GIDL: A Grounder for FO

Johan Wittocx* and Maarten Mari én and Marc Denecker
Department of Computer Science, K.U. Leuven, Belgium
{johan,maartenm,mar¢@cs.kuleuven.be

Abstract

In this paper, we presentiGL, a grounder for FO. FO'

is a very expressive extension of first-order logic with sev-
eral constructs such as inductive definitions, aggregates and
arithmetic. We describe the input and output language of
GIDL, and provide details about its architecture. In partic-
ular, the core grounding algorithm implemented DG is
presented. We compare @ with other FO" grounders and
with grounders for Answer Set Programming.

Introduction and Motivation
The ambition ofleclarative problem solvinig, in a nutshell,

logic £, denoted MXL), extends model generation: it takes
as input not only arC-theoryT' over a vocabulary: and
finite domainD, but also a structuré&, with domainD, in-
terpreting a subvocabulasy C X.. It searches to expant}
into aX-model of 7. The input interpretatior, presents a
convenient way to storeataof a problem.

From a computational point of view, an interesting aspect
of finite model generation and MX is that its complexity re-
mains in NP for every logic for which the model checking
problem is in P. This is the case for, e.g., first-order logic
(FO) and many extensions of it, which are languages par ex-
cellence for describing many real-life computational prob-
lems. In this paper, we consider MX for such a logic, namely

that a human expert represents his knowledge as a preciseyy first-order logic extended with aggregates, inductive def-

logic specification in terms of a vocabulary formalizing rele-

initions, arithmetic, partial functions and ordered sorts. We

vant objects and concepts of the problem domain, and solves gengte this logic by FO. Clearly, FO' is an expressive lan-

computational tasks within this domain by applying suitable
forms of logical inference on the logic specification. The

success of a declarative problem solving framework depends

on three main factors: the quality of the logic as a specifica-
tion language, the flexibility of the logical inference to solve
a broad class of computational problems, and the availability
of efficient solvers.

An important and flexible logical inference task is finite
(Herbrand) model generation. Indeed, in many real-life

computational problems, one searches for objects of a com-

plex nature, e.g., plans, schedules, assignments, etc. Suc
objects are often represented as (finite) structures. Model
generation serves to explicitly construct such a structure,
given an implicit description of it by means of a logic the-
ory. The idea of a declarative problem solving framework
based on computing “solutions” as the models of a theory
was presented for the first time in (Marek & Truszogki
1998) in the context of Answer Set Programming (ASP).
Earlier, SAT-solvers had been used in this spirit, for example
in Kautz and Selman’s blackbox approach to planning prob-
lems (Kautz & Selman 1996). And, as recently pointed out
in (Mitchell & Ternovska 2008), problem solving in Con-
straint Programming (CP) systems often amounts to com-
puting models of first-order logic (FO) specifications.

In (Mitchell & Ternovska 2005), a declarative framework
based ormodel expansiofMX) was presented. MX for a

*Research assistant of thends voor Wetenschappelijk Onder-
zoek - Vlaandere(FWO Vlaanderen)

guage, convenient for modelling a broad class of domains.

An important result in (Mitchell & Ternovska 2005) states
that in the context of MX, FO is sufficient to solve all prob-
lems in NP. More precisely, for every NP decision problem
on finite o-structures, there exists a vocabulatyD o and
a theoryT over X such that ar-structurel,, is accepted iff
there exists a model &f expandingl,,. Hence, the class of
problems that can bepresentedn MX(FOT) and MX(FO)
is exactly the same. In practice however, new language

rimitives, such as the ones in FQmay seriously ease
he modelling task and enlarge the class of problems that
can besolvedby practical implementations. As an exam-
ple, consider the concept afachabilityin a graph, which
is often needed to model, e.g., planning or scheduling prob-
lems. This concept can be expressed in MX(FO), but not
in a simple and natural manner: it requires a non-trivial en-
coding of an iterative fixpoint construction in FO. To allow
for a direct, natural representation, one can consider MX for
FO(ID), an extension of FO witinductive definitiongDe-
necker 2000). Besides making the modelling task easier, the
resulting MX problem can be solved more efficiently, at least
by the current generation of solvers. A similar argument ap-
plies for other language primitives, such as aggregates and
arithmetic.

Currently, most model generation systems, and hence also
MX solvers, consist of two components:geounderand a
propositional solver The grounder transforms the input to
an equivalent propositional theory, whose models are then

computed by the propositional solver. Several grounders
for (fragments of) MX(FO') are being developed. MX-
IDL (Marién, Wittocx, & Denecker 2006), the first im-
plemented MX(FO(ID)) grounder, works by translating its
input into an equivalent normal logic program, according
to the transformation described in (Mani, Gilis, & De-
necker 2004), and then calls a (slightly adapted) grounder
for ASP. MXIDL can handle full many-sorted FO(ID), ex-
tended with arithmetic. The first native grounding algorithm
for MX(FO(ID)) was described in (Pattersat al. 2007),
and partially implemented in thexc system (Mitchellet

al. 2006). mxG allows function-free FO, cardinality aggre-
gates and a very restricted form of inductive definitions as
input.

In this paper, we presentiBL, a new MX grounder,

designed to handle a very expressive input language.
It is tightly coupled with the propositional solvers
MibL (Marién, Wittocx, & Denecker 2007) and IM-
ISAT(ID) (Marién et al. 2008), developed in our group.
GiDL’s input language is full FO: full order-sorted
FO(ID), extended with cardinality, sum and product aggre-
gates, partial functions and arithmetic. We present this input
language in detail and describen® s architecture. In par-
ticular, we present the core grounding algorithm, which is
different from the one imxG. We compare @®L to MX-
IDL and mxG, showing that it is currently the fastest MX
grounder. We also compare®d. to grounders for ASP and
to PSGRND(Eastet al. 2006), a grounder for the logic of
propositional schemata (East & Truszczynski 2006a).

Preliminaries

In this section, we present many-sorted FO and FO(ID)
and formally define the concepts of model expansion and
grounding. We assume the reader is familiar with standard
FO.

Many-Sorted First-Order Logic with Equality

A vocabularyX consists of a seEg of sorts, and of vari-
ables, constant, predicate and function symbols. Variables

and constant symbols are denoted by lowercase letters, pred-

icate and function symbols by uppercase letters. Sets and
tuples of variables are denoted byy, Each variable:
and constant symbel has an associated saifx), respec-
tively s(c) € Xg, each predicate symbdt with arity n an
associated tuple of sod$P) € 3%, and each function sym-
bol F with arity n an associated tuplg F') € X721,

A termover a vocabulary: is inductively defined as fol-
lows:

— Avariablez of X is a term of sorti(z).
— A constant of X is a term of sort(c).

