
GIDL: A Grounder for FO +

Johan Wittocx∗ and Maarten Mari ën and Marc Denecker
Department of Computer Science, K.U. Leuven, Belgium

{johan,maartenm,marcd}@cs.kuleuven.be

Abstract

In this paper, we present GIDL, a grounder for FO+. FO+

is a very expressive extension of first-order logic with sev-
eral constructs such as inductive definitions, aggregates and
arithmetic. We describe the input and output language of
GIDL, and provide details about its architecture. In partic-
ular, the core grounding algorithm implemented in GIDL is
presented. We compare GIDL with other FO+ grounders and
with grounders for Answer Set Programming.

Introduction and Motivation
The ambition ofdeclarative problem solvingis, in a nutshell,
that a human expert represents his knowledge as a precise
logic specification in terms of a vocabulary formalizing rele-
vant objects and concepts of the problem domain, and solves
computational tasks within this domain by applying suitable
forms of logical inference on the logic specification. The
success of a declarative problem solving framework depends
on three main factors: the quality of the logic as a specifica-
tion language, the flexibility of the logical inference to solve
a broad class of computational problems, and the availability
of efficient solvers.

An important and flexible logical inference task is finite
(Herbrand) model generation. Indeed, in many real-life
computational problems, one searches for objects of a com-
plex nature, e.g., plans, schedules, assignments, etc. Such
objects are often represented as (finite) structures. Model
generation serves to explicitly construct such a structure,
given an implicit description of it by means of a logic the-
ory. The idea of a declarative problem solving framework
based on computing “solutions” as the models of a theory
was presented for the first time in (Marek & Truszczyński
1998) in the context of Answer Set Programming (ASP).
Earlier, SAT-solvers had been used in this spirit, for example
in Kautz and Selman’s blackbox approach to planning prob-
lems (Kautz & Selman 1996). And, as recently pointed out
in (Mitchell & Ternovska 2008), problem solving in Con-
straint Programming (CP) systems often amounts to com-
puting models of first-order logic (FO) specifications.

In (Mitchell & Ternovska 2005), a declarative framework
based onmodel expansion(MX) was presented. MX for a

∗Research assistant of theFonds voor Wetenschappelijk Onder-
zoek - Vlaanderen(FWO Vlaanderen)

logicL, denoted MX(L), extends model generation: it takes
as input not only anL-theoryT over a vocabularyΣ and
finite domainD, but also a structureIσ with domainD, in-
terpreting a subvocabularyσ ⊆ Σ. It searches to expandIσ
into aΣ-model ofT . The input interpretationIσ presents a
convenient way to storedataof a problem.

From a computational point of view, an interesting aspect
of finite model generation and MX is that its complexity re-
mains in NP for every logic for which the model checking
problem is in P. This is the case for, e.g., first-order logic
(FO) and many extensions of it, which are languages par ex-
cellence for describing many real-life computational prob-
lems. In this paper, we consider MX for such a logic, namely
full first-order logic extended with aggregates, inductive def-
initions, arithmetic, partial functions and ordered sorts. We
denote this logic by FO+. Clearly, FO+ is an expressive lan-
guage, convenient for modelling a broad class of domains.

An important result in (Mitchell & Ternovska 2005) states
that in the context of MX, FO is sufficient to solve all prob-
lems in NP. More precisely, for every NP decision problem
on finiteσ-structures, there exists a vocabularyΣ ⊇ σ and
a theoryT overΣ such that aσ-structureIσ is accepted iff
there exists a model ofT expandingIσ. Hence, the class of
problems that can berepresentedin MX(FO+) and MX(FO)
is exactly the same. In practice however, new language
primitives, such as the ones in FO+, may seriously ease
the modelling task and enlarge the class of problems that
can besolvedby practical implementations. As an exam-
ple, consider the concept ofreachability in a graph, which
is often needed to model, e.g., planning or scheduling prob-
lems. This concept can be expressed in MX(FO), but not
in a simple and natural manner: it requires a non-trivial en-
coding of an iterative fixpoint construction in FO. To allow
for a direct, natural representation, one can consider MX for
FO(ID), an extension of FO withinductive definitions(De-
necker 2000). Besides making the modelling task easier, the
resulting MX problem can be solved more efficiently, at least
by the current generation of solvers. A similar argument ap-
plies for other language primitives, such as aggregates and
arithmetic.

Currently, most model generation systems, and hence also
MX solvers, consist of two components: agrounderand a
propositional solver. The grounder transforms the input to
an equivalent propositional theory, whose models are then

computed by the propositional solver. Several grounders
for (fragments of) MX(FO+) are being developed. MX-
IDL (Mariën, Wittocx, & Denecker 2006), the first im-
plemented MX(FO(ID)) grounder, works by translating its
input into an equivalent normal logic program, according
to the transformation described in (Mariën, Gilis, & De-
necker 2004), and then calls a (slightly adapted) grounder
for ASP. MXIDL can handle full many-sorted FO(ID), ex-
tended with arithmetic. The first native grounding algorithm
for MX(FO(ID)) was described in (Pattersonet al. 2007),
and partially implemented in theMXG system (Mitchellet
al. 2006). MXG allows function-free FO, cardinality aggre-
gates and a very restricted form of inductive definitions as
input.

In this paper, we present GIDL, a new MX grounder,
designed to handle a very expressive input language.
It is tightly coupled with the propositional solvers
M IDL (Mariën, Wittocx, & Denecker 2007) and MIN-
ISAT(ID) (Mariën et al. 2008), developed in our group.
GIDL’s input language is full FO+: full order-sorted
FO(ID), extended with cardinality, sum and product aggre-
gates, partial functions and arithmetic. We present this input
language in detail and describe GIDL’s architecture. In par-
ticular, we present the core grounding algorithm, which is
different from the one inMXG. We compare GIDL to MX-
IDL and MXG, showing that it is currently the fastest MX
grounder. We also compare GIDL to grounders for ASP and
to PSGRND (Eastet al. 2006), a grounder for the logic of
propositional schemata (East & Truszczynski 2006a).

Preliminaries
In this section, we present many-sorted FO and FO(ID)
and formally define the concepts of model expansion and
grounding. We assume the reader is familiar with standard
FO.

Many-Sorted First-Order Logic with Equality
A vocabularyΣ consists of a setΣS of sorts, and of vari-
ables, constant, predicate and function symbols. Variables
and constant symbols are denoted by lowercase letters, pred-
icate and function symbols by uppercase letters. Sets and
tuples of variables are denoted byx, y, Each variablex
and constant symbolc has an associated sorts(x), respec-
tively s(c) ∈ ΣS , each predicate symbolP with arity n an
associated tuple of sortss(P) ∈ Σn

S , and each function sym-
bol F with arity n an associated tuples(F) ∈ Σn+1

S .
A termover a vocabularyΣ is inductively defined as fol-

lows:

– A variablex of Σ is a term of sorts(x).

– A constantc of Σ is a term of sorts(c).

