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Shape-Dependent Gloss Correction
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(a) Selected material (b) Uncorrected transfer (c) Corrected transfer

Figure 1: Transferring a material from (a) a sphere to (b) a dragon results in exaggerated gloss. (c) The shape-dependent gloss correction
presented in this paper preserves the appearance.

Abstract

Visual observation is one of the primary means to interact with the
world around us. However, the interplay of geometry, material, and
illumination in the perception of objects is still not entirely under-
stood.
It is generally accepted that the shape of objects influences the per-
ception of their material appearance. In this paper we investigate
and quantify the influence of shape on gloss perception in a realistic
setting, using a general cue combination framework and likelihood
analysis. Our results show that this influence can be quantified, and
that a simple additive model between the shape cue and the actual
gloss cue adequately describes this influence.
This paper contributes to a deeper understanding of the perception
of objects, and also enables new applications such as a material se-
lection tool that corrects for the influence of gloss when switching
between shapes. This improves the intuitiveness of material selec-
tion tools for novices as well as professional artists.
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1 Introduction

Computer graphics artists spend a lot of time on the difficult task of
selecting materials for their 3D scenes. Most modeling applications
offer only primitive material selection tools to help them. Usually
the interface provides a slider for each parameter of the underlying
material model. The meaning of these parameters follows from the
mathematical or physical description of materials. For instance, the
width of a specular lobe function is related to the physical prop-
erty of surface roughness. However, people intuitively think of the
appearance of materials in terms of intensity of the highlights and
sharpness of the reflected image. Several of the traditional mathe-
matical or physical parameters may influence each of these percep-
tual aspects in a non-linear manner, further complicating the mate-
rial selection task.

Pellacini et al. [2000] designed a novel material model allowing
an artist to specify the appearance with perceptually-based param-
eters. Additionally, each parameter was designed to describe an in-
dependent aspect of material appearance, using a perceptually lin-
ear scale. Research into the usability of material selection tools
has also lead to more intuitive interfaces, including a “painting”
paradigm to specify the location and shape of highlights on a sur-
face [Colbert et al. 2006], and a novel way of navigating the space
of materials by example images [Ngan et al. 2006].

A major outstanding problem in current material selection tools
is transferring materials from one shape to another. Materials are
often visualized on a sphere during the interactive selection pro-
cess, and the mathematical parameters are then used for render-
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ing the target shape. Figure 1 demonstrates that this causes a shift
in the appearance of the material, and the result does not look as
the artist had intended. Recent developments in material editing
try to solve this problem by visualizing materials directly on the
target shape [Ben-Artzi et al. 2006; Colbert and Křivánek 2007a;
Sun et al. 2007; Ben-Artzi et al. 2008]. However, many of these
techniques are computationally expensive and difficult to incorpo-
rate into existing modeling applications.

In this paper we present the novel idea of shape-dependent gloss
correction: we undo the gloss shift caused by transferring a material
to a different object. This practical solution can easily be added to
any existing modeling application. In Section 3 we describe our
perceptual experiments designed to measure the extent of the shift
in gloss that occurs in standard uncorrected material transfer. In
Section 4 the experimental results are analyzed and a simple model
is found to describe the required gloss correction. In Section 5 we
improve an existing material editor with gloss correction, driven by
our experimental model and data.

2 Related Work

Perceptual material parameterization. Pellacini et al. [2000]
examined the perceptual space of glossy materials representable by
the isotropic Ward reflectance model [Ward 1992]. They used mul-
tidimensional scaling (MDS) to show that there are 2 perceptual
gloss dimensions present in this space, namely contrast gloss and
distinctness-of-image (DOI) gloss. These dimensions are used as
the basis for a perceptually uniform reparameterization of the Ward
reflectance model. Additionally, Ferwerda et al. [2001] derive the
just noticeable differences or thresholds for perceiving differences
in this perceptual gloss space.

Material constancy. Early work in visual perception has focused
mainly on the physiological and neurological characteristics of the
human visual system related to contrast and color. Examples in-
clude research into different aspects of color constancy: the color
and lightness of an object appear remarkably constant under sub-
stantial changes in illumination (see [Brainard 2004] for a recent
overview). Although limits of color constancy have been discov-
ered [Foster 2003; Brainard and Wandell 1991], it remains one of
the strongest factors in the visual perception of materials.