— If F is a function symbol of¥ with s(F)

(81y. -y Sny Snt1), andty, ..., t, are terms ovek of sort
respectivelysy, ..., s,, thenF(t,...,t,) is a term of
SOrts, 1.

The sort of a ternt is denoted by (t). A (well-sorted) FO
formula overX is inductively defined by:

— If Pis a predicate symbol with(P) = (s1,...,s,) and
ty,...,t, are terms of sort respectively, ..., s,, then
P(tq,...,t1)is a formula.

— If t; andty are two terms of the same sort, thign= ¢, is
a formula.

— If p andy are formulas and is a variable, themy, p A,
o V1, dx ¢ andVzx ¢ are formulas.

An atomis a formula of the fornP(¢) or¢; = t2. Aliteral is
an atom or the negation of an atom. An occurrence of a for-
mula e as subformula in a formula is positive(negative
if it occurs in the scope of an even (odd) number of nega-
tions. For a formulap, we often writep[z] to indicate that
T are its free variables. The formulgz/c| is the formula
obtained by replacing irp all free occurrences of the vari-
ablex by the constant symbal This notation is extended to
tuples of variables and constant symbols of the same length.
A sentencés a formula without free variables.

A X-interpretation/ consists of

a domains! for each sort € 3;

— adomain element! € s! for each variable with s(z) =
8,

a domain element ¢ s’ for each constantwith s(c) =
S5

arelationP! € sf x ... x sI for each predicate symbol
Pwiths(P) = (s1,...,8n);
I

— afunctionF’ : s x ... x sI — s, for each function
symbol F with s(F) = (s1,...,Sp+1)-

A X-structureis an interpretation of only the sorts, constant,
relation and function symbols &i. The restriction of &:-
interpretation/ to a vocabularyy C ¥ is denoted by, .
For a variabler and domain element, [x/d) is the inter-
pretation that assignsto z and corresponds tbon all other
symbols. This notation is extended to variables and domain
elements of the same length.

The valuet! of a termt in an interpretatiord, and the sat-
isfaction relatior}= are defined as usual (see, e.g., (Enderton
1972)).

Inductive Definitions and FO(ID)

FO(ID) (Denecker 2000) is an extension of FO with induc-
tive definitions. It can be viewed as an integration of FO
with logic programming.

A definitionover a vocabulany is a finite set of rules of

the form

vz (P(t) < ¢[]),
whereyp is an FO formula oveE, 5 C 7, P is a predicate in
¥, andt¢ a tuple of terms such thadt(t) is well-sorted. Also,
the set of variables occurring inis a subset of. P(t) is
called theheadof the rule,p thebody The connective—
is calleddefinitional implicationand is to be distinguished
from material implicatiorD. A predicate appearing in the
head of a rule of a definitiol\ is called adefinedpredi-
cate ofA, any other predicate symbol and each constant and
function symbol is called anpen symbobf A. The set of
open symbols ofA is denoted byOpen(A), the set of de-
fined predicates bfef(A). An occurrence of a formula

in a rule body is positive (negative) if it occurs in the scope edges that are in the path. The theory is given by
of an odd (even) number of negations. v I Bd
A Y-interpretation/ is said to satisfy a definitioi over vt vz (In(vy, v2) 5 Edge(vy, v2)).
3, denoted! = A, if I|peg(a) is the well-founded model Vi, v2,v3 (In(vi, v2) A In(vi,v3) D vz = v3).
of A extending/|open(a). The definition of well-founded Yy, va,v3 (In(v1,vs) A In(ve,vs) D v1 = va).
model can be found in (Van Gelder, Ross, & Schlipf 1991, vy 1 (v, Start).
Denecker & Ternovska 2004). Vo Reached(v)
An FO(ID) theoryT is a finite set of FO sentences and '
definitions. An interpretation is a model &fiff it satisfies Vv Reached(v) «— v = Start.
all sentences and definitions bf Vv Reached(v) «— Reached(w) A In(w,v).

Model Expansion Grounding

Model expansion for a logi@, abbreviated MX(), was Solving the MX(FO(ID)) search or decision problem for in-
first presented as a declarative problem solving paradigm Put (X, 7’0, I,) can be done by creating an “equivalent”
in (Mitchell & Ternovska 2005). For representation theo- Propositional theoryl;, using7" and I, and subsequently
rems, like thecapturing NPproperty mentioned in the in- calling a model generator (in case of the search problem)

troduction, and for a comparison with other paradigms, we Or satisfiability checker (in case of the decision problem)
refer the reader to that paper. for the propositional fragment of FO(ID). For solving the

MX(FO(ID)) decision problem, it suffices thdl, is satisfi-

able iff T'has a model expanding . For solving the search

problem, a one-to-one correspondence between the models

of T, and the models df expanding,, is required. Because

GIDL is meant to be a grounder for the search problem, we

consider the latter, stronger type of equivalence in this paper.
We now define grounding formally. Let be a subvo-

Definition 1 (MX(£)). Given anl theory over a vocabulary
Y, a vocabularyy C X with the same set of sorts, and a
finite o-structurel,,, the model expansion search problem
for input (X, T, o, I;) is the problem of finding model&/

of T that expand/,, i.e., M|, = I,. TheMX(£) decision
problemis the problem of deciding whether such a model

exists. cabulary ofY with the same set of sorts and [kt be ao-
The vocabulary is called thanstance vocabulargf the structure. Denote by./- the vocabulary:, extended with

problem, the vocabular} \ o theexpansion vocabulary,, a new constant symbal for everyd < s’», s € ©g. We

is called thanstance structure call these new constardemain constantand denote the set
Observe thatif" is a theory over a vocabulaby contain- of all domain constants b (I,). For aX-structureM ex-

ing no function symbols, Herbrand model generationffor ~ pandingl,, denote byA/P-) the structure expanding/
can be simulated by MX. Indeed, lebe the set of constants to >2/= by interpreting everyl € D(I,) by the correspond-

in 3, the domain of,, the Herbrand universe and- = ¢ ing domain element. A formula is inground normal form

for every constant € o. (GNF) if it contains no quantifiers and all its atomic subfor-
On the other hand, when= % solving the MX decision mulas are of the fornP(d4,...,d,), F(d4,...,d,) =d,

problem boils down to model checking. ¢ =dord; = d,, whereP, I andc are respectively a pred-
The following are two examples of MX(FO(ID)) repre- icate, function and constant symbol®fandd,,...,d,,d

sentations of well-known computational problems. are domain constants of the appropriate sorts. Observe that

a GNF formula is essentially propositional.