– If F is a function symbol of Σ with s(F) =
(s1, . . . , sn, sn+1), andt1, . . . , tn are terms overΣ of sort
respectivelys1, . . . , sn, thenF (t1, . . . , tn) is a term of
sortsn+1.

The sort of a termt is denoted bys(t). A (well-sorted) FO
formula overΣ is inductively defined by:

– If P is a predicate symbol withs(P) = (s1, . . . , sn) and
t1, . . . , tn are terms of sort respectivelys1, . . . , sn, then
P (t1, . . . , t1) is a formula.

– If t1 andt2 are two terms of the same sort, thent1 = t2 is
a formula.

– If ϕ andψ are formulas andx is a variable, then¬ϕ,ϕ∧ψ,
ϕ ∨ ψ, ∃x ϕ and∀x ϕ are formulas.

An atomis a formula of the formP (t) or t1 = t2. A literal is
an atom or the negation of an atom. An occurrence of a for-
mulaϕ as subformula in a formulaψ is positive(negative)
if it occurs in the scope of an even (odd) number of nega-
tions. For a formulaϕ, we often writeϕ[x] to indicate that
x are its free variables. The formulaϕ[x/c] is the formula
obtained by replacing inϕ all free occurrences of the vari-
ablex by the constant symbolc. This notation is extended to
tuples of variables and constant symbols of the same length.
A sentenceis a formula without free variables.

A Σ-interpretationI consists of

– a domainsI for each sorts ∈ Σ;

– a domain elementxI ∈ sI for each variablexwith s(x) =
s;

– a domain elementcI ∈ sI for each constantc with s(c) =
s;

– a relationP I ∈ sI
1 × . . . × sI

n for each predicate symbol
P with s(P) = (s1, . . . , sn);

– a functionF I : sI
1 × . . . × sI

n → sI
n+1 for each function

symbolF with s(F) = (s1, . . . , sn+1).
A Σ-structureis an interpretation of only the sorts, constant,
relation and function symbols ofΣ. The restriction of aΣ-
interpretationI to a vocabularyσ ⊆ Σ is denoted byI|σ.
For a variablex and domain elementd, I[x/d] is the inter-
pretation that assignsd tox and corresponds toI on all other
symbols. This notation is extended to variables and domain
elements of the same length.

The valuetI of a termt in an interpretationI, and the sat-
isfaction relation|= are defined as usual (see, e.g., (Enderton
1972)).

Inductive Definitions and FO(ID)
FO(ID) (Denecker 2000) is an extension of FO with induc-
tive definitions. It can be viewed as an integration of FO
with logic programming.

A definitionover a vocabularyΣ is a finite set of rules of
the form

∀x (P (t)← ϕ[y]),
whereϕ is an FO formula overΣ, y ⊆ x, P is a predicate in
Σ andt a tuple of terms such thatP (t) is well-sorted. Also,
the set of variables occurring int is a subset ofx. P (t) is
called theheadof the rule,ϕ the body. The connective←
is calleddefinitional implicationand is to be distinguished
from material implication⊃. A predicate appearing in the
head of a rule of a definition∆ is called adefinedpredi-
cate of∆, any other predicate symbol and each constant and
function symbol is called anopen symbolof ∆. The set of
open symbols of∆ is denoted byOpen(∆), the set of de-
fined predicates byDef(∆). An occurrence of a formulaϕ

in a rule body is positive (negative) if it occurs in the scope
of an odd (even) number of negations.

A Σ-interpretationI is said to satisfy a definition∆ over
Σ, denotedI |= ∆, if I|Def(∆) is the well-founded model
of ∆ extendingI|Open(∆). The definition of well-founded
model can be found in (Van Gelder, Ross, & Schlipf 1991;
Denecker & Ternovska 2004).

An FO(ID) theoryT is a finite set of FO sentences and
definitions. An interpretation is a model ofT iff it satisfies
all sentences and definitions ofT .

Model Expansion
Model expansion for a logicL, abbreviated MX(L), was
first presented as a declarative problem solving paradigm
in (Mitchell & Ternovska 2005). For representation theo-
rems, like thecapturing NPproperty mentioned in the in-
troduction, and for a comparison with other paradigms, we
refer the reader to that paper.

Definition 1 (MX(L)). Given anL theory over a vocabulary
Σ, a vocabularyσ ⊆ Σ with the same set of sorts, and a
finite σ-structureIσ, the model expansion search problem
for input 〈Σ, T, σ, Iσ〉 is the problem of finding modelsM
of T that expandIσ, i.e.,M |σ = Iσ. TheMX(L) decision
problem is the problem of deciding whether such a model
exists.

The vocabularyσ is called theinstance vocabularyof the
problem, the vocabularyΣ\σ theexpansion vocabulary. Iσ
is called theinstance structure.

Observe that ifT is a theory over a vocabularyΣ contain-
ing no function symbols, Herbrand model generation forT
can be simulated by MX. Indeed, letσ be the set of constants
in Σ, the domain ofIσ the Herbrand universe andcIσ = c
for every constantc ∈ σ.

On the other hand, whenσ = Σ solving the MX decision
problem boils down to model checking.

The following are two examples of MX(FO(ID)) repre-
sentations of well-known computational problems.

Example 1 (Graph Colouring). The instance vocabulary
consists of two sorts,V tx andColour, representing respec-
tively the vertices of the given graph and the colours. It also
contains a predicate symbolEdge with sort (V tx, V tx),
representing the edges of the given graph. The expansion
vocabulary consists of a single function symbolColouring
of sort (V tx,Colour), representing the solution. The
only sentence in the theory is∀v1, v2 (Edge(v1, v2) ⊃
Colouring(v1) 6= Colouring(v2)).

For the instance structureIσ given byV txIσ = {a; b; c},
ColourIσ = {blue; red} and EdgeIσ = {a, b; b, c}, a
sample solution to the MX search problem is the struc-
ture M , expandingIσ with ColouringM (a) = blue,
ColouringM (b) = red andColouringM (c) = blue.

Example 2 (Hamiltonian Path). The instance vocabu-
lary contains a sortV tx, a predicate symbolEdge of sort
(V tx, V tx) and a constantStart of sort V tx, which rep-
resents the first vertex in the path. The expansion vocabu-
lary contains a predicateIn andReached, wheres(In) =
(V tx, V tx) and s(Reached) = V tx. In represents the

edges that are in the path. The theory is given by

∀v1, v2 (In(v1, v2) ⊃ Edge(v1, v2)).
∀v1, v2, v3 (In(v1, v2) ∧ In(v1, v3) ⊃ v2 = v3).
∀v1, v2, v3 (In(v1, v3) ∧ In(v2, v3) ⊃ v1 = v2).
∀v ¬In(v, Start).
∀v Reached(v).{

∀v Reached(v)← v = Start.
∀v Reached(v)← Reached(w) ∧ In(w, v).

