ature (DHW) in the aggregated case of 6 buildings compared to that of the original model with
a 100 buildings. This comparison was done for multiple price profiles with a certain amplitude
and a shape based on a sine wave (sine), random (rand) or wholesale market prices (WS).

ear model with radiator model, constant COP and linear formulation of heat pump modulation
and DHW tank constraint performed the best. This is because of its favourable computation
time and smallest deviation with respect to the detailed physical emulator model: 0.8 ◦C on the
indoor operative temperature and 2.7 ◦C on the DHW tank temperature. The output of this fully
linear model is convertible to control signals to be applied to the physical emulator model or a
real-life implementation by a post-processing method discussed in this paper. Additionally, an
aggregation method was presented, which is able to reduce the number of buildings needed in
order to represent multiple user behaviours. This aggregated model can act as a worst case for
the performance of a large cluster of buildings, as it overestimates the costs with 1% to 4%.
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