Similar invariance of perceived gloss under changing illumination,
termed gloss constancy, was demonstrated by Obein et al. [2004].
While it is often assumed that color constancy across changing sur-
face gloss also holds [ASTM 1999; Aida 1997], this is certainly
not always the case. Xiao and Brainard [2006] demonstrated that
color appearance is indeed affected slightly by gloss. Pellacini et al.
[2000] designed their reparameterization to achieve gloss constancy
of each independent gloss parameter across changes in the other pa-
rameter and across changes in diffuse color.

Influence of shape. Material selection tools traditionally visual-
ize the material on a simple sphere. It shows highlights as well as
diffuse color, which are the two most important perceptual cues for
material recognition. However, artists often encounter situations
where the material looks very different on the target object, indicat-
ing that gloss constancy is not guaranteed when varying the geom-
etry. In [Vangorp et al. 2007] we studied the extent of the influence
of shape and proved it could indeed lead to significant changes in
appearance. Additionally, we found that material discrimination
thresholds varied widely for different shapes.

Braje and Knill [1994] discovered that geometric frequency content
is correlated to the perception of specularity. Nishida and Shinya
[1998] found that observers had great difficulty matching glossy,

bumpy surfaces of different amplitudes and frequencies, and they
relate observers’ performance to information in the luminance his-
togram of the stimulus images. Berzhanskaya et al. [2005] found
that the impression of local gloss decreases with the distance from
the highlight and with any surface discontinuities along that dis-
tance.

Ho et al. [2008] quantified the mutual influence of gloss and bumpi-
ness: not only do bumpy surfaces look more glossy, but glossy sur-
faces also look more bumpy. They showed these influences could
be modeled by a simple additive formula.

Influence of illumination. Another drawback of many tradi-
tional material selection tools is the use of a single point light source
to illuminate the material sample. The reflectance matching experi-
ments of Fleming et al. [2003] indicate that people can judge mate-
rial characteristics more accurately under natural environment illu-
mination than under artificial illumination like point light sources.
Additionally, te Pas and Pont [2005] demonstrated that the effects
of illumination, reflectance, and bumpiness are often confounded.

Ramamoorthi et al. [2001] demonstrated from a signal-processing
viewpoint that the appearance of an object is a combination of ge-
ometry, material, and illumination, and that the effects of these
cues are generally indistinguishable without additional assump-
tions. This fact was exploited by Ramanarayanan et al. [2007] to
relate changes in geometry or material to equivalent changes in illu-
mination. They constructed a measure for visual equivalence based
on variations of this single cue.

Real-time material editing. Colbert et al. [2006] presented a
BRDF editor based on a multi-lobe extension of the Ward re-
flectance model. The editor allows an artist to paint and manipu-
late highlights on a point-lit sphere, chosen to show clearly distinct
highlights. The resulting material is at the same time rendered on
a more complex model under unshadowed environment map illu-
mination to see if the material gives the desired result on the tar-
get shape. Colbert and Křivánek [2007a; 2007b] presented a sim-
ilar BRDF editor for several popular reflectance models, using ad-
vanced sampling techniques on the GPU for increased speed and
minimal precomputation time.

The BRDF editor of Ben-Artzi et al. [2006; 2008] allows the user
to visualize arbitrary reflectance functions directly on the target
shape, in complex scenes, under fixed viewpoint and illumination.
Sun et al. [2007] presented a fully dynamic BRDF editor with vari-
able viewpoint and lighting. Both systems offer intuitive controls
to select materials, and still produce high-quality shadowing and
global illumination effects at interactive rates, at the expense of
considerable precomputation time.

3 Perceptual Experiments

We have designed a set of experiments to measure the extent of the
gloss shift that can occur, so that we can correct it. We focus on a
limited set of realistic conditions to obtain statistically significant
results that apply to real-world material editing tasks.

3.1 Stimulus Images

The stimulus images are augmented reality images constructed
from these 3 components:

1. The scene provides a background and illumination environ-
ment, in which an object of interest is placed (Figure 2(a)).
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(a) Scene

(S1) blob (S2) buddha

(S3) bunny (S4) dragon

(S5) sphere

(b) Shapes
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Figure 2: Components of the stimulus images. (a) Background photograph and environment illumination map of the library scene. Stimulus
images were cropped to the square frame. (b) The shapes used in the stimulus images. (c) The gloss variations used in the stimulus images
lie on isogloss difference contours in the Euclidean {c, d}-space.