}
Grounding
Solving the MX(FO(ID)) search or decision problem for in-
put 〈Σ, T, σ, Iσ〉 can be done by creating an “equivalent”
propositional theoryTg usingT and Iσ and subsequently
calling a model generator (in case of the search problem)
or satisfiability checker (in case of the decision problem)
for the propositional fragment of FO(ID). For solving the
MX(FO(ID)) decision problem, it suffices thatTg is satisfi-
able iff T has a model expandingIσ. For solving the search
problem, a one-to-one correspondence between the models
of Tg and the models ofT expandingIσ is required. Because
GIDL is meant to be a grounder for the search problem, we
consider the latter, stronger type of equivalence in this paper.

We now define grounding formally. Letσ be a subvo-
cabulary ofΣ with the same set of sorts and letIσ be aσ-
structure. Denote byΣIσ the vocabularyΣ, extended with
a new constant symbold for everyd ∈ sIσ , s ∈ ΣS . We
call these new constantsdomain constantsand denote the set
of all domain constants byD(Iσ). For aΣ-structureM ex-
pandingIσ, denote byMD(Iσ) the structure expandingM
to ΣIσ by interpreting everyd ∈ D(Iσ) by the correspond-
ing domain elementd. A formula is inground normal form
(GNF) if it contains no quantifiers and all its atomic subfor-
mulas are of the formP (d1, . . . ,dn), F (d1, . . . ,dn) = d,
c = d ord1 = d2, whereP ,F andc are respectively a pred-
icate, function and constant symbol ofΣ, andd1, . . . ,dn,d
are domain constants of the appropriate sorts. Observe that
a GNF formula is essentially propositional.

A rule is in GNF if its body is in GNF and its head is
of the formP (d1, . . . ,dn), whered1, . . . ,dn are domain
constants.

Definition 2 (Grounding). LetT be a theory overΣ, σ ⊆ Σ
andIσ a σ-structure. Agrounding forT with respect toIσ
is a theoryTg over ΣIσ such that all sentences and rules
occurring inTg are in GNF and for everyΣ-structureM
expandingIσ, M |= T iff MD(Iσ) |= Tg. Tg is called
reducedif it contains no symbols ofσ.

Input and Output Language
In this section, the input and output language of GIDL are
described. The input language is called FO+ and is an exten-
sion of FO(ID) with partial functions, subsorts, arithmetic
and aggregates. The concrete syntax accepted by the sys-
tem is basically anASCII version of the input language as
described below and can be found in the user manual of
the system (Wittocx & Marïen 2008). The manual also de-
scribes the output syntax.

Basic Input
The input for GIDL reflects the input of an MX search prob-
lem. I.e., it consists of a declaration of an instance vocab-
ulary σ, a sorted expansion vocabularyΣ \ σ, a theoryT
over Σ and a finiteσ-structure. These four parts are sepa-
rated by different headers and can be placed in different files
if necessary. GIDL supports full FO(ID), i.e.,T can con-
tain arbitrary definitions, the same predicate can be defined
in multiple definitions, terms can be nested arbitrarily deep,
etc.

The variables occurring inT do not have to be declared.
Their associated sort can be specified at the moment they
are used inT . Moreover, GIDL contains a sort inference
mechanism that derives the sort of a variable automatically
if there is one and only one possibility for its sort such that
a well-sorted formula is obtained1.

The declaration of the expansion vocabulary can be split
in a set of auxiliary symbols and a set of symbols whose
interpretation is relevant to the solution of the problem. This
information is passed to the propositional solver, such that
it can report to the user only the interpretation of the latter
symbols in the models it finds.

FO+

We now describe the extensions of FO(ID) included in FO+.

Partial Functions In standard FO and FO(ID), all func-
tions are total. Besides total functions, one can also declare
and usepartial functions in GIDL. When declaring a partial
function, it is possible to specify a domain where it is total.

In general, arbitrary use of partial function symbols cre-
ates an ambiguity problem. E.g., consider the formula
P (F (t))), whereF is a partial function symbol. This for-
mula can be interpreted in two different ways, as illustrated
by the following non-ambiguous rewritings of it:

∃y (F (t) = y ∧ P (y)) (1)

∀y (F (t) = y ⊃ P (y)) (2)

Here, the atomsF (t) = y should be interpreted asGF (t, y),
whereGF denotes the graph ofF . WhenF is total, both
rewritings are equivalent, but this is not the case whenF is
partial. Indeed, for an interpretationI such thatt

I
is not in

the domain ofF I , I 6|= (1), butI |= (2).
A simple solution to this ambiguity problem is to impose

the syntax restriction that a partial function symbolF can
only occur in atoms of the formF (t1, . . . , tn) = tn+1,
wheret1, . . . , tn+1 are terms containing no partial function
symbols. For such formulas, there is no ambiguity prob-
lem. GIDL does not impose this syntax restriction. Instead,
it interprets positive occurrences of atomsP (F (t))) by (2)
and negative occurrences by (1). In other words, it assumes
the interpretation where the truth of the sentences inT is
maximized, while the truth of the rule bodies is minimized.
In case this does not reflect the intended interpretation, a

1Some of the language extensions described below allow for
situations where there is more than one possibility to obtain a well-
sorted formula.

user has to write the sentences and definitions ofT in a non-
ambiguous form.

Partial functions can be declared by the user but are re-
quired also for a logically correct treatment of functions de-
clared over subsorts and of partial arithmetic functions such
as÷ andmod.

Subsorts In the vocabulary declaration part of an input for
GIDL, one can specify that a sorts1 is a direct subsort of at
most one other sorts2. In that case, the domainsIσ

1 of s1 in
the instance structureIσ has to be a subset ofsIσ

2 . The cor-
responding hierarchy of sorts must be a collection of trees.
The root of a tree in the hierarchy is called abase sort. By
base(s), we denote the root of the tree wheres occurs, i.e.,
the base sort aboves.

In a context where subsorts are used, a formula is well
sorted if the following hold:

– for each term F (t1, . . . , tn) where s(F) =
(s1, . . . , sn+1), base(si) = base(s(ti)) for 1 ≤ i ≤ n;

– for each atomP (t1, . . . , tn) wheres(P) = (s1, . . . , sn),
base(si) = base(s(ti)) for 1 ≤ i ≤ n;

– for each atomt1 = tn, base(s(t1)) = base(s(t2)).

A rule with headP (t1, . . . , tn) ands(P) = (s1, . . . , sn) is
well-sorted if its body is well-sorted ands(ti) = s(si) for
1 ≤ i ≤ n.

A function with sort(s1, . . . , sn+1) is treated as a partial
function whenever one of the input sortss1, . . . , sn is not a
base sort. For an interpretationI and an atomP (t1, . . . , tn)
with s(P) = (s1, . . . , sn), we defineI 6|= P (t1, . . . , tn) if
for at least onei, tIi 6∈ sI

i . This fixes the semantics for inputs
with subsort declarations.

Whenever a variablex occurs in two positions with a dif-
ferent sort, e.g inP (x) and inQ(x), wheres(P) 6= s(Q),
GIDL does not automatically derive a sort forx, as this can
lead to unexpected situations. Instead, the user is then forced
to declare the sort of the variable.

