
Comprehensible Software Fault and Effort Prediction: a

Data Mining Approach

Julie Moeyersomsa,∗, Enric Junqué de Fortunya, Karel Dejaegerb,, Bart
Baesensb,, David Martensa,

aFaculty of Applied Economics, University of Antwerp, Prinsstraat 13, Antwerp B-2000,
Belgium

bDepartment of Decision Sciences and Information Management, Katholieke Universiteit
Leuven, Naamsestraat 69, Leuven B-3000, Belgium

Abstract

Software fault and effort prediction are important tasks to minimize costs of a
software project. In software effort prediction the aim is to forecast the effort
needed to complete a software project, whereas software fault prediction tries
to identify fault-prone modules. In this research both tasks are considered,
thereby using different data mining techniques. The predictive models not
only need to be accurate but also comprehensible, demanding that the user
can understand the motivation behind the model’s prediction. Unfortunately,
to obtain predictive performance, comprehensibility is often sacrificed and
vice versa. To overcome this problem, we extract trees from well performing
Random Forests (RFs) and Support Vector Machines for regression (SVRs)
making use of a rule extraction algorithm ALPA. This method builds trees
(using C4.5 and REPTree) that mimic the black-box model (RF, SVR) as
closely as possible. The proposed methodology is applied to publicly available
datasets, complemented with new datasets that we have put together based
on the Android repository. Surprisingly, the trees extracted from the black-
box models by ALPA are not only comprehensible and explain how the black-
box model makes (most of) its predictions, but are also more accurate than
the trees obtained by working directly on the data.

∗Corresponding author. Tel.: +32 3 265 42 05.
E-mail addresses: julie.moeyersoms@uantwerpen.be (J.Moeyersoms), en-
ric.junquedefortuny@uantwerpen.be (E. Junqué de Fortuny), Karel.Dejaeger@kuleuven.be
(K.Dejaeger), Bart.Baesens@kuleuven.be (B.Baesens), david.martens@uantwerpen.be (D.
Martens)

Preprint submitted to Journal of Systems and Software October 6, 2014

Keywords: Rule extraction, Software fault and effort prediction,
Comprehensibility, Data mining

1. Introduction

The worldwide enterprise software development market was valued at
$244 billion in 2010 according to information technology research and advi-
sory firm Gartner, which proves the importance of this sector globally [1].
Yet, the software industry suffers from frequent cost overruns [2, 3, 4]. As
a consequence this can lead to serious problems for software companies and
sometimes even jeopardize their existence [5]. It is therefore important as
a software development company to minimize costs as much as possible. In
order to do so, activities such as software effort estimation and software fault
prediction can be crucial, and constitute the topic of this paper.
Software effort estimation is the basis for project bidding, budgeting and
planning [2]. Software fault prediction on the other hand aims to identify
error prone software modules in a timely manner [6]. It is crucial to identify
faults in the early stages of development since the cost of fixing or reworking
software can be surprisingly high if they are detected in the later phases of
the software development life cycle [7, 8, 9].
In this paper we predict software faults and effort, making use of different
data mining techniques. Data mining entails the process of extracting knowl-
edge from large amounts of data [10]. In the literature (see e.g. [11]) different
types of data mining are discussed such as regression, classification and asso-
ciation rule mining. Regression and classification are predictive data mining
tasks, where the target variable is continuous and discrete respectively. Asso-
ciation rule mining is a descriptive data mining task and aims at learning fre-
quently occurring patterns [10]. The focus in this research lies on regression
for software effort prediction and classification for software fault prediction.
In both cases, statistical predictive models are built in order to generate pre-
dictions of new observations [12]. A simplified example for both prediction
tasks is presented in Fig. 1 and 2, where it is shown that a classification or
regression model is built based on historical data in order to generate accu-
rate predictions of new observations. Data mining techniques are applied in
many domains. Some well-known examples include credit scoring [13], churn
prediction [14] and applications in the medical sector such as the selection of
the best in-vitro fertilized embryo [15].

2

Although research on fault and effort prediction often emphasizes the pre-
dictive performance of a model, comprehensibility is an important aspect
as well, demanding that the user can understand the rationale behind the
model’s prediction [16, 17]. Comprehensibility refers to how well humans
grasp the classifier induced or how strong the mental fit of the classifier
is [18, 19]. There are two main drivers to consider when talking about com-
prehensibility. A first important aspect is type of output: i.e. although
the comprehensibility of a specific output type is largely domain-dependent,
in general, rule-based classifiers can be considered as the most comprehen-
sible, and non-linear classifiers as the least comprehensible [18]. A second
driver for comprehensibility is the size of the output; i.e. smaller models are
preferred [18]. Comprehensible models are often needed in order to inspire
confidence in a business setting [7, 17] and improve model acceptance [14, 20].
Also, it facilitates the validation of results with domain knowledge, which is
important because intuitiveness will determine whether or not the model will
be accepted by the end-user [14]. Unfortunately, predictive performance and
comprehensibility often work in a contradictory way and either must be sac-
rificed for the other [21, 22]. That is, any model that tries to achieve both
predictive and explanatory power, will have to compromise somewhat [12].
The purpose of this research is to illuminate whether rule extraction can
generate both accurate and meaningful rule-sets for software fault and effort
prediction. Applying rule extraction in these specific domains can be partic-
ularly useful because previous research on fault and effort prediction shows
that non-linear techniques typically give the best results for these problems.
As non-linear techniques yield uninterpretable outputs, rule extraction can
have a large added value in order to meet the need for comprehensibility in
these domains.

3

Figure 1: Building a Classification Model with Data Mining

Figure 2: Building a Regression Model with Data Mining

The remainder of this paper is structured as follows: first, Section 2
describes the two considered prediction tasks in the field of software devel-

4

opment. An overview of different data mining techniques applied in these
settings is presented in Section 3. Section 4 argues for the application of rule
extraction and explains ALPA, the rule extraction technique investigated in
this study, in more detail. Next, Section 5 presents the setup of the experi-
ments while Section 6 discusses the results of these experiments. In Section 7,
some threats to validity and interesting topics for future research are set out.
The main findings of this study are finally summarized in a short conclusion.