2. An object with a distinctive shape is placed in the scene (Fig-
ure 2(b)).

3. The object is rendered with a variation of a light grey plastic
material (Figure 2(c)).

The objects are placed in a real-world scene using differential ren-
dering techniques [Debevec 1998] to achieve the required level of
realism. We use natural environment illumination to improve mate-
rial discrimination, as suggested by Fleming et al. [2003]. All im-
ages use the same scene and illumination environment, captured in
a library (Figure 2(a)). This specific illumination environment was
chosen because it produces on each object a mix of frontal high-
lights from the ceiling lights, as well as grazing highlights from the
window at the top left. We show 2 separate images in a single trial,
each containing 1 object, so that the object is always in the center of
the image and highlights are always in the same place on a shape.

We chose the following 5 shapes: a blob, a buddha, a bunny, a
dragon, and a sphere (Figure 2(b)). Each shape is scaled to fill the
image. These abstract shapes and statuettes do not have a “natural”
size, so they will not look out of proportion to the background.

To fully utilize observers’ experience with real-world materials, we
chose a common material like plastic, represented by the isotropic
Ward-Dür BRDF model [Ward 1992; Dür 2006]:

fr =
ρd

π
+

ρs

4πα2 cos θi cos θo

exp

(

−
tan2 θh

α2

)

(1)

where ρd is the diffuse reflectance, ρs is the specular reflectance,
α is a surface roughness parameter, and θi, θo, and θh are the
elevation angles of the incident light direction, the outgoing light
direction and the half vector, respectively. The parameters ρd,
ρs, and α were chosen inside the plausible range for real-world
plastics, based on measurements and fitted data for such materi-
als [Matusik et al. 2003; Ngan et al. 2005]. The main advantages
of the Ward-Dür model over tabulated measurement data or other
analytical models include its simplicity and efficiency, and the fact
that it is physically plausible within a certain parameter range.

The reparameterization by Pellacini et al. [2000] was used to gener-
ate perceptually uniform gloss variations on the base materials. The
dimensions of contrast gloss (c) and distinctness-of-image gloss (d)
are specified as independent transformations of the parameters in
the BRDF model:

c = 3

√

ρs + ρd/2− 3

√

ρd/2 (2)

d = (1− α) (3)

This reparameterization was intended for the original Ward model,
but the Ward-Dür model introduces only an improved normaliza-
tion which makes reflection at grazing angles more realistically
plausible. From experience we know that the Ward-Dür parame-
ter values are approximately equal to the Ward parameter values
for most real-world materials [Ngan et al. 2005].

Pellacini et al. [2000] also introduced a Euclidean {c, d}-space de-
fined by the distance metric Di,j between two materials i and j:

Di,j =

√

(ci − cj)
2 + (1.78 (di − dj))

2
(4)

For our main experiment we select five equidistant variations of the
material along the diagonal in this space, where c and d vary simul-
taneously [Ho et al. 2008]. This diagonal was chosen because peo-
ple associate gloss with polishing, which generally increases both
aspects of gloss. For two additional experiments we again choose
five equidistant variations of the material, but along a single gloss
dimension. We reuse the middle variation of the main experiment
(c = 0.0987, d = 0.9145) and construct the variations on either
side along the c or d dimension, at the same perceptual distances
Di,j = 0.0493. This distance is near the material discrimination
threshold so it should be easy to compare non-adjacent gloss vari-
ations when presented on identical shapes, but it may be difficult
when they are presented on different shapes. The diffuse reflectance
of the light grey plastic material is kept constant at ρd = 0.33. All
gloss variations are displayed in Figure 2(c).
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Figure 3: Example of stimulus presentation for each trial.

3.2 Procedure

Participants were given written instructions before the experiment,
explaining the technical term “glossy” as “shiny” or “polished”.
For each trial a pair of stimulus images was presented side-by-side
on a calibrated 19” LCD monitor (ViewSonic VP930) under con-
trolled lighting conditions.1 Each pair filled approximately 40% of
the screen area over a black background (Figure 3). The question
asked for each trial was: “Which object is more glossy?”

