
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Security Primitives for
Protected-Module
Architectures
Based on Program-Counter-Based Memory
Access Control

Raoul Strackx

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

December 2014

Security Primitives for Protected-Module Architectures

Based on Program-Counter-Based Memory Access Control

Raoul STRACKX

Examination committee:
Prof. dr. ir. Jean Berlamont, chair
Prof. dr. ir. Frank Piessens, supervisor
Prof. dr. ir. Wouter Joosen, co-supervisor
Prof. dr. Dave Clarke
Prof. dr. ir. Ingrid Verbauwhede
Prof. dr. ir. Bart Preneel
David Grawrock
(Intel)

Prof. dr. Andrew Martin
(Oxford University)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

December 2014

© 2014 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Raoul Strackx, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

ISBN 978-94-6018-940-1
D/2014/7515/163

Preface

This thesis is the result of 5 years of work, during which time I got a lot of help
from a lot of people. I would like to take this opportunity to thank them here.

Foremost, I would like to thank my supervisor, Frank Piessens who constantly
exceeded any expectations a PhD student may have of his supervisor. Frank,
thank you for allowing me to discover where my interests lay, for every time you
took up the role of “devil’s advocate” (and apologized for having to do so) and
for your endless support when I hardheadedly wanted to resubmit my paper to
the next big conference. Also thank you for all the stimulating discussions over
the years, even at times when you lacked the time.

I would also like to thank the members of my PhD jury: Frank Piessens, Wouter
Joosen, Dave Clarke, Bart Preneel, Ingrid Verbauwhede, David Grawrock,
Andrew Martin, and Jean Berlamont.

Also a thank you to Pieter Agten, Niels Avonds, Dave Clarke, Wilfried Daniels,
Ruan de Clercq, Christophe Huygens, Niels Lambrigts, Job Noorman, Marco
Patrignani, Frank Piessens Bart Preneel, Dries Schellekens, Anthony Van
Herrewege, Gijs Vanspauwen, Ruben Vandevelde, and Ingrid Verbauwhede
for sharing my interest in protected-module architectures and our interesting
discussions. I hope that we can continue our collaboration in the near and
distant future.

A special thanks to my 05.18 version 1.0 colleagues, Pieter Philippaerts and
Frédéric Vogels. Sharing an office often felt like appearing in a live Monthy
Python sketch (especially “The Argument Clinic” comes to mind) but I have
great memories of those times.

To all the members of 05.18 version 1.1 and the “lunch buddies,” a special thanks
for all their jokes, sass and support of the last few years. Milica Milutinović,
you seem to possess a remarkable amount of energy. I hope that some of it will
rub off on me, eventually. Rula Sayaf, your lighthearted nature at all times

i

ii PREFACE

is remarkable and an example to us all. Pieter Agten, we shared some of my
greatest travels and hope that many more will follow in the next few years.
Frédéric Vogels, thanks for all the moelleux that you brought over the years.
Because of all your (in your own words) “extravagances” I had to “endure” over
the years, I know that one of the first things you will do when you read this
text, is to look for spelling and grammar mistakes. Even with all your vices
you’re a good friend, so I will even make it eazie for you. Mathy Vanhoef, since
you started working here, you have been corrupted by Frédéric. He trained you
well. Thanks for all the sass that we have exchanged. Jesper Cockx, you are
everything a colleague and friend could wish for. Marco, it is great to have
you joining us for lunch, even though your real Italian lunches often makes us
jealous. Our sincere apologies if our jealousy ever turns violent. Jan Tobias,
thanks for all your weird, but interesting stories of the last few months. They
make for entertaining discussions over lunch.

I would also like to specifically thank some people for their support. Dominique
Devriese, thank you for all the unexpected coffee breaks, and for all the
interesting discussions that usually followed. It has been my pleasure.

Nick Nikiforakis, it was a lot of fun being able to share the excitement of
imminent arrivals of paper notifications over the years. I hope we can continue
to do so in the future, regardless of the continent where we live.

Gowri Suryanarayana, thanks for all the Indian sweets over the years, they were
very tasty.

Marleen Somers, thank you for all your help over the years. You always made
sure that conference registrations and hotel bookings were correct and handled
quickly, even when you had a lot of other work and already were working
overtime. Also your compassion and help when my luggage was permanently
lost, was greatly appreciated.

Also to the other people of the secretariat, administration, and business office,
thank you for all the fun conversations at the coffee machine and to try to keep
all the paper work to a bare minimum. Unfortunately some of you have left the
last few months, you’re truly missed. To the new colleagues, I hope that you’ll
stay at least as long at the department as your predecessors because you’re
great to be around with.

Yolande Berbers, thank you for your trust in my didactic abilities. Also the
large amount of freedom has been greatly appreciated.

Also a special thanks to all the students that were forced to attend my exercise
sessions. I have tried to make most lessons interesting and challenging, I hope I
succeeded.

PREFACE iii

Work at the department for the last years has been great and I would also like to
thank the many people who made that happen. With the grave risk of leaving
somebody out: Yolande Berbers, Pieter Agten, Jasper Bogaerts, Ronald Cools,
Dave Clarke, Jesper Cockx, Bart De Decker, Willem De Groef, Philippe De Ryck,
Lieven Desmet, Dominique Devriese, Francesco Gadaleta, Tom Holvoet, Danny
Hughes, Christophe Huygens, Bart Jacobs, Katrien Janssens, Fred Jonker,
Wouter Joosen, Bert Lagaisse, Jef Maerien, Milica Milutinović, Jan Tobias
Mühlberg, Syeda Nayyab Zia Naqvi, Nick Nikiforakis, Job Noorman, Steven
Op de beeck, Marco Patrignani, Willem Penninckx, Pieter Philippaerts, Frank
Piessens, Davy Preuveneers, José Proença, Andreas Put, Anne-Sophie Putseys,
Esther Renson, Ghita Saevels, Rula Sayaf, Ilya Sergey, Jan Smans, Marleen
Somers, Karen Spruyt, Eric Steegmans, Gowri Suryanarayana, Klaas Thoelen,
Steven Van Acker, Rinde van Lon, Inge Vandenborne, Annick Vandijck, Mathy
Vanhoef, Dries Vanoverberghe, Gijs Vanspauwen, Karen Verresen, Frédéric
Vogels, Kim Wuyts and Yves Younan.

Last but definitely not least, I would also like to thank my family for their
never-ending support. A special thanks to my dad for the long hours of making
me do those language and mathematical exercises. They paid off in the end. To
my mother, thank you for all the unexpected desserts when I was studying for
exams and the encouraging words. They really helped to fight through tough
times. To my sister, thank you for showing to me that an academic diploma
may not always be easy, perseverance will always get you where you want to
end up. To Gert, your funny stories and bad jokes always made me laugh,
even when I was working against a deadline. Thank you for that. Also to my
grandparents, thank you all for your never-ending support. It is very sad that
some of you are not here to celebrate with us. And a very special thanks to
Louis Swinnen, for having the foresight and courage to buy a computer and
letting his grandchildren play with it.

I would also like to thank the following projects and scholarships for their
financial support:

• The Agency for Innovation by Science and Technology in Flanders (IWT)

• The Intel Lab’s University Research Office

• The Research Council KU Leuven: GOA TENSE (GOA/11/007)

Abstract

Our society increasingly depends on computing devices. Customers rely on
laptops and mobile devices to access security sensitive applications such as online
banking. Companies have to protect their trade secrets. And governments have
to guard their country’s critical infrastructure against espionage and sabotage.

Security of computing devices in such use cases is paramount and various
security measures have been developed that raise the bar significantly for
attackers. However, vulnerabilities in such systems still exist and are frequently
exploited successfully. A common pitfall is that software security takes a layered
approach where privileged layers keep getting extended with new components
over the system’s lifetime. This results in a snowball effect on the size of
these privileged levels and this in turn increases the likelihood of software
vulnerabilities. As all applications running on the device rely on the integrity
of these layers, increasing the size of their code base has a negative impact on
security of the overall device.

Many security measures have been proposed to automatically harden the most
privileged software layer, but they all fail to provide strong security guarantees.
In this thesis, we considered a different approach. We developed three security
primitives that can be applied at most privilege levels. Unlike related approaches,
this set of primitives is fixed. Software components can be added easily at any
privilege level, but no additional primitives will be required. Moreover, these
security primitives can provide provable security guarantees.

The most important security primitive is a program-counter-based access control
mechanism. By enforcing different access rights on physical memory depending
in which code module the processor is executing, sensitive parts of an application
can be strongly isolated. For instance, a cryptographic key can be isolated to
a protected module implementing a certificate-signing service. Since the key
cannot be accessed by any other code than the module’s, it cannot be stolen even
if malware was already present on the platform. The access control mechanism

v

vi ABSTRACT

also guarantees that the module is only accessible through the interface that it
exposes explicitly.

Second, we enable protected modules to limit which protected modules can
access their services. Unrestricted access to modules may still allow a large range
of attacks. While an attacker may no longer be able to access a well-isolated
cryptographic key, for example, the exposed interface may still allow her to
sign forged certificates. We prevent such attacks using a capability-based access
control mechanism; a module can only be accessed if the caller ever received
the capability to do so.

Third, we propose a fast and practical state-continuity system. Using
cryptographic properties, protected modules can use many services of
the unprotected, legacy system while providing strong security guarantees.
Unfortunately, these security guarantees only are ensured while the system is up
and running. In practice systems crash, loose power or need to reboot. Integrity
and confidentiality protecting the module’s state before it is stored on disk is
insufficient in such cases. Care must be taken that an attacker cannot present a
stale state of a protected module as being fresh. Practical implementations are
hindered by the substantial economical costs to add non-volatile storage to the
processor. Many computing devices are already shipped with access-controlled
non-volatile storage off-chip, but this memory is slow, very limited in size
and wears out quickly. We propose an algorithm based on a simple hardware
component to avoid all these shortcomings.

During this dissertation we also focused on how these newly-added security
primitives can be applied to provide strong security guarantees. A fully-abstract
compilation scheme was developed that ensures that software-level abstractions
provided to programmers cannot be broken; for every low-level attack, there
also exists an attack at source-code level. This significantly simplifies reasoning
about the security guarantees that protected modules provide and increases
security of the overall system.

Beknopte samenvatting

Onze samenleving hangt steeds meer af van haar computersystemen. Consu-
menten vertrouwen op laptops en mobiele toestellen om gevoelige toepassingen
te raadplegen zoals internetbankieren. Bedrijven dienen hun (digitale) handels-
geheimen te beschermen. En overheden moeten de kritische infrastructuur van
hun land waarborgen tegen spionage en sabotage.

Beveiliging van computersystemen in dergelijke toepassingen is van cruciaal
belang. Talloze beschermingsmaatregelen zijn dan ook reeds ontwikkeld die
succesvolle aanvallen aanzienlijk moeilijker maken. Kwetsbaarheden in software
komen echter nog steeds voor en worden nog altijd frequent uitgebuit. Een
veelvoorkomende valkuil is dat softwareontwikkeling een gelaagde structuur volgt
waarbij geprivilegieerde lagen steeds groter worden wanneer nieuwe componenten
worden toegevoegd tijdens de levensduur van het systeem. Dit resulteert in een
sneeuwbaleffect van de grootte van deze geprivilegieerde lagen, wat op zijn beurt
de kans op softwarekwetsbaarheden sterk vergroot. Aangezien alle applicaties
die op het systeem uitvoeren op de integriteit van deze lagen steunen, heeft
een toename in de grootte ervan een negatieve invloed op de veiligheid van het
geheel van het systeem.

Talloze beschermingsmaatregelen zijn voorgesteld om de meest geprivilegieerde
laag automatisch te beschermen, maar geen enkele biedt sterke veiligheidsgaran-
ties. In deze thesis hebben we voor een andere aanpak geopteerd. We hebben
drie beveiligingsprimitieven ontwikkeld die op bijna elke geprivilegieerde laag
kunnen worden toegepast. In tegenstelling tot andere aanpakken, zijn deze
primitieven niet veranderlijk. Nieuwe softwarecomponenten kunnen worden
toegevoegd aan het systeem, zonder dat nieuwe primitieven moeten worden
ontwikkeld. Bovendien bieden deze primitieven bewijsbare beveiligingsgaranties.

Het belangrijkste beveiligingsprimitief is het toegangscontrolemechanisme op
basis van de program counter. Door verschillende toegangsrechten op fysiek
geheugen af te dwingen op basis van de codemodule die de processor aan

vii

viii BEKNOPTE SAMENVATTING

het uitvoeren is, kunnen gevoelige delen van het programma sterk geïsoleerd
worden. Neem als voorbeeld een beschermde module die certificaten digitaal
ondertekent. De cryptografische sleutel van die module kan sterk geïsoleerd
worden. Aangezien het controlemechanisme toegang tot deze sleutel van buiten
de module verhindert, kan deze niet gestolen worden door kwaadaardige software.
Hetzelfde mechanisme zorgt er ook voor dat de module enkel aangesproken kan
worden via de interface die het expliciet beschikbaar stelt.

Een tweede beveiligingsprimitief laat beschermde modules toe om te beperken
vanaf waar ze aangesproken kunnen worden. Ongelimiteerde toegang tot
modules zou een brede waaier aan aanvallen niet kunnen verhinderen. Zo
zou een aanvaller nog steeds zelf gefabriceerde certificaten kunnen laten
ondertekenen, ook al heeft zij geen toegang tot de cryptografische sleutel. We
verhinderen dergelijke aanvallen door het gebruik van een capabilitygebaseerde
toegangscontrole; modules kunnen enkel aangesproken worden indien de
aanroeper ooit de mogelijkheid hiervoor heeft gekregen.

Tot slot hebben we een snel en praktisch state-continuity systeem ontwikkeld.
Door cryptografische primitieven toe te passen, kunnen beschermde modules
gebruikmaken van onbetrouwbare toepassingen zonder dat dit een sterke invloed
heeft op de geboden veiligheidsgaranties. Spijtig genoeg kunnen deze garanties
enkel gegarandeerd worden zolang het systeem aan het uitvoeren is. Maar in de
praktijk crashen systemen, verliezen ze plots hun stroomtoevoer of moeten deze
opnieuw opstarten. Het beschermen van de integriteit en confidentialiteit van
de status van modules is in deze gevallen onvoldoende. Maatregelen moeten
genomen worden om ervoor te zorgen dat een aanvaller geen oude status als
nieuw kan presenteren. Praktische implementaties worden hierbij gehinderd
doordat niet-volatiel geheugen om economische redenen niet aan de processor
kan worden toegevoegd. Veel computersystemen beschikken reeds over niet-
volatiel geheugen met een toegangscontrolemechanisme naast de processor maar
dit is echter traag, klein en het slijt snel. We hebben een alternatief ontwikkeld
op basis van een eenvoudige hardwarecomponent en een algoritme dat deze
tekortkomingen ontwijkt.

Tijdens deze dissertatie hebben we ook aandacht besteed aan hoe deze
ontwikkelde beveiligingsprimitieven praktisch gebruikt kunnen worden om sterke
veiligheidsgaranties te bieden. Er werd een volledig abstract compilatieproces
ontwikkeld dat ervoor zorgt dat abstracties die aan programmeurs aangeboden
worden op broncodeniveau, niet doorbroken kunnen worden. Zo bestaat voor
elke aanval tegen modules die gebruik maken van de beveiligingsprimitieven,
een overeenkomstige aanval op het niveau van de gebruikte programmeertaal.
Dit vereenvoudigt de redenering over de aangeboden beveiligingsgaranties van
modules enorm en zorgt voor een sterkere beveiliging van het systeem in het
algemeen.

Contents

Abstract v

Contents ix

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1

1.1 Attacking Software . 2

1.2 Existing Security Measures . 5

1.2.1 More Secure Libraries 5

1.2.2 Hardening Legacy Software Automatically 5

1.2.3 Memory-Safe Languages 6

1.2.4 Software Verification . 7

1.2.5 OS Protection Features 8

1.2.6 Hardware Security Modules 9

1.3 Why Software Security Is Still a Mess 11

1.4 A New Deal: Protected-Module Architectures 13

ix

x CONTENTS

1.5 Building Secure Subsystems: Contributions to the Research Area 16

1.6 Independent Research Results by Industry 20

1.7 Thesis Outline . 21

2 Fides: Selectively Hardening Software Application Components 23

2.1 Introduction . 24

2.2 Objectives . 26

2.2.1 Attacker Model . 27

2.2.2 Security Properties . 27

2.3 Overview of the approach . 29

2.3.1 Layout of a Self-Protecting Module 29

2.3.2 Primitive Operations . 31

2.3.3 Life Cycle of a Self-Protecting Module 32

2.3.4 Secure Local Communication 33

2.3.5 Updating SPMs . 36

2.3.6 The Vault . 36

2.3.7 Remote Attestation . 37

2.4 A Prototype Implementation 38

2.4.1 The Fides architecture 38

2.4.2 Automated Compilation of Modules 42

2.5 Evaluation . 44

2.5.1 Security Evaluation . 44

2.5.2 Performance Evaluation 45

2.6 Related Work . 49

2.7 Conclusions . 51

2.8 Post-Publication Remarks . 51

3 Salus: Non-Hierarchical Memory Access Rights to Enforce PoLP 55

CONTENTS xi

3.1 Introduction . 56

3.2 Attacker Model & Security Properties 60

3.3 Overview of the Approach . 61

3.3.1 Compartments of Least Privilege 61

3.3.2 Provided Services . 64

3.3.3 Life Cycle of a Compartmentalized Application 65

3.3.4 Secure Communication 66

3.3.5 Unforgeable references 68

3.3.6 Writing Compartmentalized Applications 70

3.4 Implementation . 71

3.4.1 Program Counter-Based Access Control 71

3.4.2 System Call API . 72

3.4.3 Conflicting System Calls 73

3.4.4 Unforgeable references 74

3.5 Evaluation . 75

3.5.1 Security Evaluation . 75

3.5.2 Performance Evaluation 77

3.6 Related Work . 80

3.7 Conclusion . 82

3.8 Post-Publication Remarks . 82

4 ICE: A Passive, High-Speed, State-Continuity Scheme 83

4.1 Introduction . 84

4.2 Problem Definition . 87

4.2.1 Attacker Model . 87

4.2.2 Security Properties . 88

4.2.3 Applicability . 88

xii CONTENTS

4.3 State-Continuity as a Library 89

4.3.1 Architecture . 90

4.3.2 Guards: Storing Freshness Info 92

4.3.3 ChkPassword: A Running Toy Example 92

4.3.4 ICE Libraries . 94

4.4 Implementations . 101

4.4.1 ICE on Commodity Hardware 102

4.4.2 SGX-Based Implementation 104

4.4.3 Distant Future Architectures 105

4.5 Security Evaluation . 106

4.5.1 Safety Properties . 106

4.5.2 Liveness Properties . 113

4.6 Performance Evaluation . 114

4.7 Implications Towards Hardware Security Modules 117

4.8 Related Work . 118

4.9 Conclusion . 120

4.10 Post-Publication Remarks . 120

5 Conclusion 123

5.1 Contributions . 123

5.2 Near Future . 128

5.2.1 New Security Guarantees 128

5.2.2 Writing Modules . 130

5.2.3 Applications . 131

5.3 Long-Term Ambitions . 133

A Intel Software Guard eXtensions 135

CONTENTS xiii

B Protected-Module Architectures vs Microkernels 137

B.1 Why Microkernels Failed . 138

B.2 Why PMAs Won’t Share the Same Fate as Microkernels 139

Bibliography 141

List of Publications 159

List of Figures

1.1 The number of buffer overflow vulnerabilities has seen a significant
increase since 2006. 4

2.1 The layout of an SPM. 30

2.2 The life cycle of an SPM from (a) initialization to (b) destruction. 32

2.3 Fides enables the creation of complex trust networks. 33

2.4 Communication protocols between two SPMs. 35

2.5 Fides supports attestion easily and transparently. 38

2.6 Layout of the Fides architecture. 39

2.7 Implementation of the Fides architecture. 43

2.8 The performance impact of Fides on the overall system. 47

3.1 Salus’ compartmentalization enables strong isolation of security-
sensitive data possibly vulnerable code. 58

3.2 Layout of compartments in Salus. 62

3.3 The life cycle of a protected compartment from creation to
destruction. 66

3.4 By enforcing that compartments can only be accessed via
unforgeable references, stronger security guarantees can be
guaranteed. 69