Example 1 (Graph Colouring). The instance vocabulary A rule is in GNF if its body is in GNF and its head is

consists of two sortd/tx andColour, representing respec- .
tively the vertices of the given graph and the colours. It also ©f the formP(dy, ..., d,,), whered,, ..., d, are domain
contains a predicate symbdldge with sort (Viz, Vix), constants.

representing the edges of the given graph. The expansion Definition 2 (Grounding). LetT be atheory oveE,o C

vocabulary consists of a single function symbbllouring and !, ao-structure. Agrounding for7" with respect tal,,

of sort (Vtz, Colour), representing the solution. The is a theoryT, over ¥!= such that all sentences and rules

only sentence in the theory igvy, vy (Fdge(vi,vs) D occurring inT, are in GNF and for everg-structure M/

Colouring(vy) # Colouring(vs)). expandingl,, M | T iff MPUs) = T,. T, is called
For the instance structurlg given byVtxz!'s = {a;b;c}, reducedif it contains no symbols of.

Colour’s = {blue;red} and Edgels = {a,b;b,c}, a

sample solution to the MX search problem is the struc- Input and Output Language

i i oM —

tCur(? M, ej>\<4p:2nd_|ngj;2, W('jtg ZCOIO.um]C‘[g (ﬁ)bl_ blue, In this section, the input and output language 0bG are
olouring™ (b) = red andColouring™ (c) = blue. described. The input language is called’Fénd is an exten-

Example 2 (Hamiltonian Path). The instance vocabu- sion of FO(ID) with partial functions, subsorts, arithmetic

lary contains a sortVtx, a predicate symbalbidge of sort and aggregates. The concrete syntax accepted by the sys-
(Vitx, Vitx) and a constanftart of sort Viz, which rep- tem is basically amscii version of the input language as
resents the first vertex in the path. The expansion vocabu- described below and can be found in the user manual of
lary contains a predicaten and Reached, wheres(In) = the system (Wittocx & Main 2008). The manual also de-

(Vitx,Vitz) ands(Reached) = Vitx. In represents the scribes the output syntax.

Basic Input user has to write the sentences and definitiorig wfa non-

The input for GpL reflects the input of an MX search prob- ~ @mbiguous form.

lem. Le., it consists of a declaration of an instance vocab- Partial functions can be declared by the user but are re-
ulary o, a sorted expansion vocabulary\ o, a theoryT quired also for a logically correct treatment of functions de-
over Y. ,and a finiteo-structure. These four barts are sepa- clared over subsorts and of partial arithmetic functions such

rated by different headers and can be placed in different files @S+ andmod.

if necessary. ®L supports full FO(ID), i.e. T can con- Sypsorts In the vocabulary declaration part of an input for
tain arbitrary definitions, the same predicate can be defined GipL, one can specify that a sott is a direct subsort of at
in multiple definitions, terms can be nested arbitrarily deep, most one other so,. In that case, the domaiﬁ" of 51 in

etc. the instance structurg, has to be a subset 6f”. The cor-

The variables occurring ii” do not have to be declared. oo ing hierarchy of sorts must be a collection of trees.
Their associated sort can be specified at the moment they The root of a tree in the hierarchy is calledase sort By
are used inl". Moreover, GDL contains a sort inference base(s), we denote the root of the tree whesreccuré ie

?&Ceﬁqussrgng];ge(;mesorg Sgég;)l;lﬁ Vgﬁ?slesg#ctg&%tlfheglty the base sort above
Y p y In a context where subsorts are used, a formula is well
a well-sorted formula is obtainéd . : .
: . .. sorted if the following hold:
The declaration of the expansion vocabulary can be split

in a set of auxiliary symbols and a set of symbols whose — for each term F(ty,...,t,) where s(F) =
interpretation is relevant to the solution of the problem. This (1, .-, Sn11), base(s;) = base(s(t;)) for 1 <i <n;
information is passed to the propositional solver, such that _ 5 each atonP(ty,...,t,) wheres(P) = (s1,...,5n),
it can report to the user only the interpretation of the latter base(s;) = base(ﬁ(’ti)) forl < i< n: Y
symbols in the models it finds. -

— for each atomt; = ¢,,, base(s(t1)) = base(s(tz2)).
FO™* A rule with headP (1, . .., t,) ands(P) = (s1,...,s,) is
We now describe the extensions of FO(ID) included in'FO \{ve<ll-‘52rted if its body is well-sorted andt;) = s(s;) for

1 n.

Partial Functions In standard FO and FO(ID), all func- ‘A function with SOrt(s1, ..., Sp41) iS treated as a partial
tions are total. Besides total functions, one can also declare {,nction whenever one 07f thé in/put SOHS ..., s, is nota
and usepartial functions in GbL. When declaring a patrtial base sort. For an interpretatidrand an atorrP&tl ey tn)
function, it is possible to specify a domain where itis total. \yitp 5(P) = (s1,...,5,), we definel £ P(t,. ’ ' ,t;,) i

In general, arbitrary use of partial function symbols cre- oy at |east one, t! ¢ s!. This fixes the semantics for inputs
ates an ambiguity problem. E.g., consider the formula \ith subsort declarations.

P(F(1))), whereF is a partial function symbol. This for- Whenever a variable occurs in two positions with a dif-
mula can be interpreted in two different ways, as illustrated fgrent sort, e.g irP(z) and inQ(z), wheres(P) # s(Q),
by the following non-ambiguous rewritings of it: GIDL does not automatically derive a sort foras this can
N lead to unexpected situations. Instead, the user is then forced
W (F(f) =yAPW) @) to declare the sort of the variable.
Vy (F(t) =y > P(y))) . . . o
Arithmetic Besides the vocabulary specified by the user,

