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Abstract—This paper develops a Markov Chain analysis
framework for an RF energy harvesting cognitive radio network
where the secondary system users are furnished with finite-
sized batteries. We consider a network where the only source of
energy for the secondary system is the RF signals of the primary
system resulting in an inter-play between energy harvesting and
transmission for the secondary network. We show that an RF
energy harvesting cognitive radio using todays technology is
suitable for a delay-tolerant sensor network where the nodes need
to transmit sensor output values very sporadically. We observe
that the interplay between primary user traffic arrival and
departure rates as well as probabilities of missed detection and
false alarm for the secondary user detector and available battery
size is of importance and that a percentile channel occupation of
the primary network on its own is not a sufficient metric.

I. INTRODUCTION

Machine-to-Machine (M2M) communications, whereby ma-
chines around us communicate with one another with limited
or no intervention from humans, is becoming increasingly
popular for applications ranging from automation for smart
grids, transport systems, agricultural systems, industrial pro-
duction to healthcare, environmental monitoring as well as
home networking . It is clear that efficient spectrum usage will
become critically important as M2M penetration increases.
This increase will also increase the need for green designs
for such systems, for both health and environmental reasons.
As such, energy-efficient designs for M2M communications
will be of primal importance where issues like COy emissions,
electromagnetic radiations, and spectrum pollution will need
to be closely monitored and be factored into the design
requirements and solutions utilizing renewable energy sources
will likely be favored.

The components of M2M networks need energy sources
for operation. It is necessary to provide a way of operating
these networks perpetually without requiring external power
cables or periodic battery replacement. These requirements,
coupled with the necessity for a green design, has prompted
energy harvesting technologies be implemented within M2M
networks to exploit renewable energy sources [1]. Energy har-
vesting, which has gained significant interest in both academia
and industry recently, refers to the capture of ambient energy,
its conversion into a useable form and its storage for future
potential use. Various types of energy may be harvested:
mechanical energy, electromagnetic energy, thermal energy,

solar energy, biological energy etc. Energy harvesting from
radio frequency (RF) signals, which is the premise of the
system presented in this paper, has its roots in wireless electric
power transmission research [2], [3]. Since then, RF energy
harvesting has been an active area of research [4]. While the
current techniques of energy harvesting from RF signals is not
very efficient, it is expected that more advanced technologies
will be developed in the near future.

An energy harvesting cognitive radio (CR)-based M2M
communication network design will not only ease the spectrum
shortage problem, but also will result in a green design
thanks to its complete reliance on renewable energy. In energy
harvesting CR systems, there are two co-existing systems: a
primary system (PS) that owns the rights to an assigned fre-
quency band, and an energy harvesting secondary system (SS),
that attempts to opportunistically access this band whenever it
is not used by the PS and whenever it has sufficient energy
for transmission. The CR design should ensure that the SS has
sufficient resources for the specific application it is designed
for while the PS experiences no or minimal impact from the
SS presence.

In this paper, we present a Markov Chain-based frame-
work to analyze the feasibility of cognitive radio networks
where the only source of energy for SSs is from RF energy
harvesting from the PS signals. In general, the operation of
energy harvesting CR networks are limited by two fundamen-
tal constraints that need to be carefully and simultaneously
considered: energy causality constraint which dictates that
energy-harvesting nodes may only transmit when they have
sufficient energy, and collision constraint that requires an SU
to cause minimal, if any, interference to the PU operation
[5]. In the RF energy harvesting CR network considered in
this paper, there is a trade-off between spectrum availability
and energy availability. The analysis presented in this paper
highlights how this trade-off plays out for different PS traffic
characteristics. We find limits for SS channel utilization when
its traffic is infinitely backlogged and when it harvests all of its
energy from the PS transmission, which is modeled as an on-
off process. We confirm the analytical results through Monte
Carlo simulations.