Arithmetic Besides the vocabulary specified by the user,
the instance vocabularyσ of a GIDL input implicitly con-
tains a sortint and the arithmetic functions+, −, ·, ÷,
abs(·) andmod. In every instance structure overσ, int is
interpreted by the integersZ = {0, 1,−1, 2,−2, . . .}, + by
addition onZ, − by subtraction,· by multiplication,÷ by
integer division,abs by the absolute value andmod by the
remainder. Note that÷ andmod are partial functions onZ
with domainZ \ {0}. Terms of the formt1 + t2, t1 · t2, etc,
are of sortint.

To ensure that the grounding produced by GIDL is finite,
the use ofint is restricted, both in the vocabulary declara-
tion and the theory. In the input and expansion vocabulary
declaration, a sort can be declared to be a subsort ofint
and a variable may have sortint. On the other hand, predi-
cate or function declarations with sort(. . . , int, . . .) are not
allowed. If in the theory, a variablex of sort int is univer-
sally, respectively existentially quantified, it should occur as
∀x (ϕ ⊃ . . .), respectively∃x (ϕ∧. . .) whereϕ is a formula
for which there exists a finite interval such thatM [x/d] 6|= ϕ
for any modelM of the theory andd outside that interval.

We call ϕ a bound for x. GIDL requires that the bounds
have a very simple form. E.g., an atomP (. . . , x, . . .) is a
bound. A formulat1 ≤ x ≤ t2 is a bound ift1, respectively
t2, is a term for which there exists ann1 ∈ Z, resp.n2 ∈ Z
such that for each modelM of the theoryn1 ≤ tM1 , re-
spectivelyn2 ≥ tn2 . Etc. Besides occurrences of bounds
ϕ as ∀x (ϕ ⊃ . . .) or ∃x (ϕ ∧ . . .), GIDL also accepts
syntactically equivalent forms like∀x (. . . ∨ ¬ϕ ∨ . . .) or
∃x (. . . ∧ ϕ ∧ . . .).

Aggregates Aggregates are functions that have a set as ar-
gument. GIDL supports three aggregates: cardinality, sum
and product. Concretely, the following are terms with sort
int in the input language of GIDL: card{y | ϕ[y, z]},
sum{x, y | ϕ[x, y, z]} and prod{x, y | ϕ[x, y, z]}. The
variablesz are free in the aggregate term, whilex andy are
local to the term. The sort ofx must be a subsort ofint.
Given an interpretationI, these terms are interpreted by

– (card{y | ϕ[y, z]})I is the number ofd such that
I[y/d] |= ϕ;

– (sum{x, y | ϕ[x, y, z]})I =
∑

I[x/dx,y/dy]|=ϕ dx;

– (prod{x, y | ϕ[x, y, z]})I =
∏

I[x/dx,y/dy]|=ϕ dx;

Aggregates can be used everywhere in sentences or rule bod-
ies where a term with a subsort ofint can occur. The seman-
tics for definitions containing recursion involving aggregates
is the one presented in (Pelov, Denecker, & Bruynooghe
2005)

Example 3. In a machine scheduling problem, the con-
straint that at each timepointt, the sum of the capacities
c of the machinesm that are not in maintenance must ex-
ceed 100 can be expressed by the sentence∀t (sum{c,m |
Capacity(m) = c ∧ ¬Maintenance(m, t)} ≥ 100).

Output Language
The output language of GIDL is an extension with rules
and aggregates of the CNF format for SAT solvers and is
calledextended CNF(ECNF). It is the input format for the
propositional solvers MIDL (Mariën, Wittocx, & Denecker
2007) and MINI SAT(ID) (Mariënet al. 2008). Details about
the syntax and semantics of the ECNF format is available
at www.cs.kuleuven.be/˜dtai/krr/software.
html .

Translation Information
In an ECNF file, each propositional atom has a number,
but not a name. In order to construct human readable so-
lutions, GIDL also passes atranslation tableto the propo-
sitional solver, defining a mapping from each number that
occurs in its ECNF output to a name. To avoid an exhaus-
tive table mapping each number to its corresponding name,
first all sort names and their domain elements are listed.
Then all predicates with their corresponding sorts are listed,
and are assigned a number. An atomP (d1, d2) then corre-
sponds to the numbernP + (i1 − 1) · |s2|+ (i2 − 1), where
s(P) = (s1, s2), nP is the number assigned toP , d1 the
i1th domain element of sorts1, d2 the i2th domain element
in s2 and|s2| the size of the domain ofs2. The offsetsnP

are chosen such that the numbers associated to atoms of dif-
ferent predicates do not overlap.

True and Arbitrary Atoms
Atoms that do not occur in an ECNF file are standard con-
sidered to be false by solvers. However, it is often desirable
to also leave out the atoms that are discovered to be true in
every model and the ones whose truth value can be arbitrar-
ily chosen. GIDL passes a list of left out true and arbitrary
atoms to the solver.

System Architecture
Given an input〈Σ, T, σ, Iσ〉, GIDL constructs a grounding
for T with respect toIσ in six phases. In this section, a
short description of each of the phases is given. The actual
grounding algorithm (phase 5) is described in more detail in
the next section.

Parser In the first phase, the input〈Σ, T, σ, Iσ〉 is parsed.
The parser of GIDL is implemented usingflex and bison,
which makes it easy to include future extensions of the input
language.

Rewrite and Analyze In this phase,T is transformed into
an internal normal form: negations are pushed inside until
they are directly in front of atoms,⊃ is translated in terms
of ¬ and∨, functions are brought in the formF (x) = y and
then, these atoms are replaced byGF (x, y), whereGF is a
new predicate representing the graph ofF . Constraints are
added to ensure that eachGF is a graph of a function. Also,
all definitions are merged into a single definition∆.

The dependency graph of∆ is constructed and analyzed
to discover which defined predicates do not depend on open
expansion predicates. The interpretation of these predicates
is the same in every model ofT expandingIσ and can effi-
ciently be computed. Also, a good grounding order for the
rules of∆ is computed.

Pre-grounder The pre-grounder calculates the interpreta-
tion of the defined predicates that do not depend on open
expansion predicates or on aggregates by evaluating their
rules. The evaluation algorithm is a generalized version of
the semi-naive technique (Ullman 1988) and can handle re-
cursion over negation. The predicates whose interpretation
is calculated are from then on considered to be part of the in-
stance structureσ. Iσ is extended by assigning the computed
relations to these predicates.

Approximation In this phase, anapproximationfor each
subformula inT is computed, using the anytime algorithm
described in (Wittocx, Mariën, & Denecker 2008). The
computed approximations are used to both reduce ground-
ing size and time.