3.5 Salus’ performance overhead on the gzip macro benchmark drops
significantly as the input file size increases. 79

xv

xvi LIST OF FIGURES

4.1 ICE provides state-continuity guarantees to isolated modules
while trusting only a few key components. 90

4.2 Architecture of guarded memory. 91

4.3 Stored states are confidentiality and integrity protected. Fresh-
ness is based on the enclosed guard. 95

4.4 Depending on the timing of a crash, three distinct situations can
occur. 98

4.5 ICE can provide state-continuity guarantees to isolated modules
of many state-of-the-art PMAs. 102

4.6 Microbenchmarks of various TPM operations. 115

List of Tables

2.1 The enforced memory access control model. 30

2.2 The TCB consists of only 7K lines of code. 44

2.3 SPM vs. driver access overhead. 47

2.4 Microbenchmarks measuring the cost of calling an (authenticated)
SPM. 48

2.5 HTTPS-server performance. 49

3.1 Salus’ access control model. 61

3.2 Compartment access overhead. 78

3.3 Performance of a compartimentalized, TLS-enabled webserver. 78

4.1 Breakdown of lines of codes for libice0 and libicen. 104

4.2 Microbenchmarks for libice0 and libicen (time in ms). . . . 117

xvii

List of Acronyms

ABI Application Binary Interface
AES Advanced Encryption Standard
AES-NI Advanced Encryption Standard New Instruc-

tions
AIK Attestation Identity Key
AMT Active Management Technology
API Application Programming Interface

BIOS Basic Input/Output System

CA Certificate Authority
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit

DMA Direct Memory Access
DRM Digital Rights Management
DRTM Dynamic Root of Trust for Measurement

EPT Extended Page Table

HSM Hardware Security Module

I/O Input/Output
IOMMU Input/Output Memory Management Unit
IPC Inter-Process Communication

LOC Lines of Code
LPC Low Pin Count

MAC Message Authentication Code

xix

xx LIST OF ACRONYMS

MMU Memory Management Unit
MTM Mobile Trusted Module

NVRAM Non-Volatile Random Access Memory

PAL Piece of Application Logic
PCR Platform Configuration Register
PMA Protected-Module Architecture
PUF Physical Unclonable Function

RAM Random Access Memory
rPUF Reconfigurable Physical Unclonable Function
RSA Rivest Shamir Adleman

SHA Secure Hash Algorithm
SLB Secure Load Block
SMI System Management Interrupt
SMM System Management Mode
SPI Serial Peripheral Interface
SPM Self-Protecting Module
SRNG Secure Random Number Generator
SRTM Static Root of Trust for Measurement

TCB Trusted Computing Base
TOCTOU Time-of-Check Time-of-Use
TPM Trusted Platform Module
TXT Trusted Execution Technology (a.k.a. LaGrande

Technology)

UPS Uninterruptible Power Supply

VM Virtual Machine
VMM Virtual Machine Monitor

Chapter 1

Introduction

As of January 1, 2014, the International Tennis Federation allows tennis players
to use Player Analysis Technology (PAT) [58]. This will make the sport
significantly more technological, far exceeding Hawk-Eye, the ball-tracking
software that is already in use at some big tournaments. By incorporating
motion sensors in tennis rackets [59], for example, coaches can analyze the force
the tennis ball is hit with, its average position on the racket, etc. and use this
information to better instruct their players. However, if this data falls in the
hands of the player’s opponent, signs of fatigue of certain muscle groups may
also be deduced from it and give an unfair advantage.

Player Analysis Technology is only one of many examples of how our society
increasingly relies on (the security1 of) computing devices, even in case of
seemingly low-tech undertakings such as playing tennis. Other examples include
smartcards that support over-the-air updates, programmable sensor-networks,
setup boxes and internet-connected TVs. Also infrastructure critical to our
society depend on software. SCADA (Supervisory Control And Data Acquisition)
systems are used to detect line voltage and take parts of our electrical grid
online and offline. They also control water flow and pipe pressure of our water
system and have many other critical applications. Of course also more obvious
examples can be added to this list, such as online banking, e-government and
cloud computing where multiple, mutual distrusting virtual servers execute on
the same physical server.

As these devices are increasingly becoming interconnected and support
1In this dissertation we will following the definitions of terms (e.g., security, safety, system,

etc.) of Avizienis et al. [9] as much as possible but make an exception for standard terminology
(e.g, type safety, memory-safe language, etc.).

1

2 INTRODUCTION

software extensibility, the chances of them being successfully exploited increase
significantly. This raises important research questions. How can we protect
sensitive information from falling into the wrong hands? What architectural
support is required to provide strong security guarantees while supporting
interconnected, extensible devices? How can we deal with software extensions
of stakeholders that do not necessarily trust one another? How do we deal with
legacy software in such a system that may be vulnerable to attacks? Can we
reduce the impact that such vulnerabilities can have?

To situate work accomplished during this PhD, we start this chapter with a brief
overview how software can be attacked and which kind of security measures
already exist. In Section 1.3 we discuss why, in spite of a large body of security
measures, software vulnerabilities are still exploited daily. Next, we discuss
the core idea of “Protected-Module Architectures” (PMAs), a promising novel
research direction, and give a short overview of our own contributions to this
area of research (Sections 1.4 and 1.5). Finally, we give a short overview of
independent research results by industry and give an overview of the remainder
of this dissertation text (Sections 1.6 and 1.7).

Readers already familiar with low-level software security may want to skip to
Section 1.3.

1.1 Attacking Software

Recent advantages in artificial intelligence show very interesting results. Many
will remember IBM’s Deep Blue computer defeating reigning chess champion
Garry Kasparov in 1997 [55]. Or, more recently, IBM’s Watson computer
winning a game of “Jeopardy!” in 2011 [45]. While the hardware capacity of Deep
Blue and Watson were impressive (at least at their time), they architecturally
don’t differ that much from an average laptop or mobile phone; the hardware
only accepts simple, basic instructions such as fetch the memory contents at
address x, add the contents of register r1 and r2, etc.

Artificial intelligence emerges from how these basic instructions are combined.
Writing these hardware instructions directly by hand would be a very tedious and
error prone task. Instead, applications are written in a programming language
that provides the programmer with a much more abstract representation of
the platform. She can, for example, specify that the code requires a square
board of 8 by 8 without having to specify exactly where it needs to be stored
in memory. Moving a pawn can then be represented as swapping the contents
of two memory cells. Deep Blue’s software uses such more abstract views of
the game and computes all possible steps that can be taken (to a certain limit)

ATTACKING SOFTWARE 3

starting from the current setup of the chess board. Next it analyses and grades
every resulting setup and finally outputs the step leading to the best outcome.

Software written in a programming language cannot be understood directly by
a processor. First, it needs to be passed to another application, the compiler,
that will translate the source code to machine instructions.

Vulnerabilities can originate at any level of this development process. A
programmer can make a mistake when, for example, implementing the allowed
steps a pawn may take. Or the compiler may have been written incorrectly,
causing the application to sometimes behave incorrectly. Or even the hardware
itself may be faulty. Not every programming mistake may be exploitable for
attack. Certain bugs may only lead to undesirable side-effects such as a chess
game that allows players to make illegal moves. Others are more severe and
enable attackers to gain complete control over the application; they may be
able to inject their own code inside the application and force its execution. This
may lead to a large set of capabilities ranging from overwriting high scores of a
chess game, to inspecting and modifying files on disk and even to operating the
webcam without the user’s knowledge.

Buffer Overflows. One of the most notorious software vulnerabilities are buffer
overflows. According to the NIST National Vulnerability Database [86], the
percentage of buffer overflow vulnerabilities of all vulnerabilities in publicly
available software reported, increased dramatically from a mere 2.13% in 2006
to 15.95% in 2011. Since then the percentage of reported vulnerabilities dropped
slightly to 12.10% for the first quarter of 2014.

Buffer overflows occur when a program tries to write past the boundaries of
a memory buffer. Just as an overflowing bucket of water may cause a nearby
electrical circuit to shortcut, the application may exhibit unexpected behavior.
In general there are two possible attack targets. Most commonly, an attacker
will attempt to overwrite control flow data. By, for example, overwriting the
memory location containing the return address of a function – the address where
execution should be resumed after the function completed – an attacker is able
to redirect execution to her own injected code.

A second attack target is non-control data. Such attacks do not attempt to force
the execution of injected code, but overwrite data stored by the application.
Obvious targets of this kind of attack are variables keeping track of which user
is logged in. Once data has been overwritten, the application executes normally,
but operates on incorrect data, possibly giving users elevated privileges.

4 INTRODUCTION

Figure 1.1: The NIST National Vulnerability Database [86] reports a significant
increase in the portion of buffer overflow vulnerabilities in publicly available
software since 2006. In 2013 (the last full year figures are available of) they
accounted for 14.6% of all software vulnerabilities reported.

Buffer Overreads. Data does not always have to be overwritten to cause
security issues. Early 2009, we demonstrated [122] that buffer overreads are
a realistic threat. While similar to a buffer overflow, during a buffer overread
attack data is only read passed the bounds of a memory region, it is not
overwritten. Passing unintended data to an attacker may be a security issue for
two reasons: (1) valuable information may be deducible from the data leaked and
used to bypass security measures relying on the secrecy of memory [13,32,33],
or (2) the outputted information itself can be sensitive such as passwords or
cryptographic keys belonging to different users of the application.

Probably the most well-known example of the latter is Heartbleed. This buffer
overread vulnerability was discovered in the OpenSSL library [28, 83] and
disclosed on April 7, 2014. The OpenSSL library is intended to guarantee
integrity and confidentiality of network connections, but a missing bounds check
could result in sensitive memory contents being leaked to an attacker. As private
user information on a webserver, including login credentials, could be extracted
and given the widespread use of the vulnerable library, the security incident
received world-wide attention. Later it also became apparent that even private
SSL keys may have leaked [48].

EXISTING SECURITY MEASURES 5

1.2 Existing Security Measures

Given the ever increasing dependence of modern society on software and the
impact software vulnerabilities may have, a large body of security measures has
been developed. To situate the research contributions of this PhD, we discuss
here very briefly different areas of research. For a more elaborate overview, we
refer the reader to other work [42,146].

1.2.1 More Secure Libraries

Programming languages such as C or C++ do not automatically store the
size of allocated memory regions in memory. It is up to the programmer to
keep track of this information. This is often cumbersome and simply omitted.
Especially older library functions such as strcpy that copies a string (an array
of characters) from one location to another, do not require a programmer to
specify the maximum number of characters that can be copied. After buffer
overflow vulnerabilities received more attention, such functions have since been
updated. Older functions are still available for backward-compatibility reasons.

Interestingly enough, the “more secure” version is often still susceptible to a
buffer overread. Consider, for example, strncpy that, contrary to its older and
less secure variant, takes an additional argument specifying the length of the
output buffer. While it prevents the destination buffer from overflowing, it does
not guarantee that the newly written string is terminated by a ‘\0’ character.
Most string functions, however, will rely upon this character to mark the end
of the string and data located after the string in memory may be outputted to
an attacker. It is unclear how often such vulnerabilities occur in practice.

1.2.2 Hardening Legacy Software Automatically

Writing software is a very time-consuming undertaking. Hence, one important
line of research focuses on minor compiler or operating system updates to
harden possibly vulnerable software. Such research proposals do not remove the
vulnerabilities at hand, but they prevent that vulnerabilities can be exploited
or, at least, significantly raise the bar for attackers.

One class of security measures tries to detect that a buffer overflow has taken
place. StackGuard [32,33] and ProPolice [44] take this approach and are two of
the most widely applied security measures against buffer overflows. StackGuard
enables the detection of a stack-based buffer overflow by placing a random value,
called a canary, before sensitive control data on the stack. A buffer overflow

6 INTRODUCTION

trying to overflow the return address of the current function, will also overwrite
the canary. By checking the integrity of the canary before returning from the
current function, a buffer overflow attack may be detected and the application
can be stopped before any harmful event can occur.

ProPolice [44] operates similar to StackGuard but also re-orders local variables,
avoiding that a buffer overflow can overwrite valuable data such as pointers
before the canary is overwritten.

Other security measures defending legacy software do not try to detect buffer
overflows, but make it significantly more difficult to execute attacks successfully.
Address Space Layout Randomization (ASLR) [13], one of the most applied
security measures of this class, randomizes the memory layout of applications at
launch-time. Every time an application is started, different memory locations
are assigned to valuable data. This does not prevent buffer overflows, but
makes it much harder for an attacker to overflow a buffer with sensible data.
Redirecting control flow, for instance, is much harder as the location of injected
code at runtime is unknown to the attacker.

StackGuard, ProPolice and ASLR rely on the memory secrecy assumption: an
attacker cannot read unintended memory contents prior to an attack. But in
the event of a buffer overread this assumption does not always hold [122]. Data
or code pointers may leak to the attacker and enable her to derandomize the
memory layout.

Multistack [148] takes another approach without relying on the memory secrecy
assumption. It partitions the program stack into multiple stacks, separating
likely attack vectors (e.g., buffers of characters) from likely attack targets (e.g.,
return addresses or function pointers). Using hardware memory protection, it
avoids that a buffer overflow on one stack can overflow onto another. Benchmarks
show that multistack can be implemented with almost no overhead on x86
processors. In 2010 we evaluated Multistack on ARM processors and proposed
some optimizations to reduce overhead on this platform as well [121].

1.2.3 Memory-Safe Languages

In the previous paragraphs we focused mainly on buffer overflow vulnerabilities
because they are the most exploited type of low-level software vulnerabilities.
But also other memory errors exists such as double freeing an allocated memory
region or dereferencing a pointer after it has been freed. Such vulnerabilities can
occur in older languages (e.g., C and C++) because they rely on the programmer
to avoid such errors. Failure to comply may result in security vulnerabilities.

EXISTING SECURITY MEASURES 7

Detailed knowledge of the application, compiler, linker and operating system is
required to determine whether these vulnerabilities are practically exploitable.

Most modern languages such as Java, C#, Haskell and OCaml, avoid such
vulnerabilities altogether by relying on a sound type system. Before a Java
application is compiled, for example, it is checked that it complies with the
type system at hand. Errors such as writing to a memory region before it is
allocated, will be detected before the application can be executed. Other errors
such as writing past the bounds of an array, are more difficult to detect at
compile time and dynamic checks are inserted.

While memory-safe languages are clearly superior in terms of security, non-
memory-safe languages are still widely used. For instance, the C programming
language is still the most widely used language according to the TIOBE
Programming Community [130]. The reason for this is threefold: (1) Many
legacy applications and libraries are written in C and form the base for newer
versions. Rewriting them in a memory-safe programming language usually is
not economically viable. (2) While many languages have clear advantages from
an academic point of view, they require a different thought process and highly-
skilled programmers in these languages are hard to find. (3) Operating systems
or other applications require close interaction with the hardware. This is much
easier to accomplish in low-level languages such as C. Moreover, some low-end
devices are significantly resource constrained and the increased performance,
memory and energy costs of memory-safe languages may not be acceptable.

1.2.4 Software Verification

The use of a memory-safe programming language can avoid exploitable memory-
error vulnerabilities in an application. But also other implementation errors may
enable successful attacks. Insufficient input validation in a web application may
lead to SQL injection or Cross Side Scripting (XSS) attacks. Use of unsanitized
user-provided paths may enable an attacker to traverse the entire file system
and access sensitive files. Or unexpectedly large input data may cause the
application to stop responding.

Such vulnerabilities (as well as memory errors) can be detected using formal
software verification. Tools aiding in formal verification, enable programmers
to specify key properties of the application and guarantee with mathematical
certainty that they always hold. Unfortunately formal verification of even
simple applications can only be done by highly-skilled users and is very time
consuming. Verification of large applications is almost infeasible in practice.
Instead, significant assumptions are often made such as that a library always

8 INTRODUCTION

behaves correctly or that the underlying operating system cannot be attacked.
Nonetheless, verification tools such as VeriFast [60] and VCC [29] are promising.

1.2.5 OS Protection Features

In practice an attacker may be able to gain access to a computing system in
two ways. Either a vulnerable application could be exploited, or the user can
be tricked into executing the attacker’s provided code (e.g., by sending her an
obfuscated executable via e-mail). Security measures need to be taken to ensure
that once an attacker gained execution privileges on the platform, she does not
have full control over the system. Two important features of modern operating
systems play a key role, with limited success.

First, the introduction of protection rings significantly increased security.
Protection rings enable a strict separation between the kernel – the more
privileged piece of software that can directly access hardware such as the
hard disk and decides which application can run – and applications that take
advantage of hardware abstractions provided by the kernel. If a user-level
application attempts to issue an instruction that requires kernel privileges, this
will cause a trap to the kernel where it will be handled accordingly (e.g., by
terminating the application). Similarly, the hardware will prevent a user-level
application from accessing kernel memory directly. The kernel can only be
accessed using a specific interface of system calls that it provides. Using this
separation of protection rings, applications can also be isolated from one another;
an attacker who successfully attacked an application is not able to directly read
or write memory locations belonging to another process.

