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Abstract

Regressions often use pre-orthogonalized regressors: prior to the main regression, an independent vari-
able xi is regressed upon the other regressor(s), and its residuals are used in the right-hand side of
the main regression instead of the raw variable itself. For example, the exposure of a stock’s return
to exchange rate changes is conventionally estimated by a regression, and often the market return is
included as an additional regressor. By first orthogonalizing the market return on the exchange rate, in
a regression separate from the main one, one seems to have the best of both worlds: the market factor
cannot subsume part of the exposure present in a stock’s return, and the standard error (se) of the
estimate beats both the simple- and the multiple-regression se’s. This last effect is illusory: since the
simple regression and its two-step variant, with the orthogonalization, produce the same exposure esti-
mate, given the sample, their precision must be identical too. Technically, the source of the problem is
that the uncertainty about the market’s exposure estimate is left out of the calculated se. In published
work, the calculated error variances should be corrected upward by 20 to 100 percent.

Keywords: Financial econometrics, international finance, market model, currency exposure,
orthogonal.

JEL-codes: C3, C58.



Introduction

To assess the exposure of a stock’s return to exchange-rate changes, one often removes from the

market return the variation that is common with the exchange-rate changes. In fact, such a pre-

orthogonalization step is far from uncommon in other contexts too: one is interested in some y’s

exposure to some x, and a regressor z′ is added which is just the raw z orthogonalized on x. One

objective may be to avoid the inflated standard errors (ses) in case of near-multicollinearity,

but that is not really a problem in the exposure literature. Another consideration behind

orthogonalization is that, this way, the exposure estimate is the same as if z were totally

absent, while its reported standard error (se) is still tightened because the addition of z′

reduces the residual variance by as much as z would have done.

In both applications, shrinking the standard errors is the objective. However, the idea

that adding a pre-orthogonalized regressor tightens the se is an illusion, as the uncertainty of

the orthogonalization vector—for instance, the market’s currency exposure—is left out of the

calculated se. The main message, which holds in general, is: pre-orthogonalization should be

avoided because it invalidates the usual apparatus of inference. Reported ses are too small,

yielding too many parameters that look significant.

In the remainder of the Introduction, we discuss the context and arguments in more detail.

In the currency exposure literature,1 the practice of orthogonalization arose as follows.

A stock’s currency exposure is measured by the coefficients of the slope of the regression of

the stock’s return on the percentage changes in the exchange rates (Stein, 1960; Johnson,

1960; Dumas, 1978). After Jorion (1990), it is common practice to add the market return

as an additional regressor. This reflects the ‘market model’ regression’s standing as a return-

generating process in financial studies. One additional benefit from adding this regressor is

that it lowers the residual variance, which, everything else remaining the same, reduces the

standard error of the exposure estimate. On the downside, there may be some correlation

between the market and exchange factors, and this multicollinearity could even undo the

power gain from the reduced residual variance. But any correlation between the two regressors

also affects the coefficient itself, not just its standard error: if the market return rm itself is

also exposed to the exchange return, the term βjrm will already pick up part of the stock’s

1For a review of the theoretical and empirical literature, see, e.g., Boudt, Liu and Sercu (2013).
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total currency exposure, leaving only a residual exposure to be captured by the coefficient for

the exchange-rate regressor.2 This way, currency exposure at the market level could kill the

chances of finding convincing stock-specific currency effects, thus incorrectly suggesting low or

zero exposure. Obtaining a lower residual noise without giving the market return the chance

to subsume the individual currency effects is an attractive prospect. Our message is that the

drop in the estimator’s standard error is illusory: in reality the estimate has the same se as

the one from a simple regression.

Section 1 presents the analytical arguments. Section 2 presents the results of some Monte

Carlo simulations. Section 3 presents some real-world results. The first of our two samples is

a set of U.S. multinationals, similar to the firms studied in the seminal Jorion paper; we study

it at daily and monthly frequencies. The second data set refers to Chinese exporters; these

firms are much smaller and less diversified, cannot hedge forward, and are therefore clearly

exposed. The two samples are nevertheless not very different in terms of the extent to which

the market return subsumes the currency factor, the size of the raw exposure, and the amount

of bias that is introduced by pre-orthogonalizing. We draw some conclusions in Section 4.

1 The effects of orthogonalizing one regressor

One needs to distinguish two cases. Some authors pre-orthogonalize the market return (the

control variable) on the exchange rate (the variable of interest), while others orthogonalize

the exchange rate on the market return. The first route has been adopted by, e.g., Allayannis

(1996), Bartram and Bodnar (2007), Bodnar and Wong (2003), Bris and Koskinen (2002),

Entorf, Moebert and Sonderhof (2006), Griffin and Stulz (2001), Kiymaz (2003), Priestley

and Odegaard (2002), and Pritamani, Shome and Singa (2004). In contrast, Jorion (1990,

1991), followed by, e.g., Elton and Gruber (1991), Choi and Prasad (1995), Glaum, Brunner

and Himmel (2000), and Hagelin and Pamborg (2002), orthogonalize the exchange rate on the

market return. We show that (i) for the untransformed regressor, the standard error (se) is

underestimated and (ii) for the orthogonalized regressor, neither the coefficient nor the se are

affected. That is, if one’s interest is in the currency exposure, then orthogonalizing the market

return on the exchange rate leads to flawed inference tools, while the reverse procedure neither

harms nor helps.

2See Section 1.1 if this does not sound familiar.
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In the first strand of this literature, the relevant regressions are the following. We consider

just one foreign currency, whose percentage changes are denoted by s; the generalization to

multiple currencies is simple. Denote the simple returns on stock j and on the market index

m by Rj and Rm, respectively. The (co)variances of the regressors are denoted by σ2s , σ
2
m and

σm,s. We denote the correlation between Rm and s by ρm,s and the conditional variance of

Rm given s by σ2m|s = σ2m(1− ρ2m,s). Lastly, we add hats whenever we refer to estimates rather

than population values. All estimations are from time series. The market model regression is

Market Model: Rj = α0,j + β0,jRm + u0,j . (1)

The Dumas regression defines the relative currency exposure, γ1, similarly:

Dumas regression: Rj = α1,j + γ1,js+ u1,j , (2)

Rm = α1,m + γ1,ms+ u1,m. (3)

The standard form for the equation nesting the Dumas and market models (1)–(2) is

Multivariate Model: Rj = α2,j + γ2,js+ β2,jRm + u2,j . (4)

To obtain more precise estimates for γ, one often uses a hybrid version where the market

regressor is replaced by u1,m from Equation (3). That is, one removes from Rm the variation

that is common with s:

Hybrid Model: Rj = α3,j + γ3,js+ β3,ju1,m + u3,j . (5)

In the next section we show that if Rm is positively correlated with s, then γ2,j is below γ1,j

and has a zero average across stocks.