The remainder of the paper is organized as follows. A
brief survey on RF-energy harvesting CR networks is given in
Section II. The system model and the analysis of the MC of



the network given in Section III. Results are given in Section
IV and conclusions are drawn in Section V.

II. SURVEY ON RF ENERGY HARVESTING CR NETWORKS

The promise of green, spectrally efficient communications
has prompted a number of recent research investigating the
impact of energy harvesting on cognitive information transfer.
The authors in [6] consider a CR network where SS with
infinitely backlogged traffic and a simple energy consumption
model performs error-free sensing, and finds the optimal allo-
cation of time between information transfer, spectrum sensing
and energy harvesting operations. The authors in [7] attempt
to maximize the spatial SS throughput subject to SS transmit
power and SS density in a given geography using stochastic
geometry. The work assumes that an SS user harvests energy
from a PS node only if it is sufficiently close. [8] investigates
a network where energy-harvesting SSs help increase the PS
performance by relaying in return for increased spectrum
access opportunities.

Considering the case where the energy to be harvested
arrives from a source that is independent from the information
transmitting node, [9] finds optimal transmission policies to
maximize the throughput and minimize transmission comple-
tion time under channel and energy variations when casual
channel state information is available at the receiver. [10] finds
policies for maximum possible data rates by deciding when
and how much of the data to transmit when the energy is
harvested from an independent source. [11] considers a CR
network and uses a Markov decision process to find optimal
and myopic policies for the energy-harvesting, infinitely back-
logged SS that specify when to remain idle or conduct sensing
and subsequently possibly attempt transmission. Similar to
most work summarized above, the energy to be harvested is as-
sumed to arrive from an independent source in this work. The
work presented in [12] and [13] develops a partially observable
Markov decision process to jointly develop a spectrum sensing
policy and sensing detection threshold setting for an energy-
sensing SU to achieve a maximum expected throughput when
the energy source is once again independent. The authors in
[5] derive the achievable SS throughput when the PS traffic
follows a time-homogeneous Markov Chain (MC) and the SS,
harvesting energy from an independent source, has infinitely
backlogged data.

III. SYSTEM MODEL AND ANALYSIS

We consider a single channel that is owned by the PS. The
PS performs slotted transmission on this channel whenever it
has data to send, without consideration of the SS. The slot
duration of the PS is 7. The SS is also assumed to follow a
slotted transmission synchronously with the PS, with the same
slot duration. At the beginning of each slot, the SS senses the
channel for a “sensing period” of duration Ty. If the channel
is found to be empty of PS traffic, and the SS has enough
energy, it attempts transmission in the remainder of the slot. If
the channel is found busy or there is not enough stored energy,
SS performs ambient RF energy harvesting. The coordination

of the channel access among users within the PS and SS is
assumed to be present, and is out of scope of this paper. Thus
we assume the PS and SS as single entities, from this point
on.

The PS traffic is assumed to follow an on-off process. That
is, given there is no ongoing transmission, the probability
that a new packet arrives next slot (head-of-line probability)
is a.. On the other hand, given an ongoing transmission, the
probability that no packet arrives next slot is 3. In order to find
the limits of the secondary utilization under energy harvesting,
SS is assumed to be infinitely backlogged.

Sensing performed by the SS is assumed to be imperfect.
At a slot, given an ongoing PS transmission, the event that
the SS decides that the channel is empty is called a “missed
detection”, and happens with probability pyp independently
of other slots. Similarly, given that the channel is empty,
the event that the SS decides that the channel is occupied
is called a “false alarm”, and happens with probability pga
independently of other slots. The performance of the sensing
circuitry of the secondary system determines the values for
pvp and ppa. The achieved utilization levels as a function
of the sensing performance as quantified by pyp and ppa
are explored in the Results Section. As mentioned before,
PS transmits at will without consideration of the SS. Thus,
an incoming packet is immediately transmitted by the PS. If
a collision with the SS transmission occurs due to sensing
imperfections, both of the packets of PS and SS are assumed
to be lost.