Formally, an approximation for a formulaϕ[x] is a pair of
formulas(ϕct[y], ϕcf [z]) over σ such thaty ⊆ x, z ⊆ x,
T |= ∀x (ϕct ⊃ ϕ) and T |= ∀x (ϕcf ⊃ ¬ϕ). Intu-
itively, the formulaϕct provides a lower bound on the set
of instancesϕ[x/d] of ϕ that are true in every model ofT .
The grounding algorithm can then safely replace instances
ϕ[x/d] in this lower bound by>, leading to a smaller

grounding. Vice versa,ϕcf provides a lower bound on the
set ofϕ[x/d] that are false in every model ofT . Instances
ϕ[x/d] in this lower bound can be replaced by⊥. Observe
that(⊥,⊥) is an approximation for every formula, called the
trivial approximation.

Example 2 (Continued). In the Hamiltonian path
example, (⊥, v2 = Start ∨ ¬Edge(v1, v2)) is an
approximation for the subformulaIn(v1, v2) and
(Edge(v1, v2),¬Edge(v1, v2)) is an approximation
for Edge(v1, v2).

The maximal running time of the approximation algo-
rithm, as well as the maximal size of the derived bounds can
be specified by the user. Experiments in (Wittocx, Mariën, &
Denecker 2008) showed that the default settings work well
in most cases.

In the implementation, the approximations are repre-
sented and simplified using binary decision diagrams for FO
as defined in (Goubault 1995). We extended the simplifica-
tion algorithm of that paper with rules to cope with arith-
metic. Also, parts of approximations that contain no free
variables are evaluated out using the instance structureIσ.
This evaluation is the only part of the approximation algo-
rithm that depends onIσ.

Grounder Using the computed approximations for each
subformula, an ECNF theory, equivalent to the inputT and
Iσ is constructed.

Translate Finally, the translation information and the list
of true and arbitrary atoms is written to the output.

Grounding
The actual grounding component in GIDL accomplishes
two tasks. It instantiates variables by domain elements and
at the same time transforms complex formulas and rules
into the ECNF format by applying the Tseitin transforma-
tion (Tseitin 1968). In this section, we present the ground-
ing algorithm for the FO part of the input. The algorithm for
grounding the rules is similar.

ProcedureGround gets as input a formulaϕ[x] and out-
puts a GNF theory, equivalent to the theory containing the
single sentence

∧
d ϕ[x/d]. I.e., it outputs a grounding for

the sentence∀x ϕ[x]. Here,ϕ is assumed to be in the in-
ternal normal form of GIDL, i.e., the negations are in front
of the atoms and function symbolsF only occur in atoms of
the formF (y) = z. (ϕct, ϕcf) denotes the approximation
of ϕ.

The procedureoutput writes a single ground formula or
rule to the output.

The functiongetLit implements the Tseitin transfor-
mation. It gets as input a formulaϕ[x], outputs a definition
∆ϕ in GNF and returns a literalPϕ ∈ Def(∆ϕ) such that
in every model of∆ϕ, the truth value ofPϕ equals the truth
value of

∨
d ϕ[x/d]. Our actual implementation ofgetLit

involves some bookkeeping to make sure∆ϕ is written only
once, even ifgetLit(ϕ) is called multiple times.

The purpose of line 15 of procedureGround , is to com-
pute all valuesd such that

∨
i ψi[x/d] is not certainly true,

i.e., to compute the answers of the conjunctive formula∧
i ¬(ψi)ct[x] in Iσ. GIDL uses the backjumping algorithm

of (Leone, Perri, & Scarcello 2004). The original algorithm
was designed for computing answers to conjunctions oflit-
eralsbut, since the answers of the formulas¬(ψi)ct[x] can
be easily computed as a table, it is easy to extend the algo-
rithm.

To obtain a grounding of the FO part ofT , Ground is
applied on all sentences ofT .

Procedureground(ϕ)

if ϕcf ≡ > then1

output⊥; return ;2

if ϕct ≡ > then3

output>; return ;4

Let x be the free variables ofϕ;5

switchϕ do6

caseϕ is a literal7

for all d such thatIσ 6|= ϕct[x/d] do8

if Iσ |= ϕcf [x/d] then9

output⊥; return ;10

elseoutputϕ[x/d];11

caseϕ ≡
∧

1≤i≤n ψi12

for 1 ≤ i ≤ n do ground(ψi)13

caseϕ ≡
∨

1≤i≤n ψi14

for all d such thatIσ 6|=
∨

1≤i≤n(ψi)ct[x/d] do15

V := ∅;16

for 1 ≤ i ≤ n do17

if Iσ 6|= (ψi)cf [x/d] then18

addgetLit(ψi[x/d]) to V ;19

output
∨

L∈V L;20

caseϕ ≡ ∀y ψ21

ground(ψ) ;22

caseϕ ≡ ∃y ψ23

for all d such thatIσ 6|= ϕct[x/d] do24

if Iσ[x/d] |= ϕcf then25

output⊥; return ;26

else27

V := ∅;28

for all d′ such that29

Iσ 6|= ψcf [x/d][y/d′] do
if Iσ 6|= ψct[x/d][y/d′] then30

addgetLit(ψ[x/d][y/d′]) to31

V ;

output
∨

L∈V L;32

Complexity of Ground
When all subformulas of a formulaϕ are assigned the triv-
ial approximation(⊥,⊥), applyingGround to ϕ consists

Function getLit(ϕ)

Let x be the free variables ofϕ;1

switchϕ do2

caseϕ is a literal3

V := ∅;4

for all d such thatIσ 6|= ϕcf [x/d] do5

if Iσ 6|= ϕct[x/d] then6

addϕ[x/d] to V ;7

if V is a singleton{P} then return P ;8

else9

Let P be a new propositional atom;10

outputP ←
∨

L∈V L;11

return P ;12

caseϕ ≡ ∃y ψ13

return getLit(ψ) ;14

... // Other cases15

of simply substituting the variables ofϕ by all possible do-
main constants of the appropriate sorts. Hence in this case,
computingGround (ϕ) takes timeO(

∏
s∈ΣS

|s|ns), where
ns is the number of variables of sorts in ϕ and|s| the size
of the domain ofsIσ of s.

In the case arbitrary approximations are assigned to the
subformulas ofϕ, the result ofGround (ϕ) will become
smaller. On the other hand, the worst-case time complex-
ity of computingGround (ϕ) is thenO(

∏
s∈ΣS

|s|ns+ds),
whereds is the number of variables of sorts that occur
non-free in an approximation of a subformula ofϕ. This
shows that grounding in the presence of non-trivial approx-
imations may increase the complexity. In practice however,
the approximations computed by the algorithm of (Wittocx,
Mariën, & Denecker 2008) almost never slow down ground-
ing. Instead, experiments in that paper show that they often
lead to a dramatic speed-up.

Example 2 (Continued). Let ϕ be the formula¬In(x, y).
If the approximation forϕ is (⊥,⊥), thenGround (ϕ,ϕ)
takes timeO((V txIσ)2). If the approximation is(y =
Start ∨ ¬Edge(x, y),⊥), it takes only timeO(|EdgeIσ |).