1.1 The effect on exposure of adding a market regressor

When stocks tend to have similar exposures—for instance, in markets with many exporting

firms listed, such as China, Japan, Germany, and the Netherlands—the market portfolio is

exposed to the currency factor too. If one then runs a regression that includes both the

exchange-rate change and the market return, the latter regressor is subsuming part of the

stock’s raw exposure. To see this, consider the familiar solution for a two-regressor slope

coefficient:

γ2,j =
γ1,j − β0,jγ1,m

1− ρ2s,m
, (6)
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Key The multivariate exposure, γ2,j = [γ1,j − β0,jγ1,m]/[1 − ρ2s,m], is plotted for various levels of beta (0.75,
1.00, 1.25 or 1.50) and ρs,m, at σs = 0.1, σrm = 0.2 and γ1,j = 1. A rising ρs,m affects the market’s γ1,m in
the numerator and directly affects the denominator too, hence the slight non-linearity. The market’s simple
gamma, not shown, would be a positively sloped ray passing through the point (x = 0.5, y = 1).

Figure 1: The effect of corr(Rm, s) on the multivariate currency exposure coefficient

where ρs,m denotes the correlation between rm and s. So if all stocks have similar Dumas

exposures γ1,j , the market’s exposure γ1,m must be in the same range, and since betas are

positive, the multivariate gamma will be lowered. Figure 1 illustrates the subsumption effect

at the level of the individual stock as a function of the correlation between s and Rm, which

affects γ2,j directly via the denominator and indirectly via γ1,m. The curve is plotted for various

levels of beta (0.75, 1.00, 1.25 or 1.50); the other parameters were set at σs = 0.1, σrm = 0.2

and γ1,j = 1. Predictably, the subsumption effect increase the higher the stock’s beta and the

market’s exposure.

Being an estimate of exposure not present in the market return, the multivariate gamma

is useless for detecting average exposures: whether that average is substantially positive or

negative, the addition of Rm will generate about 50/50 positive/negative γ2 coefficients for the

individual stocks. This follows from Equation (6): denoting value weights by wj , the weighted

average multivariate exposure works out to be

∑
j

wjγ2,j =
[
∑
j wjγ1,j ]− [

∑
j wjβ0,j ]γ1,m

1− ρ2s,m
,
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=
γ1,m − 1× γ1,m

1− ρ2s,m
= 0. (7)

So this 50/50 sign distribution, in value-weighted terms, is a construct and has nothing to do

with exports and imports roughly evening out at the aggregate level, as is sometimes claimed.

If the researcher’s objective is to establish the existence of exposure, the above subsumption

effect is not welcome. One solution is to not include the market return as a regressor, but often a

compromise is sought by pre-orthogonalizing the market return on the currency returns instead.

1.2 The effects of first orthogonalizing the market regressor

An orthogonalization is just one particular linear transformation, and its effects are easily

traced. Let us first assume we know the population moments, and consider the matrix

G =

[
1 −γ1,m
0 1

]
⇒ G−1 =

[
1 γ1,m

0 1

]
. (8)

Without loss of generality, we may assume the variables to be demeaned; that is, there are no

intercepts. If we write the multiple regression (4) in matrix form as Rj = X
′
2B2 + u2,j where

X2 := (s,Rm)′ and B2 := (γ2,j , β2,j)
′, we can insert GG−1 and reinterpret:

Rj = X
′
2B2 + u2,j = [X

′
2G][G−1B2] + u2,j . (9)

The item X
′
2G corresponds to the orthogonalized regressors of Equation (5), and matching

it is an offsetting transformation in the regression coefficients: in the hybrid regression, the

slopes are given by

B3 = G−1B2. (10)

As proven in Technical Note A, it follows that regression (5) produces the same market beta

as the regular multivariate regression (4) and, as intended, the same currency exposure as the

simple Dumas equation (2). This, indeed, is why we call it a hybrid. Formally, we have[
γ3,j

β3,j

]
=

[
γ1,j

β2,j

]
. (11)

All the above refers to population parameters and moments, but the ols estimators are

of the method-of-moments class: to compute them, one just replaces the population moments

by the sample moments. Below, we use hats to denote sample estimates instead of population

values. So also in every possible sample the exposure estimate γ̂j,3 of the hybrid regression

(5) is identical to the one in the simple regression (2), γ̂1,j . It follows, logically, that these
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equation to be estimated γ̂ conventional variance of estimate

(2) Rj = α1,j + γ1,js+ u1,j
σ̂j,s

σ̂2
s

σ̂2(u1,j)∑
t
(sj,t−s)2

=
σ̂2
j|s,m+β2

3,j σ̂
2
m|s∑

t
(sj,t−s)2

(4) Rj = α2,j + γ2,js+ β2,jRm + u2,j
γ̂1,j−β̂0,j γ̂1,m

1−ρ2s,m

σ̂2
j|s,m∑

t
(sj,t−s)2(1−ρ̂2s,m)

(5) Rj = α3,j + γ3,js+ β3,ju1,m + u3,j
σ̂j,s

σ̂2
s

σ̂2
j|s,m∑

t
(sj,t−s)2

Key The table shows the three possible regressions, the OLS estimator of the corresponding γ coefficient, and
the variance of the estimation error for each of these as implemented in standard software. In the first two cases,
that implementation is consistent, in the last one it is not.

Table 1: The estimators for γ1, γ2 and γ3 and their standard errors

estimators should have the same standard error. Similarly, logic predicts that the hybrid and

the regular multiple regressions, (5) and (4), should produce the same standard error for the

market sensitivity.

The problem is that while the second requirement is met, the first seems not to hold if

one adopts the standard methods. The estimators and conventional sampling errors for each

gamma are given in Table 1, with the proofs relegated to Technical Note B. While the se in

the second line is hard to rank relative to the one in the first line, the third is unambiguously

smaller. It actually seems that one can eat one’s cake and have it: when going from the

simple regression (2) to the hybrid (5), the exposure γj is not affected, but since the market

return typically explains more of the stock return than does the exchange rate change and is

far from perfectly correlated with it: the R2 after adding the orthogonalized market return

is substantially higher and the se correspondingly lower. Our proposition is that the gain in

precision is correct only with fixed regressors; conversely, whenever the regressors are random

variables (like ours), the drop in the ses is an illusion.