At a given slot, whenever the SS finds the channel to be
occupied or it does not have enough energy for transmission,
it performs RF energy harvesting. The energy required to
transmit for one slot is assumed to be K units, whereas the
energy harvested for one slot is assumed to be one unit. The
SS is assumed to have a finite battery of size B units. We adopt
a discretized energy model, as such, K and B are assumed to
be positive integers.

According to the above description, a Markov-Chain (M.C.)
model that incorporates the joint state of both the PS and SS
is given in Figure 1. The state (¢, j) denotes that there is B —1
units of energy stored in the SS battery (thus, ¢ = 0 denotes a
full battery) and j pertains to the transmission of PS: at a given
slot, if 7 = 1, the PS is transmitting and if j = 0, the channel is
empty. For i € {0,1,..., B} and j € {0, 1}, there are a total
of 2(B+1) states. The states that are representative of general
and corner cases and the corresponding transitions from those
states are given in Figure 1. For example, consider the state
(¢,0) when the SS has enough energy for transmission, i.e.,
1 < B — K. Here, the channel is empty. Thus if the SS senses
the channel correctly, i.e., does not perform a false alarm,
it attempts transmission, its battery depletes by K. At the
next slot, if a head-of-line packet arrives and the PS starts
transmission, the state becomes (i + K, 1). This event happens
with probability a(1—pra ). If no new packet arrives at PS, the
state goes to (i + K,0). This event happens with probability
(1 — a)(1 — ppa). If a false alarm occurs during sensing, SS
does not attempt transmission and the battery level remains the



(1~ a)(1 — pra) (1—a)(1 —pra) 1
(1 — a)pra (1 - a)ppa 1 1-a
1
I
0,0 | eeeeeeens B30 e (KO ) s BT 3,0 ) eeeeenns
[ (1 - > |
A (= oy ) Z S . I
g 2 \3 8 %) I B @
| ] Z <] © 1
=1 BPY o~ Y 1
= |
I .
0,1 ) ceeeeeeens N - e o1l BETEEREREEE
E I
& (1-58)(1—-pmp) | —
\ - -
— 5 (1-B)pup |
= 1 — B)pmp 1
QT" Enough energy for i<B-K <:| |:> i>B—k Not enough energy for
— transmission in the battery transmission in the battery

Fig. 1. PS and SS joint Markov Chain.

same. Thus the state transitions to (4,0) or (i,1), depending
on the packet arrival at the PS. When the SS does not have
enough energy for transmission, i.e., i > B — K, it does not
sense the channel or attempt transmission, thus the state can
only go to (¢,0) or (4,1).

A. PS and SS Utilization Levels

We define the channel utilization by PS or SS as the average
fraction of the time used in successful transmissions. We
denote the PS utilization by Up and SS utilization by Usg.
Clearly, 0 < Ug,Up < Us+Up < 1.

Since the joint M.C. described above is finite-state, irre-
ducible and aperiodic, it has a unique steady-state probability
mass function (PMF) [14], which can be found numerically
as the Perron-Frobenius eigenvector of its state-transition
matrix [15]. Given the steady-state PMF, the utilization levels
can be found as follows.

On average, the PS transmits 5 of the slots. Define p to
be the probability collision at steady-state. Collision occurs
at a slot if the PS transmits, SS has enough energy for
transmission and performs a missed detection. The probability
of this event at steady-state is

B-K
p=pup Y iy, @)
i=0
where 1I; ; denotes the steady-state probability of the state

(7,7). At a fraction p of the slots, PS transmissions collide
with the SS. Thus, the PS utilization is given by
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Similarly, the SS transmits successfully at a slot if the PS
does not transmit, the SS has enough energy for transmission
and it does not perform a false alarm, which happens with
probability

B-K
v=00—pra) > Mip. 3)
=0

SS utilization is by definition the probability of successful
transmission, scaled for the loss in sensing time,

T-1T;
Us=7—7F—- 4)

IV. RESULTS

Using the Markov Chain analysis presented in the previous
section, we now investigate the energy harvesting CR network
performance for different values of SS sensing circuitry per-
formance as well as PS traffic characteristics and validate the
analysis with Monte Carlo simulations.