In a short training session of 75 image pairs, both images displayed
the same shape and there could only be a difference in gloss. The
gloss parameters were chosen to be easily discriminable in such a
setting, and indeed participants gave the correct answer on aver-
age 97% of the time. Note that 25 pairs of identical images were
included in this experiment and both answers were considered cor-
rect in these cases, so the range of possible scores is 33%–100%.
One participant who scored less than 90% in the training experi-
ment was classified as an outlier and their data was excluded from
the analysis.

The main and additional experiments consisted of 325 image pairs
of potentially different shapes and gloss parameters. Comparing
the gloss of different shapes can be more difficult, as evidenced
by the average scores of 92%, 89%, and 86%. These experiments
also included 25 identical pairs, so the range of possible scores is
8%–100%. Most participants completed the experiments in under
45 minutes. To avoid possible lapses in concentration, the instruc-
tions explicitly stated that participants were allowed to take a short
break if they grew tired. All participants had normal or corrected-
to-normal visual acuity and normal color vision. All participants
were unpaid volunteers.

A total number of 16 observers participated in the main experiment:
5 computer graphics researchers who knew the purpose of the ex-
periment and 11 persons who had no particular knowledge of com-
puter graphics techniques and who were naive to the purpose of
the experiment. A subset of 7 naive and 4 experienced observers
participated in the additional experiment with purely contrast gloss
variations, and a subset of 5 naive and 4 experienced observers per-
formed the additional experiment with purely distinctness-of-image
gloss variations. In Figure 4 the scores of the experiments show no
statistically significant differences between these two groups, con-
firming the earlier finding that everyday experience with materials
outweighs knowledge of technical vocabulary and shading models
[Vangorp et al. 2007]. Additionally, none of the participants would
be statistical outliers in the other group.

1The images in this paper should ideally be viewed on a similar high-

quality monitor.
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Figure 4: Box plots of the experiment scores for the two groups of
participants show no significant differences.

4 Analysis and Results

4.1 Cue Combination

Perceptual phenomena are often influenced by several simulta-
neously available sensory cues. The processing of cues in the
brain can be described as selection and weighting of the most
useful cues. This model is called cue combination or fusion
[Clark and Yuille 1990] and it has been applied to many perceptual
topics including the visual perception of depth [Landy et al. 1995]
and illumination [Maloney 2002]. The cue combination model is
unaffected by the distinction between helpful cues and false cues
that hinder perception, like the shape cue in our experiments.

We assume that an observer perceives the gloss of each stimulus in-
dependently, influenced by the primary cue of actual physical gloss
G and by the secondary cue of shape S. The perceived level of
gloss can be described by an unknown cue combination function
f(G, S). We also assume that an observer forms a continuous de-
cision variable ∆i,j for the perceived difference between the gloss
of two stimuli:

∆i,j = f(Gi, Si)− f(Gj , Sj) + ǫ, ǫ ∼ N(0, 1)

where ǫ describes the influence of judgment errors contaminating
the decision variable. We assume without loss of generality that
this contamination has a standard normal distribution, and that the
function f is anchored to 0 for the blob (S1) with the lowest gloss
(G1):

f(G1, S1) = 0

An observer decides that stimulus i looks more glossy than stimulus
j if ∆i,j > 0 and vice versa.

A decision matrix depicts the decision variable as the number of
times that stimulus i is perceived more glossy than stimulus j, nor-
malized to a percentage. A negative percentage means stimulus i is
usually perceived less glossy than stimulus j. The decision matrices
for each experiment, averaged over all observers, are displayed in
Figure 5. They look similar to the ideal matrix, but they are clearly
contaminated with judgment errors. The systematic differences in a
row or column of 5×5-pixel blocks suggest the influence of shape.
We assume the decision variable is unaffected by the order of stim-
ulus presentation, so decision matrices will be approximately anti-
symmetric if the contamination is small:

∆i,j ≈ −∆j,i

This allows us to project all values onto one half of the matrix.