To see this, recall that much of basic regression theory starts with non-stochastic regressors:

the treatments are assumed to be deliberately chosen by the researcher. As is well known,

in the case of random regressors, most of that basic theory can be salvaged via an interim

step: conditional on the observed values of the regressors, the estimator is unbiased, and

the se of a multiple regression coefficient is correct provided one knows the noise variance.

Unconditionally, we need to realise that the slope estimates are only consistent: even though

the estimated moments of the regressors are individually unbiased, the slope estimate uses a

non-linear combination of sample moments, so the unbiasedness of the result is only obtained
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in an infinite sample, where all estimation errors disappear.3 For the se, the same problem

arises: the expression is a non-linear function of imperfect estimates, and the resulting bias

disappears only in infinite samples. This is well known: while with random regressors every

small-sample estimated se would be noisy and biased, there is no systematic and strong bias in

large samples. Our proposition is that the latter result no longer holds in the case of sample-

based transformations of regressors, including orthogonalization: in our case, the conventional

estimate of the se is always biased downward, even in large samples, and often substantially

so.

To see the importance of the deterministic versus random regressors, compare the simple

regression (2) and the hybrid, (5). If, in (3), Rm and s are non-random, then so are γ1,m and

u1,m. The hybrid regression would then correctly set the se lower than the simple regression:

if, in the first residual u1,j = β3,ju1,m +u3,j , the first term is not random, then it cannot really

contribute to small-sample covariances between the residual and s: so it cannot contribute

to the se. So the se of the simple regression would overstate the uncertainty. The hybrid

regression would avoid that mistake: so dropping the term β22,j σ̂
2
m|s if we go from the first line

of Table 1 to the last would be fully justified.

If all regressors become random, however, both terms on the right hand side of u1,j =

β3,ju1,m+u3,j vary across samples. Also β3,ju1,m then contributes to small-sample covariances,

and dropping them as a source of estimation errors would be wrong. Estimation errors in

the numerator of σ̂j,s/σ̂
2
s now reflect small-sample covariances between s and the entire u1,j ,

irrespective of whether they stem from Rm or from u3,j . In short, with fixed regressors, the

hybrid regression delivers asymptotically correct ses, but with random regressors the correct

estimate of the sampling error is the one from the simple regression.

The above argument does not quite say why the case of orthogonalized regressors differs

from a bona fide regression and where exactly the standard treatment goes wrong as a result.

To pinpoint exactly where the hybrid regression goes wrong, we add hats to our earlier results

to denote estimators, and we consider the variance–covariance matrix of the estimates B̂3 from

(5), denoted V(B̂3). In our discussion here, we focus on the implication of u1,m’s being random,

namely that γ̂1,m is random too. First trace the link between V(B̂3) and its counterpart in the

standard regression (4) conditional on the regressors X2. For given X2, G is non-random and

3A sum of unbiased estimates is an unbiased estimate of the sum, but the product or ratio of two unbiased
estimators is not an unbiased estimator of the ratio, and similarly for products and other non-linear combinations.
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can therefore be taken out of V(Ĝ−1B̂|X2). It then suffices to fill out the variance–covariance

matrix of B̂2, and simplify:4

V(B̂3|X) = V(Ĝ−1B̂2|X),

= Ĝ−1V(B̂2|X)[Ĝ−1]′, (12)

=

[
1 γ̂1,m
0 1

]
1

N − 1

[
σ̂2s σ̂m,s
σ̂m,s σ̂2m

]−1 [
1 0

γ̂1,m 1

]
σ̂2j|s,m,

=
1

N − 1

[
σ̂−2s 0

−γ̂1,mσ̂−2m|s σ̂−2m|s

] [
1 0

γ̂1,m 1

]
σ̂2j|s,m,

=
1

N − 1

[
σ̂−2s 0

0 σ̂−2m|s

]
σ̂2j|s,m,

=
1

N − 1

[
σ̂2s 0
0 σ̂2m|s

]−1
σ̂2j|s,um . (13)

This indeed is the variance–covariance matrix of the estimates of the regression of Rj on s

and the orthogonalized market return. Reversing the logic, we conclude that the conventional

standard errors of the hybrid regression (5) are just those of the standard regression (4) with

a linear transformation G applied to it as if G were deterministic. This is fine as long as we

have in mind ses conditional on s and Rm. But the usual next step fails: the above is not

an unbiased estimate of the unconditional se. When X, and therefore Ĝ, are random, Ĝ can

no longer be factored out of V(B̂3) as we did in Equation (12). By nevertheless doing so,

the standard regression procedure omits many items in the se. In a regular regression, the

only problem with random regressors is that all moments become imperfect estimates, not just

those involving the epsilons. That is not a minor issue, but at least all relevant moments are

present. In our case, the extra problem is that many relevant moments are completely missing

from the computations of the se. And the mistake occurs because the estimation of γ1,m is

made in a separate step, so that the uncertainty about the estimate is in no way accounted for

in the main regression.

To see the extent of the problem, note that from Equation (11) and the method-of-moments

property of ols, the sample slope coefficients satisfy β̂3,j = β̂2,j and γ̂3,j = γ̂2,j + β̂2,j γ̂1,m, with

the hat over γ1,m showing that this is just an estimate from the sample at hand. A proper

standard error for γ̂3,j takes into account that all of the three coefficients are now estimated

with (probably correlated) errors, but ols as implemented after orthogonalization ignores that:

the researcher implicitly assumes that, in other samples, γ1,m will somehow never change. To

4To derive the fourth line from the third, follow Technical Note A until the last step but one.
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see what should have been done, we write each estimate as the true value plus an error e,

and then extract an expression for the estimation noise in γ3,j . Again invoking, in line two,

Equation (11), we get

γ̂3,j = (γ2,j + eγ2,j ) + (β2,j + eβ2,j )(γ1,m + eγ1,m);

⇒ γ̂3,j − [γ2,j + β2,jγ1,m] = eγ2,j + γ1,meβ2,j + β2,jeγ1,m + eβ2,jeγ1,m . (14)

Standard ols software sets eγ1,m equal to zero, though, and accordingly deems the error to be

just eγ2,j + γ1,meβ2,j , thus ignoring the remaining part in the error, β2,jeγ1,m + eβ2,jeγ1,m .5

For the se to be correct in large samples, all sixteen elements in the variance of this sum

should be present in the calculation. But standard software calculates the se on the basis of

just four of these sixteen elements. Specifically, the commonly calculated total error variance

ignores not only the variance of β2,j eγ1,m , but also two times its covariances with the first two

error terms on the right-hand side of the above equation, two times three covariances of the last

term with the three preceding (six third moments, that is), and the variance of the last term

(a fourth moment). Not surprisingly, then, the calculated se is systematically inconsistent. A

large sample will not solve the problem. To see this, note from Table 1 that the ratio of two

error variances, one flawed and the other consistent, is

variance ratio :=
σ̂2j|s,m + β23,j σ̂

2
m|s

σ̂2j|s,m
. (15)

In an infinite sample, the sample estimates converge to the population values, but as the latter

are all non-zero, the sample counterparts do not disappear.