2. Software Development

2.1. Software Fault Prediction

Software companies are focusing on delivering quality to their customers.
One of the main factors that determine the perception of the end-user of
quality is the degree to which the software is free of bugs [23]. Software
fault prediction aims to improve software quality by identifying fault prone
modules in a timely manner by means of metric-based classification [6]. Early
detection is also crucial as the cost of correcting or reworking software is much
lower if faults are discovered in the early phases of the software development
cycle [8].
In the literature, software fault prediction has been studied from different
viewpoints; predicting the number of faults in each segment [24] or using the
characteristics of different segments in the software code to identify which
segments are most fault prone [25]. In the first one, software fault prediction
is considered to be a regression problem while the second case regards it
as a classification task [7]. This study considers software fault prediction
from a classification point of view in which modules that are fault prone
are identified based on their specific metrics. Various techniques have been
investigated to this end, including artificial neural networks (ANN) [26], tree-
based methods [27, 28, 29], swarm intelligence [10], SVMs [30], Random
Forests (RFs) [6, 27] and statistical procedures like discriminant analysis [31]
and logistic regression [32]. However, it is often stated that results regarding
the superiority of one technique over another are difficult to assess across
different studies due to different experimental setups [33]. Table 1 gives a non
exhaustive overview concerning the use of different techniques for software
fault prediction and in e.g. [7, 34, 35] a more detailed synopsis of the fault
prediction landscape can be found.

It is argued that fault prediction techniques should not be based on pre-
dictive performance alone but that other aspects such as computational ef-

5

Table 1: Literature table summarizing related Software Fault Prediction research in recent
years.

Author Reference Techniques Data source Top performer

Khoshgoftaar et al. (1997) [26] -ANN Telco ANN
-Discriminant Analysis

Guo et al. (2004) [27] -RF NASA RF
-Discriminant Analysis
-ROCKY detectors
-LogReg
-See5 classifiers
-Several WEKA classifiers

Menzies et al. (2007) [25] -C4.5 NASA Naive Bayes
-Naive Bayes
-1R

Arisholm et al.(2007) [36] -SVM Telco C4.5
-PART
-C4.5
-LogReg
-NN

Elish and Elish (2008) [30] -SVM NASA SVM
-LogReg
-k-NN
-Multi-layer perceptrons
-RBF
-Bayesian Belief Network
-Naive Bayes
-RF
-Decision Trees

Lessmann et al.(2008) [6] -RF, LMT NASA RF
-LDA, QDA, Logit
-Naive Bayes, BayesNet
-LARS, k-NN, ANN, SVM
-C4.5, CART, ADT
-Multi-layer perceptron

Dejaeger et al.(2011) [7] -NB NASA RF
-Augmented NB (ANB) ECLIPSE
-RF
-LogReg

ficiency, ease of use and especially comprehensibility should also be taken
into account [6, 7]. Comprehensible models help us to better understand
software failures and provide improved causal insight, which can enable the
development of novel predictors of fault-proneness and the development of
better quality code.

2.2. Software Effort Prediction

In software effort prediction the aim is to predict the effort needed to
complete a software project. For every new project, the software manager

6

has to allocate people, time and money to the project [10] and unfortunately,
this often proves to be a challenging task. It has been estimated by the 2004
CHAOS Report that 53 % of the projects turn out to be either more expen-
sive than expected, late on delivery or missing required functionalities [37].
This highlights the need to properly estimate development efforts, and the
non-trivial nature of this task [17, 38]. A large number of modeling tech-
niques have been applied on software effort estimation data: Table 2 gives a
non exhaustive overview concerning the use of different techniques for soft-
ware effort prediction.

Table 2: Literature table summarizing related Software Effort Prediction research in recent
years

Author Reference Techniques Data source Top performer

Shepperd and Schofield (1997) [39] -Case based reasoning Telco & IT Case based reasoning
-Regression Models

Finnie et al. (1997) [40] -Case based reasoning ASMA ANN + CBR
-ANN
-Regression models

Briand et al. (1999) [41] -OLS Regression Experience No significant differ-
ence

-Stepwise ANOVA
-CART
-Case based reasoning

Braga et al. (2007) [42] -M5P NASA, Bagging with M5P
-SVR Desharnais
-MLP
-Bagging predictors

Park and Baek (2008) [43] -ANN IT ANN
-Expert judgment
-Regression models

Kumar et al. (2008) [44] -MLP Finance, WNN
-RBF networks IBMDPS
-DENFIS
-SVM
-WNN

Huang et al. (2008) [45] -CART COCOMO, GRA with genetic
-Grey Relational Anaysis IBMDPS algorithm
-ANN
-Case based reasoning

Dejaeger et al. (2012) [17] -Tree/rule-based models Coc81, USP05, Log + OLS
-Linear models Desharnais,
-Nonlinear models Maxwell,
-Lazy learning approach Euroclear,

Cocomonasa2,
Experience,
ISBSG, ESA

7

Poor effort estimation can lead to a poor budgeting and planning which in
turn may have serious consequences [5]. In this context, it is again important
to have a predictive model that is both accurate and comprehensible in order
to create confidence in a business environment.

3. Considered Classification and Regression Techniques

A myriad of different techniques is proposed in literature for classification
and regression [11, 46, 47]. Non-linear techniques are mostly applied when
the main purpose is to obtain a high predictive performance [48]. When
the aim is to create an output that can easily be understood by the user,
rule/tree-based techniques are in general considered to be the better option,
generally at the expense of a diminished predictive power [49]. We apply
non-linear techniques as well as tree-based techniques for both fault and ef-
fort prediction.
The non-linear technique of choice for software fault prediction is Random
Forest; a choice motivated by previous research in this domain [6, 27]. Ran-
dom Forest outputs a set of decision trees whose predictions are combined in
an ensemble [50]. Since such a model is hard to understand, also C4.5 is used
to induce a more comprehensible (single) tree model. For the experiments
related to software effort prediction Support Vector Machine for Regression
with a RBF-kernel is adopted since the Support Vector Machine is one of the
state-of-art techniques [30, 48]. Second, we apply a regression tree learner in
order to create an understandable model offering a clear interpretation.
Let us first consider the techniques covered in our study.