Related Work
MXidL
A non-native approach to grounding MX(FO(ID)) consists
of applying the algorithm presented in (Mariën, Gilis, &
Denecker 2004) to transform an MX(FO(ID)) input into an
equivalent normal logic program under the well-founded se-
mantics. Then, a (slightly adapted) grounder for Answer
Set Programming can be used to ground the logic program.
This is the approach taken by MXIDL, the first implemented
MX(FO(ID)) grounder. MXIDL supports full many-sorted
FO(ID) and arithmetic, but no aggregates, subsorts and par-
tial functions. Experiments with MXIDL were reported on
in (Mariën, Wittocx, & Denecker 2006).

MXG

The first native grounding algorithm for MX(FO) and
MX(FO(ID)) was described in (Pattersonet al. 2006;
2007) and works on a table-by-table basis. I.e., to construct
a grounding of a sentenceϕ, it proceeds by taking joins, pro-
jections, complements,. . . of the tables in the instance struc-
ture, ending up with a full grounding ofϕ. The algorithm in
GIDL on the other hand, proceeds on a tuple-by-tuple basis.
For every variable, it tries all the (relevant) substitutions by
domain constants, and it outputs part of the grounding ofϕ
as soon as possible.

An implementation of the grounding algorithm of (Patter-
sonet al. 2006) was reported on in (Mitchellet al. 2006)
and is calledMXG. The MXG system implements only part
of FO(ID). It allows only for definitions that do not depend
on open expansion predicates and that do not involve recur-
sion over negation. It does not support functions, subsorts
or arithmetic.

Psgrnd

PSGRND (East et al. 2006) is a grounder for the ex-
tended logic of propositional schemata (East & Truszczyn-
ski 2006a). This logic is a restricted fragment of function-
free FO, extended with cardinality aggregates. Also, it has
restricted support for inductive definitions: each theory may
contain one definition, and all rule bodies must be conjunc-
tions of atoms.

PSGRND keeps the grounding in memory and performs
unit propagation each time a clause is added to the ground-
ing. As a post-processing step, it does a limited amount of
forward checking on the grounding.

Answer Set Programming

Answer Set Programming (ASP) is a framework for declar-
ative problem solving that is closely related to MX(FO+).
Answer set programs can be transformed into FO+ theories
in a modular way (East & Truszczyński 2006b). Moreover,
thestructureof ASP theories is the same as that of FO+ the-
ories and there are a lot of similarities between the method-
ology of modelling in ASP and in MX(FO+) (Mariën, Gilis,
& Denecker 2004; Marïen, Wittocx, & Denecker 2006).

On the other hand, there are several differences in the in-
put languages for GIDL and ASP systems. E.g., GIDL al-
lows for arbitrary FO+ sentences and definitions, while an
answer set program is basically one big definition, in which
rule bodies are restricted to conjunctions of literals. An FO
sentenceϕ is modelled in ASP by a rule with an empty head
and body¬ϕ, an open predicate can be modelled by defin-
ing it with a choice rule. Finally, the instance structure of
an MX(FO+) problem corresponds to a series of facts in an
answer set program.

ASP systems work by grounding and propositional solv-
ing. Three ASP grounders areLPARSE (Syrjänen 1998),
GrinGo (Gebser, Schaub, & Thiele 2007) and the grounding
component ofDLV (Dell’Armi et al. 2004). The algorithm
in LPARSEworks table-by-table, the algorithms in the other
two grounders tuple-by-tuple.

Table 1: Impact of approximation (time)
no approx. 4/4 5/8 6/64

15puzzle 4.89 3.70 3.63 9.00
bounded spanningtree 256.93 10.88 8.41 21.21
clique 1.33 2.36 2.45 ###
blocked n-queens 22.44 3.50 3.51 3.51
algebraic groups 7.20 7.38 7.86 ###
hamiltonian path 21.37 0.04 0.03 0.19
sokoban 0.49 0.24 0.26 0.31
schur numbers 12.49 0.56 1.32 2.52
sudoku 1.00 0.70 1.08 ###

Table 2: Impact of approximation (size)
no approx. 4/4 5/8 6/64

15puzzle 1461007 1219751 1219751 1219375
bounded spanningtree 8857075 2255522 2255522 2255522
clique 353800 353800 353800 ###
blocked n-queens 923822 15822 15822 15822
alg. groups 4001420 3931659 3870081 ###
ham. path 8404074 5701 5701 5701
sokoban 95279 74878 74878 74878
schur numbers 64300 62369 51454 47733
sudoku 319795 178828 109267 ###

Experiments
In this section, we evaluate the impact of the approximation
phase and compare GIDL’s performance to other grounders.

All experiments in this section were run on a C2D 3GHz
machine with 2GB RAM. All times are in seconds and are
averaged over five runs. There was a time-out (###) of 600
seconds for each run. To measure the size of a ground theory,
we counted the number of propositional atoms in it.

When comparing to other grounders, we used the stan-
dard parameters for the approximation phase of GIDL (see
below). The times for GIDL include the time needed for
the pre-grounding and the approximation phase. More de-
tailed information, including the used problem encodings,
is available atwww.cs.kuleuven.be/˜dtai/krr/
software/gidl.html .

Impact of Approximation
Impact of different settings To evaluate the impact of the
approximation algorithm, we ran GIDL with different set-
tings. The resulting grounding times and sizes are shown in
Tables 1 and 2. In these tables, the first number of the set-
ting is the number of times an approximating formula can be
refined. The second number is a measure for the maximum
size of the approximating formulas. Increasing these num-
bers makes the approximation process more expensive and
the computed approximating formulas larger and potentially
more precise. Due to the increased precision of these for-
mulas, the subsequent grounding phase will produce smaller
groundings. This phase may be faster or slower depending
on whether the gain due to the smaller grounding dominates
the cost of evaluating the larger approximating formulas.
The default setting of GIDL is 4/4.

The tables show that the use of approximation yields (of-
ten drastically) better times and sizes, even with few refine-
ments and small formula sizes. Only in two cases, grounding
without approximation is slightly faster. As for the impact of
the size of the parameters, we observe that the most precise

Table 3: Impact of domain atoms
GIDL PSGRND GrinGo LPARSE DLV

Ham. circuit (time) 0.54 0.52 17.41 5.25 21.27
Ham. circuit (size) 1.00 1.00 30.80 26.00 24.76

Table 4: MX(FO+) problems (time)
GIDL MXG MX IDL

25-queens 0.16 0.76 0.93
50-queens 1.72 7.90 22.42
75-queens 8.03 33.39 165.71
algebraic groups (size 8) 0.86 3.11 3.27
algebraic groups (size 10) 3.40 11.65 12.12
algebraic groups (size 12) 10.94 34.96 37.48
graph colouring (64980 nodes, 4 colours) 8.82 11.84 ###
graph colouring (64980 nodes, 6 colours) 13.32 18.94 ###
tower of hanoi (8 discs) 0.87 2.26 145.37
latin square (dim 30) 3.40 9.65 8.28
social golfer (24 players, 6 groups, 8 weeks) 0.47 1.68 1.88

setting (6/64) produces a substantially smaller grounding in
only one case while it has two time-outs. These and other ex-
periments showed that GIDL’s default setting 4/4 provides a
good trade-off.
Domain Atoms In general, encoding problems for ASP
solvers involves carefully adding (semantically redundant)
domain atomsto obtain fast grounding times and small
grounding sizes. Due to the approximation algorithm, this
is not needed when encoding problems for GIDL. Instead,
adding redundant domain atoms to GIDL’s input rather in-
creases the running time. Because of its unit propagation,
the same observation holds forPSGRND. This is illustrated
by Table 3 which, in case of a Hamiltonian circuit problem,
shows the ratios of the grounding time and size for an encod-
ing without to that for an encoding with redundant domain
atoms.