2 Monte Carlo simulations of the orthogonalization issue

The Monte Carlo simulations in Table 2 illustrate all of the above. In each set of simulations,

we generated one million series of 50 records {Rj , Rm, s} each, as follows. The independent

random variables are s, u1,m and u2,j . From these, we generated sample values for the other

variables, namely Rm = γ1,ms + u1,m and Rj = γ2,js + β2,jRm + u2,j , for subsequent use in

sample regressions. To get the sample–orthogonalized noise term, lastly, we calculated the

sample coefficients in Rm = α̂1,m + γ̂1,m s+ û1,m and retrieved û1,m, the estimates of u1,m.

5For β3,j , in contrast, the no-randomness assumption about γ1,m has no impact, and the standard error is
not invalidated by that issue.
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With these ingredients, we then ran the four key regressions. Three are clean: the single

regressor Dumas equation (2), the multiple regression (4) that also includes the market return,

and the hybrid (5) that instead adds the orthogonalized market return—the correct u1,m

numbers, in this stage, not the calculated residuals. (Equivalently, in the third regression,

we orthogonalized using the true γ1,m, not its sample estimate.) In all these regressions the

usual ols se should work fine. The fourth regression, lastly, is the realistic version of the

third regression, where the estimate γ̂1,m has been used to orthogonalize, giving us the sample

residuals û1,m, not the true errors u1,m, as a regressor. Here the se obtained should be too

small.

For each of the four regressions we carried out three sets of simulations. In the first, we

chose a realistic set of parameters producing a moderate bias in the estimated se, another

producing a much stronger bias, and another, a much weaker bias. The assumed per annum

parameter values, along with some implied numbers, are shown in the Key to the Table. In

simulation S1, the numbers are calibrated to what one gets with monthly data: per annum

volatilities 0.20 and 0.40 for market and stock, respectively; a market model that explains

about one-quarter of the return variability; and a weak exposure effect. In simulation S2, the

market factor has a high variance, while the stock has little idiosyncratic variance. Thus, the

market model does quite well, R2-wise, and adding Rm to the exposure regression gives us

very precise estimates for γ. Adding the sample-orthogonalized market, instead, seems to give

us about the same precision, but this would be quite misleading. So here we should see a

true variability that swamps the reported one. In the third simulation, S3, the explanatory

powers for the regressors are swapped, and the market explains very little. So assuming away

that part of the noise should not matter much, here, and the ses for the hybrid regression’s

exposure should still be reasonably accurate.

For each equation we show the mean of the γ̂.,js, the average of the error variances predicted

by the regression program, and then the variance of the estimated gammas across the one

million experiments, a trustworthy estimate for the true unconditional variance of the estimate.

The last column gives us the ratio of this true variance of the exposure estimate to the average

variance produced by ols; any value far away from unity of course indicates that the regression

output cannot be trusted, not even on average.

In the clean regressions (the first three), the ols-computed variances match the true vari-

ability across samples nearly perfectly. In the hybrid regression with the constructed data, the
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actual
Equation true γj γ̂j varols (γ̂j) v̂ar(γ̂j) var ratio

Simulation 1
Rj = α1,j + γ1,js+ u1,j 2.25 2.250 .0864 .0865 1.00
Rj = α2,j + γ2,js+ β2,jRm + u2,j 1.00 1.000 .1705 .1704 1.00
Rj = α3,j + γ3,js+ β3,ju1,m + u3,j 2.25 2.250 .0665 .0666 1.00
Rj = α4,j + γ4,js+ β4,j û1,m + u4,j 2.25 2.250 .0651 .0865 1.33

Simulation 2
Rj = α1,j + γ1,js+ u1,j 2.25 2.250 .1383 .1384 1.00
Rj = α2,j + γ2,js+ β2,jRm + u2,j 1.00 1.000 .0068 .0068 1.00
Rj = α3,j + γ3,js+ β3,ju1,m + u3,j 2.25 2.250 .0054 .0054 1.00
Rj = α4,j + γ4,js+ β4,j û1,m + u4,j 2.25 2.250 .0053 .1384 26.03

Simulation 3
Rj = α1,j + γ1,js+ u1,j 2.25 2.250 .1382 .1383 1.00
Rj = α2,j + γ2,js+ β2,jRm + u2,j 1.00 1.000 .9846 .9643 1.00
Rj = α3,j + γ3,js+ β3,ju1,m + u3,j 2.25 2.250 .1358 .1359 1.00
Rj = α4,j + γ4,js+ β4,j û1,m + u4,j 2.25 2.250 .1329 .1383 1.04

Key In each simulation, we generated 106 samples, each with 50 records {Rj , Rm, s}, as follows. We generated
numbers for s, u1,m and u2,j , and derived values for Rm = γ1,ms + u1,m and Rj = γ2,js + β2,jRm + u2,j .
We next calculated the sample coefficients in Rm = α̂1,m + γ̂1,m s + û1,m and retrieved û1,m. We lastly ran
the four key regressions: (i) the single regressor Dumas equation (2), (ii) the multiple regression (4) including
Rm, (iii) the hybrid (5) that instead includes the correct u1,m values, and (iv) the hybrid that uses the esti-
mated û1,m. Below are the p.a. parameter values that we chose in each of the experiments S1–S3, and then
the parameters whose values are implied by these choices, as follows. (In the summary of calculations we use
blue for parameters whose values are postulated.) We have cov(s, rm) = γ1mvar(s) from the familiar defini-
tion of a simple regression slope. The Dumas regression (3) then implies var(rm) = γ2

1mvar(s) + var(rm|s).
From the multivariate equation (4), one obtains var(rj) = γ2

2jvar(s) + β2
jwvar(rm) + 2γ2jβjwcov(s, rm) +

var(uj |m, s); cov(rj , rm) = γ2,jcov(rm, s) + β2jvar(rm); and cov(rj , s) = γ2,jvar(rm) + β2jcov(rm, s). From
these covariances one then obtains the simple slopes β0j = cov(rj , rm)/var(rm) and the squared correlations
ρ2ms = cov(rm, s)

2/[var(m)var(s)]; ρ2js = cov(rj , s)
2/[var(rj)var(s)]; and ρ2jm = cov(rj , s)

2/[var(rj)var(rm)].