3.1. Support Vector Regression

The Support Vector Machine is a learning procedure based on statistical
learning theory. SVMs have originally been developed to solve classification
problems but can be extended to regression problems as well [51]. Hereto, an
alternative loss function that includes a distance measure is introduced [52].
In this case a ε-insensitive loss function is used where,

|ξ|ε =

{
0 if |ξ| ≤ ε,

|ξ| − ε otherwise.
(1)

This means that we do not accept any deviations that are larger than ε.
Fig. 3 depicts the situation graphically [52]. In other words, the goal is to

8

find a function that has at most ε deviation from the actual target values yi
for every point xi in the training set (with n data points and m variables) [53].

Figure 3: SVR using ε-insensitive loss function

The optimization problem can be written as [52],

minimize 1/2||ω||2 + C
n∑

i=1

(ξi + ξ∗i)

subject to yi − 〈ω, xi〉 − b ≤ ε+ ξi,

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0

(2)

with ω the weight vector in the feature space, b a threshold value, ξi and
ξ∗i slack variables measuring the deviation from the boundaries of the ε-
insensitive zone, and C the regularization constant. The optimization crite-
rion of equation (2) penalizes training data points where the distance between
y and the fitted function f(x) is larger than ε.
A non-linear model is often needed to adequately model data. This non-
linear function is approximated by mapping the input data into a dual fea-
ture space, induced by a so called kernel function. This study opts to use
the RBF-kernel [53],

K(x,xi) = e
−‖x−xi‖

2
2

σ2 (3)

with σ the kernel bandwidth hyperparameter, which is tuned on a vali-
dation set.

9

Finally, the general form SVR function can be written as follows with α
and α∗ the Lagrangians [52] ,

f(x, ω) =
n∑

i=1

(αi − α∗i)K(x, xi) + b. (4)

For more details on SVR, we refer to [52, 53].

3.2. Random Forest

Random Forest (RF) is an ensemble method constructing a collection of
univariate tree classifiers [47, 50].
The first step is to take L samples of size n at random from the original data
using bootstrap sampling. Next, from every sample, a tree is built by split-
ting on k(≤ m) input variables randomly selected from the total amount of
input variables in the original data. The number of selected input variables
is a hyperparameter of the learner and stays constant during the forest grow-
ing process [50]. After inducing a large number of trees, a majority voting
procedure is performed to decide on the final class.
Although Random Forest builds upon multiple decision trees which are com-
prehensible, the ensemble loses this advantage and creates an output that is
hard to interpret (a set of hundreds of trees).

3.3. C4.5

C4.5 is a popular tree induction technique based on information theoretic
concepts. More specifically, it uses entropy to measure how informative an
attribute is in splitting the data [54]. Entropy quantifies the order (or disor-
der) amongst observations with respect to the classes. If we consider p1 (p0)
to be the proportion of examples of class 1 (0) in sample S, we can state that
the entropy equals 1 when p1 = p0 = 0.5 (maximal disorder, minimal order)
and 0 (maximal order, minimal disorder) when all observations belong to the
same class, p1 = 0 or p0 = 0. In order to decide upon which attribute to
split at a given node, the gain criterion is used [54]. Gain is defined as the
expected reduction in entropy due to splitting on attribute xj. C4.5 uses a
gainratio criterion and applies normalization in order to avoid that attributes
with many distinct values will be favored [54]. Decision trees are popular due
to their simplicity and transparency. They are self-explanatory and easy to
interpret if the size is small enough [55, 56].

10

3.4. Regression Tree

Regression Trees induce a tree by splitting the input data in cuboid re-
gions. The splits are chosen to optimize some well-chosen criterion such that
each one of the leaves represents one of those regions and each of them uses
a simple model [57].
The REPTree algorithm which optimizes information gain/variance reduc-
tion over the remaining data is employed in this study [11]. After tree learn-
ing, the tree depth is reduced by using reduced-error pruning (with backfit-
ting) in order to improve generalization.
The output of this tree is considered to be comprehensible (if the depth
of the tree is small enough) since the relation between input and output is
immediately visible.

4. Rule Extraction

4.1. Rationale behind Rule Extraction

It has been argued that models which are both accurate and comprehen-
sible are to be preferred in the domain of software engineering [6, 7]. The
problem is that by using traditional techniques these two requirements often
collide [16]. For example, complex, non-linear techniques often perform very
well in terms of predictive performance but mostly yield uninterpretable mod-
els [21]. Rule induction techniques on the other hand construct very compre-
hensible results but have the disadvantage of reduced predictive power [58].
Rule extraction is a technique that will compromise between these two re-
quirements by building a simple rule set that mimics the performance of the
complex model [20, 58, 59].
There are two reasons why rule-extraction is often used [59]. Firstly to gain
better insight into how complex models make their decisions. That is, we
want to know whether results are logical and justifiable before implementing
them in practice [49]. By building a set of rules mimicking the performance
of a complex model, we are able to better comprehend the inner workings of
opaque models. The extent to which the complex model and the rule-based
model agree on their predictions is measured by the fidelity [58, 59]. This
is an important measure since it can be used as an indicator of how similar
the extracted rules and the complex model are. If the rules and fidelity are
satisfactory, one may decide that the complex model is sufficiently explained
and can be used as a decision support model [59]. A second reason for using

11

rule-extraction is because we want to improve the performance of rule induc-
tion techniques [59].
The rule extraction technique that was used in this paper is ALPA, given its
superior performance and applicability to both classification [58] and regres-
sion [60].

4.2. ALPA

In order to improve a rule set in terms of either predictive power or fidelity,
we can use one of the previously trained rule induction techniques (the white-
boxes) to imitate the output of the more complex model (the black-box) that
performs better. The way in which this imitation is realized differs between
different rule extraction methods, but is crucial to the performance of the
techniques. There are three key insights being exploited in ALPA (for more
details we refer to [58, 60]).

First, by presenting the predicted target values of the training set to the
white-box algorithm instead of the original target values associated with the
training set, we can improve the similarity between the black-box and the
white-box substantially. By doing so, the black-box effectively becomes an
oracle for predictions.

Second, since the oracle is only dependent on the black-box, we do not
have to sample any new target labels, and thus, we are free to generate
new artificial data points and their predictions without restrictions. This
is the active learning component of the algorithm: at any given point, the
algorithm can choose whichever input data vector it wants to get a label for.

Third, by choosing the right (artificial) data vectors, further improve-
ments of fidelity can be achieved as we generate incrementally more data.
The data generation region differs for classification and regression respec-
tively.