Here, the atom$'(¢) = y should be interpreted & (¢, y), the instance vocabulary of a GIDL input implicitly con-
whereGr denotes the graph af. When F' is total, both tains a sortint and the arithmetic functions-, —, -, =,
rewritings are equivalent, but this is not the case wheis abs(-) andmod. In every instance structure ovey int is
partial. Indeed, for an interpretatidnsuch that is not in interpreted by the integes = {0,1, -1,2, ~2,...}, + by
the domain off'”, I j£ (1), but! = (2). addition onZ, — by subtraction, by multiplication, + by

integer division,abs by the absolute value andod by the

A simple solution to this ambiguity problem is to impose _ X .
P Uiy b p remainder. Note that andmod are partial functions off

the syntax restriction that a partial function symtolcan . .
only occur in atoms of the forn#(ty,...,t,) = tpi1, with domainZ \ {0}. Terms of the fornt; + ¢, ¢, - £, etc,

wheret,, ..., ... are terms containing no partial function ~ are of sortnt. . o
symbols. For such formulas, there is no ambiguity prob- 10 ensure that the grounding produced b Gis finite,

lem. GipL does not impose this syntax restriction. Instead the use ofint is restricted, both in the vocabulary declara-

it interprets positive occurrences of ato$F ())) by (2) tion and the theory. In the input and expansion vocgbulary
and negative occurrences by (1). In other words, it assumes declaration, a sort can be declared to be a subsoftiof
the interpretation where the truth of the sentence® iis and a variable may have sartt. On the other hand, predi-

maximized, while the truth of the rule bodies is minimized. Cate or function declarations with sart . , int, .. .) are not
In case this does not reflect the intended interpretation, a allowed. If in the theory, a variable of sortint is univer-
sally, respectively existentially quantified, it should occur as
Some of the language extensions described below allow for VZ (¢ D ...), respectivelyiz (¢ A...) wherey is a formula
situations where there is more than one possibility to obtain a well- for which there exists a finite interval such tld{z/d] = ¢
sorted formula. for any modelM of the theory and/ outside that interval.

We call ¢ a boundfor . GIDL requires that the bounds
have a very simple form. E.g., an ataR{...,z,...)is a
bound. A formulat; < z <ty is a bound ift;, respectively
to, is a term for which there exists an € Z, resp.ns € Z
such that for each modeél/ of the theoryn; < tM, re-
spectivelyn, > t. Etc. Besides occurrences of bounds
pasVz (p D ...)or3z (¢ A...), GIDL also accepts
syntactically equivalent forms likgz (... V —p V ...) or

Jr (. APpALLL).

Aggregates Aggregates are functions that have a set as ar-
gument. GDL supports three aggregates: cardinality, sum
and product. Concretely, the following are terms with sort
int in the input language of ®L: card{y | ¢[y,z]},
sum{z,y | ¢le,7,2]} andprod{z, | ¢lz,7,2]}. The
variablesz are free in the aggregate term, whileandy are
local to the term. The sort of must be a subsort aft.
Given an interpretatioi, these terms are interpreted by

— (card{y | ¢[y,z]})" is the number ofd such that
Iy/d] |= ;
- (sum{x,@ ‘ @[%,?72]})1 = Z[[x/dmy/ﬁy”:w dr:

- (p’f’Od{l’,y | @[%?»5]})1 = H[[g;/dwﬁy/ay”:(p d:m

are chosen such that the numbers associated to atoms of dif-
ferent predicates do not overlap.

True and Arbitrary Atoms

Atoms that do not occur in an ECNF file are standard con-
sidered to be false by solvers. However, it is often desirable
to also leave out the atoms that are discovered to be true in
every model and the ones whose truth value can be arbitrar-
ily chosen. GDL passes a list of left out true and arbitrary
atoms to the solver.

System Architecture

Given an input(3, T, 0, I,), GIDL constructs a grounding
for T with respect tol,, in six phases. In this section, a
short description of each of the phases is given. The actual
grounding algorithm (phase 5) is described in more detail in
the next section.

Parser In the first phase, the inpyE, T', 0, I,,) is parsed.
The parser of @L is implemented usindlex and bison
which makes it easy to include future extensions of the input
language.

Rewrite and Analyze In this phase? is transformed into

Aggregates can be used everywhere in sentences or rule bod-yp, jnternal normal form: negations are pushed inside until

ies where a term with a subsortift can occur. The seman-
tics for definitions containing recursion involving aggregates
is the one presented in (Pelov, Denecker, & Bruynooghe
2005)

Example 3. In a machine scheduling problem, the con-
straint that at each timepoinf the sum of the capacities
¢ of the machinesn that are not in maintenance must ex-
ceed 100 can be expressed by the sentgh¢eum{c, m |
Capacity(m) = ¢ A =M aintenance(m,t)} > 100).

Output Language

The output language of IBL is an extension with rules
and aggregates of the CNF format for SAT solvers and is
calledextended CNKECNF). It is the input format for the
propositional solvers MbL (Marién, Wittocx, & Denecker
2007) and MNISAT(ID) (Mariénet al. 2008). Details about
the syntax and semantics of the ECNF format is available
at www.cs.kuleuven.be/ dtai/krr/software.

html .

Translation Information
In an ECNF file, each propositional atom has a number,

but not a name. In order to construct human readable so-

lutions, GDL also passes fanslation tableto the propo-
sitional solver, defining a mapping from each number that
occurs in its ECNF output to a name. To avoid an exhaus-

tive table mapping each number to its corresponding name,

first all sort names and their domain elements are listed.
Then all predicates with their corresponding sorts are listed,
and are assigned a number. An atéd,, d>) then corre-
sponds to the numberp + (iy — 1) - |s2| + (i2 — 1), where
s(P) = (s1,$2), np is the number assigned 1, d; the
11th domain element of sok, dy theisth domain element

in so and|s| the size of the domain of;. The offsetsip

they are directly in front of atoms; is translated in terms
of — andV, functions are brought in the forf#i(z) = y and
then, these atoms are replaced®y(z, y), whereGr is a
new predicate representing the graphtof Constraints are
added to ensure that ea€h- is a graph of a function. Also,
all definitions are merged into a single definitidn

The dependency graph df is constructed and analyzed
to discover which defined predicates do not depend on open
expansion predicates. The interpretation of these predicates
is the same in every model @f expandingl, and can effi-
ciently be computed. Also, a good grounding order for the
rules of A is computed.

Pre-grounder The pre-grounder calculates the interpreta-
tion of the defined predicates that do not depend on open
expansion predicates or on aggregates by evaluating their
rules. The evaluation algorithm is a generalized version of
the semi-naive technique (Ullman 1988) and can handle re-
cursion over negation. The predicates whose interpretation
is calculated are from then on considered to be part of the in-
stance structure. I, is extended by assigning the computed
relations to these predicates.

Approximation In this phase, aapproximationfor each
subformula inT" is computed, using the anytime algorithm
described in (Wittocx, Maén, & Denecker 2008). The
computed approximations are used to both reduce ground-
ing size and time.

Formally, an approximation for a formulgz] is a pair of
formulas (. [7], pcf[Z]) overo such thaty C 7, z C 7,

VT (per D @) andT = VT (pcr D —¢). Intu-
itively, the formulay,; provides a lower bound on the set
of instancesp[z/d] of ¢ that are true in every model df.