We are interested in finding the simplest model for the function f
that will explain the experimental data sufficiently. We will con-
sider 3 standard categories of interaction between the parameters of
the function f :
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Figure 5: The decision matrices of (a) an ideal observer,
and averaged over all observers for (b) the main experiment,
(c) the additional contrast gloss experiment, and (d) the additional
distinctness-of-image (DOI) gloss experiment. Each block of 5× 5
pixels represents the shape cues of a stimulus pair. Each pixel
within such a block represents the gloss cues of the stimulus pair.

Full: Gloss perception is defined by the arbitrary interaction or
strong fusion of actual gloss G and shape S:

f(G, S) = fG,S(G, S)

Additive: Gloss perception is defined by the additive interaction
or weak fusion of actual gloss G and shape S:

f(G, S) = fG(G) + fS(S)

Independent: Gloss perception is not influenced by the shape cue:

f(G, S) = fG(G)

For each of these categories we differentiate between linear and
non-linear functions for the gloss component fG, resulting in 6 dif-
ferent models. We used a perceptually uniform gloss scale so linear-
ity is a reasonable assumption. The non-linear alternative does not
impose any constraints on the gloss component fG, not even mono-
tonicity. The shapes form only a nominal scale without a meaning-
ful ordering, so the shape component fS is also unconstrained and
only defined on these discrete instances.

4.2 Maximum Likelihood Estimation

The 6 different models are fitted to the experimental data using the
Maximum Likelihood Estimation method [Eliason 1993]. Table 1
shows the required number of parameters or degrees of freedom for
each model, and the actual parameters we estimate directly. Val-
ues at other stimuli can be derived from these parameters using the
constraints of each model.

Model DoF Parameters

Non-linear, full 24 fG,S(G∗, S∗)
Linear, full 9 fG,S(G1, S∗), fG,S(G5, S∗)
Non-linear, additive 8 fG(G∗, S1), fS(G1, S∗)
Linear, additive 5 fG(G5, S1), fS(G1, S∗)
Non-linear, independent 4 fG(G∗, S1)
Linear, independent 1 fG(G5, S1)

Table 1: Degrees of freedom (DoF) and parameters that are
directly estimated. The symbol G∗ means parameters must be
estimated for all 5 gloss cues. Note that the reference point
f(G1, S1) = 0 should be excluded from the parameter lists.

Figure 6 displays the resulting models for the complete dataset of
the main experiment with 16 participants. The non-linear models
display a nearly linear relation in the higher gloss range, but exhibit
a bend at the low end. The dependent models show that there is
clearly a difference in gloss perception between the shapes. The
curves of the full model are approximately parallel, suggesting the
additive model is sufficient to describe the influence of shape on
gloss perception. An additive relation means that the perceptual
gloss scales are parallel, the effect of each shape is described by a
single offset, and an ordering exists between shapes.

In Figure 7 we show the non-linear and linear additive mod-
els for the complete datasets of the additional experiments. The
distinctness-of-image gloss scale looks strikingly linear, but the
contrast gloss scale again exhibits a non-linearity in the lower gloss
range. This non-linearity might be inherent in the contrast gloss
parameterization or it might be an artifact caused by using this pa-
rameterization in conjunction with the Ward-Dür reflectance model.

4.3 Likelihood Ratio tests

To prove the statistical significance of the trends observed in Fig-
ures 6–7 we use the Likelihood Ratio test. It is a statistical hy-
pothesis test that chooses between the null hypothesis H0 that two
models i and j explain the experimental data equally well, and the
alternate hypothesis HA that one model explains the data signifi-
cantly better than the other. The log-likelihoods log L returned by
the Maximum Likelihood Estimation, which indicate the goodness-
of-fit of the models, are compared using the test statistic xi,j :

xi,j = 2(log Li − log Lj)

For large samples, the test statistic xi,j has a χ2 distribution with
degrees of freedom equal to the difference in the number of param-
eters in the models.

Tables 2–3 show a representative subset of the Likelihood Ratio
tests for each experiment, confirming the statistical significance of
our earlier observations. In general, we can conclude that the non-
linear, additive model is sufficient to predict the influence of shape
on gloss perception.

5 Material Editing with Gloss Correction

Current material editors switch between shapes without updating
the gloss parameters, keeping constant physical gloss. We extended
the material editor of Colbert and Křivánek [2007a] to update the
gloss parameters between shapes, preserving perceptual gloss.