4.2.1. Classification ALPA (ALPAC)

In classification, a model typically induces some kind of decision bound-
ary. This decision boundary marks the transition from one class to another.
For classification, this region has been found to be the best region when op-
timizing fidelity [58]. For Random Forests the exact parametric function of
this boundary region is unknown, but this can be circumvented by the gener-
ation of data in this region using a proxy based on the so called uncertainty
function for Random Forests, defined as:

12

π(Ci|x) = avg
k

I(hk(x) = y)−max
j 6=y

avg
k

I(hk(x = j)),

where x is the input vector, I() the indicator function and h() the previously
mentioned trees from the Random Forest model. Knowing this uncertainty
function, we can select a few points that are very uncertain (i.e. are located
next to the decision boundary) and generate data on the convex combina-
tion of these points. In this way, the artificially generated data points are
positioned in a relevant region. Note that the convex combination r between
two input vectors is defined as:

r = θ xi + (1− θ) xj, θ ∈ [0, 1]. (5)

All of the r (one for each choice of θ) are located on the line connecting
both input vectors in the input space. The operational set-up for ALPA
when discussing software fault prediction is shown in Fig. 4.

Figure 4: Operational set-up of the rule-extraction technique for software fault prediction.

4.2.2. Regression ALPA (ALPAR)

In regression, the interesting region is that which covers the regression
target function. In order to generate data around this region, one wants
to prevent generating data near outliers. Unfortunately, we do not know
the exact target function (otherwise there would be no point in applying a
regression procedure). It can however be approximated by using the same
principles as in Section 4.2.1, with the difference that this time, we want
to generate data located next to the most confidently predicted vectors. By
definition, these are sure to appear near the target function (and as an added

13

advantage, being an almost uniform sampling, simulate the underlying dis-
tribution well). By using the convex combination as before, additional data
points can be generated in the correct region. This leads to the following
operational set-up for ALPA for software effort prediction, shown in Fig. 5.

Figure 5: Operational set-up of the rule-extraction technique for software effort prediction.

5. Methodology

5.1. Data Sets

5.1.1. Software Fault Prediction

Software fault prediction data stemming from the NASA MDP and the
PROMISE repository [61, 62] (KC1, PC3 and PC4) as well as four new An-
droid data sets collected from the Android repository are investigated in this
study. These data sets contain measurements of static code features on a
file level granularity as earlier research pointed out that such attributes are
useful, easy to use and widely used in the context of software fault predic-
tion [7, 25]. As such, the set of features includes line counts, McCabe and
Halstead metrics. Table 3 provides an overview of the number of observa-
tions and attributes included in the data sets. For more detailed information
about the data sets we refer to [6, 7] and other studies listed in Section 2.1.

Data collection.
The NASA MDP data have previously been used in the domain of software
fault prediction and have been discussed in e.g. [6, 7, 34]. As was noticed by
Hall et al [35], the NASA data sets are widely used and offer unique advan-
tages in terms of the reproducibility of studies. The Android data have been
collected in the context of this study and relate to different releases of the
well known open source Android platform. This platform is targeted towards
mobile devices such as smartphones and tablet computers and is based on

14

Table 3: Characteristics of the software fault prediction data sets

Data sets Android Android Android Android KC1 PC3 PC4
V2.0 V2.2 V2.3 V4.0

Nr of code attributes 27 27 27 27 21 37 37
Nr of modules 4,388 5,622 4,883 5,753 1,571 1,511 1,347
Nr of fp modules 512 956 1,302 350 319 160 178
% of fp modules 11.7 17 26.7 6.1 20.3 10.6 13.2

the Linux kernel while also drawing upon other open source projects such
as squeak (a bluetooth package) and yaffs (Yet Another Flash File System).
Evidently, the source code of the Android platform is made available to the
public, licensed under the Apache License v2, except for the Linux kernel
and its modifications, which are published under the GNU Public License
v2. Remark that a 6 month development life cycle is in place for major
releases, each receiving a specific nickname, which are followed by several
minor releases. Fig. 6 provides a chronological overview on the development
of the Android platform.

Considering this 6 month development cycle, data on 4 major releases
was collected and matched with 6 months of post release defect data. This
matching was done by using regular expression comparison on the commit
messages entered into the version management system storing the Android
source code. As commit messages were not stored before an adjustment in
the version management system, the chronological overview indicates that
the first release on which sufficient data is available is Eclair, and also 3
more recent releases were considered; i.e. Froyo, Gingerbread and Icecream
sandwich. The source code of all projects listed in Table 4 was downloaded for
each release, totalling ∼1.3 GB of source code, documentation and support
files. A set of static code features was derived from the Java source files,
except for those related to testing procedures. An open source tool called
‘Perst’ was adopted hereto, which makes use of a code parser generated by
JavaCC [63]. The most recent version was obtained and modified to extend
the set of features which can be mined by this tool.

As a similar attribute set is mined compared to the well known NASA
data sets, we believe our study (and data sets) can make a valuable addition
to the current research landscape. By aligning ourselves with the attribute

15

v 2.0
Eclair

16/10/2009

v 2.2
Froyo

v 2.3
Gingerbread

20/5/2010 6/12/2010

v 3.0
Honeycomb

22/2/2011

v 4.0
Icecream sandwich

19/10/2011

Start available
history
10/2008

Update import
tool

26/3/2009
v 1.5
Cupcake

30/4/2009

Figure 6: Android platform chronological overview

space from NASA data sets, and positioning our data sets (extracted from
an open source project) in the public domain 1, we also answer to the call
raised by Hall et al [35].

Project Description

Dalvik Dalvik is a virtual machine which allows to com-
pile apps to byte code and executing them in this
virtual machine; is based on the now defunct Har-
mony Apache project. Contains both Java and C
source code files.

Frameworks
base

A collection of smaller parts which has been de-
veloped or adapted to the Android project such
as telephony and camera services. Contains both
Java and C source code files.

Libcore A library of files which are frequently used by
other parts of the Android platform; was initially
part of the Dalvik subproject until 30/04/2010.
These files have mainly been written in Java.

SDK The software development kit (SDK) which is of-
fered to Android developers to assist in creating
applications for the Android platform.