The grounding algorithm can then safely replace instances
o[z/d] in this lower bound byT, leading to a smaller

grounding. Vice versap.; provides a lower bound on the

set ofp[z/d] that are false in every model @. Instances
[z /d] in this lower bound can be replaced hy Observe
that(_L, L) is an approximation for every formula, called the
trivial approximation

Example 2 (Continued). In the Hamiltonian path
example, (L, vy Start V —FEdge(vi,v9)) is an
approximation for the subformulaln(v;,vs) and
(Edge(vi,v9),nEdge(vi,v2)) IS an approximation
for Edge(vy,vs).

The maximal running time of the approximation algo-
rithm, as well as the maximal size of the derived bounds can
be specified by the user. Experiments in (Wittocx, Mari&
Denecker 2008) showed that the default settings work well
in most cases.

In the implementation, the approximations are repre-
sented and simplified using binary decision diagrams for FO
as defined in (Goubault 1995). We extended the simplifica-
tion algorithm of that paper with rules to cope with arith-
metic. Also, parts of approximations that contain no free
variables are evaluated out using the instance strudture
This evaluation is the only part of the approximation algo-
rithm that depends of,.

Grounder Using the computed approximations for each
subformula, an ECNF theory, equivalent to the inpuand
1, is constructed.

Translate Finally, the translation information and the list
of true and arbitrary atoms is written to the output.

Grounding
The actual grounding component inifl. accomplishes

two tasks. It instantiates variables by domain elements and
at the same time transforms complex formulas and rules 20

into the ECNF format by applying the Tseitin transforma-

tion (Tseitin 1968). In this section, we present the ground-
ing algorithm for the FO part of the input. The algorithm for

grounding the rules is similar.

Procedurésround gets as input a formula[z] and out-
puts a GNF theory, equivalent to the theory containing the
single sentenc@\g »[7/d]. l.e., it outputs a grounding for
the sentenc&z ¢[z]. Here,¢ is assumed to be in the in-
ternal normal form of ®L, i.e., the negations are in front
of the atoms and function symba#sonly occur in atoms of
the form F(3) = z. (¢, pcr) denotes the approximation
of .

The procedureutput writes a single ground formula or
rule to the output.

The functiongetLit implements the Tseitin transfor-
mation. It gets as input a formulalz], outputs a definition
A, in GNF and returns a literaP, € Def(A,) such that
in every model ofA, the truth value ofP, equals the truth

value of\/ ¢[Z/d]. Our actual implementation gletLit
involves some bookkeeping to make sixg is written only
once, even ifjetLit() is called multiple times.

The purpose of line 15 of procedu@ound , is to com-
pute all valuesd such that\/, v;[z/d] is not certainly true,

i.e., to compute the answers of the conjunctive formula
N; ~(¥3)et[Z] In I,. GIDL uses the backjumping algorithm
of (Leone, Perri, & Scarcello 2004). The original algorithm
was designed for computing answers to conjunctiong-of
eralsbut, since the answers of the formuta&y;).:[z] can
be easily computed as a table, it is easy to extend the algo-
rithm.

To obtain a grounding of the FO part @f, Ground is
applied on all sentences @f.

Procedureground()
1 if pe.p = T then
2 | outputl;return ;
3 if o = T then
| outputT; return ;
LetZ be the free variables of;
switch ¢ do
casep is a literal _
for all d such thatl,, |~ ¢.:[Z/d] do
if I, = cr[z/d] then
| outputL; return ;

IN

elseoutputy[z/d];

casep = A1§i§n 1/}1
| for 1 <i<ndo ground(%)
casep = \ﬁgign U, B
for all d such thatl, (= \/,_, ., (¢:)[/d] do
V=10 o
for 1 <i<ndo B
it I, t (1)cs[/d] then
| addgetLit(

Yi[z/d]) toV;
output\/, oy L;

21 Cglsw =Vyy
22 | ground() ;
casep = Jy ¢
for all d such thatl,, }~ ¢.:[z/d] do
if I,[z/d] = ¢ then
| outputL; return ;
else
V=0
for all d’ such that
I [~ tes[z/d][y/d’] do
if I, = ve[T/d][y/d’] then
L addgetLit(+[z/d][y/d']) to
Vi

| output\/; , L;

Complexity of Ground

When all subformulas of a formula are assigned the triv-
ial approximation(_L, 1), applyingGround to ¢ consists

Function getLit(¢)

Let T be the free variables of;

switch ¢ do
casey is a literal
V=10
for all d such thatl, }~ ¢.¢[z/d] do

if I, = c[x/d] then
| addyp[z/d]to V;

if V' is a singleton{ P} then return P;

9 else

10 Let P be a new propositional atom;
11 outputP « \/; .\, L;

12 return P;

N o g~ W NP

¢}

C;SE@ =dyy
| return getLit(

13
14

(O

15 /I Other cases

of simply substituting the variables ¢f by all possible do-

main constants of the appropriate sorts. Hence in this case,

computingGround () takes timeO([[y, Is|"), where
ns is the number of variables of sottin ¢ and|s| the size
of the domain ofs’~ of s.

In the case arbitrary approximations are assigned to the
subformulas ofp, the result ofGround () will become
smaller. On the other hand, the worst-case time complex-
ity of computingGround (y) is thenO([], ¢y, |s]""%)
where d, is the number of variables of sost that occu
non-free in an approximation of a subformula@f This
shows that grounding in the presence of non-trivial approx-
imations may increase the complexity. In practice however,
the approximations computed by the algorithm of (Wittocx,
Marién, & Denecker 2008) almost never slow down ground-
ing. Instead, experiments in that paper show that they often
lead to a dramatic speed-up.

Example 2 (Continued). Let ¢ be the formula-~In(z, y).
If the approximation forp is (L, 1), thenGround (¢,)
takes timeO((Vtxz!-)?). If the approximation is(y =
Start V ~Edge(x,y), L), it takes only timeO(| Edgel-).

Related Work
MXidL

A non-native approach to grounding MX(FO(ID)) consists
of applying the algorithm presented in (Méani, Gilis, &
Denecker 2004) to transform an MX(FO(ID)) input into an
equivalent normal logic program under the well-founded se-
mantics. Then, a (slightly adapted) grounder for Answer
Set Programming can be used to ground the logic program.
This is the approach taken by MXL, the firstimplemented
MX(FO(ID)) grounder. MXDL supports full many-sorted

FO(ID) and arithmetic, but no aggregates, subsorts and par-

tial functions. Experiments with ML were reported on
in (Marién, Wittocx, & Denecker 2006).

MXG

The first native grounding algorithm for MX(FO) and
MX(FO(ID)) was described in (Pattersoet al. 2006;
2007) and works on a table-by-table basis. I.e., to construct
a grounding of a sentenge it proceeds by taking joins, pro-
jections, complements,.. . of the tables in the instance struc-
ture, ending up with a full grounding @f. The algorithm in
GIDL on the other hand, proceeds on a tuple-by-tuple basis.
For every variable, it tries all the (relevant) substitutions by
domain constants, and it outputs part of the grounding of
as soon as possible.