Implied parameters
Assumed values volatilities market model Eq (2) for m Eq (2) for j

σs σm|s σuj|m,s
γ1m γ2j β2j σj σm β0,j ρ2jm γ1m ρ2ms γ1j ρ2js

S1 .20 .20 .35 1.25 1.00 1.00 .41 .21 1.06 .27 1.25 .06 2.25 .06
S2 .20 .50 .10 1.25 1.00 1.00 .56 .68 1.16 .91 1.25 .20 2.25 .44
S3 .20 .10 .50 1.25 1.00 1.00 .68 .27 1.70 .45 1.25 .86 2.25 .44

For each equation we show, in the main table, the mean of the γ̂.,js, the average of the error variances predicted
by the regression program, and the actually observed cross-sectional variance (v̂ar) of the estimated gammas.
The ratio of the last two is then shown under the heading “var ratio.”

Table 2: Monte Carlo simulation results

last one in each panel, the regression program claims to come up with a se that is even better

than the multivariate while preserving the simple-regression estimate, but this se underesti-

mates the true one. The theoretical ratio of the actual estimation variance to the calculated

variance for the third regression, which from Table 1 equals 1 + β22,jvar(u1,m)/var(u2,j), equals

1.33 in S1, 26 in S2, and 1.04 in S3 when calculated from the (known) population parameter.

This is exactly what we see in the variance ratios (the ratios of the average observed variances
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Table 3: Data: Some descriptive statistics
Chinese exporters sample U.S. multinationals sample

BV MV Q β0m FSR BV MV Q β0m β0d
average 566 1068 2.76 1.12 37.4 30415 63429 3.23 1.09 1.18
stdev 854 1447 2.85 0.11 22.0 48707 96268 2.51 0.52 1.66
min 5 154 0.62 0.75 9.6 82 4 0.57 -1.50 -9.41
Q1 135 308 1.52 1.08 18.2 3636 8664 1.65 0.77 0.68
Median 273 511 2.09 1.13 32.4 11833 24822 2.53 1.03 1.13
Q3 519 1073 3.22 1.18 50.2 26552 63153 3.65 1.42 1.64
max 5320 8044 29.25 1.49 93.9 221890 626550 19.95 2.98 8.78

Key Our China sample consists of 131 Shanghai- or Shenzen-listed stocks that have full data since June 2005
and report at least 10 percent foreign sales. Data are monthly, the main regressor is the CNY Real effective
exchange rate based on CPI (IMF) re-expressed as the value of the basket in CNY, and the market return
refers to the Shanghai A market index. For the same period we also study daily and monthly returns for the
116 companies that are in the S&P 500 index and that, in Compustat, are marked as multinational. For these
stocks we downloaded both daily and monthly returns.
MV = market value, in USD 106; BV = book value, in USD 106; Q = MV/BV; FSR = foreign sales ratio; β0m
(β0m) = simple market sensitivity, estimated via OLS from monthly (daily) data; stdev = standard deviation;
min/max = lowest/highest value; Q1, Q3 - first and third quartile value.

to the true variance, the rightmost column) for the hybrid regressions.

3 Tests with real data

3.1 Data

We evaluated the size of the bias in four samples extracted from two sets of stocks. Our

original sample consists of 131 Shanghai- or Shenzen-listed stocks that have full data since

June 2005 and report at least 10 percent foreign sales. (June 2005 is the date when China

stopped pegging the Yuan to the USD.) Data are monthly, the main regressor is the Yuan

(CNY) real effective exchange rate based on CPI (IMF) re-expressed as the value of the basket

in CNY, and the market return refers to the Shanghai A market index. For comparison and to

study the intervalling effect6 we added a U.S. sample similar to the one in the seminal Jorion

study. For the same period as the above, this includes the 116 companies that are in the S&P

500 index and that, in Compustat, are marked as partly multinational (there always is some

domestic activity too). For these stocks we downloaded both the daily and monthly returns.

The U.S. market factor for these stocks is the Compustat value-weighted market return, and

the exchange rate regressor is the effective nominal exchange rate change computed for the

U.S. by the Bank of England.

6We thank the anonymous referee for this suggestion.
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The samples are different in potentially relevant ways. The U.S. firms are roughly 30–100

times bigger (Table 3). From the table, we see that the U.S. firms also have higher Market-to-

Book ratios, with a somewhat lower dispersion. Consistently with their relative size, Chinese

firms have above-unit betas (average 1.12, median 1.13). These betas exhibit a relatively low

dispersion: the total range is 0.75–1.49, with 50% of them being in the range 1.08–1.18. The

U.S. sample consisting of larger firms, the mean beta is still surprisingly high (average 1.18;

median 1.13). More strikingly, their dispersion is many times larger, whether we consider

cross-sectional standard deviation, total range, or interquartile range. Regardless of whether

this reflects measurement error or true heterogeneity in beta, it should lead to much larger

differentials across stocks in the effect on γ of introducing the market return as a new regressor.

3.2 Total exposure

Let’s consider our priors about the firms’ total exposures. Being unhedged committed ex-

porters, our Chinese firms should be positively exposed. The U.S. multinationals may be

different in many ways. While they very often export, they typically also import, for instance,

and they have access to financial hedges (unlike the Chinese firms). They also often use op-

erational hedges by producing abroad in or near their foreign markets. All this makes it hard

to make a clear a priori prediction about the headquarter’s exposure. The exposures of any

given foreign subsidiary could likewise be positive or negative.7 In light of all this, we are again

not a priori sure whether the group as a whole would gain or lose from appreciating foreign

currencies.

To get an empirical answer, in each of the three samples the stocks’ returns are regressed

on the percentage change in the currency index with and without the orthogonalized market

return as an additional regressor. The results are summarized in Table 4 and the nine plots

shown at the back of the paper, Figures 3–5.