The contrast gloss and distinctness-of-image gloss dimensions rep-
resent orthogonal axes in the perceptual gloss space. We can update
both parameters by moving along the diagonal of the main experi-
ment, or we can update only a single gloss parameter using the data
from the additional experiments. The magnitude of the correction
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Legend: blob buddha bunny dragon sphere

Figure 6: Perceptual gloss scales returned by Maximum Likelihood Estimation for the main experiment, averaged over all N = 16 observers.
Error bars show the standard error for the points that were directly estimated for each model. The blob at physical gloss level 1 is always
anchored to perceptual gloss level 0.

1 2 3 4 5
−2

0

2

4

6

Non−linear, additive

Physical Gloss

P
e
rc

e
p
tu

a
l 
G

lo
s
s

1 2 3 4 5
−2

0

2

4

6

Non−linear, additive

Physical Gloss

P
e
rc

e
p
tu

a
l 
G

lo
s
s

1 2 3 4 5
−2

0

2

4

6

Linear, additive

Physical Gloss

P
e
rc

e
p
tu

a
l 
G

lo
s
s

(a) Contrast gloss

1 2 3 4 5
−2

0

2

4

6

Linear, additive

Physical Gloss

P
e
rc

e
p
tu

a
l 
G

lo
s
s

(b) Distinctness-of-image gloss

blob buddha bunny dragon sphere

Figure 7: Additive perceptual gloss scales returned by Maximum
Likelihood Estimation for the additional experiments. (a) Con-
trast gloss experiment, averaged over all N = 11 observers.
(b) Distinctness-of-image gloss experiment, averaged over all N =
9 observers.
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Figure 9: Screenshots of the material editor demonstrating the
gloss correction along the diagonal of the gloss space.
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Example: Full Additive Independent

Non-linear log L
p
←→ log L

p
←→ log L

lp lp lp

Linear log L
p
←→ log L

p
←→ log L

JS -40.9
0.065
←→ -53.6

0.000
←→ -110.0

l0.000 l0.000 l0.000

-68.9
0.930
←→ -69.3

0.000
←→ -119.4

KD -69.2
0.061
←→ -82.0

0.000
←→ -117.8

l0.000 l0.000 l0.000

-96.2
0.350
←→ -98.4

0.000
←→ -130.5

AL∗ -80.0
0.228
←→ -89.9

0.000
←→ -123.6

l0.026 l0.001 l0.002

-93.7
0.052
←→ -98.4

0.000
←→ -131.1

TL∗ -47.0
0.020
←→ -61.8

0.000
←→ -135.9

l0.000 l0.000 l0.000

-81.3
0.940
←→ -81.6

0.000
←→ -146.6

Table 2: Log-likelihoods and p-values of Likelihood Ratio tests for
the results of the main experiment for N = 4 representative ob-
servers (experienced observers indicated with ∗). The Bonferroni-
corrected significance level α = 0.01.

is calculated using the non-linear, additive models for each of our
experiments, as shown in Figure 8. Figure 9 shows screenshots of
an interactive material editing session.

Our experience with the material editor indicates that the exper-
imental data remain valid despite the absence of shadows, inter-
reflections, and the background photograph. The perceptual gloss
scales were also designed to be independent of the diffuse color, as
shown in Figure 1. We speculate that the data also remains valid
for small perturbations of the viewpoint or the dominant illumina-
tion direction. Large perturbations can have a large influence on the
highlights and may even change the relative ordering of the gloss
perception curves, resulting in corrections that increase the gloss
shift.

6 Conclusion and Future Work

We have introduced the novel aspect of shape-dependent gloss cor-
rection in material selection tools. We provide a practical way to
calculate the parameter adjustments required to preserve perceptual
gloss between different shapes. This solves a prevalent problem
faced even by experienced artists, and makes the process of mate-
rial selection much more intuitive. We plan to conduct a formal
user study to assess the productivity gain.

The current system is limited to a fixed set of shapes and view-
points. However, the influence of shape proves to be an additive
effect which can be described by a single offset for each shape.
Possibly a procedure could be developed for calculating that offset
directly from a geometric description of the shape, removing the
need to repeat the experiments for additional shapes.

Acknowledgments

We thank all the people who volunteered to participate in our exper-
iments. We thank Yun-Xian Ho for helping with the implementa-

tion of the likelihood functions. We would also like to acknowledge
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