An implementation of the grounding algorithm of (Patter-
sonet al. 2006) was reported on in (Mitchedit al. 2006)
and is calleduxG. TheMmxG system implements only part
of FO(ID). It allows only for definitions that do not depend
on open expansion predicates and that do not involve recur-
sion over negation. It does not support functions, subsorts
or arithmetic.

Psgrnd

PSGRND (East et al. 2006) is a grounder for the ex-
tended logic of propositional schemata (East & Truszczyn-
ski 2006a). This logic is a restricted fragment of function-
free FO, extended with cardinality aggregates. Also, it has
restricted support for inductive definitions: each theory may
contain one definition, and all rule bodies must be conjunc-
tions of atoms.

PSGRNDKkeeps the grounding in memory and performs
unit propagation each time a clause is added to the ground-
ing. As a post-processing step, it does a limited amount of
forward checking on the grounding.

Answer Set Programming

Answer Set Programming (ASP) is a framework for declar-
ative problem solving that is closely related to MX(FD
Answer set programs can be transformed into"Reories

in a modular way (East & Truszcagki 2006b). Moreover,
thestructureof ASP theories is the same as that of Fe-
ories and there are a lot of similarities between the method-
ology of modelling in ASP and in MX(F®) (Marién, Gilis,

& Denecker 2004; Maén, Wittocx, & Denecker 2006).

On the other hand, there are several differences in the in-
put languages for ®L and ASP systems. E.g.,IGL al-
lows for arbitrary FO sentences and definitions, while an
answer set program is basically one big definition, in which
rule bodies are restricted to conjunctions of literals. An FO
sentence is modelled in ASP by a rule with an empty head
and body—-y, an open predicate can be modelled by defin-
ing it with a choice rule Finally, the instance structure of
an MX(FO™) problem corresponds to a series of facts in an
answer set program.

ASP systems work by grounding and propositional solv-
ing. Three ASP grounders ar®ARSE (Syrjanen 1998),
GrinGo (Gebser, Schaub, & Thiele 2007) and the grounding
component obLv (Dell’Armi et al. 2004). The algorithm
in LPARSEWorks table-by-table, the algorithms in the other
two grounders tuple-by-tuple.

Table 1: Impact of approximation (time)

| noapprox. | 4/4 | 5/8 | 6/64
15puzzle 4.89 3.70 3.63 9.00
bounded spanningtre: 256.93 10.88 8.41 21.21
clique 1.33 2.36 2.45 ittt
blocked n-queens 22.44 3.50 3.51 3.51
algebraic groups 7.20 7.38 7.86 H#i
hamiltonian path 21.37 0.04 0.03 0.19
sokoban 0.49 0.24 0.26 0.31
schur numbers 12.49 0.56 1.32 2.52
sudoku 1.00 0.70 1.08 Hitt

Table 2: Impact of approximation (size)

| no approx. | 44 | 58 | 6/64

15puzzle 1461007 1219751 | 1219751 | 1219375
bounded spanningtre 8857075 2255522 | 2255522 | 2255522
clique 353800 353800 353800 Hitt
blocked n-queens 923822 15822 15822 15822
alg. groups 4001420 3931659 3870081 HitH
ham. path 8404074 5701 5701 5701

95279
64300
319795

74878
62369
178828

74878
51454
109267

74878
47733
i

sokoban
schur numbers
sudoku

Experiments

In this section, we evaluate the impact of the approximation
phase and comparei@.’s performance to other grounders.
All experiments in this section were run on a C2D 3GHz
machine with 2GB RAM. All times are in seconds and are
averaged over five runs. There was a time-out (###) of 600

seconds for each run. To measure the size of a ground theory,

we counted the number of propositional atoms in it.

When comparing to other grounders, we used the stan-
dard parameters for the approximation phase mlG(see
below). The times for @L include the time needed for
the pre-grounding and the approximation phase. More de-
tailed information, including the used problem encodings,
is available atwww.cs.kuleuven.be/ dtai/krr/
software/gidl.html

Impact of Approximation

Impact of different settings To evaluate the impact of the
approximation algorithm, we ran 6L with different set-
tings. The resulting grounding times and sizes are shown in

Tables 1 and 2. In these tables, the first number of the set-

ting is the number of times an approximating formula can be

refined. The second number is a measure for the maximum

size of the approximating formulas. Increasing these num-

Table 3: Impact of domain atoms

| GIDL | PSGRND | GrinGo | LPARSE | DLV

Ham. circuit (time) 0.54 0.52 17.41 5.25 21.27
Ham. circuit (size) 1.00 1.00 30.80 26.00 24.76
Table 4: MX(FO") problems (time)

GiDL MXG MXipL
25-queens 0.16 0.76 0.93
50-queens 1.72 7.90 22.42
75-queens 8.03 33.39 165.71
algebraic groups (size 8) 0.86 3.11 3.27
algebraic groups (size 10) 3.40 11.65 12.12
algebraic groups (size 12) 10.94 | 34.96 37.48
graph colouring (64980 nodes, 4 colours) 8.82 11.84 it
graph colouring (64980 nodes, 6 colours) 13.32 18.94 Hitt
tower of hanoi (8 discs) 0.87 2.26 145.37
latin square (dim 30) 3.40 9.65 8.28
social golfer (24 players, 6 groups, 8 weeks) 0.47 1.68 1.88

setting (6/64) produces a substantially smaller grounding in
only one case while it has two time-outs. These and other ex-
periments showed thatiGL'’s default setting 4/4 provides a
good trade-off.

Domain Atoms In general, encoding problems for ASP
solvers involves carefully adding (semantically redundant)
domain atomsto obtain fast grounding times and small
grounding sizes. Due to the approximation algorithm, this
is not needed when encoding problems fapG. Instead,
adding redundant domain atoms tep&'’s input rather in-
creases the running time. Because of its unit propagation,
the same observation holds fesGRND This is illustrated

by Table 3 which, in case of a Hamiltonian circuit problem,
shows the ratios of the grounding time and size for an encod-
ing without to that for an encoding with redundant domain
atoms.

Comparison to MX(FO™) grounders

In this section, we compare IGL to the other existing
grounders for fragments of MX(FO: MxG (version 0.16)

and MXIDL. The ASP grounder used as back-end for MX-
IDL in the experiments is an adaption of GrinGo (version
0.0.1). The encodings of the problems in the first category

bers makes the approximation process more expensive andare exactly the same for each of the three systems. Most

the computed approximating formulas larger and potentially

more precise. Due to the increased precision of these for-
mulas, the subsequent grounding phase will produce smaller
groundings. This phase may be faster or slower depending
on whether the gain due to the smaller grounding dominates

the cost of evaluating the larger approximating formulas.
The default setting of ®L is 4/4.