Comparison to MX(FO+) grounders

In this section, we compare GIDL to the other existing
grounders for fragments of MX(FO+): MXG (version 0.16)2

and MXIDL. The ASP grounder used as back-end for MX-
IDL in the experiments is an adaption of GrinGo (version
0.0.1). The encodings of the problems in the first category
are exactly the same for each of the three systems. Most
of them were taken fromwww.cs.sfu.ca/research/
groups/mxp/examples/index.html . The ground-
ing times are shown in Table 4. GIDL consistently outper-
forms the other MX(FO+) grounders. Table 5 shows the
number of literal instances in the resulting ground files. In
general, GIDL produces the smallest groundings, MXIDL
the largest ones.

2There exists a newer version ofMXG, but it was not available
at the time of the submission deadline.

Table 5: MX(FO+) problems (size)
GIDL MXG MX IDL

24-queens 50850 50850 52500
50-queens 411700 411700 418125
75-queens 1395050 1395050 1409375
algebraic groups (size 8) 783209 1048119 1054835
algebraic groups (size 10) 3171771 3998889 4014163
algebraic groups (size 12) 9852733 11941763 11971803
graph colouring (64980 nodes, 4 colours) 4141440 2590560 ###
graph colouring (64980 nodes, 6 colours) 6991920 4665600 ###
tower of hanoi (8 discs) 517570 610904 7152033
latin square (dim 30) 1545113 2430400 2514530
social golfer (24 players, 6 groups, 8 weeks) 366144 534144 510378

Comparison to PSGRNDand ASP grounders
In this section, we compare GIDL to PSGRND(7 jul 20053),
LPARSE(1.0.174), GrinGo (1.0.0) andDLV (11 oct 2007).

The grounding times of GIDL, PSGRND and the ASP
grounders are shown in Table 6, the sizes in Table 7. The
problems were chosen such that their encodings cover a
wide range of different formulas and language constructs.
Because the grounders take different input languages, it is
not possible to compare their performance in an entirely ob-
jective manner. To nevertheless obtain an as fair as pos-
sible comparison, the encodings are similar for the differ-
ent grounders (i.e., as far as possible, they are straightfor-
ward translations of each other) except that domain atoms
are added to the ASP encodings where needed to avoid the
excessively bad grounding times and sizes mentioned above.
Only the encoding of the sokoban puzzle differs consid-
erably among the grounders, because it involves complex
statements with alternating quantifiers which are not directly
expressible in ASP. For then-queens instances, we tried the
grounders on two different encodings. The first one contains
an explicit definition of the concept of a diagonal on a chess
board. Due to the use of arithmetic in the second encoding, it
could not easily be translated to the input language forDLV .

For each of the problems, GIDL ranks first or second in
grounding time. Only on the first version ofn-queens and
the smallest instance of the Hamiltonian circuit, one of the
ASP grounders is (slightly) faster.PSGRND outperforms
GIDL on 3 of the seven problems, being at most 7 times
faster. It is also faster on theeven/oddproblem but cannot
handle large instances of it. On the remaining 3 problems,
GIDL outperformsPSGRND. It is at least 30 times faster on
the first version of then-queens problem and on the largest
instance of the magic series.

The good results of GIDL andDLV on the first version of
n-queens is due to their pre-grounding phase using the semi-
naive evaluation technique. The other three grounders use a
combination of grounding and unit propagation to compute
the diagonals on the chess board. On theeven/oddproblems,
the semi-naive evaluation seems less efficient.

3We switched the forward checking phase ofPSGRNDoff, as
this phase is not incorporated in the other grounders. In all prob-
lems selected here, grounding with lookahead leads to slower
grounding times.

4The newest version ofLPARSE (1.1.1) appears to be a lot
slower than version 1.0.17 and exhibits the same segmentation
faults on our experiments

Table 6: Comparison toPSGRNDand ASP grounders (time)
GIDL PSGRND GrinGo LPARSE DLV

100-queens-v1 8.83 ### 16.67 15.09 9.31
125-queens-v1 19.51 ### 35.92 35.58 18.78
150-queens-v1 38.24 ### 74.61 71.96 34.37
250-queens-v2 1.38 0.21 1.46 ### -
500-queens-v2 5.66 0.82 6.93 ### -
750-queens-v2 12.78 2.03 19.78 ### -
graph col. (4 colours) 4.72 1.78 9.02 seg. fault 9.12
graph col. (6 colours) 6.14 2.50 12.28 seg. fault 15.05
graph col. (8 colours) 7.56 3.32 15.58 seg. fault 22.62
magic series (size 250) 0.62 7.02 ### ### ###
magic series (size 500) 2.49 71.45 ### ### ###
magic series (size 750) 5.73 ### ### ### ###
Ham. circuit (500 nodes) 0.67 0.80 2.69 0.55 0.83
Ham. circuit (1000 nodes) 2.19 3.99 11.80 2.20 2.53
Ham. circuit (1500 nodes) 4.88 11.11 34.45 6.51 5.67
even/odd (0..106) 9.10 3.37 10.17 seg. fault ###
even/odd (0..2 · 106) 18.96 error 20.34 seg. fault ###
even/odd (0..3 · 106) 29.06 error 30.23 seg. fault ###
sokoban (20 steps) 3.28 2.44 11.66 8.08 9.39
sokoban (40 steps) 7.00 5.03 23.26 16.29 19.72
sokoban (60 steps) 10.76 7.64 36.04 24.54 30.31

Table 7: Comparison toPSGRNDand ASP grounders (size)

GIDL PSGRND GrinGo LPARSE DLV

100-queens-v1 1333400 ### 1990200 2688100 2050100
125-queens-v1 2604250 ### 3890875 5241375 3984500
150-queens-v1 4500100 ### 6727800 9047150 6862650
250-queens-v2 252488 250496 250746 ### ###
500-queens-v2 1004988 1000996 1001496 ### ###
750-queens-v2 2257488 2251496 2252246 ### ###
graph col. (4 col.) 1810800 1810800 2069644 ### 3630240
graph col. (6 col.) 2716200 2716200 2975046 ### 7004880
graph col. (8 col.) 3621600 3621600 3880448 ### 11419200
magic series (250) 315005 15939253 ### ### ###
magic series (500) 1255005 126253503 ### ### ###
magic series (750) 2820005 ### ### ### ###
Ham. circ. (500) 97036 128464 121073 124573 192572
Ham. circ. (1000) 242033 320967 302067 309067 481066
Ham. circ. (1500) 483059 641441 603119 613619 961618
even/odd (0..106) 0 0 2000003 ### ###
even/odd (0..2 · 106) 0 ### 4000003 ### ###
even/odd (0..3 · 106) 0 ### 6000003 ### ###
sokoban (20 steps) 1940913 1153859 3155238 5679469 3085574
sokoban (40 steps) 4085433 2425099 6430318 11357089 6363194
sokoban (60 steps) 6229953 3696339 9705398 17034709 9640814

The good result of GIDL on the magic series problems
stems from its output format, which allows to define a sin-
gle ground set and use it in multiple aggregate expressions.
The other grounders write out a set for each aggregate ex-
pression, yielding cubic grounding size instead of GIDL’s
quadratic size in case of the magic series problem.