Following typical link budget values for LTE downlink, we
consider a PS system with a transmit power of 46 dBm, a
transmit antenna gain of 18 dBi and a path loss exponent of
2 [16]. We assume that the SS is about 30 m away from an
eNB. Using Friis equation, we find that the available power for
harvesting is approximately equal to 281, W in this case. At the
2 GHz carrier frequency, we assume a harvesting efficiency of
70% [17], and consider a wireless sensor node with a CC2430
RF module, the transmission power budget of which is taken
to be 26.5 mW [18], resulting in a transmit power to harvesting
power ratio, K of approximately 100.

A K value of 100 dictates that the utilization of the SS can
never be greater than 1%. This is because the SS network is
heavily energy-bottlenecked for K = 100, needing to harvest
energy from 100 slots of PS transmissions for every 1 slot of
its own transmission. The maximum 1% SS utilization can be
approximated only when the PS has 99% channel utilization
and the SS sensing is conducted perfectly with pyip = pra =
0. A 1% utilization for the SS system limits the use cases
for the RF-energy harvesting cognitive radio. Such a system
may be useful when the SS is a delay-tolerant sensor network
where the nodes need to transmit sensor output values very
sporadically.

We conduct performance evaluations using both Markov
Chain analysis and Monte Carlo simulations. For the Monte-
Carlo simulations, we consider 10 runs of PS traffic, composed
of 1,000,000 transmission slots and resort the average PS and
SS utilization values. In each run, we assume that the SS
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Fig. 2. Utilization levels as a function of parameter . Here B = 500, pyip = pra = 0.05. (a) 8 = 0.1, (b) 8 = 0.5, (¢c) 8 = 0.9.

battery of size B starts at level x full, with z uniformly random
over [0, B].

We first investigate the performance of the finite-battery
energy-harvesting cognitive radio network with B = 500 and
pmp = pra = 0.05 for different PS traffic characteristics. We
let 8 € {0.1,0.5,0.9} and sweep «. The results obtained by
analysis and Monte Carlo simulations, which are denoted by
the empty diamonds, are depicted in Figure 2. We observe
a perfect match between the analysis and the Monte-Carlo
simulation results, confirming the accuracy of the Markov
Chain model presented in the previous section.

Due to the energy-bottlenecked nature of the SS system,
we observe in Figure 2 that the SS utilization increases with
increasing PS utilization. As the SS utilization increases, not
surprisingly, its negative impact on the PS utilization also
increases. However, the loss in the PS utilization due to SS
presence is always less than the SS utilization. For example,
when the PS utilization target is 91% with « = 1 and § = 0.1,
we observe from Figure 2 (a) that the SS utilization reaches
its maximum of 0.0055 and causes a PS utilization loss of
only 0.0029, resulting in an overall observed PS utilization of
0.9062.

We observe from Figures 2 (a)-(c) that for a given target
PS utilization, as (3 increases (i.e., as the PS traffic has shorter
bursts), the SS utilization increases. For example, when the
PS target utilization is 50%, the corresponding SS utilities
for 5 = 0.1,0.5 and 0.9 become 0.003, 0.0042 and 0.0044,
respectively. This is because, for low 3 values, PS observes
long bursts, during which time SU has a chance to fill its
battery. Once the battery is full however, if the PS burst is
still ongoing, SS cannot transmit nor can harvest. During the
corresponding long periods of PS silence, the SS may transmit
data for as long as its battery allows. Beyond this point,
the channel remains unitized by both networks, causing an
effective drop in the SS utilization. With a larger SS battery,
this loss could have been prevented. Thus, we conclude that
while the overall target PS utilization impacts the overall
SS utilization, the PS traffic pattern also has a significant
impact when the SS has a finite sized battery. For a given PS
utilization level, shorter PS bursts are preferred by the energy

bottlenecked SS network.