First consider the distribution of the simple gammas, summarized by the first and third

columns of figures of Table 4. Visual information is found in Figure 3, where the γ1 estimates

are plotted on the horizontal axis. As expected for exporting firms, most of the total (‘Dumas’)

exposures for the Chinese sample are positive, and half of these are significant. But it turns out

7For instance, if a foreign plant produces for sales in that same country, the parent still makes a loss (on
the net profits) if that currency depreciates, while if the plant produces for third countries or the parent’s home
market, a depreciation of the host’s currency would be good news.
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Summary measures for all regression results

sample measure γ1 γ2 t(γ1) t(γ2) t(γ3) t(γ3)
t(γ1)

S&P daily mean 0.54 0.15 3.68 0.73 4.78 1.16
min -15.40 -16.90 -1.71 -4.06 -1.82 0.87
quartile 1 0.16 -0.12 1.43 -1.01 1.55 1.03
median 0.39 -0.03 3.54 -0.15 4.52 1.10
quartile 3 0.70 0.19 5.25 1.77 7.00 1.20
max 32.92 31.55 11.80 10.03 16.44 5.17
std 3.53 3.47 3.15 2.90 4.19 0.39
signif >0 80 27 81
signif <0 0 10 0

S&P monthly mean 2.37 -0.68 2.39 0.07 2.72 1.22
min -28.05 -77.19 -2.28 -9.83 -11.80 1.00
quartile 1 0.68 -0.58 1.15 -0.91 1.23 1.09
median 1.16 -0.02 2.32 0.01 2.64 1.20
quartile 3 1.97 0.46 3.70 1.05 4.34 1.36
max 142.21 29.31 7.09 4.39 8.68 1.67
std 13.49 8.11 1.82 1.67 2.55 0.16
signif >0 68 11 74
signif <0 1 4 1

Chinese Exporters mean 2.35 0.38 1.72 -0.27 2.45 1.36
min -1.42 -4.07 -1.09 -2.27 -1.14 1.03
quartile 1 1.58 -0.61 1.21 -0.95 1.39 1.20
median 2.47 0.36 1.79 -0.28 2.34 1.31
quartile 3 3.33 1.19 2.49 0.48 3.54 1.52
max 6.28 3.75 4.18 2.87 7.44 2.11
std 1.35 1.31 0.99 1.05 1.61 0.24
signif >0 56 3 79
signif <0 0 8 0

Key Our China sample consists of 131 Shanghai- or Shenzen-listed stocks that have full data since June 2005
and report at least 10 percent foreign sales. Data are monthly, the main regressor is the CNY Real effective
exchange rate based on CPI (IMF) re-expressed as the value of the basket in CNY, and the market return
refers to the Shanghai A market index. For the same period we also study daily and monthly returns for the
116 companies that are in the S&P 500 index and that, in Compustat, are marked as multinational. For these
stocks we downloaded both daily and monthly returns.
The stocks’ returns are regressed on the percentage change in the currency index with and without the market
return as an additional regressor. The table shows summary measures for the distributions of the simple Dumas
gamma (γ1) and its t-statistic, the Jorion multivariate gamma (γ2) and its t-statistic, and the hybrid gamma’s
(γ3) t-statistic.

Table 4: Summary of regression results for the three samples

that in actual fact the U.S. multinationals, despite the a priori differences we just reviewed,

behave in the same way. Even more of the estimates are significant, and the average size of

the exposure is quite similar to the one for the exporters sample, at least as long as we stick

to monthly data. Still for monthly data, the median for China is close to the mean while U.S.

one is much lower, indicating right skewness in the exposures.

If one sample looks radically different from the other two in terms of estimated exposures,

it would not be the Chinese set but the daily data, whose results in Figure 3 are shown most
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to the left and whose summary numbers are in the top part of Table 4. It does have more

significant estimates γ̂1 (or, equivalently, γ̂3), in line with the much larger sample size, but

its exposures are less often positive and are on average much lower. All the evidence suggests

exposures below unity, unlike for the monthly data. This is unexpected, as there is a consensus

that value should be convex in the exchange rate, and in an iso-elastic model Vj = kjS
γjZj

this requires an elasticity exceeding unity. But this seemingly strong ‘intervalling effect’ has a

disarmingly simple potential explanation: the non-synchronicity of the variables in the right

and the left. Our U.S. stock data, from Compustat, are based on New York closing prices while

the exchange-rate level is the Bank of England’s currency basket for the U.S., based on London

late-afternoon prices, which is before New York’s lunchtime. So there is a non-synchronicity

issue that is especially crucial in daily returns.8 Corrections for this bias are discussed in the

last section.

3.3 Adding the market return as a regressor

First consider the orthodox procedure, where the raw rm is added as a regressor. Compared

to what we saw for the total exposures, the columns for γ2 and its t-ratio in Table 4 show a

very different picture. The shifts are pictured directly in the three cross-plots of γ2 against γ1

in Figure 3 or those of t(γ2) against t(γ1) in Figure 4. As expected, the by and large positive

exposures of the original Dumas regression become about 50/50 positive/negative after adding

the market regressor, reflecting the fact that in the multiple regression the market’s exposure,

weighted by the stock’s beta, is subtracted from the simple-regression exposure. As could be

expected on the basis of the distribution of the simple market betas, in the Chinese sample with

its narrow range of betas the downward shift is much more orderly than in the U.S. samples.

Simultaneously, the new t-statistics drop: instead of being mostly positive and often signif-

icant, they now are about 50/50 positive/negative, with few being significantly different from

zero and some of these even significantly negative. For the researcher hunting for evidence

of exposure all this is bad news. But the main question is what happens if the researcher’s

reaction is to first orthogonalize the market return on the regressor of interest, s.

In Table 4, the results are found in the two rightmost columns, and plots of the two

8The exchange-rate movements that occurred before 11:00 in New York are reported as part of the day-t
change, while the post-11:00 events are part of st+1, which is not in the regression. In daily data the five-hour
non-overlap is quite important, but it is less so in monthly data.
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Key Histograms for the ratio of the two t-statistics plotted in Figure 5. The numbers are relative frequencies
in percent, not absolute frequencies (numbers of stocks). The numbers on the horizontal axis show the lower
bound of each interval. Most intervals are 0.125 wide, except for the extreme ones on the right.