Table 4: Description of Android sub projects

5.1.2. Software Effort Prediction

For software effort prediction, we used 4 publicly available data sets
stemming from PROMISE repository (Coc81, Cocomonasa2, Desharnais,
Maxwell) [62] as well as a data set collected from the European Space Agency [64].
Each data set contains a different set of attributes, which can be grouped
into the following categories [17]:

1http://www.applieddatamining.com/cms/?q=software

16

- Size: attributes relating to the size of the software project such as LOC
counts or function points (FP).

- Environment: attributes containing information regarding the develop-
ment team, the project itself and the sector of the developing company.

- Project: attributes pertaining to project type and purpose.

- Development: attributes containing information about the technical or
managerial aspects of the project such as the programming language or the
type of database system.

Table 5 provides an overview on the characteristics of the different data
sets while Table 6 shows the number of observations and attributes included.
Further information on these data sets can be found in e.g. [17] and other
studies in Section 2.2.

Table 5: Characteristics of software effort prediction data sets

Data set Single/multi company Application domains Size measure Year collection

ESA M Space/military Kloc 1983-1996
Coc81 S Engineering, science, finance, etc Kloc 1970-1981
Cocomonasa2 M Space/military Kloc 1981-1999
Desharnais S Unknown FP 1981-1988
Maxwell S Finance FP 1985-1993

Table 6: Observations and attributes included in the software effort prediction data sets

Data set Observations Attributes Nominal Numeric

ESA 171 16 X X
Coc81 81 14 X
Cocomonasa2 93 24 X X
Desharnais 81 12 X X
Maxwell 62 27 X X

5.2. Experimental Setup

The ALPA methodology has been applied on the different data sets with
the set-up shown in Fig. 4 and 5. For all experiments the Weka workbench

17

was used [11].
As a first important step we preprocess the data sets and select the data
to learn and validate the model. For data sets concerning fault prediction,
the ID as well as attributes with zero variance are discarded. In case of
effort prediction, only attributes known at the moment of effort estimation
are retained; attributes such as duration and costs are not known at the
time of estimation and are discarded. Furthermore, in case of missing values,
an attribute is removed if more than 25 percent of its values are missing.
Otherwise, for continuous attributes, the missing value are replaced with the
median value while categorical variables are transformed into binary vari-
ables by using dummy encoding, including a missing flag if appropriate.
After preprocessing the data, input selection was performed using the Cfs-
SubsetEval method in WEKA [11]. This evaluator considers the predictive
value of each attribute individually along with the degree of redundancy
with them [11]. Input selection can be considered as an important step in
the model building phase since including irrelevant and noisy attributes can
result in poor predictive performance and high computational effort [65].
A 10-fold cross testing is used to randomly split the data into training and
test data. Since both the SVR and Random Forest have adjustable param-
eters, also referred to as hyperparameters, we first tune them in order to
adapt the algorithms to the underlying data characteristics. For SVR the
complexity parameter C and σ parameter of the RBF Kernel are tuned. In
case of the RF two hyperparameters were considered, namely, the number
of trees (L) and the number of attributes used to build each individual tree
(k). Each time a grid-search procedure on a validation set is adopted in
order to tune the hyperparameters. That is, a set of values is defined for
each hyperparameter and possible combinations are evaluated using a 2-fold
cross validation on the training data, which will split this training data into a
learning and validation set. Each time, the combination of hyperparameters
leading to the highest AUC value is chosen. For RF we considered a range
of [10,50,100,250,500,1000] trees and three different values for parameter k,
namely [0.5, 1, 2].

√
(m) (see [6]). The C and σ parameter of the SVR model

were chosen as follows: C ∈ [5 : 10] and σ ∈ [−3 : 2].
The predictive performance of the models are evaluated using accuracy and
recall [66, 67] for classification and RMSE (Root Mean Square Error) for
regression. Accuracy is defined as the number of test data points correctly
identified by the rules, divided by the total number of data points in the test
set. Recall on the other hand, measures the proportion of positive cases that

18

are correctly classified as positive. In case of regression we use the RMSE
as compared to the true output values in order to measure the performance
of the models. Another measure that was used to evaluate the models is
fidelity. As explained in Section 4.1, fidelity can be described as the extent
to which the rule set obtained from the white-box technique is similar to the
complex model [58, 59]. For classification this can be defined as the number
of data points where the rule set and the complex model agree, divided by
the total number of data points in the test set. In case of regression, fidelity
is expressed as the RMSD (Root Mean Square Deviation) of the predictions
of the white-box on the one hand and the black-box on the other hand.
Since we apply rule extraction, it is required that the black-box model out-
performs the white-box model. That is, we would prefer to use the white-box
model if the performance would be even better than that of the black-box
model. Consequently, folds for which this requirement is not met were dis-
carded from the results. This procedure is a common practice in the rule
extraction literature [58, 59, 60].
Finally, since in this paper we aim for comprehensibility, the rule sets created
by C4.5 were pruned making use of the pruning parameters. The maximum
depth of the Regression Tree was set to 5. By doing this, the final model is
ensured to be comprehensible and easy to interpret.

6. Results

Table 7 shows the detailed results for the experiments on software fault
prediction. The performances of the original trees and the ALPAC-trees are
shown, where each time the size of the tree (number of leaves) is indicated
in the last column. The results of the Random Forest are added in the last
column of the table. As mentioned before, accuracy and recall are used to
measure the predictive performance of the models. The fidelity measures
how often C4.5 and Random Forest agree and so it is used as an indicator of
how similar the extracted rules and the complex model are. In other words,
the higher the fidelity, the better the rules explain the complex model. The
results for fidelity, accuracy and recall represent the average over all 10 fold
tests except for the folds where Random Forest performs worse than C4.5.
That is, for fidelity and accuracy the folds for which the C4.5 performed
better in terms of accuracy were deleted from the results, whereas for recall
we only included the folds for which the black-box model performed better in