Next, we investigate the network performance as a function
of pyp and ppa. The results obtained by analysis and Monte
Carlo simulations are depicted in Figure 3 (a) and (b), respec-
tively, for « = § = 0.1. Once again, we observe a perfect
match between the analysis and Monte-Carlo simulation re-
sults. In each graph, when one sensing imperfection is swept,
the other is set as 0.05. We observe that as pyp increases,
the SS utilization decreases. This is because, with increasing
pMD, the probability of collision increases. Correspondingly,
the impact of the SS network on the PS network increases with
increasing pyp. However, since the overall SS utilization is
very small when compared with that of the PS, this impact is
largely negligible.

We observe that an increase in ppa has minimal impact on
the SS utilization until ppa > 0.5. This is because, while a
potential SS utilization of 1% is possible, only 0.3% is actually
realized due to a finite-sized battery, and non-zero pyp and
pra values. Then, even when half of the PS idle slots are
undetected by the SS for transmission, an attempt to utilize the
remaining 25% of the channel is still bottlenecked by limited
available energy. As ppa gets closer to 1, we start observing
the negative impact of pra. For values close to 1, the SS finds
only a very small percentage of the actual idle slots useful,
resulting in more available energy for transmissions during
slots when PS is transmitting, thereby causing collisions and
lowering both the SS utilization. For ppa = 1, not surprisingly,
the SS utilization is equal to zero. As before, since the overall
SS utilization is very small when compared with that of the
PS, the impact of pra on the utilization of the PS is largely
negligible.

V. CONCLUSION

In this paper we present a two-dimensional Markov Chain
model for an RF energy harvesting cognitive radio network
where the primary system (PS) follows a slotted burst traffic
model and the secondary system (SS) is synchronized to the PS
and has infinitely backlogged traffic. We consider a scenario
where the only source of energy for the SS is the RF signals
of the PS. The SS has a finite-sized battery to store the energy
harvested from the PS transmissions, and utilizes this energy to
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Fig. 3. Utilization levels as a function of sensing circuitry performance.
pyp = 0.05.

transmit whenever it senses the channel to be idle. The sensing
is considered to be erroneous, where errors are modeled via
the probability of false alarm, pra, and probability of missed
detection, pyp. We confirm the accuracy of the Markov Chain
model via Monte Carlo simulations.

We use the Markov Chain model and Monte Carlo sim-
ulations to assess the PS and SS utilization levels under
realistic system parameters. An RF energy harvesting cognitive
radio using today’s technology is suitable for a delay-tolerant
sensor network where the nodes need to transmit sensor output
values very sporadically. Specifically, we consider an energy-
bottlenecked SS and conclude that the SS channel utilization
is dependent not only on the PS channel utilization but also
on its traffic characteristics, described by « and 5 as well as
the SS sensing circuit imperfections. Due to the SS energy
bottleneck, we observe that the SS utilization increases when
the PS utilization also increases. We observe that a PS with
short traffic bursts allows the SS to better play out the trade-
off between RF energy harvesting and transmission, resulting
in higher SS utilities.

We observe that the pyp negatively impacts the SS uti-
lization due to an increase in the collision probability with
increasing pyp. The corresponding impact on the PS is
negligible though, since the SS can only attempt to transmit
less than 1% of the time when the energy harvesting to
transmission ratio, K is 100. We also observe that an increase
in ppa has minimal impact on the SS utilization when pra is
below a certain value. As ppa gets closer to 1 however, we start
observing that the SS finds only a very small percentage of
the actual idle channel slots useful, resulting in more available
energy for transmissions during slots when PS is transmitting,
thereby causing collisions and lowering the SS utilization. As
before, since the overall SS utilization is very small when
compared with that of the PS, the impact of ppa on the
utilization of the PS is largely negligible.
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