Figure 2: Plots of biased against unbiased t-statistics (131 Shanghai-listed compa-
nies, 2005–2013 and subperiods)

competing t-statistics for the same estimate (γ1 = γ3) are shown in Figure 5 at the end of

the paper. Each of these three graphs now shows a plot of the t-ratios calculated without

(horizontal axis) and with (vertical axis) the constructed market regressor. As expected, the

t-ratios from the hybrid regression virtually all lie above the 45-degree line, meaning that these

statistics not only maintain their sign but even rise when the orthogonalized market return

is added as a regressor. The contrast with the previous regression is very stark. Figure 2

illustrates the same numbers in a slightly different way, viz., as the ratios of the two ts while

the rightmost column of Table 4 provides numerical information on that ratio. We start with

the table.

The means for the ratios of t-statistics in Table 4 range from 1.16 (daily data) to 1.22 and

to 1.36 (Chinese sample). The medians are similar (1.10, 1.20, 1.30) with the difference vis

a vis the means again suggesting some right skewness. Graphically, that right skewness was

already visible in the cross-plots of Figure 5: while virtually none of the ratios is below unity,

the area close to the 45-degree line is packed more tightly. In the histograms for the ratios

of ts shown in Figure 2, that skewness is quite obvious, and most pronounced in the Chinese

data. Any such asymmetry means that the mean could be quite unrepresentative. More than
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a quarter of the regression ts are inflated by at least 20% in the daily sample, rising to 36% in

the U.S. monthly data and 52% in the Chinese sample. Given that monthly date dominate in

this literature, this is not good news. In one case, the ratio is overstated by a factor of five.

It is true that in all three samples the relation to exchange rates is so strong that lowering

the t-ratios would not affect the conclusion that exposures are positive, by and large. Even

in the Chinese sample, with the correct test, 56 of the coefficients retain their significance,

compared to 79 with the flawed ratio, so the broad conclusions are unaffected. But that does

not mean the bias is generally a non-issue. In a lower power application, the choice of the

standard error is much more decisive. If the average simple t-statistic is already 5 and the

inflation factor 1.5, then conclusions are not much affected; but if the average simple t-statistic

is just 1.5, then an inflation factor of 1.5 generates an average inflated t-ratio of 2.25, lifting

the average stock to a misleading semblance of significance.

The example is somewhat unsatisfactory in the sense that it just discusses means, and

ignores the distribution around the mean. To get a somewhat more complete impression of the

potential effect in samples with less power, we carry out a modest thought experiment along

the lines of the above example. We lower all simple t-statistics for the 116 Chinese stocks

to levels one would see if the R2s had all been lower,9 and we compute what the inflated t

would have been for the same ratio sej,3/sej,1 as before. That is, from a lowered value t′j,1 we

compute a corresponding t′3,1 = sej,3/sej,1 × t′j,1. So for every degree of shrinkage in the R2s,

we end up with a corresponding distribution of 116 pairs of t-statistics, one reliable and one

inflated. Then we count how many ts are above 1.96.

Table 5 summarizes the results. The lower the R2 in the simple regressions, the fewer

t-statistics we see, an utterly unsurprising result, but also the more decisive is any given

inflation factor. That is, the lower the R2, the higher the chance of incorrectly concluding that

the estimate is significant. For instance, if we shrink all R2s so that the mean becomes 0.05,

61 of the inflated ts seem significant whereas only 27 are if we rely on the better test. For an

even lower R2, 22 regressions still seem to produce a statistically clear answer, but in reality

9There is a one-to-one link betweenR2 and the t-ratio, in a simple regression. So we start from the distribution
of 116 observed R2s from the simple (‘Dumas’) regressions, and shrink them all by a factor between 20 and 80

percent. That is, we compute four distributions of lowered coefficients, R2′
j,1 = f R2

j,1 with f = {0.8, 0.6, 0.4, 0.2}.
For each of the new R2s we then compute the t-statistic that would have been observed in such a regression,

using the known relation t′j,1 =
√

(n− 2)R2′
j,1/(1−R2′

j,1).



Orthogonalized regressors and spurious precision 18

f 1 0.8 0.6 0.4 0.2
new average R2 0.12 0.10 0.07 0.05 0.02
Actually significant 96 87 64 27 1
Deemed significant 111 105 95 61 22

Key In this thought experiment, we imagine that, in each regression, R2 is down to a fraction f =
{0.8, 0.6, 0.4, 0.2} of the actually observed level; we recalculate the Dumas t corresponding to each new R2;
we calculate a new inflated t using the same sej,3/sej,1 ratio as in the real data; and we count how many ts are
above 1.96.

Table 5: Numbers of instances of apparent versus genuine significance for various
R2s.

only one coefficient is significant.

Quite apart from the above calculations, one cannot accept that there is no problem with

using a 30–40 percent inflated t-ratios on the basis of the argument that in many samples the

conclusion may not be affected. The divergence is comparable to the difference between, e.g.,

Dickey–Fuller and regular critical values in a unit root test and should not be ignored. And

the misleading conclusion could be much worse if a diagnosis is based on a single regression

rather than the set of 116 or 131 tests we use here, or if the relation is less clear than it is here.

Besides the technical issue discussed in this section, there are also some interesting re-

search design questions and findings raised by this study. That discussion is relegated to the

concluding section.

4 Conclusion

Before summarizing the statistical issue that gave rise to this paper, we open this section with

a few less technical insights that, we hope, are useful for the exposure literature. First, when

estimating exposure, the data frequency may matter: daily data may provide different answers

than monthly. But our results show that it is by no means necessary to adopt long holding

periods to find a meaningful link. In fact, despite a huge non-synchronicity bias that makes

us lose about three-quarters of the currency effect, the daily sample still has more significant

coefficients than the two monthly-return samples.

A related practical conclusion is that when daily data are studied, it pays to be careful

about the time of the day at which the variables are recorded. Given our objective to expose

orthogonalization as an undesirable ingredient in one’s research, we took a conveniently avail-

able existing aggregate, but if one’s ambition is to to study the exposure itself rather than the

consistency of a se, one needs to be more careful. The Federal Reserve at St. Louis now has
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intra-day data, for instance, that allow one to construct a currency index fully synchronous

with the close of the stock market. The alternative is to somehow correct for the missing in-

formation by including, one way or another, a leading s observation.10 While this removes the

bias from general non-synchronicity, it comes at the cost of substantially increased standard

errors (Sercu, Vandebroek and Vinaimont, 2008). Constructing a better synchronized database

may, therefore, be worth the effort.