19

terms of recall. This is a common practice in the rule extraction literature [58,
59, 60] as it would be easier to just use the white-box model if this would
give better results. Obviously, this implies that Random Forest performs
better than the original tree for all datasets in terms of accuracy and recall.
As compared to the ALPAC-tree, Random Forest again performs better for
all datasets, which is logical since rules (that have not the same modelling
capabilities as Random Forests) are extracted from this black-box, thereby
compromising slightly on accuracy. When comparing the new ALPAC tree
with the original tree, it can be seen that ALPAC performs better in terms
of fidelity as compared to the baseline algorithm C4.5 for 6 out of 7 data
sets. In terms of accuracy ALPAC performs better than C4.5 in 5 out of 7
cases. Also for recall, ALPAC is performing better for 6 datasets, yet recall
is rather low. This can be explained by the fact that ALPAC optimizes
for accuracy instead of recall. If the main goal is to achieve a high recall,
ALPAC could be adapted so that the model would be optimized for recall. In
our case, however, the focus is not on which performance measure should be
used but on the potential of ALPAC to create comprehensible rule sets out
of a complex algorithm. The trees are pruned so that the trees produced by
C4.5 have approximately the same size than the ones produced by ALPAC.
Note that it is very hard to arrive at exactly the same size of the trees
due to the nature of the techniques, but a comparison of the median size of
the trees shows that the models have approximately similar rule complexity.
This allows us to compare the results produced by the models. Figure 7
shows an example of a tree that was built. The tree is small enough to be
understood by the user and thereby obtains insight in how the black-box
model makes most of its predictions. As such, we effectively combine the
good generalization behavior of the RF model with the comprehensibility of
the C4.5 tree.

The results of the experiments for software effort prediction are displayed
in Table 8. The results of the trees and ALPAR-trees are shown in the first
columns and the performances of the SVR are displayed in the last column.
For the trees, the size is not mentioned because we used a maximum depth of
5 for both regression tree and ALPAR, which meets our aim to create trees
that are small enough to be comprehensible. For this regression task, the
fidelity of the white-box regression model to the black-box regression model
can be described as the RMSD of their predictions. In other words, the
lower the fidelity the better the white-box is able to explain the black-box
model. As with ALPAC, the results represent the average over all 10 fold

20

Table 7: Results C4.5 compared to ALPAC-trees in terms of Fidelity, Accuracy, Recall
and Size

C4.5original C4.5ALPAC RF
Data set Fidelity Accuracy Recall Size Fidelity Accuracy Recall Size Accuracy Recall

(%) (%) (%) (%) (%) (%) (%) (%)

KC1 87.44 84.40 13.19 7 88.02 84.61 17.23 6 86.50 31.61
PC3 89.55 89.12 3.75 6 89.47 88.96 10.00 8 90.96 22.50
PC4 87.44 89.60 24.08 7 89.12 89.71 27.45 6 91.89 54.51

Android V 2 0 88.37 88.56 20.45 4 89.03 89.11 22.38 6 89.20 27.24
Android V 2 2 82.73 83.94 16.78 8 83.20 83.48 13.19 7 85.34 30.33
Android V 2 3 75.17 75.93 18.52 5 75.56 76.38 24.66 6 78.20 44.70
Android V 4 0 94.20 93.94 7.14 4 94.63 93.98 16.47 6 94.33 19.64

Wins 1 2 1 6 5 6

tests except for the folds where the regression tree performs better than the
SVR. Therefore, it is logical that the SVR performs better than the original
trees for all datasets, as can be seen from Table 8. When comparing the
performances of the ALPAR-trees with those of the SVR, it can be noticed
that although they are lower for most of the datasets, they are still very
close to the SVR accuracy. A comparison of the original trees with the
ALPAR-trees shows that ALPAR performs better than the regression tree
both in terms of accuracy and fidelity for all datasets. Figure 8 shows one of
the regression trees that was produced by ALPAR. This tree is interpreted
as follows: If the time constraint for the CPU is extra high, the predicted
effort will be very high as well. Else, a large equivalent physical KLOC will
lead to a higher predicted effort whereas if the equivalent physical KLOC is
smaller, the predicted effort depends on the NASA-center concerned. That
is, the NASA center number 2 appears to be more efficient. Again, since
the relation between input and output is easy to understand from this tree,
we can state that the tree is comprehensible. Once more, the user thereby
obtains insight into the well performing black-box SVR model.

21

Table 8: Results REPTree versus ALPAR-trees in terms of Fidelity and Accuracy

REPTreeoriginal REPTreeALPAR SVR
Data set Fidelity Accuracy Fidelity Accuracy Accuracy

(RMSD) (RMSE) (RMSD) (RMSE) (RMSE)

Coc81 309.79 1397.78 9.78 330.91 335.12
Cocomonasa2 1174.19 817.58 5.33 459.10 449.10
Desharnais 2623.88 2231.22 14.30 1706.71 1691.25
Maxwell 2432.04 9412.59 1.24 6383.10 6253.47

ESA 112.96 164.90 14.49 153.61 153.76

Wins 0 0 5 5

Figure 7: Example of ALPAC-tree for fault prediction using the Android V4 0 data set

22

Figure 8: Example of ALPAR Tree for effort prediction using the Cocomonasa2 data set

7. Threats to Validity and Future Research

In an empirical study it is important to take into account potential threats
to validity of the results. A first possible source of bias that can be detected
are the preprocessing steps that address the issues such as missing value
handling and input selection, which can play an important role in the out-
comes of the experiments. While the same preprocessing steps are applied
on all data sets, further experiments on the impact of the these steps on
the results can be interesting for future research. Secondly, the data used
in the experiments can be seen as another possible source of bias. That is,
questions can be raised about the representativeness and suitability of the
data. This issue is partially tackled by the fact that data from the public
domain are used in this study. In this way, the results can be verified and
compared with similar studies in the domain. Moreover, as many authors
have argued in favor of the use of public data sets from the NASA MPD and
PROMISE repository [10, 17, 25, 27], we are convinced that the obtained
results are useful to the current research landscape of software estimations.
The newly generated data sets in this study on the other hand, are aligned
with the attribute space from NASA data sets and are made publicly avail-
able in order to ensure consistency and replicability. Furthermore, it can be
noticed that the choices of algorithms are made based on previous research
in the domains [6, 27]. It can be interesting to check if the same results are

23

obtained when extracting rules from other non-linear models. Another im-
portant challenge of using rule extraction is that it implies an extra layer of
complexity in the model, thereby increasing the running time. Moreover, the
ALPA algorithm was implemented in the Weka workbench and therefore the
size of the datasets that can be used is limited to the order of about 10.000
data points. Finally, we mentioned already that the ALPA algorithm opti-
mizes for accuracy. Since the choice of performance measure depends largely
on the industrial context, it might be useful to adapt the ALPA algorithm
so it can optimize for recall, precision or other performance measures. This
might be an interesting topic for future research.