The arrival of protection ring hardware sparked the question of what should
be included in the kernel and what should execute at user-level.2 A number
of different operating system architectures have been proposed, but most fall
in one of two groups. One group, the monolithical kernels, implement process
isolation, memory management, device drivers, etc. in the kernel. The other
group, the microkernels, only implement a minimal amount of features at the
highest privilege level. Components such as memory management and device
drivers are offloaded to services executing at user-level. While this has clear
advantages from a security perspective, most modern operating systems are
monolithical systems. We elaborate further on microkernels in Appendix B.

Second, the operating system is able to define an access control policy on
resources. While most computing devices today are truly personal computers,

2Some researchers even proposed the use of more than two privilege level. The influential
MULTICS operating system [52], for example, called for 64 privilege rings.

EXISTING SECURITY MEASURES 9

most devices used to be shared. Hence, there was a need to prevent files belonging
to one user from being accessed by another. This sparked the development
of access control policies which are widely implemented. Unfortunately most
applications today execute with full user privileges and an attacker who exploited
such an application can access all the user’s files, even if access to those files is
not required for the correct working of the application.

1.2.6 Hardware Security Modules

Some applications require extremely strong security guarantees. For instance,
private cryptographic keys used to sign government-issued electronic identity
cards or website certificates must not, under any circumstances, leak to an
attacker. To protect such high-value data, they are often stored in a hardware
security module (HSM). These secure co-processors protect sensitive data against
two types of attacks. First, to protect against software attacks, they only provide
limited functionality and usually do not allow third-party code to run on its
processor. Untrusted software running on the main processor can only access
the HSM via a secure interface that prevents unintended behavior. An HSM,
for example, may provide an interface to create and use cryptographic keys
(e.g., to sign certificates), but should prevent that cryptographic keys can be
exported from the HSM in plaintext.

Second, security measures are taken to prevent hardware attacks against the
HSM. While software attacks are often the easiest attacks to execute – and thus
usually the preferable option for attackers – there may not be any exploitable
vulnerability in the software of the HSM. In such situations a determined
attacker may target the HSM’s hardware directly. Hardware attacks can be
divided in two categories. In invasive attacks the hardware chip is directly
physically accessed. An attacker may, for example, ground signals preventing
correct execution of instructions. Invasive attacks do not always actively modify
the behavior of the chip. In passive attacks of this category data buses may
be probed to intercept sensitive information that pass over them. A variety of
countermeasures exist to defend against invasive attacks, ranging from covering
hardware components in epoxy making them harder to access to continuous
monitoring the integrity of a protective mesh over the chip.

Non-invasive attacks on the other hand, preserve the chip’s physical integrity.
Passive attacks in this category only monitor information that can be observed
externally such as timing differences, power consumption or electromagnetic
radiation. When this information can be correlated with the internal state of the
chip, sensitive information may leak to an attacker. An attacker may however
also actively modify the chip’s physical environment. Providing spikes in the

10 INTRODUCTION

power supply, for example, may cause unintended behavior of the chip and
(indirectly) leak sensitive information. Sensors onboard the chip may mitigate
such attacks.

To boost security of commodity computing devices, most modern desktop and
laptops are also equipped with an HSM, called the Trusted Platform Module
(TPM). While this chip is very resource constrained and operates at very low
speeds, it has a number of interesting security primitives. We briefly discuss
some of these primitives we will use throughout the text but refer to other work
for a more elaborate discussion [49,76,95].

Platform Configuration Registers. One of the key components of the TPM
chip are its Platform Configuration Registers (PCRs). PCRs are a set of
registers that can be used to securely collect the state of the platform. To
ensure that malicious software cannot tamper with the contents of PCR registers,
they cannot be set to a specific value. A PCRi can only be extended with
measurement m by hashing its current content appended with m:

PCRnew
i ← SHA-1(PCRold

i ||m)

There are two types of PCR registers. Static PCRs are initialized to 0 at boot
time and cannot be reset afterwards. Dynamic PCRs, in contrast, are set to −1
at boot time and can be reset to 0 after the system booted. The different initial
values enable a third party to distinguish between reboots and PCR resets.

To collect the state of the platform, every component in the boot process first
computes the hash of the next boot component, extends a PCR register with
the result and only then hands over control. Modification of one of these
components, for example to provide a persistent backdoor to an attacker, will
result in a different PCR value. Hence, when PCR content remains unchanged,
the system has booted to a pristine state.

Attestation. In a number of use cases it is desirable that a user can prove
certain properties to a third party. Employees connecting to a company network,
for example, may need to prove that their operating system was not compromised
and runs the latest software updates. Or users of a public network may need to
prove that they run an up-to-date anti-virus scanner. The TPM chip can be
used to provide such attestations; the TPM chip can sign the contents of one
or more PCR registers that can be presented to the third party. As the used
private key cannot be extracted from the TPM chip and PCR contents cannot
be set to a specific value by an attacker, this attests the state of the platform.

WHY SOFTWARE SECURITY IS STILL A MESS 11

Sealed Storage. Sensitive data can also be tied to a specific state of the
platform. Software can provide sensitive data to the TPM chip and request
that it is sealed to the contents of one or more PCR registers. The resulting
ciphertext can be stored at an untrusted location. Only when the systems enters
a state where PCR content matches the specified value at the time of sealing,
will the TPM decrypt the ciphertext.

NVRAM. Sensitive data can also be stored in TPM NVRAM based on PCR
contents. Unfortunately TPM NVRAM has significant drawbacks. Most TPM
implementations only provide 1,280 bytes of non-volatile memory and support
only 100,000 write operations. Accessing TPM NVRAM every second would
wear it out in less than 28 hours.

Monotonic Counters. Finally, TPM chips are also shipped with at least 4
monotonic counters; these are counters that can be incremented but never
decremented. Unfortunately, the TPMv1.2 specification [132] only requires
these counters to be incrementable at least once every 5 seconds. TPM vendors
may provide increments at higher speeds but counters must not wear out within
7 years of operation.

1.3 Why Software Security Is Still a Mess

The security measures presented in Section 1.2 all seem promising. But users
are still presented with daily software updates to patch vulnerable systems and
have the impression that “everything can be attacked successfully.” Why is the
state of software security in practice so bad?

One could argue that software security is still a very young field, especially
when compared to medicine or physics, and that software security will increase
automatically over time when programmers are becoming better educated.
While this may be the case for some type of vulnerabilities, it is unlikely that
it will stop all attacks. Some vulnerabilities are just too subtle and too easily
overlooked, especially when under time pressure.

Development of security measures, combined with better education, may provide
better chances of success. In order to get widely adopted, security measures
should meet some key properties:

• Easily Applicable: Software security measures need to be easy to apply by
users and developers. Security measures that hinder users in their daily

12 INTRODUCTION

operations, will simply be disabled. Similarly, developers won’t apply a
security measure if it is too cumbersome. Software verification is a prime
example of such a security measure; formally proving that software meets
some security property is non-trivial and too time costly.

• Limited Overhead: Security measures that significantly impact the
performance, memory usage or energy requirements, may not be suitable
for widespread deployment. For instance, security measures exists that
remove all buffer overflow vulnerabilities of an application by adding
bounds checks. However, due to their huge performance overhead
(PAriCheck [147] and Baggy Bounce [5] pose a 49% and 60% performance
overhead respectively on the SPEC2000int benchmark), they are not
widely deployed.

• Evolutionary: Writing software is a labor-intensive undertaking. Only in
extraordinary cases will existing software be discarded and re-implemented
to provide stronger security guarantees. Successful security measures such
as StackGuard, ProPolice and ASLR can be applied to fortify most legacy
software or simply be disabled for non-compatible applications.

• Effectiveness: The cost users and software vendors are willing to pay
for increased security, naturally also depends on the effectiveness of the
applied security measures. Unfortunately, most security measures rely
on a huge Trusted Computing Base (TCB) – the hardware and software
that needs to be trusted upon – especially when applied on commodity
computing devices equipped with a huge monolithical kernel such as MS
Windows or Linux. The security guarantees that such security measures
can provide is thus also limited.

• Gain a Critical Mass: Software vendors are usually hesitant to apply
newly developed security measures. Their impact on legacy software may
not yet be clear and long-term support may be uncertain. Especially
switching to another, more secure language is a risky undertaking; without
widespread adoption, the language compiler and runtime environment
may not be maintained in the future and skilled developers may be hard
to find. The decision is also hard to revert in the future.

To minimize overhead, security measures are often specifically tailored to a very
specific type of vulnerability (e.g., stack-based buffer overflows). Other types
need to be addressed by applying additional countermeasures. The hope is
that by stacking security measures, the bar is raised so high for attackers that
successful exploits are infeasible. Unfortunately the sheer size of the codebase
that needs to be protected makes this approach unlikely to succeed. The number
of vulnerabilities that are exploited on a daily basis, are a direct result.

A NEW DEAL: PROTECTED-MODULE ARCHITECTURES 13

1.4 A New Deal:3 Protected Module Architectures

Software vendors and system administrators could continue to add newly
developed security measures to computing devices, raising the bar for attackers
ever higher. While this would make attacks more challenging to execute, it
is unlikely that this approach will ever be able to provide provably strong
security guarantees. Protected-Module Architectures (PMAs) provide a viable
alternative.

Concept. In 2008 McCune et al. proposed [78] a radical new research direction
based on two observations. First, modern monolithical operating systems provide
process isolation primitives, but the kernel is too large to be implemented free
from vulnerabilities. Moreover, its continuous extension to support new file
systems, process scheduling algorithms and new peripherals generates a snowball
effect of an ever growing TCB. Both properties make formal verification not
only infeasible, it would pose a huge barrier for third-party vendors to develop
new kernel services as they too would need to be formally verified. In order
to provide strong security guarantees to applications running on commodity
computing devices, a novel isolation approach is required that avoids the pitfalls
of common monolithical kernels.4

Second, not all components of an application are security sensitive and a
vulnerability in one compartment should not affect security of another. For
instance, a vulnerability in a component that parses incoming messages or that
collects and sends memory dumps when the application crashes, should not
affect the secrecy of the cryptographic key used by a component providing an
encryption/decryption service. Isolation of sensitive parts of an application can
lead to limited-sized components that can provide strong security guarantees as
they are mostly self-contained; they only need to place limited trust in services
provided by other parts of the application or the operating system. They are still
dependent on the kernel to eventually receive allocated CPU time or get access
to files, but failure to provide these services does not necessarily break required
security properties. For instance, files could be integrity and version protected

3The term “New Deal” refers to a series of measures taken by US Congress and President
Franklin D. Roosevelt in response to the Great Depression of the 1930s [14]. They focused
on Relief, Recovery, and Reform. Given the poor state of security of high-end computing
devices and even more so of low-end, embedded devices, society is also in need of a “new deal”
regarding system security.

4Microkernels largely avoid these pitfalls already by minimizing the amount of services
running at kernel-level. The seL4 microkernel even has been formally verified completely [64].
However, virtually all commodity applications run on top of monolithical kernels and attempts
to rebuild them into microkernels have largely failed. In Appendix B we discuss the similarities
and differences between Protected-Module Architectures and microkernels in more detail.

14 INTRODUCTION

before they are passed to the operating system for storage. Kernel-level malware
may then corrupt stored files, delete them or replay old versions, but sensitive
information cannot leak. Similarly, an attacker who gained kernel-level access,
may simply stop security sensitive components from being scheduled or prevent
the system from ever resuming normal operation after it rebooted.

Based on these observations, McCune et al. proposed a novel protection
mechanism. It enables module vendors to provide strong security guarantees
while relying only on a limited and stable set of primitives – additional primitives
will not need to be added in the future. In contrast to many existing security
measures, the protection mechanism does not assume that the system started
in a pristine state. An attacker may already have gained access to the highest
privilege levels. Only the provided primitives must not be subvertible. Security
architectures that follow a similar reasoning have since become known as
“Protected-Module Architectures” (PMAs).

Which security primitives are presented to modules depends on the implemen-
tation of the PMA, but all ensure two vital properties. Most importantly,
protected modules are in complete control of their own security. They are
completely isolated from the rest of the system, including from other modules.
Malware executing at any privilege level cannot directly access modules’ memory
content.

Given that an attacker may have infiltrated to the highest privilege levels of the
system, modules may have been compromised before they could be protected.
In such cases PMAs must ensure that an attacker does not gain any additional
power. Their security primitives guarantee that (1) the compromised module
cannot access previously stored secrets and (2) the module will fail to attest its
correct execution to a (remote) verifier.

Flicker. In the same work [78] McCune et al. also presented Flicker, a prototype
of such a protected-module architecture. Flicker relied heavily on the security
features provided by the TPM chip and the late launch feature of the then recent
AMD processors.5 A late launch was designed to securely start a hypervisor
or a security kernel. When issued, a late launch provides a Secure Load Block
(SLB) as parameter. This code and data chunk will receive control after the late
launch. To prevent software attacks against the SLB, a late launch sequence
disables interrupts, prevents direct memory access (DMA) to the SLB and
disables debug access. Virtual memory is disabled as well. To tie TPM features
to the provided SLB, the TPM’s dynamic PCR registers are reset and PCR 17
is extended with the measurement of the SLB.

5Intel processors provide with Trusted eXecution Technology (TXT) similar capabilities.

A NEW DEAL: PROTECTED-MODULE ARCHITECTURES 15

Flicker uses a late launch sequence to completely isolate sensitive parts of an
application, called Pieces of Application Logic (PALs) by its authors, from the
rest of the system. As a result, PALs are short-lived. Every time a PAL is
called, it needs to marshall all required inputs and initiate a late launch to start
the PAL’s execution. Afterwards normal, untrusted execution is resumed and
the PAL’s output can be unmarshalled. When required, PALs can seal sensitive
data for the next invocation of the same or another PAL.

Flicker’s merit is that it is able to provide provable security properties
by applying existing security-hardware primitives in a completely new way.
Unfortunately, since these primitives were never designed for such use cases,
they incur some significant disadvantages. First, development of PALs is a
challenging undertaking, especially when state needs to be maintained between
invocations or shared between multiple PALs. Special care may also have to be
taken in such cases to ensure that an attacker cannot replay messages. The fact
that PALs cannot access the legacy application’s memory region, complicates
their development as well. While some inputs may be marshalled/unmarshalled
easily, this is definitely not always the case, for example, when a PAL needs to
access a graph stored in unprotected memory.

Second, Flicker incurs a significant performance overhead. Issuing a late launch
sequence for every PAL invocation and accessing the TPM to retrieve previously
stored data, makes Flicker unsuitable to protect sensitive parts of performance-
critical applications. However, it must be noted that this overhead only occurs
when crossing PAL/legacy-code boundaries. Execution of legacy applications is
not affected.

Third, Flicker takes advantage of complex hardware. Their power and energy
requirements makes its approach infeasible for low-end applications such as
sensor networks.

Research Questions. Despite Flicker’s drawbacks, it showed to be a very
promising research direction. It finally demonstrated how strong security
guarantees could be offered to applications running on huge monolithical
operating systems while only relying on an extremely limited software TCB of
250 lines of code. This lead to a number of research questions. Some of them
have been (partially) answered during this doctoral work, others are still open
for further research.

• What is the minimal set of security primitives required? We have
proposed a novel program-counter-based access control mechanism [120]
that provides strong isolation and enables lightweight inter-module
communication (see also Chapter 2). Later we added a new primitive:

16 INTRODUCTION

state-continuous execution [116, 117] that guarantees that even in the
event of unexpected crashes or power failure, an attacker cannot roll back
a module’s state (see Chapter 4). We expect that this set of primitives
may be reduced further. State-continuity support for example may only
require access to an attestable, monotonic counter.

• Can PMAs suitable for low-end devices be developed? Noorman et al.
[87] showed that the proposed program-counter-based access control
mechanism can be implemented efficiently in hardware and used in low-end
applications such as sensor networks.

• Which security guarantees can PMAs offer? How can these be verified?
Agten et al. [4] and Patrignani et al. [96,98] showed how protected modules
can be compiled to protected-module architectures without introducing
potential software vulnerabilities. As a result protected modules can only
be attacked at assembly-level when a related attack exists at source-code
level. Later Agten et al. [3] also presented work on how protected modules
can be verified at source-code level.

• How can PMAs communicate securely with peripheral devices, including
screen and keyboard? This is still an open research question. See
Section 5.2.1 for more details.

• Can availability properties be guaranteed to PMA architectures? This
is also still an open research question. Section 5.2.1 also provides more
details on this topic.

1.5 Building Secure Subsystems: Contributions to
the Research Area

McCune et al.’s approach finally provides verifiable security guarantees to
isolated PALs executing op top of an untrusted legacy operating system. This
dissertation focused on the problem of developing secure subsystems using
the same core principle. Such subsystems are much more complex. Consider
as an example a secure payment framework. Application vendors must be
able to connect to a single payment module that in turn connects to the
payment system of the user’s bank or selected payment method. Multiple
stakeholders are involved in such a system that do not necessarily trust one
another. An application vendor using the payment subsystem requires strong
security guarantees that the user transferred the correct amount. Financial
institutions may want to provide their own payment module without placing

BUILDING SECURE SUBSYSTEMS: CONTRIBUTIONS TO THE RESEARCH AREA 17

trust in modules of other vendors. Building such subsystems is very challenging
as modules cannot be merged.

We present here an overview of our contributions in this research area. We refer
the reader to one of the thesis chapters when work has been incorporated in
full, or to the published papers.

Self-Protecting Modules: A Noval Isolation Approach. At the beginning of
2010 we came up with a novel isolation mechanism [120]. Unlike Flicker, it
does not rely on short-lived modules. Instead, protected modules are treated as
“black boxes” by untrusted components; modules execute in the same address
space as the rest of the untrusted application, but cannot be accessed from
outside the module. They can only be called through an explicit interface and
maintain their state between invocations. Obviously, the services themselves do
have full access to their own memory locations. This includes the exclusive right
to disable their own protection, after the required security measures have been
taken to prevent sensitive information from leaking to unprotected memory.
Hence the name “Self-Protecting Modules” (SPMs).

To guarantee these isolation properties, a program-counter-based access control
mechanism was developed. Depending on the value of the program counter
(i.e., the location of the currently executing instruction) different access rights
are enforced. Obviously, when the program counter points inside an SPM,
instructions have more privileges to the SPM’s memory region than when we
are executing untrusted code outside the module.

Next to the separation between unprotected memory and the SPM, the SPM
itself is also divided into two6 sections. Code implementing the module’s services,
is placed in the Public section. This section is read-accessible from unprotected
memory, but can only be entered via specific entry points. The other section –
the Secret section – contains security-sensitive information (e.g., cryptographic
keys and the call stack). It is only accessible when executing within the SPM’s
boundaries.

Secure Inter-SPM Communication. Next to enabling strong isolation of
protected modules, the program-counter-based access control mechanism has a
second strong property: It enables the easy creation of secure channels between

6The original paper [120] presented a solution using three sections: SEntry, SPublic and
SSecret. Follow-up work simplified this setup and replaced the SEntry section with entry
points to the SPM. To avoid confusion, we present here the simplified setup which will also
be used throughout this text.