The tables show that the use of approximation yields (of-
ten drastically) better times and sizes, even with few refine-
ments and small formula sizes. Only in two cases, grounding
without approximation is slightly faster. As for the impact of

of them were taken fromww.cs.sfu.ca/research/
groups/mxp/examples/index.html . The ground-
ing times are shown in Table 4. 1GL consistently outper-
forms the other MX(FO) grounders. Table 5 shows the
number of literal instances in the resulting ground files. In
general, GL produces the smallest groundings, MM

the largest ones.

2There exists a newer version @ik, but it was not available

the size of the parameters, we observe that the most preciseat the time of the submission deadline.

Table 5: MX(FQO") problems (size) Table 6: Comparison tesGRNDand ASP grounders (time)

GioL MXG MXIDL GIpL PSGRND | GrinGo LPARSE DLV
24-queens 50850 50850 52500 100-queens-vl 8.83 #iHt 16.67 15.09 9.31
50-queens 411700 411700 418125 125-queens-vl 19.51 #iHt 35.92 35.58 18.78
75-queens 1395050 1395050 1409375 150-queens-vl 38.24 #itt 74.61 71.96 34.37
algebraic groups (size 8) 783209 1048119 1054835 250-queens-v2 1.38 0.21 1.46 i -
algebraic groups (size 10) 3171771 | 3998889 4014163 500-queens-v2 5.66 0.82 6.93 i
algebraic groups (size 12) 9852733 | 11941763 | 11971803 750-queens-v2 12.78 2.03 19.78 i -
graph colouring (64980 nodes, 4 colours) | 4141440 | 2590560 HHH graph col. (4 colours) 4.72 1.78 9.02 seg. fault | 9.12
graph colouring (64980 nodes, 6 colours) | 6991920 | 4665600 HH graph col. (6 colours) 6.14 2.50 12.28 | seg.fault | 15.05
tower of hanoi (8 discs) 517570 | 610904 | 7152033 graph col. (8 colours) 7.56 3.32 15.58 | seg.fault | 22.62
latin square (dim 30) 1545113 | 2430400 | 2514530 magic series (size 250) 0.62 7.02 it i kit
social golfer (24 players, 6 groups, 8 weeks) 366144 534144 510378 magic series (size 500) 2.49 71.45 i i HH#
magic series (size 750) 5.73 Hi HitH HiH HiH
Ham. circuit (500 nodes) 0.67 0.80 2.69 0.55 0.83
Ham. circuit (1000 nodes)| 2.19 3.99 11.80 2.20 2.53
Ham. circuit (1500 nodes)| 4.88 11.11 34.45 6.51 5.67
Comparlson to PSGRNDand ASP grounders even/odd (..10%) 9.10 3.37 10.17 seg. fault #iH
even/odd(..2 - 106) 18.96 error 20.34 seg. fault it
. . . 6
In this section, we comparelGL to PSGRND(7 jul 2005, gﬁgﬁfnd(géiie;g)) B0 gror | 023 | seg fault)
LPARSE(1.0.17), GrinGo (1.0.0) anaLv (11 oct 2007). sokoban (40 steps) 700 | 503 2326 | 1629 | 1972
sokoban (60 steps) 10.76 7.64 36.04 24.54 30.31

The grounding times of ®L, PSGRND and the ASP
grounders are shown in Table 6, the sizes in Table 7. The
problems were chosen such that their encodings cover a
wide range of different formulas and language constructs. Table 7: Comparison tesGRNDand ASP grounders (size)
Because the grounders take different input languages, it is

. . . . GIDL PSGRND GrinGo LPARSE DLV
not possible to compare their performance in an entirely ob- —grgeersva 1333400 | #F 1990200 | 2688100 | 2050100
jective manner. To nevertheless obtain an as fair as pos- 125-queensv1 2604250 | it 3890875 | 5241375 | 3984500
sible comparison, the encodings are similar for the differ- 2so.queeneve oooast | omoacs | onoras | i
ent grounders (i.e., as far as possible, they are straightfor- 500-queens-v2 1004988 | 1000996 | 1001496 | ### Hith
750-queens-v2 2257488 2251496 2252246 HitH HitH

ward translations of each other) except that domain atoms grapn col. (4 col) 1810800 | 1810800 | 2069644 s 3630240
are added to the ASP encodings where needed to avoid the 9 col. (6col) 2716200 | 2716200 | 2975046 | 44 7004880

A ! . . N graph col. (8 col.) 3621600 3621600 3880448 it 11419200
excessively bad grounding times and sizes mentioned above. magicseries 250) | 315005 | 15939253 | s i i
Only the encoding of the sokoban puzzle differs consid- — pageseres 0 | J2500% | 126208808 | 2 o o
erably among the grounders, because it involves complex Ham. cic. (500) grose | 128464 | 121073 | 124573 | 192572
statements with alternating quantifiers which are not directly 1iam circ oo 283050 | oa1a21 | ecosito | o13ete | 961618
expressible in ASP. For the.queens instances, we tried the even/oddg..10% 0 0 2000003 | i

even/odd(..2 - 10°) 0 it 4000003 it it

grounders on two different encodings. The first one contains [0 07 - o6 0 s | 6000003 | i
an explicit definition of the concept of a diagonal on a chess sokoban (20 steps) | 1940913 | 1153859 | 3155238 | 5679469 | 3085574
board. Due to the use of arithmetic in the second encoding, it Giosn (coseps | aezosss | 3090330 | 6705398 | 17034709 | 9640814
could not easily be translated to the input languagefor.

For each of the problems,IGL ranks first or second in
grounding time. Only on the first version efqueens and
the smallest instance of the Hamiltonian circuit, one of the
ASP grounders is (slightly) fasterrSGRND outperforms
GIDL on 3 of the seven problems, being at most 7 times
faster. It is also faster on theven/oddoroblem but cannot
handle large instances of it. On the remaining 3 problems, A ;)
GIDL outperformsPSGRND It is at least 30 times faster on duadratic size in case of the magic series problem.

the first version of thei-queens problem and on the largest _FOr @ach of the problems, eithesGRNDOr GIDL has the
instance of the magic series. smallest grounding size. This is due to their rich output lan-

The good results of ®L andbLv on the first version of ~ 94ades, enabling compact representations of, e.g., aggregate
n-queens is due to their pre-grounding phase using the semi- €XPressions, and to, respectively, the unit propagation and
naive evaluation technique. The other three grounders use aappr?xamdatlobnl algorltthm. fThe tzrfrof gﬂJhnc:Irgg ;'Ze in the
combination of grounding and unit propagation to compute €Ven/oddproblems stems from the fact that batSGRND
the diagonals on the chess board. Oneten/odcbroblems, and GD!_ write true atoms in the translation information,
the semi-naive evaluation seems less efficient. and not in the actual grounding.