8. Conclusion

Software fault and effort prediction are both important tasks in order
to minimize costs in a software company. The predictive model used in
these cases needs to be both accurate and comprehensible. Unfortunately, to
obtain predictive performance, comprehensibility is often sacrificed and visa
versa. In this paper we illustrated that rule extraction can tackle this issue
and investigated the trade-off between both requirements.
By applying the rule extraction technique ALPA we improve the rule sets
in terms of fidelity and, in most cases, accuracy and recall as well. On the
other hand our results validate that rule extraction allows us to get more
insight in the inner workings of complex models since all extracted trees
were easy to understand. This in turn improves the acceptance of the model
by the end-user. We thereby hope that this methodology further facilitates
the widespread adoption of data mining in software development.

Acknowledgements

We would like to thank the Flemish Research Council (FWO) for financial
support (Grant G.0827.12N).

References

[1] K. Dejaeger, Essays on empirical software engineering, Ph.D. thesis, KU
Leuven (2012).

24

[2] M. Jørgensen, K. Moløkken-Østvold, How large are software cost over-
runs? A review of the 1994 CHAOS report, Information and Software
Technology 48 (4) (2006) 297–301.

[3] H. Uwano, Y. Kamei, A. Monden, K.-i. Matsumoto, An analysis of cost-
overrun projects using financial data and software metrics, in: Software
Measurement, 2011 Joint Conference of the 21st International Workshop
on and 6th International Conference on Software Process and Product
Measurement, 2011, pp. 227–232.

[4] S. Grimstad, M. Jørgensen, K. Moløkken-Østvold, Software effort es-
timation terminology: The tower of babel, Information and Software
Technology 48 (4) (2006) 302–310.

[5] M. Bloch, S. Blumberg, J. Laartz, Delivering large-scale it projects on
time, on budget, and on value, McKinsey on Business Technology (27)
(2012) 2–7.

[6] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classi-
fication models for software defect prediction: A proposed framework
and novel findings, Software Engineering, IEEE Transactions on 34 (4)
(2008) 485–496.

[7] K. Dejaeger, T. Verbraken, B. Baesens, Toward comprehensible soft-
ware fault prediction models using bayesian network classifiers, IEEE
Transactions on Software Engineering 39 (2) (2013) 237–257.

[8] M. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal 38 (2.3) (1999) 258–287.

[9] B. Boehm, P. Papaccio, Understanding and controlling software costs,
IEEE Transactions on Software Engineering 14 (10) (1988) 1462–1477.

[10] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. D. Backer, R. Hae-
sen, Mining software repositories for comprehensible software fault pre-
diction models, Journal of Systems and Software 81 (5) (2008) 823–839.

[11] I. Witten, E. Frank, M. Hall, Data Mining: Practical Machine Learning
Tools and Techniques, Morgan Kaufmann, 2011.

25

[12] G. Shmueli, O. Koppius, Predictive analytics in information systems
research., MIS Quarterly 35 (3) (2011) 553 – 572.

[13] B. Baesens, R. Setiono, C. Mues, J. Vanthienen, Using neural network
rule extraction and decision tables for credit-risk evaluation, Manage-
ment Science 49 (3) (2003) 312–329.

[14] W. Verbeke, K. Dejaeger, D. Martens, J. Hur, B. Baesens, New in-
sights into churn prediction in the telecommunication sector: A profit
driven data mining approach, European Journal of Operational Research
218 (1) (2012) 211 – 229.

[15] L. Passmore, J. Goodside, L. Hamel, L. Gonzales, T. Silberstein, J. Tri-
marchi, Assessing decision tree models for clinical in-vitro fertiliza-
tion data, Technical Report TR03-296, Dept. of Computer Science and
Statistics, University of Rhode Island (2003).

[16] D. Martens, F. Provost, Explaining data-driven document classifica-
tions., MIS Quarterly 38 (1) (2014) 73 – A6.

[17] K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, Data mining tech-
niques for software effort estimation: A comparative study, IEEE Trans-
actions on Software Engineering 38 (2) (2012) 375–397.

[18] D. Martens, J. Vanthienen, W. Verbeke, B. Baesens, Performance of
classification models from a user perspective, Decision Support Systems
51 (4) (2011) 782 – 793.

[19] O. Maimon, L. Rokach, Decomposition methodology for knowledge dis-
covery and data mining, in: O. Maimon, L. Rokach (Eds.), Data Mining
and Knowledge Discovery Handbook, Springer US, 2005, pp. 981–1003.

[20] M. Craven, J. Shavlik, Extracting tree-structured representations of
trained neural networks, in: Advances in Neural Information Processing
Systems, MIT Press, Cambridge, MA, USA, 1996, pp. 24–30.

[21] D. Martens, B. Baesens, T. V. Gestel, J. Vanthienen, Comprehensible
credit scoring models using rule extraction from support vector ma-
chines, European Journal of Operational Research 183 (3) (2007) 1466
– 1476.

26

[22] U. Johansson, Obtaining accurate and comprehensible data mining mod-
els : An evolutionary approach, Ph.D. thesis, Linköping University, De-
partment of Computer and Information Science, The Institute of Tech-
nology (2007).

[23] S. Dick, A. Meeks, M. Last, H. Bunke, A. Kandel, Data mining in
software metrics databases, Fuzzy Sets and Systems 145 (1) (2004) 81–
110.

[24] T. Ostrand, E. Weyuker, R. Bell, Predicting the location and number
of faults in large software systems, IEEE Transactions on Software En-
gineering 31 (4) (2005) 340–355.

[25] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
33 (1) (2007) 2–13.

[26] T. Khoshgoftaar, E. Allen, J. Hudepohl, S. Aud, Application of neu-
ral networks to software quality modeling of a very large telecommu-
nications system, IEEE Transactions on Neural Networks 8 (4) (1997)
902–909.

[27] L. Guo, Y. Ma, B. Cukic, H. Singh, Robust prediction of fault-proneness
by random forests, in: 15th International Symposium on Software Reli-
ability Engineering, 2004, pp. 417–428.

[28] T. Khoshgoftaar, W. Jones, Classification tree models of software quality
over multiple releases, IEEE Transactions on Reliability 49 (1) (2000)
4–11.

[29] A. Porter, R. Selby, Evaluating techniques for generating metric-based
classification trees, Journal of Systems and Software 12 (3) (1990) 209
–218.