18 INTRODUCTION

modules. Even when an attacker gains kernel-level access to the system, integrity
and confidentiality of messages exchanged is guaranteed.

SPMs can be authenticated in two steps. First, the world-readable Public
section of the SPM is compared to a stored hash value. As the Public section
cannot be modified after the module’s protection is enabled and it is the only
executable section, it prevents SPMs from masquerading their behavior. The
access right restrictions guarantee to the caller which code will be executed.
In the second step, the layout of the SPM is checked. Containing the correct
executable code is not sufficient. Modules with an incorrect layout (e.g., a too
short Secret section) may use unprotected memory to store sensitive information.
When both checks succeed, the SPM is authenticated and can be called securely
by jumping to one of its entry points. Since messages cannot be intercepted
and are always delivered, this provides another important building block for
secure subsystems.

Early work [87,119,120] exposed a public interface to untrusted code. While
SPMs are in full control over the sensitive information they store internally,
exposing insecure interfaces may still present a major security risk. An SPM
implementing a signing service, for example, may guarantee that its private
key will never leak to the outside world. When this SPM can be called from
unprotected code however, an attacker can still request arbitrary data to be
signed.

In follow-up work [115] (see Chapter 3) we showed that a capability-mechanism
can be easily built easily on top of the provided secure communication primitive.
Only when an SPM received an unforgeable token, is it able to request service.
This significantly simplifies building secure subsystem of inter-connected SPMs.

Widely Applicable: High-end and Low-end Prototypes. In contrast to
Flicker, the program-counter-based access control mechanism was designed
as a suitable solution for low-end systems. The initial paper [120] only described
its concept. A working prototype was later developed by Noorman et al. [87].
It showed that the access control mechanism can be implemented in hardware
with almost no performance overhead when module boundaries are crossed and
at very limited overhead in terms of power consumption and die size. Moreover,
it also proved that modules can execute with a zero software TCB. The correct
execution of modules can be attested, without relying on any other software
component on the platform.

While the program-counter-based access control mechanism requires an access
control decision for every memory access, we also showed that it can be
implemented efficiently on top of existing, modern x86 processors. Fides [119]

BUILDING SECURE SUBSYSTEMS: CONTRIBUTIONS TO THE RESEARCH AREA 19

(see Chapter 2) takes this approach to execute provably secure SPMs by
implementing a small hypervisor. Salus [10] (see Chapter 3) applies a similar
mechanism but is implemented in the Linux kernel. It shows that the same
isolation principle can also be used to compartmentalize applications where
each compartment executes with least privileges.

State-Continuous Execution. Protected-module architectures are able to
avoid a large TCB by using untrusted code to execute non-security sensitive
tasks. The untrusted TCP/IP stack, for example, can be used to establish a
communication channel over a network. By only placing TLS functionality in
a protected module, strong security guarantees of the communication channel
can be provided with only a limited TCB [119].

Unfortunately, this only holds partially for modules that rely on the untrusted
operating system to provide non-volatile storage. Cryptographic primitives can
be used to integrity and confidentiality protect data before it is passed to the
OS. By deriving the used cryptographic keys directly from the content of the
Public section and layout of the module [87], only the module that initially
requested storage of sensitive data, can ever retrieve it. However, when freshness
of data needs to be guaranteed as well, additional security primitives need to be
provided. This is much more challenging than protection against replay attacks,
as modules also need to store their own state securely. An attacker with full
access to the untrusted store may be able to replay the state of the module
itself, not only of received messages.

Isolated, stateful modules need to be able to execute state-continuously. Once
input is provided to a module, it should either (eventually) enter a state based
on the provided input, or it should never advance at all. This is a non-trivial
problem when the platform itself may be powered down during execution or
when the execution of modules may be interrupted. Technical limitations
present additional challenges. Non-volatile memory, for example, can only
be added when a different fabrication process of processors is used. This is
infeasible in practice due to huge economic costs. The performance gap between
processing speed and time to write-access non-volatile memory, poses another
challenge. Especially when the module is used on a time-critical execution path
and execution cannot resume until its state is committed. We have proposed a
solution that avoids practical limitations, with only very limited performance
overhead [116,117] (see chapter 4).

Fully-Abstract Compilation. Protected module architectures provide strong
isolation guarantees of software vulnerabilities external to the module. None of
the proposed platforms however, can defend against vulnerabilities in protected

20 INTRODUCTION

modules themselves. Software modules that contain buffer overflows or expose
vulnerable interfaces, can therefore still be exploited and sensitive information
may still leak to an attacker. To significantly increase security guarantees
that PMAs can provide, we need to be able to prove correctness of protected
modules.

Developing modules secure from low-level attacks is challenging because
reasoning about (possible) attacks requires detailed information about the
module’s source code, its compilation and memory protection mechanism.
Developing modules in a memory-safe language, as proposed in Section 1.2, is
only a partial solution as an in-application attacker is able to interact with the
module at machine-code level, not only at source-code level. Security measures
such as type safety is only enforced at source-code level. Once the source code
is compiled to machine code, its imposed restrictions can no longer be enforced
– the abstraction introduced by type-safe languages can be broken.

Early 2012 we developed a fully-abstract compilation scheme [4]. This entails
that for every attack that exists at machine-code level, there also exists a related
attack at source-code level. This is an important property because it allows us
to reason about module security at source-code level without losing generality.

1.6 Independent Research Results by Industry

One simple approach to guarantee isolated execution of software handling
sensitive data is to execute this code on a separate chip. Hardware security
modules such as the TPM chip take this approach, but this obviously leads
to significant hardware costs. ARM developed with TrustZone [140] a cheaper
alternative. TrustZone provides a “dual-virtual CPU” design were trusted and
untrusted code is executed on the same physical CPU, but each in its own
isolated “world”. Hardware resources are either duplicated between both worlds
or are tagged to indicate to which world they belong to. While this provides
strong isolation guarantees between code running in the Secure and Normal
World, it does not increase security when malicious code is executed inside the
secure world. To mitigate this threat, applications cannot request execution of
their own sensitive code inside the secure world. This technology however is
used to guarantee security of some very specific applications. Apple’s Touch
ID technology, for example, stores the user’s biometric data within the secure
world.

Intel processors equipped with Active Management Technology (AMT) can
provide similar security guarantees [88]. In contrast to ARM TrustZone trusted
code is not executed on the main processor, but on a physically separate

THESIS OUTLINE 21

chip called the Management Engine. This enables versatile management
functionality such as remote access to the platform even the main processor
is not powered on and/or when the system’s kernel fails to boot correctly.
Similar to ARM TrustZone, execution privileges in AMT mode are heavily
restricted and applications cannot request the execution of arbitrary code on
the Management Engine.

In June 2013 Intel made its work on an alternative approach called Software
Guard eXtensions (SGX) public. Intel SGX has some significant similarities
with protected-module architectures described in this dissertation and related
work [77,89]: applications can place security sensitive parts of an application
in protected “enclaves” that execute in complete isolation from the rest of
the system. Given the strong security guarantees that protected-module
architectures (including Intel SGX) provide and the support of a large and
influential chip manufacturer such as Intel, we expect that this approach will
become widely applied in practice in the near future. This also implies that
many of the research results discussed in this dissertation (e.g., fully-abstract
compilation, state-continuous execution, etc.) may be applied on a wide scale
in the future. Intel SGX is discussed in more detail in Appendix A.

1.7 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2: Fides: Selectively Hardening Software Application Components.
In the next chapter we present a two-level architecture. At the lowest level,
we discuss the program-counter-based access control mechanism and show
by using hardware-based virtualization support that it can be implemented
efficiently on commodity processors. At the second level, we briefly discuss how
a fully-abstract compiler can be used to guarantee strong security properties of
compiled modules.

Chapter 3: Salus: Non-Hierarchical Memory Access Rights to Enforce
the Principle of Least Privilege. In Chapter 3 we show that the previously
presented memory access control mechanism can also be used to isolate potential
attack vectors from likely attack targets. To reduce the potential impact of
insecure module interfaces, we also present a capability mechanism: only when
a valid access token can be provided, will the caller’s request be serviced.

22 INTRODUCTION

Chapter 4: ICE: A Passive, High-Speed, State-Continuity Scheme. State-
continuous execution of modules has largely been neglected by related protected-
module architectures. In Chapter 4 we present a solution that does not require
accesses to slow TPM NVRAM for every state update.

Chapter 5: Conclusion. In Chapter 5 we re-iterate the contributions of this
dissertation and discuss new research challenges for the near and distant future.

Appendix A: Intel Software Guard eXtensions. In June 2013 Intel publicly
announced its work on a protected-module architecture called Software Guard
eXtensions (SGX). We discuss this technology in Appendix A and highlight
similarities and differences with academic research prototypes.

Appendix B: Protected-Module Architectures vs Microkernels. Protected-
module architectures have some similarities with microkernels. In Appendix B
we discuss key characteristics of microkernels, provide insights why they never got
widely adopted and discuss why we expect that protected-module architecture
won’t share the same fate.

Chapter 2

Fides: Selectively Hardening
Software Application
Components

Publications & Acknowledgments

Strackx, R., and Piessens, F. Fides: Selectively hardening software
application components against kernel-level or process-level malware. In
Proceedings of the 19th ACM conference on Computer and Communications
Security (New York, NY, USA, October 2012), CCS’12, ACM, pp. 2–13.

The main research effort of this work was lead by Raoul Strackx with the
guidance of Frank Piessens.

Abstract

Protecting commodity operating systems against software exploits is known
to be challenging, because of their sheer size. The same goes for key software
applications such as web browsers or mail clients. As a consequence, a significant
fraction of internet-connected computers is infected with malware.

To mitigate this threat, we propose a combined approach of (1) a run-time
security architecture that can efficiently protect fine-grained software modules

23

24 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

executing on a standard operating system, and (2) a compiler that compiles
standard C source code modules to such protected binary modules.

The offered security guarantees are significant: relying on a TCB of only a
few thousand lines of code, we show that the power of arbitrary kernel-level or
process-level malware is reduced to interacting with the module through the
module’s public API. With a proper API design and implementation, modules
are fully protected.

The run-time architecture can be loaded on demand and only incurs performance
overhead when it is loaded. Benchmarks show that, once loaded, it incurs a
3.22% system-wide performance cost. For applications that make intensive
use of protected modules, and hence benefit most of the security guarantees
provided, the performance cost is up to 14%.

2.1 Introduction

A significant fraction of Internet-connected computers is infected with malware,
usually with kernel-level access. Yet, many of these computers are used for
security-sensitive tasks, and handle sensitive information such as passwords,
corporate data, etc. While efforts to increase the security of commodity
operating systems [109] and applications [26,41,125] are important and ongoing,
their sheer size makes it very unlikely that they can be made secure enough
to avoid infection [6,42] with kernel-level malware. Due to the layered design
of commodity systems, kernel-level malware can break the confidentiality and
integrity of all data and code on the system.

This unfortunate situation has triggered researchers to design systems that can
execute security sensitive code in an isolated area of the system, thus improving
the security guarantees that can be offered. Of course, an important design goal
(and design challenge) is to realize this while remaining compatible with current
operating systems and hardware. Most of these proposed systems leverage
recent hardware extensions for trusted computing or virtualization to execute
code, and differ in the granularity of protection they offer (protection of full
applications [26,41,47,75,125] versus protection of small pieces of application
logic [11,77,78,105,112]), and in their root of trust (a correctly booted system [47,
112] or a hardware security module such as a TPM chip [11,62,77,78,105]). We
provide a more complete overview of existing work in section 2.6.

State-of-the-art systems for protection of software modules focus on attesting the
correct and secure execution of a single module to a third party [11, 77, 78, 105].
We focus on the complementary case of increasing the security guarantees of

INTRODUCTION 25

applications for the owner of the system. We propose an approach to selectively
harden security-critical parts of an application. An SSL-enabled webserver, for
example, could be built in a modular way where sensitive information is passed
between trusted modules until it is finally encrypted and passed to the TCP/IP
stack. This would reduce the power of a kernel-level attacker to one with only
access to the network. Current systems are ill-equipped for this task: writing
co-operating protected modules is too hard, messages passed between modules
may never be delivered and a lack of support for multiple instances of the same
module prevents a modular application design.

In this chapter, we propose a system consisting of two parts: a run-time security
architecture and a compiler. The security architecture implements a program-
counter based access control model. A protected module is divided into a public
and a secret section. The secret section stores the sensitive data and is only
accessible from within the module. The public section contains the module’s
code and can be read from outside of the module. This enables authentication
and secure communication between modules in a cheap and secure way: an
attacker is not able to intercept, modify or masquerade any messages between
protected modules.

The compiler provides an easy way to compile standard C-code into protected
modules. Since the program-counter dependent access control model allows
modules and unprotected code to share the same virtual address space, their
interaction is straightforward. This significantly simplifies the hardening of
applications.

Modules compiled with our compiler effectively reduce the power of kernel-level
malware and in-process attackers to only being able to interact with the modules
through a public API. In earlier work [4] we have proven for a simplified model
of our access control mechanism and compiler that with a proper API design
and implementation the module is fully protected: an attacker that is able to
inject arbitrary assembly code at kernel-level is only as strong as an attacker
interacting through the module’s API.

More specifically, we make the following contributions:

• We propose Fides, a security architecture for fine-grained protection
of software modules, based on a memory access control model that
makes access privileges dependent on the value of the program counter
(instruction pointer). The access control model is strong enough to
support fully abstract compilation [1] of modules; low-level attacks against
a compiled module exist if and only if the source-level module can also be
exploited.

• We show how this access control model supports novel features, such as

26 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

1. the ability to support function pointers to trusted modules. Secrecy
and integrity of any data passed as arguments is ensured by the
authentication of the pointer’s destination.

2. the ability to update modules after they are deployed, thereby
allowing legacy software to be ported easily and incrementally with
minimal modification.

• We report on a fully functioning prototype implementation, demonstrating
that Fides can be implemented on commodity hardware while remaining
fully compatible with legacy systems.

• We present a compiler that compiles standard C source code modules into
protected binary modules.

• We show that Fides has an average performance overhead of around 3%
on the overall system, which is reduced to 0% when no modules are loaded.
Macrobenchmarks show an overhead of up to 14% for applications that
intensively use Fides’ services.

We do not consider trusted I/O and leave it as future work. However, a trusted
path between an I/O module and I/O devices can be established as in related
work [80,150].

The remainder of this chapter is structured as follows. First, we clarify our
objectives by defining the attacker model and desired security properties in
Section 2.2. Section 2.3 gives an overview of the security architecture and its
key concepts. In Sections 2.4 and 2.5, we discuss how the run-time system
and compiler were implemented and evaluate performance. We finish with a
discussion of related work and a conclusion.

2.2 Objectives

High-level programming languages offer protection facilities such as abstract
data types, private field modifiers, or module systems. While these constructs
were mainly designed to enforce software engineering principles, they can also
be used as building blocks to provide security properties. Declaring a variable
holding a cryptographic key as private, for example, prevents direct access from
other classes. This protection however does not usually remain after the source
code is compiled. An attacker with in-process or kernel level access is not bound
by the type system of the higher language. We will show that Fides is able
to provide such strong security guarantees. We first discuss the abilities of an
attacker and then discuss how Fides provides these guarantees.

OBJECTIVES 27

2.2.1 Attacker Model

We consider an attacker with two powerful capabilities. First, an attacker can
execute arbitrary code – user-level or kernel-level – in the legacy operating
system. This kind of root-level access is a realistic threat: legacy operating
systems consist of millions of lines of code and this unavoidably leads to the
presence of programming bugs, such as buffer overflows [6], that can be exploited
by an attacker to inject code [42,146].

With kernel-level privileges, the attacker can try to corrupt or read the
state of protected modules, modify the virtual memory layout of applications
containing protected modules or intercept their loading process to tamper with
security-sensitive code or data. The attacker can also try to intervene in the
communication between modules, or to attack data that protected modules
wish to store persistently.

Second, the attacker can build and deploy her own protected modules. Our
security architecture does not assume that software modules that request
protection can be trusted. In other words, it is our goal to ensure the security of
a protected module by one stakeholder, even if modules of malicious stakeholders
are also loaded in the system.

With respect to the cryptographic capabilities of the attacker, we assume the
standard Dolev-Yao model [37]: cryptographic messages can be manipulated,
for instance by duplicating, re-ordering or replaying them, but the underlying
cryptographic primitives cannot be broken.

We assume the attacker has no physical access to the hardware. An attacker
with control over the physical system may disconnect memory, place probes
on the memory bus, or perform a hard reset. Since remote exploitation of
commodity systems is far more common than exploitation through physical
access, this is a reasonable assumption.

2.2.2 Security Properties

To provide strong security guarantees, we use a combination of a run-time
system and a compiler.

The Fides Run-Time System

The Fides run-time system enforces a program-counter based access control
mechanism. It guarantees the following security properties:

28 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

• Restriction of entry points. Protected modules can only be invoked
through specific entry points, preventing an attacker from jumping to an
incorrect location in the module and executing on unintended execution
paths [111].

• Confidentiality and integrity of module data. A protected module can
store sensitive data in a way so it can only be read or modified by the
module itself.

• Authentication of modules. Modules can authenticate each other securely.
This also implies that code of modules is integrity protected.

• Secure communication between modules. Fides guarantees integrity,
confidentiality and delivery of data exchanged between modules.

• Minimal TCB. The correct and secure execution of a module only depends
on (1) the hardware, (2) the Fides architecture and (3) the module itself
and any other module that it calls. In particular, the operating system is
excluded from the TCB.

Secure Compilation of Modules

Using the protection mechanisms offered by the run-time system as building
blocks, the compiler allows the compilation of standard C source code into
protected modules. It provides the following security guarantees:

• Integrity of execution. An attacker is not able to influence the correct
execution of the module

• Secure communication between modules. The compiler ensures that
sensitive information is passed only between modules using a secure
channel.

• Secrecy of sensitive information. Only information that is passed explicitly
to unprotected memory or to another module exits the module. Leakage
of possibly sensitive information, for example information lingering in
save-by-caller1 registers, is prevented.

1Storing and restoring the contents of all registers for every function call would result in a
significant performance impact. Instead, the application binary interface (ABI) defines which
CPU registers need to be stored/restored by the caller of the function (i.e., save-by-caller
registers), which need to be stored and restored by the called function (i.e., save-by-callee
registers) or which do not need to keep their contents (i.e., scratch registers).

OVERVIEW OF THE APPROACH 29

Note that it is not our objective to protect against vulnerabilities in protected
modules: the security of a protected module can be compromised if there are
exploitable vulnerabilities in its implementation. Examples include logical faults
(i.e. a faulty API design [73]), or memory errors [42, 122, 146]. Instead, our
goal is to protect the module from malware that exploits vulnerabilities in
the surrounding applications or underlying operating system. A vulnerable
module however, can only affect the security of other modules if they explicitly
place trust in the former and, for example, exchange sensitive information. An
attacker introducing malicious modules in the system does not gain any more
power as they are not trusted by any other module. In section 2.5 we will show
that a low-level attack against modules exist iff also a high-level attack exists.