A third finding is that multinationals may be as exposed as very committed exporters. In

our sample, they certainly seem to be. This is mildly surprising as many of their activities are

to some extent hedged operationally (by producing in the country of selling, for instance) and

they are thought to be rather good at hedging in financial markets. Our observation suggests

that their ability or willingness to hedge, financially or otherwise, may be lower than what

many researchers think.

The above comments are all based on simple exposures, Dumas’ γ1; the difference from the

findings in a substantial part of the literature to a large extent derives from the widespread

practice of adding the market return as a regressor. One comment related to this issue is that

this choice is far from innocent. Its impact is quite big, as we showed. That impact is related

to the special nature of the market return. In many research areas it makes sense to add many

‘control’ variables so as to reduce the chance that an apparent link may actually be due to

the regressor proxying for an omitted third variable. One has to realise, however, that the

market return is different: it is not an exogenous third variable, but an aggregate of the very

stock returns that act as dependent variables in the exposure regressions. If most stocks are

positively exposed, then so will be the market. As a result, the market return ends up proxying

for the currency effect rather than the other way around. The conclusion in a regular context

would have been that what looks like currency exposure really is market exposure, but here

10In the thin-trading literature on the market model, Dimson (1979) proposes using the sum of leading and
lagged regression coefficients as the estimator of the total impact. Fowler and Rorke (1983) show that this
generates a small bias and propose a generalized Scholes–Williams (1977) estimator. Apte, Kane and Sercu
(1994) show that the same estimator also works outside the market model framework, for example if one wants
to measure the total effect of commodity price changes on exchange rates when the former affect CPI inflation
with one or more lags. The estimator is basically an instrumental variable one, where the instrument is a moving
sum of xs from lag L to lead L. In the case of the exchange rate return as the sole regressor, we have

γ̂
IV (L)
1,j :=

cov(rj , z)

cov(s, z)
, with zt :=

τ=+L∑
τ=−L

st−τ , (16)

with the familiar 2SLS generalization if there are other regressors.
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the opposite holds.

As a last non-technical comment, then, a researcher should perhaps think why the market

return is to be added as a regressor, if it is added at all. The answer very much depends on the

purpose. Again, if one wants to document the existence of exposure tout court, then adding

the market return is a bad idea. The situation is different if the regression is part of an asset

pricing test. If one were to find that once rm is added, s no longer has any effect, then the

useful conclusion is that the simple CAPM suffices: the market return is taking enough of the

currency factor into account, in the same way as we expect it to take into account, say, interest

risk or business cycle risks. More generally, in an asset pricing context, we know a priori that

rm has to be there, and the question whether it has subsumed risks like currency risk is not a

threat to the validity of the findings. For other purposes, the answer may again depend on one’s

objectives. For a hedger who adopts just currency forwards as a risk management instrument,

the total exposure γ1 matters, and adding rm as a control would be quite misguided. But

the answer changes if the hedger decides to adopt also index futures as a tool: then for the

currency hedge γ2 is needed, not γ1.

We conclude with the statistical issue associated with orthogonalized regressors. This is

a not infrequent practice in economic and business research. By orthogonalizing the market

return on the exchange rate, one seems to have the best of both worlds: the market factor

cannot subsume part of the forex exposure present in a stock’s return, and the se of the estimate

beats both the simple- and the multiple-regression ses. In other contexts, the objective of

orthogonalization is to compress the ses in case of near-collinear regressors.

But this se-reducing effect is illusory: since in any particular sample the simple and the

hybrid regression coefficients are always equal to one another, their precisions must be identical

too. The reported standard errors of the hybrid regression are biased, and often substantially

so, even in large samples. Technically, the source of the problem is that the uncertainty

about the market’s exposure estimate is left out of the calculated se: when, as in traditional

regression theory, the regressors are deemed to be non-random, the regression relations between

them are therefore also deemed to be non-random. This assumption is the feature that makes

the se estimates inconsistent. And of course the problem is related to the fact that the

orthogonalization happens outside the main regression, so that the uncertainties created in

that first step cannot be taken into account in the main regression.

In practice, then, one cannot have the coefficient of the simple regression with the precision
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of a multiple one. If one does not want a control variable to subsume the role of the main

variable of interest, then the only solution is to exclude it as a regressor. The only valid

alternative to omitting the control variable is to run a regular multiple regression, and take

the subsumption effect as inevitable. There is no in-between solution.
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Technical Note A: Proof of Equation (11)

The proof, for completeness, is as follows:

G−1B2 =

[
1 γ1,m
0 1

] [
σ2s σm,s
σm,s σ2m

]−1 [
σj,s
σj,m

]
=

[
1 γ1,m
0 1

] [
σ2m −σm,s
−σm,s σ2s

]
σ2mσ

2
s(1− ρ2m,s)

[
σj,s
σj,m

]
,

=

[
1 γ1,m
0 1

] [
σ−2s + γ21,mσ

−2
m|s −γ1,mσ

−2
m|s

−γ1,mσ−2m|s σ−2m|s

] [
σj,s
σj,m

]
=

[
σ−2s 0

−γ1,mσ−2m|s σ−2m|s

] [
σj,s
σj,m

]
,

=

 σj,s
σ2
s

β0,j−β0,sγ1,j
1−ρ2m,s

 ,
=

[
γ1,j

β2,j

]
.

The last line uses the familiar definitions of simple and multivariate regression coefficients.

Technical Note B: Proof of the propositions in Table (13).

The slopes follow directly from the main arguments, especially Equations (6) and (13), except

that sample moments replace the population counterparts. For the error (co)variances, the

general OLS solution is

σu(X′X)−1 =
σ̂u

N − 1

[
σ̂2m −σ̂m,s
−σ̂m,s σ̂2s

]
σ̂2mσ̂

2
s(1− ρ̂2m,s)

,

and the error variance of the exposure relies on the first diagonal element of that matrix. That

element simplifies to 1/[(N − 1)σ̂2s(1 − ρ̂2m,s)], the inverse of the sum of squares (ss) of the

currency regressor conditional on the other regressor. The error variance in the first line in

the table follows because in the Dumas regression there is no other regressor, so the relevant

ss is just the raw sum of squares. In the second line, the table follows the above, except that

(N − 1)σ̂2s is again written as a ss, while in the third line we also use the fact that the sample

correlation is exactly zero, the second regressor having been orthogonalized first.
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Lines two and three share the same estimated variance of the residuals because their resid-

uals are identical. In Line 1, the variance of the residuals is larger because that regression

error contains, next to u2, also β3,ju1,m. That relation is made explicit in the second version

of the error variance shown in the table.
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