[30] K. Elish, M. Elish, Predicting defect-prone software modules using sup-
port vector machines, Journal of Systems and Software 81 (5) (2008)
649–660.

[31] J. Munson, T. Khoshgoftaar, The detection of fault-prone programs,
Software Engineering, IEEE Transactions on 18 (5) (1992) 423–433.

27

[32] T. Khoshgoftaar, E. Allen, Logistic regression modeling of software qual-
ity, International Journal on Reliability, Quality and Safety Engineering
6 (4) (1999) 303–317.

[33] M. Shepperd, G. Kadoda, Comparing software prediction techniques
using simulation, IEEE Transactions on Software Engineering 27 (11)
(2001) 1014–1022.

[34] C. Catal, Software fault prediction: A literature review and current
trends, Expert Systems with Applications 38 (4) (2011) 4626 – 4636.

[35] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic lit-
erature review on fault prediction performance in software engineering,
Software Engineering, IEEE Transactions on 38 (6) (2012) 1276–1304.

[36] E. Arisholm, L. C. Briand, M. Fuglerud, Data mining techniques for
building fault-proneness models in telecom java software, in: Software
Reliability, 2007. ISSRE’07. The 18th IEEE International Symposium
on, IEEE, 2007, pp. 215–224.

[37] The Standish Group, Chaos report, Tech. rep. (2004).

[38] E. Jun, J. Lee, Quasi-optimal case-selective neural network model for
software effort estimation, Expert Systems with Applications 21 (1)
(2001) 1 – 14.

[39] M. Shepperd, C. Schofield, Estimating software project effort using
analogies, IEEE Transactions on Software Engineering 23 (12) (1997)
736–743.

[40] G. Finnie, G. Wittig, J.-M. Desharnais, A comparison of software effort
estimation techniques: Using function points with neural networks, case-
based reasoning and regression models, Journal of Systems and Software
39 (3) (1997) 281–289.

[41] L. Briand, K. El Emam, D. Surmann, I. Wieczorek, K. Maxwell, An
assessment and comparison of common software cost estimation model-
ing techniques, in: Proceedings of the 21st International Conference on
Software Engineering, ICSE ’99, ACM, New York, NY, USA, 1999, pp.
313–322.

28

[42] P. Braga, A. Oliveira, S. Meira, Software effort estimation using machine
learning techniques with robust confidence intervals, in: 19th IEEE In-
ternational Conference on Tools with Artificial Intelligence, Vol. 1, 2007,
pp. 181–185.

[43] H. Park, S. Baek, An empirical validation of a neural network model
for software effort estimation, Expert Systems with Applications 35 (3)
(2008) 929 – 937.

[44] K. Kumar, V. Ravi, M. Carr, N. Kiran, Software development cost esti-
mation using wavelet neural networks, Journal of Systems and Software
81 (11) (2008) 1853 – 1867.

[45] S.-J. Huang, N.-H. Chiu, L.-W. Chen, Integration of the grey relational
analysis with genetic algorithm for software effort estimation, European
Journal of Operational Research 188 (3) (2008) 898 – 909.

[46] B. Baesens, Developing intelligent systems for credit scoring using ma-
chine learning techniques, Ph.D. thesis, K.U.Leuven (2003).

[47] P. Tan, M. Steinbach, V. Kumar, Introduction to data mining, Pearson
Eduction, Boston, USA, 2006.

[48] B. Baesens, T. V. Gestel, S. Viaene, M. Stepanova, J. Suykens,
J. Vanthienen, Benchmarking state-of-the-art classification algorithms
for credit scoring, Journal of the Operational Research Society 54 (6)
(2003) 627–635.

[49] D. Martens, B. Baesens, Building acceptable classification models, in:
Data Mining, Vol. 8 of Annals of Information Systems, Springer US,
2010, pp. 53–74.

[50] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

[51] V. Vapnik, The Nature of Statistical Learning Theory, Springer, N.Y.,
1995.

[52] B. Schölkopf, A. J. Smola, Learning with kernels: Support vector ma-
chines, regularization, optimization, and beyond, MIT press, 2002.

[53] A. Smola, B. Schölkopf, A tutorial on support vector regression, Statis-
tics and computing 14 (3) (2004) 199–222.

29

[54] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[55] L. Rokach, O. Maimon, Data Mining with Decision Trees, World Scien-
tific Publishing Co., 2008.

[56] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, B. Baesens, An
empirical evaluation of the comprehensibility of decision table, tree and
rule based predictive models, Decision Support Systems 51 (1) (2011)
141–154.

[57] T. Minka, Data mining : Regression trees, Lecture notes, Carnegie Mel-
lon University (2003).

[58] E. Junqué de Fortuny, D. Martens, Active learning-based pedagogical
rule extraction, University of Antwerp (2014).

[59] D. Martens, B. Baesens, T. Van Gestel, Decompositional Rule Extrac-
tion from Support Vector Machines by Active Learning, IEEE Transac-
tions on Knowledge and Data Engineering 21 (2) (2009) 178–191.

[60] E. Junqué de Fortuny, D. Martens, Active learning based rule extraction
for regression, in: 2012 IEEE 12th International Conference on Data
Mining Workshops (ICDMW), 2012, pp. 926–933.

[61] M. Chapman, P. Callis, W. Jackson, Metrics data program, NASA IV
and V Facility (2004).

[62] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters,
B. Turhan, The promise repository of empirical software engineering
data, http://promisedata.googlecode.com (June 2012).

[63] A. Tosun, A. Bener, B. Turhan, T. Menzies, Practical considerations in
deploying statistical methods for defect prediction: A case study within
the turkish telecommunications industry, Inf. Softw. Technol. 52 (11)
(2010) 1242–1257.

[64] D. Greves, B. Schreiber, The ESA initiative for software prodcutivity
benchmarking and effort estimation., http://esapub.esrin.esa.it, ESA
Bulletin, no 87 (August 1996).

30

[65] M. Hall, G. Holmes, Benchmarking attribute selection techniques for
discrete class data mining, IEEE Transactions on Knowledge and Data
Engineering. 15 (6) (2003) 1437–1447.

[66] X. Zhang, H. Zhang, Comments on data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
33 (9) (2007) 635–636.

[67] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald, Problems with
precision: a response to comments on data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
33 (9) (2007) 637.

31