2.3 Overview of the approach

In Fides, an application and the protected modules it uses, share the same
virtual address space. Protection of the modules is provided by enforcing a
memory access control model: access rights to memory locations depend on
the value of the program counter. Roughly speaking, while the processor is
executing within the boundaries of a specific protected module (i.e. the program
counter points to an instruction that is part of the module), it can access
memory allocated to that module. If the processor is executing outside the
boundaries of the module, it has only limited rights to access the module’s
memory. In particular, destruction of the module is also only possible from
within the module: this is why we use the term self-protecting module (SPM)
for protected modules in Fides.

This section gives an overview of how this basic mechanism is used to support
communicating protected modules. First, we discuss in more detail the layout
of an SPM and the enforced memory access control (Section 2.3.1). Next, we
describe the four primitive operations offered by Fides (Section 2.3.2). Then,
in Sections 2.3.3 and 2.3.4, we discuss the typical life cycle of an SPM, and
how SPMs can authenticate each other and collaborate securely. Sections 2.3.5,
and 2.3.6 respectively show how SPMs can be updated and how SPMs can
persistently store their state over reboots. Finally, attestation of the correct
execution of an SPM to a remote verifier is addressed in Section 2.3.7.

2.3.1 Layout of a Self-Protecting Module

A self-protecting module is a chunk of memory divided in two sections (see
Figure 2.1). The Secret section contains the module’s sensitive data. This not

30 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

Figure 2.1: The layout of an SPM.

Table 2.1: The enforced memory access control model.

from\to Entry pnt. Public Secret unprot.
Entry pnt. r-x r-x rw- rwx
Public r-x r-x rw- rwx
Secret --- --- --- ---
Unprot./

r-x r-- --- rwxother SPM

only includes sensitive data processed by the module, such as cryptographic
keys, but also data used for the correct execution of the module, such as its call
stack. Read and write access to the Secret section is only allowed from within
the module. Access from outside the module, including from another instance
of the same SPM, is prevented. These access restrictions give modules total
control over any data stored in their Secret section.

The Public section contains information that is non-confidential and should only
be integrity-protected. This includes all2 the module’s code and constant values
such as strings. Once the module is protected, the contents of this section can no
longer be modified, it can only be read and/or executed. Read access is allowed
from unprotected code as well as from other SPMs, allowing authentication of
modules.

2Self-modifying code and interpreted code could be supported easily by making the Secret
section executable, but we consider such support out of scope for this chapter.

OVERVIEW OF THE APPROACH 31

SPMs are able to access unprotected memory in the same address space. While
Fides’ design does not impose any access limitations on these locations, access
restrictions set by the legacy kernel are enforced to prevent malicious modules,
for example, from overwriting kernel space.

Each SPM comes with a list of memory locations in the Public section that are
valid entry points into the SPM. Fides will guarantee that an SPM can only be
executed by jumping to a valid entry point. This prevents attacks that attempt
to extract information by selectively executing code snippets [111].

Table 2.1 summarizes the enforced access control rules. It shows for instance
that code in unprotected memory or other SPMs can read the Public section of
an SPM, or can execute an address that is an entry point of the SPM (from
this point on, the program counter is within the Public section and the access
rights are elevated).

2.3.2 Primitive Operations

Fides implements four primitive operations to create, destroy and query the
location and layout of SPMs.

The crtSPM primitive is used to create an SPM. It takes the location and
size of the Public and Secret sections and a list of entry points. First, Fides
verifies whether all referenced logical pages are mapped to physical pages, that
they do not overlap with any existing SPMs, and that all entry points point
into the Public section. Then, Fides creates an identifier spm_id for the SPM.
Fides guarantees that until it is rebooted, no other SPM will receive the same
identifier. Therefore the identifier can be used to differentiate instances of
the same module. Fides also clears the Secret section (set to all zeroes) to
remove the initial contents of the Secret section from the attack surface. Finally,
memory access protection of the SPM is enabled.

The killSPM primitive will destruct the SPM that called it (or generate a
fault if called from unprotected code). Enforcing that only SPMs can destruct
themselves is important for security: it prevents attacks where an attacker
destroys an SPM unexpectedly e.g. during a callback to unprotected memory.
It also allows SPMs to pause their destruction until its sensitive data is
stored securely to disk and overwritten in memory. Note that this does not
prevent Fides from interrupting non-responsive, possibly malicious, modules
(see section 2.4.1).

Fides supports two primitives to allow authentication of SPMs. The lytSPM
primitive is given any virtual address and returns the base address, layout and

32 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

(a) Initialization

(b) Destruction

Figure 2.2: The life cycle of an SPM from (a) initialization to (b) destruction.

spm_id of the module that is mapped at the specified location. The tstSPM
primitive is more efficient and returns whether the SPM with a given spm_id
is loaded starting at the specified location. Both primitives check whether the
referenced SPM is loaded correctly: as SPMs are loaded in processes’ virtual
address space, pages may not be mapped, mapped to incorrect physical pages,
or mapped out of order.

2.3.3 Life Cycle of a Self-Protecting Module

Figure 2.2a and 2.2b describe the life cycle of an SPM. We explain the steps
from creation to destruction in detail.

Setting up an SPM. First (Figure 2.2a, step 1), the legacy operating system
provides a user process with a chunk of (possibly physically non-contiguous)
memory and the SPM is placed in unprotected memory.

OVERVIEW OF THE APPROACH 33

Figure 2.3: Fides’ ability to establish secure channels, enables the easy creation
of complex trust networks. Modules A and B are able to explicitly place trust on
(possibly another instance of) an SPM implementing RSA operations without
trusting each other. Similarly, a malicious module M will not be able to cause
any harm as it is not trusted by any module.

In the second step, the crtSPM primitive is called. An attacker that compromised
the previous step(s), will be detected later on and mitigated. At this point, the
SPM can be authenticated and service other modules. However, most SPMs will
need to restore their secret state from persistent storage after creation (step 3).
In Fides, this is handled by a special SPM, called the Vault that will only return
previously stored data over a secure channel. Details of authentication and
secure communication will be discussed in Section 2.3.4. In Section 2.3.6 we
elaborate on the workings and security of the Vault.

Destroying an SPM. When the SPM is no longer needed, it should be
destroyed properly (Figure 2.2b). First, the module accesses the Vault to
store any secret data that must be available for later executions. In step 2,
the secret data of the SPM is overwritten to prevent it from being disclosed
in unprotected memory. Finally, the module calls the killSPM primitive to lift
the imposed access control of the module’s memory.

2.3.4 Secure Local Communication

One of Fides’ objectives is to support a system of collaborating modules (see
Figure 2.3), each with its own secrets and services that it offers to other modules,
adhering to the principle of least privilege [106]. Hence, SPMs must be able
to authenticate each other, and establish secure communication channels. We
explain both aspects in detail.

The identity of an SPM is captured in what we call a security report. It contains
four parts:

34 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

• A cryptographic hash of the Public section allowing verification that the
Public section was not compromised before protection was enabled. It
is essentially the SPM’s identity as the access control model only allows
code execution from this section.

• The layout of the SPM, including the sizes of the Public and Secret sections,
and the list of entry points (relative to the Public section) to verify that
the protection request was not compromised. Modification of the size
of the Secret section in the SPM’s initialization phase for example, may
cause the use of unprotected memory to store sensitive information.

• A serial and version number. The authentication mechanism is flexible
enough to support SPMs to be updated easily. As the cryptographic
hash of the Public section will differ between versions, a serial number is
required to link different versions of the same SPM together. A version
number prevents the re-use of old (e.g. security vulnerable) SPMs.

• Cryptographic signature. The security report is signed by its issuer. SPMs
have a list of trusted certificate authorities (CAs) to verify the signature
of SPMs they authenticate.

Since a security report is signed by its issuer, it can be stored in unprotected
memory. Any working mechanism to retrieve an SPM’s security report will
suffice. For simplicity, we will assume in the rest of the chapter that it is stored
in front of the SPM.

One-way authenticated service call. Consider a SecureRandom module that
provides cryptographic random numbers, and a Client module that authenticates
and requests its service (Figure 2.4a).

First, the Client calls the lytSPM primitive, locates the security report, and
verifies (1) its signature on the security report, (2) the hash of the Public section
and the layout of the SPM against the information in the security report, and
(3) whether serial and version number are as expected.

Second, the SecureRandom module is called. This is similar to calling a function:
parameters are loaded in registers and a jump to the appropriate entry point
is performed. An important difference with regular function calls on the x86
platform is that the return address must also be passed in a register. Under
normal operation return addresses are pushed on the call stack of the caller.
However, to protect the integrity of their execution, modules are not allowed
to access each others call stack and the return address cannot be retrieved.
Hence, a continuation entry point, in this case receive_random, is provided as
a parameter (similar to continuation-passing-style programming [8, 101]).

OVERVIEW OF THE APPROACH 35

(a) One-way authentication

(b) Two-way authentication

Figure 2.4: Communication protocols between two SPMs.

In the final step, SecureRandom generates a random number and returns it by
performing a jump operation to the receive_random entry point.

The bandwidth of the secure channel can be increased significantly by storing
large messages in memory shared between sender and receiver. We will further
discuss this mechanism in Section 2.4.1.

In case the Client module requires any additional random numbers, the
SecureRandom module can be re-authenticated using the tstSPM primitive.
Based on the spm_id returned by lytSPM when the module was first
authenticated, it ensures that the same instance of the module will be
accessed and rechecking the security report is not required. We will show
in Section 2.5 that repeated authentication is significantly more efficient than
initial authentication.

Two-way authenticated service call. Two-way authentication is very similar.
Assume that a module Client wishes to communicate with another module,
Server, and that mutual authentication is required (Figure 2.4b).

First, Client locates the Server’s security report and authenticates the module
as in one-way authentication. In step two, a message is sent to the Server
containing the entry point, receive_secret, where the response should be
returned to. In step three, the Server locates the Client’s security report using
the provided return point and the lytSPM primitive. Only after successful
authentication of the client, sensitive data is returned.

In case the origin of service requests must be proven, a secret session token can
be passed to the authenticated endpoint during the initial authentication. The
session-token should be passed in all future service requests.

36 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

2.3.5 Updating SPMs

Fides’ authentication scheme allows a module to be updated easily without
requiring any modification of modules or unprotected code that are clients of
the updated module.

Updating works as follows. A client authenticates a module starting from
just a function pointer: using the lytSPM primitive, the SPM queries Fides
for the base address of the referenced module and locates its security report.
After authenticating the issuer and verifying its serial number3, the module is
authenticated as described in Section 2.3.4. In addition the client should check
the version number. Updated versions might contain API inconsistencies to
previous versions e.g. services may be serviced on new entry points. Similarly,
the version number should be high enough to prevent attacks where a module
is downgraded to an older, vulnerable version. To transfer secret state from an
old version to a newer, special support is required. An update protocol could
be implemented by the modules to pass the information, or a support SPM
could be built to pass persistent sensitive information to updated SPMs. This
approach allows the Vault to remain simple and easy verifiable: it will only
return sensitive data to the same SPM that previously requested storage.

Security of updating modules depends on the ability to create crytographically
signed security reports. Since it can safely be assumed that only the creator
of the initial report has access to the private key, an attacker is not able to
fabricate his own new versions.

2.3.6 The Vault

The Vault is an SPM that stores sensitive information on behalf of other SPMs.
It offers two services. First, an SPM can ask the Vault to store persistent secret
data. The Vault will append the identity of the requesting SPM (its layout and
cryptographic hash of the public section), encrypt and sign the data and store
it using the (untrusted) services of the legacy operating system.

Second, only an SPM that previously stored secret data can retrieve it again.
After mutual authentication, the Vault retrieves the encrypted data from the
legacy operating system, checks its integrity, decrypts it and sends it over a
secure channel to the requesting SPM.

3The issuer/serial number combination is assumed to uniquely determine functionality,
and this should be stable over updates of the module.

OVERVIEW OF THE APPROACH 37

The Vault is treated specially by Fides: it is created when Fides is booted, and
it receives its own secret data directly from the secure storage space on the
TPM.

Besides offering secure storage, the Vault also ensures state continuity [93].
In particular, protection against two possible attacks is provided. First, in a
rollback attack, an attacker passes a stale version of an SPM’s stored data from
disk to the Vault. Depending on the module’s functionality, this may result in
a security vulnerability, such as the reuse of cryptographic keys.

Second, the Vault should also provide crash resilience. As a compromised legacy
kernel may allow an attacker to cause the system to crash, persistent storage of
fresh data could be prevented based on subtle timing differences. This essentially
enables an attacker to prevent the system from making progress.

In chapter 4 we discuss in detail how state-continuous execution and storage
can be provided efficiently.

2.3.7 Remote Attestation

Fides’ access control model and local communication mechanism can also be
leveraged to attest correct execution of modules with two key characteristics.
First, meaningful attestation can be provided to the remote party, called the
verifier. Only a small TCB consisting of the Fides architecture, an attestation
module, the Vault and the attested module(s), are included in the measurement.
Second, the attestation is transparent: the correct execution of any module can
be attested without any modification. This improves reusability of modules.

Attestation in Fides is based on a two-layered approach where each layer attests
its correct execution. Due to page constraints, only a sketch of the mechanism
is presented. It relies however on µTPMs presented by McCune et al. [77].
Interested readers are referred there.

At the lowest level, the TPM chip ensures the correct loading of Fides and
boots trust on the next layer. To achieve this, PCR registers 17, 18 and 19 are
extended with a measurement of Fides, the security report of an attestation
module and the Attestation Identity Key (AIKSPM) respectively.

At the second level, attestation modules provide an attestation service and
implement PCR extend and quote functionality similar to a hardware TPM
chip. This prevents hardware PCR registers from being cluttered. As several
identical attestation modules can also be loaded in the system, the number of
SPMs that can be attested at the same time is virtually unlimited.

38 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

Figure 2.5: Using Fides’ access control model and fast local communication,
attestation can be supported easily and transparently to any attested module.

Figure 2.5 displays how the correct execution of an Attested SPM can be proven.
First, the verifier provides two nonces n1 and n2 and an attestation module is
created. Next, the attestation module extends its measurement with the Vault
and requests its AIKSPM key. Similarly the attested module is measured and
contacted in step 3. Finally, the attestation module extends its measurement
with the received result and signs it together with n2. A similar request is sent
to the lower level with n1, but is only granted when the request is made from
a module compliant with the measured security report in PCR 18. In step 4,
both quotes are sent to the verifier.

In case the attested SPM calls other SPMs, the verifier is able to rely on the
authenticated communication mechanism to ensure that no untrusted SPMs are
used in the computation of the result. Alternatively, attestation-aware SPMs
could notify the attestation module which SPMs are used.

2.4 A Prototype Implementation

A key element of Fides is the program-counter dependent memory access
control model. Since access rights have to be checked on each memory access,
implementing this completely in software would have a huge performance
cost. Alternatively, modifying hardware, an approach taken by related
research [40, 70, 139], has serious drawbacks. In this section, we describe an
efficient implementation of the run-time system and the compiler on readily
available hardware.

2.4.1 The Fides architecture

The key observation is that the memory access control rules only change when
entering and exiting SPMs. In our implementation, we use a small dynamic
hypervisor to isolate SPMs from the rest of the system, and we ensure that the

A PROTOTYPE IMPLEMENTATION 39

Figure 2.6: Layout of the Fides architecture. Hatched areas represent partially
accessible memory regions.

correct memory permissions are set on entering/exiting SPMs. Hence, there
is only an overhead on entering and exiting SPMs, leading to a reasonable
performance overhead.

We introduce a minimal hypervisor that runs two virtual machines, the Secure
VM and the Legacy VM (see Figure 2.6). Both VMs have the same guest
physical view of host physical memory, but they have a different configuration
of memory access control. Note that there is no duplication of memory, only
two virtual views of the same physical memory.

Our prototype implementation can be loaded and unloaded when required,
avoiding any overhead when no SPMs are in use. Fides is bootstrapped by
loading a device driver in the legacy kernel to gain supervisor privileges. Then,
physical contiguous memory is allocated to store a hypervisor and the Secure
VM. Next, a dynamic root of trust is started and the hypervisor and Secure
VM are launched. Finally, the running legacy kernel is pulled in the Legacy
VM, and memory access control of both VMs is configured [63,103].

The Legacy VM. The legacy kernel and user applications continue their
operation without any interruption: the only difference after the start of Fides
is that access to certain parts of memory is now prohibited in the Legacy VM.
More specifically, the memory where SPMs and parts of the TCB are stored, is
protected. If the legacy VM accesses this memory (for instance tries to read or
write the Secret section of an SPM), this will trap to the hypervisor and the
access attempt is prevented.

The Fides device driver that was used to bootstrap Fides also provides an
interface to the security architecture, for instance to create and query SPMs.
This interface can not be exploited: no sensitive information is ever returned.
However, given our attacker model, an attacker may change the returned results
before code in the Legacy VM can process it. Hence, these primitives can only
be used securely from within an SPM thereby avoiding the results to leave

40 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

the Secure VM. This problem does not occur when SPMs are created from
unprotected memory: when an attacker interfered with the creation of an SPM,
this will be detected by the authentication protocol and no sensitive information
will be passed to it.

This design ensures excellent compatibility with legacy operating systems: the
only change from the OS’s viewpoint is that certain memory regions (that are
unused during normal operation) are rendered inaccessible.

Hypervisor. The hypervisor is executing at the most privileged level and serves
three simple purposes. First, it provides coarse-grained memory isolation of
the legacy VM, secure VM and itself. It also prevents any access to SPMs
that is not allowed from unprotected memory. However, it does not implement
the fine-grained program-counter dependent memory access control. This is
implemented in a separate security kernel in the secure VM and will be discussed
later.

Second, the hypervisor schedules both virtual machines for execution based on
a simple request passing mechanism. The secure VM is scheduled only when
a request is passed to it (i.e. when an SPM is called), or when it did not yet
finish executing the previous request. Hence, the Secure VM consumes no CPU
cycles when no SPMs are being executed.

Third, the hypervisor creates a new dynamic root of trust (DRTM a.k.a. late
launch) when it is loaded. This allows the attestation of the correct launch
of the security architecture. It also allows the TPM chip to store sensitive
information based on this measurement, such as the cryptographic keys used
by the Vault. If Fides was compromised before it was protected in memory and
launched or a hypervisor was already present, the result of this measurement
differs and sensitive data is inaccessible.