For each of the problems, eitherPSGRNDor GIDL has the
smallest grounding size. This is due to their rich output lan-
guages, enabling compact representations of, e.g., aggregate
expressions, and to, respectively, the unit propagation and
approximation algorithm. The zero grounding size in the
even/oddproblems stems from the fact that bothPSGRND
and GIDL write true atoms in the translation information,
and not in the actual grounding.

Conclusions
We presented a grounder for an extension of FO, in the con-
text of model expansion. An important contribution of the
system is that it supports a very rich input language, extend-
ing full FO with ordered sorts, inductive definitions, aggre-
gates, arithmetic and partial functions. The input language

and core algorithm of the grounder were described. Despite
its rich language, which makes GIDL the most complete MX
grounder of the moment, our experiments show that GIDL is
the fastest MX grounder for (extensions of) FO and is more
robust and often faster compared to ASP grounders.

Acknowledgments
The input language syntax of GIDL was designed in collab-
oration with David Mitchell and Eugenia Ternovska. The
adapted version of GrinGo was written by Sven Thiele.

References
Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; Perri, S.;
and Pfeifer, G. 2004. System description: Dlv with ag-
gregates. In Lifschitz, V., and Niemelä, I., eds.,LPNMR,
volume 2923 ofLecture Notes in Computer Science, 326–
330. Springer.

Denecker, M., and Ternovska, E. 2004. A logic of non-
monotone inductive definitions and its modularity proper-
ties. In Lifschitz, V., and Niemelä, I., eds.,Seventh In-
ternational Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’7).

Denecker, M. 2000. Extending classical logic with induc-
tive definitions. In Lloyd et al., J., ed.,First International
Conference on Computational Logic (CL’2000), volume
1861 ofLecture Notes in Artificial Intelligence, 703–717.
Springer.

East, D., and Truszczynski, M. 2006a. Predicate-calculus-
based logics for modeling and solving search problems.
ACM Trans. Comput. Log.7(1):38–83.

East, D., and Truszczyński, M. 2006b. Predicate-
calculus based logics for modeling and solving search
problems. ACM Transactions on Computational Logic
(TOCL)7(1):38 – 83.

East, D.; Iakhiaev, M.; Mikitiuk, A.; and Truszczynski, M.
2006. Tools for modeling and solving search problems.AI
Commun.19(4):301–312.

Enderton, H. B. 1972.A Mathematical Introduction To
Logic. Academic Press.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A
new grounder for answer set programming. In Baral, C.;
Brewka, G.; and Schlipf, J. S., eds.,LPNMR, volume 4483
of Lecture Notes in Computer Science, 266–271. Springer.

Goubault, J. 1995. A bdd-based simplification and skolem-
ization procedure.Logic Journal of IGPL3(6):827–855.

Kautz, H. A., and Selman, B. 1996. Pushing the enve-
lope: Planning, propositional logic and stochastic search.
In AAAI/IAAI, Vol. 2, 1194–1201.

Leone, N.; Perri, S.; and Scarcello, F. 2004. Backjumping
techniques for rules instantiation in the DLV system. In
NMR, 258–266.

Marek, V. W., and Truszczýnski, M. 1998. Stable mod-
els and an alternative logic programming paradigm.CoRR
cs.LO/9809032.

Mariën, M.; Wittocx, J.; Denecker, M.; and Maurice, B.
2008. SAT(ID): Satisfiability of propositional logic ex-
tended with inductive definitions. InProceedings of the
11th conference on Theory and Applications of Satisfiabil-
ity Testing, SAT 2008, volume 4996 ofLecture Notes in
Computer Science, 211–224. Springer.
Mariën, M.; Gilis, D.; and Denecker, M. 2004. On the re-
lation between ID-Logic and Answer Set Programming. In
Alferes, J. J., and Leite, J. A., eds.,JELIA’04, volume 3229
of Lecture Notes in Computer Science, 108–120. Springer.
Mariën, M.; Wittocx, J.; and Denecker, M. 2006. The IDP
framework for declarative problem solving. InSearch and
Logic: Answer Set Programming and SAT, 19–34.
Mariën, M.; Wittocx, J.; and Denecker, M. 2007. MidL: A
SAT(ID) solver. In4th Workshop on Answer Set Program-
ming: Advances in Theory and Implementation, 303–308.
Mitchell, D., and Ternovska, E. 2005. A framework for
representing and solving NP search problems. InAAAI’05,
430–435. AAAI Press/MIT Press.
Mitchell, D. G., and Ternovska, E. 2008. Expressive power
and abstraction inESSENCE. Constraints13(3).
Mitchell, D.; Ternovska, E.; Hach, F.; and Mohebali, R.
2006. Model expansion as a framework for modelling and
solving search problems. Technical Report TR2006-24, Si-
mon Fraser University.
Patterson, M.; Liu, Y.; Ternvska, E.; and Gupta, A. 2006.
Grounding for model expansion ink-guarded formulas. In
Proceedings of 21st IEEE Symposium on Logic in Com-
puter Science (LICS06).
Patterson, M.; Liu, Y.; Ternovska, E.; and Gupta, A. 2007.
Grounding for model expansion in k-guarded formulas
with inductive definitions. In Veloso, M. M., ed.,IJCAI,
161–166.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2005. Well-
founded and stable semantics of logic programs with ag-
gregates.CoRRabs/cs/0509024.
Syrjänen, T. 1998. Implementation of local grounding for
logic programs with stable model semantics. Technical Re-
port B18, Digital Systems Laboratory, Helsinki University
of Technology.
Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Slisenko, A. O., ed.,Studies in
Constructive Mathematics and Mathematical Logic II, vol-
ume 8 ofSeminars in Mathematics: Steklov Mathem. Inst.
New York: Consultants Bureau. 115–125.
Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems, Volume I. Computer Science
Press.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs.Jour-
nal of the ACM38(3):620–650.
Wittocx, J., and Marïen, M. 2008. The IDP system.
Obtainable viawww.cs.kuleuven.be/˜dtai/krr/
software.html .
Wittocx, J.; Marïen, M.; and Denecker, M. 2008. Ground-
ing with bounds. InAAAI’08, 572–577. AAAI Press.