The good result of ®L on the magic series problems
stems from its output format, which allows to define a sin-
gle ground set and use it in multiple aggregate expressions.
The other grounders write out a set for each aggregate ex-
pression, yielding cubic grounding size instead abGs

3We switched the forward checking phasersfGRNDOff, as Conclusions

this phase is not incorporated in the other grounders. In all prob- . .
lems selected here, grounding with lookahead leads to slower We presented a grounder for an extension of FO, in the con-

grounding times. text of model expansion. An important contribution of the
“The newest version of PARSE (1.1.1) appears to be a lot ~ System s that it supports a very rich input language, extend-

slower than version 1.0.17 and exhibits the same segmentation ing full FO with ordered sorts, inductive definitions, aggre-

faults on our experiments gates, arithmetic and partial functions. The input language

and core algorithm of the grounder were described. Despite
its rich language, which makes@. the most complete MX
grounder of the moment, our experiments show thatl3s

the fastest MX grounder for (extensions of) FO and is more
robust and often faster compared to ASP grounders.

Acknowledgments

The input language syntax ofiGL was designed in collab-
oration with David Mitchell and Eugenia Ternovska. The
adapted version of GrinGo was written by Sven Thiele.

References

Dell’Armi, T.; Faber, W.; lelpa, G.; Leone, N.; Perri, S.;
and Pfeifer, G. 2004. System description: DIv with ag-
gregates. In Lifschitz, V., and Nienill., eds.L PNMR
volume 2923 ol ecture Notes in Computer ScienG26—
330. Springer.

Denecker, M., and Ternovska, E. 2004. A logic of non-
monotone inductive definitions and its modularity proper-
ties. In Lifschitz, V., and Niemd), I., eds.,Seventh In-
ternational Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR'7)

Denecker, M. 2000. Extending classical logic with induc-
tive definitions. In Lloyd et al., J., edFirst International
Conference on Computational Logic (CL'200@)lume
1861 ofLecture Notes in Atrtificial Intelligencer03—-717.
Springer.

East, D., and Truszczynski, M. 2006a. Predicate-calculus-
based logics for modeling and solving search problems.
ACM Trans. Comput. Log.(1):38-83.

East, D., and Truszchgki, M. 2006b. Predicate-
calculus based logics for modeling and solving search
problems. ACM Transactions on Computational Logic
(TOCL)7(1):38—83.

East, D.; lakhiaev, M.; Mikitiuk, A.; and Truszczynski, M.
2006. Tools for modeling and solving search problefis.
Commun19(4):301-312.

Enderton, H. B. 1972.A Mathematical Introduction To
Logic. Academic Press.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A
new grounder for answer set programming. In Baral, C.;
Brewka, G.; and Schlipf, J. S., edsPNMR volume 4483
of Lecture Notes in Computer Scien@é6-271. Springer.

Goubault, J. 1995. A bdd-based simplification and skolem-
ization procedurelogic Journal of IGPL3(6):827—-855.

Kautz, H. A., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic and stochastic search.
In AAAI/IAAIL Vol. 2 1194-1201.

Leone, N.; Perri, S.; and Scarcello, F. 2004. Backjumping
techniques for rules instantiation in the DLV system. In
NMR 258-266.

Marek, V. W., and Truszczski, M. 1998. Stable mod-
els and an alternative logic programming paradig?oRR
€s.L0O/9809032.

Marien, M.; Wittocx, J.; Denecker, M.; and Maurice, B.
2008. SAT(ID): Satisfiability of propositional logic ex-
tended with inductive definitions. IRroceedings of the
11th conference on Theory and Applications of Satisfiabil-
ity Testing, SAT 20Q8volume 4996 ofLecture Notes in
Computer Scien¢c®11-224. Springer.

Marién, M.; Gilis, D.; and Denecker, M. 2004. On the re-
lation between ID-Logic and Answer Set Programming. In
Alferes, J. J., and Leite, J. A., ed3ELIA'04, volume 3229
of Lecture Notes in Computer Sciend®8-120. Springer.

Marién, M.; Wittocx, J.; and Denecker, M. 2006. The IDP
framework for declarative problem solving. 8earch and
Logic: Answer Set Programming and SAB-34.

Marién, M.; Wittocx, J.; and Denecker, M. 2007. MidL: A
SAT(ID) solver. In4th Workshop on Answer Set Program-
ming: Advances in Theory and Implementati®63—-308.

Mitchell, D., and Ternovska, E. 2005. A framework for
representing and solving NP search problem&AAI'05,
430-435. AAAI Press/MIT Press.

Mitchell, D. G., and Ternovska, E. 2008. Expressive power
and abstraction iBESSENCE Constraints13(3).

Mitchell, D.; Ternovska, E.; Hach, F.; and Mohebali, R.
2006. Model expansion as a framework for modelling and
solving search problems. Technical Report TR2006-24, Si-
mon Fraser University.

Patterson, M.; Liu, Y.; Ternvska, E.; and Gupta, A. 2006.
Grounding for model expansion irguarded formulas. In
Proceedings of 21st IEEE Symposium on Logic in Com-
puter Science (LICS06)

Patterson, M.; Liu, Y.; Ternovska, E.; and Gupta, A. 2007.
Grounding for model expansion in k-guarded formulas
with inductive definitions. In Veloso, M. M., edlJCAI,
161-166.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2005. Well-
founded and stable semantics of logic programs with ag-
gregatesCoRRabs/cs/0509024.

Syrjanen, T. 1998. Implementation of local grounding for
logic programs with stable model semantics. Technical Re-
port B18, Digital Systems Laboratory, Helsinki University
of Technology.

Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Slisenko, A. O., e8tudies in
Constructive Mathematics and Mathematical Logjo/bl-
ume 8 ofSeminars in Mathematics: Steklov Mathem. Inst.
New York: Consultants Bureau. 115-125.

Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems, Volume Computer Science
Press.

Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic progrardsur-
nal of the ACM38(3):620—650.

Wittocx, J., and Maién, M. 2008. The IDP system.
Obtainable viavww.cs.kuleuven.be/ dtai/krr/
software.html

Wittocx, J.; Marén, M.; and Denecker, M. 2008. Ground-
ing with bounds. IPAAAI'08, 572-577. AAAI Press.