Secure VM. To allow easy access to the unprotected memory, the Secure VM
has the same view of physical memory as the Legacy VM but with different
access control settings: SPMs can be accessed but are protected by a security
kernel

Security kernel. To reduce the size of the TCB, only a minimal amount of
features are used: memory paging, a separation of user and kernel mode, page
fault handling and a few system calls. We now discuss how these features are
used to enforce the fine-grained access control model and how SPMs can use
Fides’ primitive operations.

A PROTOTYPE IMPLEMENTATION 41

To ensure isolation, SPMs are executed in user mode. When a module is
invoked, the security kernel receives a request specifying the virtual address
of the entry point called. This address is translated to a physical address by
directly traversing the (untrusted) page tables in the Legacy VM. Next the
containing module is located. When no module is found an error is returned to
the Legacy VM, else a new address space is created mapping the entire module.
As modules are always mapped at the same virtual addresses as in the Legacy
VM, it is easy to access unprotected memory locations. When these are not yet
mapped, a page fault will be generated. At that time the referenced physical
page is located, checked whether it is part of an SPM and checked against
the access rights of the SPM. To prevent an SPM from receiving unauthorized
access to memory locations, the address space is rebuilt each time an SPM is
invoked. Note that the page tables of the Legacy VM are not trusted: they are
only used to check which physical page was referenced.

The security kernel also ensures that modules are properly loaded: since the
untrusted page tables of the legacy kernel are used, an attacker may try to
only load modules partially in memory or rearrange the order of its pages. To
mitigate this threat, the security kernel records the order of the physical pages
when a module is created and ensures that the same order is used when the
module is called or its presence tested using the lytSPM and tstSPM primitives.

TOCTOU attacks are mitigated by preventing concurrent execution of modules.
As modules can only destroy themselves, an authenticated module must still be
mapped in memory when it is called. This is however overly restrictive as only
the presence of the called module must be ensured.

Besides passing information between SPMs in registers, the security kernel also
provides support to pass bulk data using a special shared memory segment
that is accessible only to the currently executing SPM. Hence, the receiver
automatically gains access when it is called. To prevent information leakage,
the called SPM must overwrite the passed data before execution returns to
unprotected code. Access to this memory segment from the legacy VM is
prevented using Extended Page Tables (EPT), the same hardware mechanism
used to isolate different VMs.

Limitations of the prototype implementation. To prevent time-of-check-to-
time-of-use attacks, SPMs must not be destroyed after they were authenticated
but before they are called. This would cause sensitive information stored
in registers to leak to untrusted code. Our prototype currently handles this
by preventing SPMs to be interrupted. However, this is largely a prototype
limitation, and not fundamental. Fides could, for example, support interrupts
by suspending and resuming the executing SPM after the interrupt is handled.

42 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

Entries to other SPMs are denied to prevent destruction of already authenticated
communication endpoints by the interrupted module. Non-responsive modules
on the other hand, may be destroyed by the security kernel without further
consideration. Alternatively, support for multicore processors could also be
added and SPMs can be run on one specific core. In that case, unprotected
code is able to execute uninterrupted. This may be acceptable, as it can be
expected that SPMs are only responsible for a small fraction of all computation.

In production systems the use of DMA should be prevented from overwriting
an SPM. Just as the prototype currently prevents the Legacy VM to access
SPM locations, the IOMMU should be configured to prevent DMA accesses to
modules.

2.4.2 Automated Compilation of Modules

We modified the LLVM4 compiler to compile standard C source code modules
into protected modules. More specifically, the compiler ensures the following:

• Each module implements its own stack.

• When returning to unprotected memory, registers and condition flags are
cleared.

• Function pointers point to unprotected memory or to a function in the
SPM with a correct signature.

• Function call annotations specify that the referenced module must
be authenticated before the function is called and possibly sensitive
information is passed.

• The entry point handling returns from callback functions, cannot be
exploited. The entry point is only serviced when a callback actually took
place.

We now discuss two notable implementation details: supporting function calls
to SPMs and the use of function pointers by modules.

Supporting function calls to SPMs. For each SPM, a wrapper is created to
allow easy invocation. The wrapper serves two purposes. First, it loads and
unloads the SPM when appropriate. Second, it creates a stub function for each

4http://llvm.org/

http://llvm.org/

A PROTOTYPE IMPLEMENTATION 43

Figure 2.7: Implementation of the Fides architecture.

available entry point. Figure 2.7 displays a schematic overview of an invocation.
In step 1 untrusted code accesses a stub in the SPM’s interface as a normal
function. Arguments are passed together with the entry point to the security
kernel via the Fides driver and hypervisor (step 2). After all consistency checks
pass, the SPM is invoked (step 3). The SPM’s execution stops when it tries
to execute unprotected memory, either because the SPM’s service returns or
because an external function is called. In both cases the security kernel returns
the contents of all registers to the stub (steps 4-6). There appropriate action
is taken: returning to its caller or invocation of the function pointer before
re-entering the SPM.

Supporting function pointers. Support for function pointers dereferenced
within a module is added in two steps. In the first step, an LLVM function pass
replaces every function pointer dereference with a call to one of two support
functions, depending on whether the call should be made to a trusted module
or unprotected code. The developer of the module should specify the type of
the target of the function pointer by annotating the source code. These support
functions will be compiled as part of the module and allows easy handling of
function pointers without having to use the LLVM intermediate representation.
In step two, the module of the target of the function pointer is authenticated, if
required. The spm_id of the destination is stored within the boundaries of the
module to limit the cost of subsequent calls. Finally, possible side channels that
leak information about the inner state of the module, such as the condition
flags and save-by-caller registers are cleared and the value of the stack pointer
is stored before a jump to the function pointer is made. A special return entry
point is added to the module (one per module) to facilitate returns from the
function. As with any entry point, the return location after the module has
serviced the request, is passed through register %rbp.

44 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

Table 2.2: The TCB consists of only 7K lines of code.

VMM Secure kernel Shared Total TCB
1,045 1,947 4,167 7,159

Compiler limitations. While modules can be written in standard C-code,
some source code annotations are required. Allocation requests using the
standard malloc function, for example, must specify where the memory should
be allocated. A support library has been created to statically link functions of
the libc library with the module.

2.5 Evaluation

2.5.1 Security Evaluation

Fides offers strong security guarantees to compiled modules by relying on a
run-time system of only limited size and a compiler. We now discuss both
components.

Run-time system. The run-time system implements a program-counter based
access control mechanism in three layers. At the lowest level we rely on the
TPM chip and assume that an attacker is not able to launch physical attacks
against the system. When the Fides architecture is loaded, a dynamic root
of trust measurement (DRTM) is started, measuring the memory state of the
system. Based on this measurement the cryptographic keys used by the Vault
are sealed in the TPM. An attacker that compromised the correct loading of
Fides, for example by modifying the binary on disk, will cause an incorrect
measurement and access to the sealed keys is prevented. As the Vault is the
only SPM that stores persistent data, access to sensitive data is prevented.

In the second layer, the hypervisor protects all security sensitive memory
locations against faulty legacy applications and a compromised kernel. This
includes secrecy of confidential data as well as integrity of code.

The third layer, the security kernel, protects modules from potentially malicious
SPMs by realizing the program-counter dependent access control model.

An important enabler for formal verification of the TCB is to make sure that the
size of the TCB is small. Table 2.2 displays the TCB of Fides for its different

EVALUATION 45

parts, as measured by the SLOCCount5 application. Only the hypervisor
(VMM) and the secure kernel are trusted. They contain 1,045 and 1,947 lines
of C and assembly code respectively. This does not include the 4,167 lines of
code that is shared between the parts. The driver (690 LOC) used to support
communication with Fides is not security sensitive and thus is excluded from
the TCB. This totals the size of the TCB to only 7,159 LOC.

Compilation of SPMs. Facilities offered by high-level languages such as a
private field modifier, allow easy reasoning about an application’s security
guarantees and its verification. A low-level attacker, not bound by these
restrictions, may however still exploit a vulnerability anywhere in the application
and break these security guarantees. It has been proven [4] that a simplified
version of Fides’ fine-grained access control mechanism, is able to support
fully-abstract compilation of a high-level language with private fields: when
no source-level attack against a module exists, it also can’t be exploited after
compilation.

To achieve such high security guarantees, modules must be compiled securely.
Each module’s stack, for example, must be placed in its Secret section. Our
modified compiler is able to compile standard C source code to modules meeting
these requirements.

2.5.2 Performance Evaluation

We performed three types of performance benchmarks on our prototype. First,
we measure the system-wide performance impact of Fides. Next, we measure
the cost of local communication (Section 2.5.2) and finally we benchmark an
TLS-enabled web server (Section 2.5.2).

All our experiments were performed on a Dell Latitude E6510, a mid-end
consumer laptop equipped with an Intel Core i5 560M processor running at 2.67
GHz and 4 GiB of RAM. Due to limitations of our prototype, we disabled all
but one core in the BIOS. An unmodified version of KUbuntu 10.10 running
the 2.6.35-22-generic x86_64 kernel was used as the operating system.

System-wide performance cost

To measure the performance impact of Fides on the overall system, we ran the
SPECint 2006 and lmbench benchmarks. Figure 2.8a displays the results of the

5http://www.dwheeler.com/sloccount/

http://www.dwheeler.com/sloccount/

46 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

former. With the exception of the mcf application (10.36%), all applications
have an overhead of less than 3.28%. We contribute the performance increase
of gcc to cache effects.

Figure 2.8b displays the results of 9 important operations of the lmbench suite:
null (null system call), fork, exec, ctxsw (context switch among 16 processes,
each 64 KiB in size), mmap, page fault, bcopy (block memory copy), mmap read
(read from a file mapped into a process), and socket (local communication by
socket). All tests show a performance overhead of less than 10% and on average
even as low as 3.22%. As our implementation does not require any additional
computation when no SPMs are executed, this performance overhead can be
contributed completely to the hardware virtualization support. We expect that
as this support matures, overhead will be reduced further. Also note that Fides
can be unloaded when it is no longer required, reducing the overhead to 0%.

The hypervisor used by the Fides architecture minimizes the number of VM
exits. Using hardware support of the processor, modifications of any control
register, including CR3 that references the active paging tables, do not pass
control to the hypervisor. The extended page tables (EPT) prevent guest access
to physical pages containing security sensitive data or code. In practice a VM
exit is only generated when the cpuid or vmcall instruction is issued. The
former requests information about the processor on the platform while the latter
is used to implement an interface to the hypervisor. Both are rarely used.

Local communication between SPMs

To measure the impact of communication, two microbenchmarks were used.
The first one measures the cost of a call to an SPM compared to a call to a
similar driver in the legacy operating system. A simple SPM of two 4 KiB
pages was used for the test. When its entry point is executed, it immediately
passes control back to the calling application. The driver used for comparison
is similar. When it is accessed using the ioctl interface, it immediately returns.
Table 2.3 displays two results. The Entry row shows the measurement of the
time between the point of call in the user application and the point of delivery
in the SPM or driver. The Round trip row measures the time between call and
return. Each test was executed 100,000 times. Results show a performance
overhead of 8,167% and 8,781% respectively. This significant overhead is caused
by the fact that for each SPM invocation two VM entries and exits are required
to pass execution control from the legacy VM to the secure VM and back, as
well as four context switches from supervisor to user mode are required (two in
each VM, see Figure 2.7). However, given the substantial security guarantees,
these costs seem very acceptable.

EVALUATION 47

(a) SPECint 2006

(b) lmbench

Figure 2.8: The performance impact of Fides on the overall system.

Table 2.3: SPM vs. driver access overhead (in µs).

SPM Driver Overhead
Entry 4.35 0.05 8,167.14%

Round trip 6.58 0.07 8,781.73%

48 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

Table 2.4: Microbenchmarks measuring the cost (in µs) of calling an
(authenticated) SPM.

one-way auth. two-way auth.
tstSPM sha512 tstSPM sha512

timing 7.82 95.72 8.28 110.63
overhead 6.03% 1,198% 12.22% 1,400%

The second microbenchmark measures the cost of different authentication
techniques, over an average of 100,000 runs. Two SPMs were created, called Ping
and Pong. Ping invokes a service in Pong that simply returns a static response.
Four different setups were used, shown in table 2.4. Performance results without
any authentication measured 7.37µs and is used as the baseline. Columns one
and two display results for one-way authentication. Column one measures
repeated authentication where Fides is requested to check the spm_id of the
called module and column two measures an initial authentication using SHA-512
and the lytSPM system call, which is less flexible than authentication using
a security report, but used, for example, by the Vault. Initial authentication
has a performance penalty of 1,197.97%. Repeated authentication is much less
expensive at 6.03%. Similar tests were conducted for two-way authentication.
Performance penalties increased to 1,400.06% and 12.22% respectively.

TLS-Enabled Web Server

As a macrobenchmark, we protected an TLS-enabled web server. Our goal
was not only to protect the web server’s long term secret, but the entire TLS-
connection, including session information. This prevents a kernel-level attacker
from hijacking the connection and renders him only as powerful as an attacker
with complete control over the network.

We used the PolarSSL cryptographic library6 and some functions of the diet
libc library that are security sensitive in our use case (i.e. sscanf) to implement
the SPM. We also implemented our own simple malloc memory management.
The NSPR7 library was used to create a multithreaded server. Each connection
is handled in a separate thread with its own SPM.

We used the Apache Benchmark to benchmark a web server returning a static
74-byte page to the client over an TLS-connection protected by a 1024-bit RSA
encryption key. Table 2.5 displays the server’s performance with a varying
number of concurrent tranctions, each setup receiving 10,000 requests. Repeated

6http://polarssl.org/
7https://www.mozilla.org/projects/nspr/

http://polarssl.org/
https://www.mozilla.org/projects/nspr/

RELATED WORK 49

Table 2.5: HTTPS-server performance (in #req/s).

Concurrency Unprotected Protected
1 50.27 50.09
5 83.72 83.26
10 97.34 83.44
50 102.73 89.27

100 103.10 88.74

context switches during the TLS negotiation phase lead to a performance cost
of up to 13.93%.

2.6 Related Work

There exists a vast body of research on software security. For system-level
software, memory safety related vulnerabilities are an important threat. We refer
the reader to Younan et al. [146] for a comprehensive survey and to Erlingsson
et al. [43] for a gentle introduction. Practical countermeasures however, cannot
defend against all possible attacks and countermeasures with strong guarantees
typically come with a significant cost.

An alternative approach is to turn to formal verification of systems and
applications to provide very strong assurance of security properties. Impressive
achievements include the verification of the HyperV hypervisor [29], and the
complete seL4 microkernel [64]. While seL4 is also able to provide strong
security guarantees, a key design objective for Fides is compatibility with legacy
operating systems: what should minimally change to a commodity OS to
support protection of critical software components against kernel-level malware.
For that design objective Fides outperforms seL4 easily.

Other research results proposes hardware modifications to increase security
guarantees [70, 139]. However, one of our objectives is to remain compatible
with existing systems.

Yet another line of research takes advantage of virtualization techniques
to increase the protection of sensitive data by increasing protection of the
kernel [109] or applications [26,41,125] in the presence of malware. While these
research results present interesting solutions, we are not convinced that they
can ever be made provable secure due to a possibly very large TCB. The line of
research most related to the work in this chapter sets out to bootstrap trust in

50 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

commodity computers by securely capturing a computer’s state. An excellent
survey of this research field is given by Parno et al. [94]. We only discuss the
most relevant work.

Existing research can be categorized based on the root of trust. Some works
assume a trusted boot sequence to start a hypervisor before the commodity
operating system is loaded. Terra [47] takes this approach to isolate closed boxes
of software. Possible attack vectors are minimized by preventing additional
code to be loaded in the box. Nizza [112] takes a more integrated approach,
executing small pieces of code in isolation on the Nizza microkernel. While this
architecture is similar to Fides, its TCB of 100,000 lines of code is an order of
magnitude larger.

The root of trust can also be started dynamically, after the system has booted.
Pioneer [110] and Conqueror [74] take this approach completely in software.
However, many assumptions are hard to guarantee in practice and confidentiality
of data cannot be provided.

Stronger guarantees can be provided when the TPM chip is used [34, 62].
Seminal work in this field has been conducted by McCune et al. Their Flicker
architecture [78] can execute pieces of code, called PALs, in complete isolation
while secrecy of sensitive information is guaranteed. The TPM chip is used
intensively by Flicker, leading to a significant performance cost. The TrustVisor
architecture [77] mitigates many of these disadvantages by using a hypervisor
and a software delegate of the TPM chip. P-MAPS [105] operates similar to
TrustVisor but does allow protected code to access unprotected pages. More
recently, Azab et al. showed [11] that the System Management Mode (SMM) can
be used to implement a hypervisor-like security measure, ensuring integrity and
security of module code and data. While these systems also offer strong isolation
of modules, their focus is on remote attestation. They are ill-equipped for
practical implementation of applications with a large number of (interconnected)
modules: (1) writing co-operating protected modules is hard since modules do
not share the same address space. (2) Messages sent between modules may
never be delivered. (3) A lack of support for multiple instances of the same
module makes it extremely challenging to build modular systems. Our approach
mitigates these disadvantages by combining a run-time system and a compiler
to allow programmers to easily develop protected modules that are able to
seamlessly interact with unprotected code and other modules.

Finally, our own previous work on trusted subsystems in embedded systems [120]
proposed a program-counter dependent memory access control model. An
implementation technique was sketched for embedded systems with a flat
address space and with special-purpose hardware support. El Defrawy et
al. [40] implemented attestation of code in embedded devices based on this

CONCLUSIONS 51

access control model, but limited themselves to only a single module. This
significantly reduces the complexity of a hardware implementation as no
primitives for module creation, destruction or authentication is needed. A full
hardware implementation for high-end CPUs may not be feasible as the access
control mechanism would require interaction with existing memory translation
mechanisms. A key contribution of Fides is that it shows that similar ideas can
be implemented on commodity hardware while remaining fully compatible with
legacy software.

2.7 Conclusions

Commodity operating systems have been proven hard to protect against kernel-
level malware. This chapter presented a combined run-time system and compiler
approach to selectively harden modules. Using a program-counter based access
control model, programmers are able to develop modules in standard C-code that
co-operate seamlessly with unprotected code and other modules. It has been
proven that such modules are fully protected while system-wide performance
impact is limited.

2.8 Post-Publication Remarks

Hardware virtualization support enables hypervisors to almost [63, 103]
completely capture and manipulate a virtual machine’s state. This enables
hypervisor-based protected-module architectures such as Fides to provide
versatile security primitives to unmodified guest operating systems and
applications. As security measures can be implemented with a limited amount
of code and can easily be extended to provide additional security primitives,
such architectures provide interesting research platforms. Vasudevan et al., for
example, took this approach and presented XMHF [134], a formally verified,
modular hypervisor framework that was later extended to support secure
I/O [151].

Unfortunately, VM-boundary crosses incur a significant performance overhead
when compared to system calls. In order to avoid these overheads, most
research systems proposed after publication of Fides, have looked at hardware
modifications. Subsequent work by Noorman et al., for example, implemented
Sancus, a protected-module architecture based on the same program-counter-
based access control mechanism on a low-end embedded device [87]. Sancus
shows that SPM-boundary crosses can be implemented with almost no

52 FIDES: SELECTIVELY HARDENING SOFTWARE APPLICATION COMPONENTS

performance overhead and with limited hardware costs. De Clercq et al. later
presented a secure interrupt mechanism compatible with Sancus [35].

Koeberl et al. presented, TrustLite [65], an alternative approach to implement a
protected-module-architecture on embedded devices. By adding an “execution-
aware memory protection unit” (EA-MPU) to the platform that enforces a
memory access policy per memory region, platform constraints on developers
are reduced. For instance, protected modules, called trustlets, can span over
multiple memory regions and inter-trustlet communication overhead can be
reduced by placing messages in a shared memory region. In contrast to Sancus,
TrustLite does not support the destruction of trustlets without a platform reset.
This significantly simplifies inter-trustlet communication as callers are no longer
required to ensure that the called module is still present in memory.

Owusu et al. also proposed a hardware-based protected-module architecture but
targeted the x86 platform. Their OASIS [89] architecture enables the creation
of highly-isolated protected modules. These modules are not only protected
from malware running in unprotected memory, but also from hardware attacks
by keeping them in CPU cache. Data can be bound to protected modules based
on a cryptographic key that is only available to the module; similar to Sancus,
the cryptographic key is derived from the initial state of the module and a
platform key. Remote attestation primitives enable remote code attestation.
Inter-module communication is not considered, but can be implemented similar
to remote attestation techniques. OASIS shares significant similarities with
Intel SGX [7,51,57,81], which will be discussed in more detail in Appendix A.

All these approaches only provide a limited amount of protected modules
or only provide coarse, page-based protection. This may be sufficient when
application components such as libraries need to be fortified. Source-code
languages such as Java or C# however, consider much smaller objects as
primary isolation components. When compiling such languages to coarse-grained
protected-module architectures by placing multiple source-level objects in a
single protected module, references to objects need to be carefully handled when
passing protection boundaries [98]. Support for much finer-grained memory
protection may enable a much easier fully-abstract compilation scheme.

Mondriaan Memory Protection [142,143] supports such a fine-grained protection
granularity and was designed to meet a large range of applications. For instance,
the authors point out that fine-grained protection can facilitate buffer overflow
countermeasures, optimize garbage collection and can avoid copying data across
protection domains leading to speed-ups of many applications (e.g., the network
stack). The versatile nature of Mondriaan’s protection scheme enables it to
support a large range of protection mechanisms. As such, program-pointer-based
access control could also be supported easily using a similar approach taken

POST-PUBLICATION REMARKS 53

by Fides. This comes at the unfortunate cost of requiring multiple hardware
caches to minimize memory access pressure. Impact on die size remains unclear,
but may be significant.

Capability systems provide yet another interesting alternative. Having deep
roots in academic research, including hardware support for such systems [102],
they are recently being reconsidered. Woodruff et al. propose CHERI, a
hardware-based capability system [144]. CHERI supports the creation of
segments at byte-granularity and can enforce that segments are only accessible
using a capability to do so. Capabilities are designed as pointers that are
specially tagged in memory. A light-weight typed assembly language ensures
that capabilities cannot be fabricated. One of CHERI’s disadvantages is that
capabilities are only dependent on the location of the segment they reference.
When segments are destroyed, the entire memory contents needs to be scanned
and stale capabilities purged. Failure to do so may allow capabilities to linger and
enable an attacker to access a new segment without ever receiving a capability
to do so.

Vilanova et al. [136] also proposed a capability system called CODOMS, but
in contrast to CHERI, the “domains” they reference can consist of multiple
memory ranges each with a specific set of access rights. To simplify capability
revocation, capabilities may be tagged with a counter and the address of a
reference counter. Capabilities are only valid when both counter values match.
Similar to Mondriaan Memory Protection, a large variety of memory protection
schemes can be supported, including Fides-like program-counter-based memory
access control, but at a non-negligible hardware cost [136].

Chapter 3

Salus: Non-Hierarchical
Memory Access Rights to
Enforce the Principle of Least
Privilege

Publications & Acknowledgments

Avonds, N., Strackx, R., Agten, P., and Piessens, F. Salus: Non-
hierarchical memory access rights to enforce the principle of least privilege. In
Security and Privacy in Communication Networks (SecureComm’13) (Sept.
2013), vol. 127 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Springer International
Publishing, pp. 252–269.

Strackx, R., Agten, P., Avonds, N., and Piessens, F. Salus: Kernel
support for secure process compartments. Accepted for publication in Endorsed
Transactions on Security and Safety, EAI.

This chapter is partly based on the master thesis of Niels Avonds. His
efforts to implement a protected-module architecture under the supervision of
Pieter Agten, Raoul Strackx, and Frank Piessens, lead to a publication in the
proceedings of the SecureComm’13 conference. Later this work was extended by
Raoul Strackx to support the creation of unforgeable references to compartments.

55

56 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

This work is accepted for publication in the journal for Endorsed Transactions
on Security and Safety and is fully incorporated in this chapter.

Abstract

Consumer devices are increasingly being used to perform security and privacy
critical tasks. The software used to perform these tasks is often vulnerable to
attacks, due to bugs in the application itself or in included software libraries.
Recent work proposes the isolation of security-sensitive parts of applications
into protected modules, each of which can be accessed only through a predefined
public interface. But most parts of an application can be considered security-
sensitive at some level, and an attacker who is able to gain in-application level
access may be able to abuse services from protected modules.

We propose Salus, a Linux kernel modification that provides a novel approach
for partitioning processes into isolated compartments sharing the same address
space. Salus significantly reduces the impact of insecure interfaces and vulnerable
compartments by enabling compartments (1) to restrict the system calls they
are allowed to perform, (2) to authenticate their callers and callees and (3) to
enforce that they can only be accessed via unforgeable references. We describe
the design of Salus, report on a prototype implementation and evaluate it in
terms of security and performance. We show that Salus provides a significant
security improvement with a low performance overhead, without relying on any
non-standard hardware support.

3.1 Introduction

Both desktop and mobile devices are increasingly being used to perform security
and privacy critical tasks, such as online banking, online tax declarations and
purchasing goods from online stores. The software to perform these tasks either
runs inside a web browser, or is written as a standalone application. In both
cases, the software is often vulnerable to attack, either due to bugs in the
application itself or due to bugs in included software libraries or in the runtime
environment used to execute the application (e.g. the browser).

Because of their widespread use and potentially high-impact nature, such
applications form an interesting target for cybercriminals. Past research has
focused on defending against specific attack vectors such as buffer overflows [6,
42, 122,146], format string vulnerabilities [31] and non-control-data attacks [25].

INTRODUCTION 57

Even though many of these defense mechanisms are applied in practice, successful
attacks against high-value applications are still common.

To provide stronger security guarantees, recent research efforts have shifted from
trying to defend entire applications against every possible attack to providing
strong isolation of sensitive parts of an application with a minimal trusted
computing base (TCB). Cryptographic keys of an application, for example,
can be isolated in a protected module that has complete control over its own
secrets; the module can only be accessed via its public interface. Accessing
the cryptographic keys directly at assembly level is prevented by the security
architecture. Thus, an attacker that has successfully exploited a vulnerability
in the non-security sensitive part of the application still cannot access the
cryptographic keys.

A large number of security architectures providing such protection mechanism
have been proposed in this field, including software implementations using
hardware virtual machine support [77,119], trusted computing primitives [78],
implementations based on system management mode [11] and even completely
hardware-based solutions [87, 89, 120]. Recent research papers by Intel indicate
that hardware support for these security architectures will also become available
on mainstream x86 platforms in the near future [7, 51,81].

In practice, isolating security-sensitive parts of an application is difficult since
most program logic can be considered security-sensitive at some level [112]. A
too coarse-grained approach will result in bloated modules that may contain
vulnerabilities and that are too big to be formally verified [47]. Minimum-sized
modules on the other hand, can provide strong and easily verifiable guarantees,
but may need to expose insecure interfaces to interact with other modules. This
is a common problem of module-isolating security platforms, both in software
as in hardware. Application developers are trapped in a catch-22 with possibly
severe security consequences. In the recent DigiNotar attack [53], for example,
the root CA’s private cryptographic key was securely stored in a hardware
security module (HSM), but its insecure interface enabled attackers to sign
arbitrary certificates.

In order to improve upon these shortcomings, we acknowledge that almost
every part of an application performs security-sensitive operations. To reduce
chances of a successful attack, we propose to partition the entire application
into compartments and implement a non-hierarchical access control mechanism
between compartments. Compartments not only provide provable secure
isolation of stored private data (as modules in related work do), but are also
able to confine software vulnerabilities to the compartments they occur in by
(1) restricting the types of system calls that they are allowed to issue, (2)
enabling authentication of calling and called compartments and (3) enabling

58 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

parser validator

signerlogger
parser validator signer

logger

CA service

FS

FS

Figure 3.1: Salus’ compartmentalization enables strong isolation of security-
sensitive data and contains possibly vulnerable code. Multiple vulnerable
compartments need to be exploited to attack the system successfully.

compartments to only service requests made through unforgeable references,
reducing the impact of insecure interfaces. By separating likely attack vectors
from attack targets and placing them into different compartments, an attacker
would need to exploit vulnerabilities in multiple compartments to reach her
goal.

Each compartment resides in its own chunk of memory, consisting of a public
section containing the code of the compartment and a private section storing
sensitive data (e.g. cryptographic keys or passwords). Only when executing the
public section of a compartment can the private section of that compartment
be accessed. To force other compartments to use a compartment’s public
interface, execution can only enter the public section via well-defined code
entry points and, if required by the compartment, unforgeable references. As an
additional protection measure and to support the principle of least privilege [106],
compartments have the ability to restrict the types of system calls they are
allowed to perform. Once a compartement drops a system call privilege, it cannot
be re-acquired. This further reduces the impact of compromised compartments.
The compartments of a single process all run in the same address space, providing
a lightweight programming model that enables legacy applications to be ported
easily and incrementally.

Consider, as an example, an X.509 certificate signing application consisting of a
parser, a validator, a signer and a logging component (Figure 3.1). When run as
a single monolithic application, a vulnerability in any one of these components
can lead to the compromise of the entire application. When placing each of
these components in a separate compartment under Salus, components can
only call each other through their well-defined interfaces using unforgeable
references and each component can authenticate both its callers and its callees.
This restricts the flow of data and control between compartments to predefined
patterns and raises the bar for a successful attack significantly. Consider as an

INTRODUCTION 59

example an attacker who exploited a vulnerability in the parser. In order for her
to sign arbitrary certificates, she would either need to provide specially crafted
credentials for the submitted certificate that would not cause the “Validator” to
raise flags, or she would need to gain direct access to the “Signer” compartment
by exploiting another vulnerability in the “CA Service” compartment to leak
the unforgeable reference.

Furthermore, by combining unforgeable references and restricting the system
calls that can be issued by a compartment, we can provide fine-grained access
control to the kernel. Consider as an example the parser and assume that
it reads its signing requests directly from the file system. At development
time, there are two options. Option 1 is to grant the compartment access
to the open/close and read/write system calls. In that case an attacker
who exploited a vulnerability in the parser can inspect the entire file system
with the application’s privileges. The second option provides stronger security
guarantees by revoking the parser compartment all system call privileges and
only providing it with an unforgeable reference to a file system compartment (FS
in Figure 3.1). This newly added compartment tightly restrict access to a single
folder or file type and only provides the parser access to the files it approves.
Having almost unrestricted access to the file system itself, a vulnerability in
the FS compartment would enable an attacker to launch similar attacks as in
option 1. However, given that this compartment is likely to be several orders
of magnitude smaller than the parser compartment, the probability that such
an exploitable vulnerability can be found is limited. Such constructs are a
well-known advantage of capability systems [19,36,144].

Concretely, we make the following contributions in this chapter:

• We present a novel approach for partitioning processes into compartments
with support for strong isolation of sensitive data and containment of
vulnerabilities. To the best of our knowledge, Salus is the first solution that
simultaneously (1) reduces the impact of insecure compartment interfaces,
(2) enables compartments to restrict the types of system calls they are
allowed to perform and (3) executes compartments in the same address
space allowing legacy applications to be ported easily without having to
marshall in- and output messages.

• We report on a prototype implementation of Salus in the Linux kernel.

• We evaluate the security of our approach and the performance of our
prototype.

The remainder of this chapter is structured as follows: in Section 3.2 we define
our attacker model and describe our desired security properties. In Section 3.3

60 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

we provide a high-level overview of Salus, before presenting our prototype
implementation in Section 3.4. Finally we evaluate our approach in Section 3.5,
discuss related work in Section 3.6 and conclude in Section 3.7.

3.2 Attacker Model & Security Properties

We consider an attacker able to inject and execute malicious shellcode
in vulnerable compartments, for example, by exploiting a buffer overflow
vulnerability. Our system must defend against such attacks in the following
way:

• The exploitation of a compartment must not affect the security of
compartments other than those that explicitly trust the compromised
compartment.

• Once a compartment is exploited, an attacker is only able to call other
compartments via their proper interfaces iff it received a reference to those
compartments. Simply guessing the compartment’s virtual address is not
sufficient.

• An exploited compartment may still interact with other compartments and
pass compartment references. Called compartments however, will check
the types of received arguments and will refuse to call other compartments
with an incorrect type.

• Attackers are explicitly allowed to create new compartments. There is
thus no guarantee that compartments requesting protection can be trusted.
Hence, Salus must isolate compartments from one stakeholder from those
of another, possibly malicious, stakeholder.

• An attacker should not be able to execute system calls that have been
revoked.

Kernel-level and physical attacks are considered out of scope. Regarding the
cryptographic primitives used, we assume the standard Dolev-Yao model [37]:
An attacker can observe, intercept and adapt any message. Moreover, an attacker
can create messages, for example by duplicating observed data. However, the
cryptographic primitives used cannot be broken.

OVERVIEW OF THE APPROACH 61

Table 3.1: The memory access control model enforces, for example, that a
compartment’s private section (4th column) can only be read-write accessed
from the public section of the same compartment (3rd row).

from\to Entry pnt. Public sec. Private sec. Unprot. mem.
Entry pnt. --- --x --- ---
Public sect. r-x r-x rw- rwx
Private sect. --- --- --- ---
Unprot. mem/

r-x r-- --- rwxother comp.

3.3 Overview of the Approach

This section presents a high-level overview of Salus. Section 3.3.1 describes
the memory access control mechanisms on which Salus is based. Section
3.3.2 presents the services Salus provides to protected applications and
section 3.3.3 shows how these services are used in a typical life cycle of
a compartmentalized application. Authenticated communication between
compartments and unforgeable references to compartments are discussed in
sections 3.3.4 and 3.3.5 respectively. Finally we discuss how new and legacy
applications can be compartimentalized in section 3.3.6.

3.3.1 Compartments of Least Privilege

Structure of a Compartment

The basic layout of a compartment, shown in Figure 3.2, is a virtual memory
region divided into two sections: a public section and a private section. The
public section contains the compartment’s code and any data that should be
read accessible by other compartments of the same application. This section
can never be modified after initialization, which enables other compartments
to authenticate the compartment based on a cryptographic hash of the public
section (see Section 3.3.4). The start of the functions that make up the
compartment’s public interface are marked as entry points. Execution of
the compartment can only be entered through these memory locations (see
Table 3.1).

The private section contains the compartment’s private data, which consists of
application-specific security-sensitive data (e.g. cryptographic keys) as well as
data relevant to the correct execution of the compartment, such as the runtime

62 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public

Figure 3.2: Salus’ memory access control model enables the creation of
compartments that provide strong isolation guarantees to sensitive data. Secure
communication primitives reduce the impact of an insecure interface.

call stack. The data in the private section is read and write accessible1 from
within the compartment, but completely inaccessible for code executing outside
of the compartment. Note that since each compartment has its own private call
stack, intercompartmental function call arguments and return addresses must
be passed via CPU registers (as opposed to passing them using the runtime
stack).

Applications can still have a memory region that is not part of any compartment.
This region is termed unprotected memory and is read/write accessible from
any compartment. All compartments of the same application run in the same
address space, which facilitates the compartmentalization of legacy applications.
Nonetheless, fine-grained compartmentalization of a large code base can still
require significant developer effort. Therefore, Salus enables applications to be
compartmentalized incrementally by storing code and/or data in unprotected
memory. While unprotected memory does not provide any of the security
guarantees of compartments, it does provide an incremental upgrade path for
legacy applications.

As an example of a compartment, consider a single compartment providing a
certificate signing service. The compartment provides two functions as part of

1By preventing code execution in the private section, the chances that an attacker is
able to successfully exploit a vulnerability in a compartment, is reduced significantly. We
acknowledge that this restriction may hinder applications that rely on generated code (e.g.,
JITed applications). Support for such applications could be easily added; at creation-time the
creator should specify whether the new compartment’s private section should be executable.
As we believe this is a special case, we will not consider it for the remainder of the chapter.

OVERVIEW OF THE APPROACH 63

its public interface (see Figure 3.2). The first function, set_key, allows setting
the cryptographic key used to sign certificates. This key is stored as the m_key
variable in the private section. The second function, sign_cert, handles the
actual signing requests. Salus’ memory access control model ensures that only
these two functions are executable; any attempt to jump to another memory
location in the compartment will fail. Similarly, any attempt to directly read
or write the cryptographic key in the private section from unprotected code or
from another compartment will be prevented. Only after calling a valid entry
point will read and write access to the private section be enabled, making the
cryptographic key only accessible while the compartment is being executed.
When the function is terminated, execution returns to the caller and read/write
access to the compartment’s private section will again be disabled.

Special care is required when execution returns to a compartment after a call
to another compartment. Execution must resume at the return location, which
is the instruction right after the call instruction in the caller compartment.
This location however does not typically correspond to an entry point and
hence would cause a memory access violation according to Salus’ memory access
control model (see Table 3.1). Compartments can implement a return entry
point to avoid this access violation. Right before calling another compartment,
the return location is placed on the top of the calling compartment’s private
stack while the location of the return entry point is passed to the callee in
a register. When the intercompartmental call has finished, execution flow
jumps to the return entry point where the return location is retrieved from
the compartment’s stack and jumped to. Note that a return entry point is a
software implementation and follows the same access rights as any other entry
point.

Restriction of Privileges

Salus provides two important primitives to limit the impact of a compromised
compartment. The first primitive is caller and callee authentication. By
authenticating callers and callees, a compartment can limit its interaction to
trusted compartments only. Although this does not protect against trusted
compartments that have been compromised, it does significantly limit the
capabilities of an attacker after a successful exploit. For instance, the “signer”
compartment of the CA signing service displayed in Figure 3.1, may only
accept calls from the “CA service” compartment. As such, an attacker who
successfully exploited a vulnerability in the parser may attempt to call the
signing compartment, but the latter will refuse to service the attacker’s service
request.

64 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

The second primitive allows compartments to disable specific system calls for
any code executed from within their public section. Once a system call is
disabled, it cannot be re-enabled. By carefully partitioning an application
into compartments, each of which should disable any system call it doesn’t
need, the impact of the exploitation of a vulnerable compartment is minimized.
Note that much more fine-grained solutions exist than restricting complete
system calls [138]. However, we focus on providing strong compartmentalization
primitives that can be used as a building blocks for finer-grained privilege
restriction mechanisms.

3.3.2 Provided Services

To enable compartmentalization of applications, Salus provides runtime support
of the following services:

Create After code is loaded into memory, this service can be used to create a
new compartment. Given a memory location and size for the compartment
to create, Salus will enable memory protection for this region and will
return a system-wide unique ID for the new compartment. Note that our
attacker model explicitly allows the creation of new compartments by an
attacker.

Destroy A compartment can only be destroyed by the compartment itself.
After destruction, the memory access protection is disabled. Hence, a
compartment should overwrite any private data before destruction.

Request compartment ID and layout To support secure communication,
Salus provides a service to request the ID and layout (i.e. the size and
locations of the public and private sections and the available entry points)
of a compartment covering a given memory location. If there is no
compartment at the specified location, the service returns an error code.
This service is used as a primitive in compartment authentication.

Request caller ID To support caller authentication, Salus provides a service
to request the ID and layout of the compartment that called an entry
point of the current compartment.

Disable system call To limit the impact of the exploitation of a compartment,
unused system calls can be disabled. To prevent an attacker from gaining
system call privileges by creating a new compartment, compartments
inherit system call privileges from their parent.

OVERVIEW OF THE APPROACH 65

3.3.3 Life Cycle of a Compartmentalized Application

Compartmentalized applications can be started as any other application.
After the (trusted) operating system or loader loads the application into
memory and starts its execution, the application can create the required
compartments. Finally, execution can jump to the compartment containing the
application’s main function. Compartments can be created at any point during
the application’s execution, for example, at the time a new (compartmentalized)
plugin is loaded.

Creation of Compartments

Figure 3.3a shows the process of setting up a compartment. As the first step of
setting up a new compartment, the application allocates (unprotected) memory
and loads the compartment’s code. Next, the application enables protection
of this memory region, by calling Salus’ creation service. Note that there is
no guarantee that the new compartment’s code has been loaded correctly into
memory, since the creator might have been compromised already. However,
any tampering with the code will be detected when the compartment tries to
communicate with another compartment, as will be explained in Section 3.3.4.

When a new compartment is created, Salus clears the first byte of the private
section. This serves as a flag to indicate to the compartment that it should
initialize itself when its service is first requested. As part of its initialization, a
compartment should clear the private memory locations it will use. This prevents
an attacker from crafting a private section by setting it up in unprotected memory
locations where a new compartment will later be created. Initialization code
should typically also disable the system calls that will not be used during further
execution of the compartment.

Destruction of Compartments

The destruction of a compartment, shown in Figure 3.3b, can only be initiated
by the compartment itself. This ensures that compartments can clear their
private section (which may contain sensitive data), before the memory protection
is lifted. In addition, trusted communication endpoints could be notified of
the compartment’s imminent destruction. After destruction, the unprotected
memory area of the destructed compartment can be freed.

66 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

1 2 3

sign_cert(Cert *)
set_key(Key *)

Private

sign_cert(Cert *)
set_key(Key *)

Public

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public

(a) Creation

Private

sign_cert(Cert *)

Key *m_key

set_key(Key *)

Public
1 2 3

sign_cert(Cert *)
set_key(Key *)

Private

sign_cert(Cert *)
set_key(Key *)

Public

(b) Destruction

Figure 3.3: The life cycle of a protected compartment from creation (3.3a) to
destruction (3.3b).

3.3.4 Secure Communication

Salus’ memory isolation mechanism provides strong guarantees that sensitive
data in the private section can only be accessed by code in the public section [4,96–
98]. Reconsidering our certificate signing service as an example (see Figure 3.1),
we can prove that the signing key will never leave its compartment. But an
attacker with access to the compartment’s interface is still able to sign arbitrary
certificates. Salus can limit the feasibility of such attacks in two ways: (1)
by enforcing both caller and callee authentication, and (2) by requiring that
callers have an unforgeable reference to the compartment at hand, which means
that guessing the location of a compartment is insufficient to access it. In this
section we will focus on authentication of compartments. While we will only
discuss authentication of calling and called compartments, a similar approach
can be applied when locations of other compartments are passed as arguments.
In Section 3.3.5 we will show how compartments can enforce that they can only
be called through unforgeable references.

Security Report

Authenticating a compartment consists of verifying whether that compartment
adheres to a trusted security report of that compartment. A security report of
a compartment consists of:

OVERVIEW OF THE APPROACH 67

The cryptographic hash of its public section This allows any code to
verify that the public section of the compartment has not been tampered
with: the cryptographic hash should be recalculated at runtime and be
compared to the known-good value stored in the security report. This
protects against an attacker who is able to modify the public section of
a compartment during its creation, before memory protection is enabled
(see Section 3.3.3).

The layout of the compartment When a creation request originates from
unprotected memory, the request itself may have been tampered with. An
attacker could, for instance, specify an incorrect private section size for the
compartment to create. This may result in the use of unprotected memory
that should be under Salus’ protection. By storing the known-good layout
of the compartment in the security report, any code can verify that the
layout was not tampered with during creation of the compartment.

A cryptographic signature In order to have integrity protection and
authentication of the security report, it is digitally signed by its issuer.
Each compartment can decide independently whether or not to trust a
certain issuer, which opens up the opportunity to integrate compartments
from different parties into a single application. Since the cryptographic
signature provides integrity protection, security reports can simply be
stored in unprotected memory.

Authentication of Called Compartments

When exchanging sensitive information between compartments, caller and callee
must authenticate each other before sensitive data is exchanged.

To authenticate a compartment to be called, its ID must first be obtained using
Salus’ ‘request compartment ID’ service. Next, the callee’s security report must
be acquired. For this a central service where each compartment registers to on
initialization, can be used. Given the callee’s ID, the service should return the
(location of the) corresponding security report. Note that this service need not
be trusted, as any tampering with the information returned will be detected
during the next steps. Once the security report has been obtained, it should
be validated by checking the cryptographic signature and by checking that the
issuer is trusted. Each compartment should contain a list of trusted security
report issuers. Next, the callee compartment’s layout should be requested from
Salus and a hash of the public section should be calculated. The layout and
the hash must be compared to the values listed in the security report. This
completes the authentication and allows the caller to securely call one of the
callee’s public functions.

68 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

When calling a compartment that has already been authenticated in the past,
a re-validation must occur because the callee may have been destroyed since
the last interaction. A full authentication using the security report on every
call would be very time consuming, so to reduce the performance impact, Salus
allows compartments to be re-authenticated quickly based on their ID. Salus
ensures each compartment has an ID that is unique on the system until the next
reboot. Hence, a re-authentication can simply consist of requesting the ID of
the compartment to be called (using the ‘request compartment ID’ service) and
checking that it is the same as during the initial authentication. Using unique
identifiers has the added benefit that code can distinguish between different
instances of the same compartment.

Authentication of Calling Compartments

To enable compartments to limit use of their (possibly insecure) interface to
trusted caller compartments, Salus provides primitives for caller authentication.
For a compartment to authenticate its caller, it can first request the caller’s
ID and memory location (using the ‘request caller ID’ service) and proceed to
authenticate the caller using the same steps as described above.

3.3.5 Unforgeable references

Salus’ access control mechanism and supporting services enable authentication
of both callers and callees. Unfortunately, in some situations this does not
suffice. Let’s reconsider the CA service from Section 3.1 as an example but
now assume that it receives signing requests over a network. Figure 3.4
displays how the application can be partitioned into different compartments. A
compartment Listener listens for incoming network connections and spawns a
new CAConnection compartment for every connecting client. This compartment
is in charge for all future communication with the client. This is similar
to a Socket object in an object-oriented language. When a connection is
established, clients must provide login credentials and a certificate request. In
order to isolate vulnerabilities, CAConnection hands off incoming messages to
a compartmentalized parser. If messages parsed correctly, the parser returns
Credentials and Request compartments to the CAConnection compartment,
or an error code if parsing failed. Once all data is collected, the CAService
is called. Based on the provided Credentials and Request compartments,
it will authenticate the client credentials, verify that the client is allowed to
request a certificate for the specified domain and finally instruct the Signer
(not displayed) to sign the certificate request.

OVERVIEW OF THE APPROACH 69

parser

CAService

CAConnection

Listener

message

Request/
Credentials

parserCAConnection
message

Request/
Credentials

connection 1 connection 2

Figure 3.4: By enforcing that compartments can only be accessed via unforgeable
references, stronger security guarantees can be guaranteed. Even if an attacker
is able to exploit a vulnerability in a parser, she will be unable to access
Request/Credentials compartments belonging to another connection.

By compartmentalizing the Parser, we wish to isolate possible vulnerabilities.
Unfortunately, in this setup an attacker able to exploit a vulnerability in
the parser may still be able to request certificates for domains that she
does not own. The problem arises when the parser returns Request and
Credentials compartments to CAConnection. Even though CAConnection is
able to authenticate the Parser, it cannot verify that the received Request and
Credentials compartments are based on the actual data passed to the parser.
An attacker who successfully exploited a vulnerability in the parser may be able
to scan2 the entire memory and steal a Credentials compartment belonging
to a different network connection.

To remedy the problem, we propose using unforgeable references to compart-
ments. Only compartments with an unforgeable reference to a compartment
have the capability to access it. Thus, even if a compartment was compromised,
it cannot access or pass references to other compartments that it finds in
memory. In our example, a compromised parser may still find a Credentials
compartment in memory, but it is infeasible that it can guess the correct access
token (i.e., it cannot create a correct unforgeable reference to it). Even a
compromised parser can thus not return “stolen” credentials. This results in a
strict separation between different connections.

While unforgeable references in higher programming languages are easily
enforceable by a type system, we cannot apply the same approach. An attacker
able to exploit a vulnerability in a compartment has assembly-level access and
can simply scan the entire memory area to access other compartments. Instead

2An in-application level attacker may scan the entire memory in a number of ways. For
example, by using Salus’ service to request the layout of a compartment for likely compartment
locations until a non-error result is returned, or by reading the entire program memory for
telltale signs of entry points.

70 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

we propose establishing unforgeable references as (location, token) tuples. Newly
created compartments must be assigned a cryptographic random number, which
can serve as a key to access the compartment’s public interface. If and only if
a caller provides the correct access token, will a call to the compartment be
serviced. This approach has four advantages: (1) with a sufficiently large random
number, it is computationally infeasible to forge references, (2) references can
be stored in the secret section of compartments, just like any other reference,
(3) compartments can implement unforgeable references using the default Salus
services, and (4) both standard and unforgeable references can exist in the same
application. Section 3.4.4 describes in detail how compartments can implement
support for unforgeable references.

3.3.6 Writing Compartmentalized Applications

Writing secure compartments is a non-trivial task; each compartment should keep
track of it’s own stack, callbacks to unprotected memory should return through
a specific return entry point, etc. To ease the creation of such compartments,
we developed a C compiler and linker that takes care of such considerations.
Application developers can simply annotate functions indicating that they
are entry points, reside in unprotected memory or are located in another
compartment.

Unfortunately, our tool does not solve all problems at hand. The developer
is still in charge to ensure that sensitive data stored in a compartment is
never accessed from unprotected memory or by another compartment. The
difficulty in ensuring this depends heavily on the programming language used
and the quality of the source code. Applications written in C may not be
very structured. Each function may allocate memory regions and pass pointers
implicit (e.g., stored in allocated memory, or type casted as an integer) or
explicit (e.g., as arguments) to other functions. Compartmentalizing such
legacy applications may be difficult, but given that all compartments execute
in the same address space, an incremental path exists. Developers may place
functions that operate on the same sensitive data in the same compartment,
while initially still storing the data in unprotected memory. When all functions
are placed in the compartment and sensitive data is thus only accessed by a
single compartment, it can be allocated securely inside the compartment. Tools
such as logging access right violations during development instead of stopping
the application (as proposed by [15]) may be helpful in this process but manual
inspection of code is still required.

Object-oriented languages on the other hand, may already enforce strict data
encapsulation; data may only be accessed through the object’s public interface.

IMPLEMENTATION 71

In such cases each class may be compiled as a separate compartment but to
minimize overhead caused by crossing protection boundaries, multiple classes
may be placed together in a single compartment.

3.4 Implementation

Access rights to compartment sections depend on the value of the program
counter. For instance, only if execution is in the public section of a compartment,
will the private section of that compartment be read/write accessible. This
program counter-based memory access scheme is at the core of Salus’ protection
mechanism. Enforcing this scheme purely in software would have a huge
performance impact as every memory access has to be checked. A pure hardware
implementation of the scheme is possible [87, 89], but prohibits its use on
commodity, off-the-shelf PC platforms. The approach taken for Salus combines
the best of both alternatives, by using the key insight that memory access rights
for compartments only need to change when execution crosses a compartment
border. This allows Salus to use the standard memory management unit (MMU)
to enforce the memory protection scheme.

A prototype for Salus has been implemented as a Linux kernel modification.
Section 3.4.1 describes how the program counter-based access control mechanism
is implemented in this prototype. Section 3.4.2 describes the API Salus provides
to processes and Section 3.4.3 lists the Linux system calls that had to be modified
in order to provide a secure implementation of the protection mechanism.

3.4.1 Program Counter-Based Access Control

By aligning compartment sections to pages, the standard MMU found on any
recent commodity computer can be applied to enforce the required memory
protection scheme. After a compartment is created (e.g. from unprotected
memory), the MMU access rights for the pages of the new compartment are
set up according to Table 3.1: the public section is world-readable while the
private section is isolated completely.

When execution tries to enter a compartment (e.g., because of a call instruction),
a page fault is generated by the MMU. Based on the memory location addressed
and the access type (read, write or execute), Salus determines whether a
valid entry point was called and, if necessary, modifies the access rights of
the calling and called compartments’ public and private sections, according to
Table 3.1. Access rights of pages unrelated to the two involved compartments

72 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

are not modified, which minimizes the number of page faults and access right
modifications, thereby reducing the overall performance impact.

Because unprotected memory is always readable, writable and executable,
no page fault is generated when execution returns from a compartment to
unprotected memory. To restore the access rights of the exited compartment,
the compartment itself must issue a system call to Salus.

Since all threads of the same process normally share the same page tables, our
approach cannot guarantee the required security properties in case of multiple
threads. However, this is not a fundamental limitation of our model. Support
for multithreaded applications can be added by modifying the kernel in order to
provide each thread with a separate set of page tables. All threads have identical
virtual-to-physical mappings, but with different access rights depending on the
currently executing compartment in each thread. Compartments also must be
multithreading-aware and provide a separate stack per thread. Our prototype
currently does not support multithreading.

The Linux page fault handler was modified to implement these access right
modifications. To keep track of a process’ compartments, the Linux process
descriptor data structure was extended with a list of comp_struct structures.
Each comp_struct describes a single compartment and contains:

• The (virtual) start address and length of the public and private sections

• The compartment’s unique ID

• The compartment’s saved stack pointer

• A list of the compartment’s remaining system call privileges

3.4.2 System Call API

The following new system calls were implemented in the Linux kernel. These
system calls represent the API Salus provides to processes.

void salus_create(void* start, uint len_pub, uint len_priv) Before
a new compartment is created, the list of existing compartments is checked
to ensure that the new compartment will not overlap with any existing
ones. New compartments must also not overlap with the kernel or have
their memory pages mapped to files. When these checks succeed, a new
compartment is created and added to the current process’ compartment
list. It receives the same system call privileges as its parent.

IMPLEMENTATION 73

void salus_destroy(void) Since compartments can only be destroyed from
within their own public section, this system call does not require any
arguments. This system call restores the original memory access rights
on the memory region occupied by the executing compartment and then
removes the compartment from the current process’ compartment list.

struct comp_layout* salus_layout(void* addr) This system call returns
the ID and memory layout of the compartment covering a given memory
location. It can be implemented by simply iterating over the current
process’ compartment list until a matching compartment is found. A
null pointer is returned when there is no compartment covering the given
address.

struct comp_layout* salus_caller(void) This system call returns the ID
and memory layout of the compartment that last called an entry point of
the current compartment. A null pointer is returned when the current
compartment was last called from unprotected memory.

void salus_syscall_disable(uint syscall_id) This system call disables
further use of the specified system call, by removing it from the list of
system call privileges in the comp_struct of the current compartment.
Once a system call is revoked, it cannot be re-acquired.

void salus_return(void* addr) Before execution returns from a called
compartment back to its caller (i.e. unprotected memory or another
compartment), the access rights of the called compartment’s pages need
to be restored. This system call performs this access rights modification
and then continues execution at the specified address.

3.4.3 Conflicting System Calls

Some existing system calls in the Linux kernel conflict with Salus’ compartmen-
talization. Additional security checks had to be inserted for these conflicting
system calls.

mprotect The mprotect system call can be used to change the access rights
of pages in memory. Additional checks were added to prevent this system
call from modifying the access rights of compartments.

mmap Existing system calls such as mmap or mremap modify the virtual
address space of a process. An attacker could abuse these system calls
to map a compartment’s private section to a file, for instance. When
the compartment then writes sensitive information to the newly mapped

74 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

pages, this information may leak to an attacker. We prevent this attack
by verifying that a compartment is mapped correctly before it is called.
These checks were also added to the salus_layout API call.

personality In Linux, each process has a personality, which defines the process’
execution domain. The personality includes, among other settings,
a READ_IMPLIES_EXEC bit, which indicates whether read rights to a
memory region should automatically imply executable rights as well.
For compartments this would result in world-executable public sections,
nullifying the use of designated compartment entry points. Therefore,
Salus enforces that this bit is disabled for compartmentalized processes.

fork The fork, vfork and clone system calls can be used to create a
new process or thread. As these processes or threads share parts
of their page tables, the elevated access rights of the private section
of a called compartment, affects all processes/threads and enable its
access from unprotected memory. While these system calls could be
modified to create copies of the page tables leading to the same virtual-
physical address translation but with different access rights, our research
prototype currently does not support this. Linux’ existing CLONE_VM and
VM_DONTCOPY flags are used to prevent compartments being mapped in
the new process or thread. Checks were also added to the madvice system
call, since it can be used to modify the VM_DONTCOPY flag.

3.4.4 Unforgeable references

Implementing support for unforgeable references consists of two steps: (1) newly
created compartments must generate a cryptographic random number, and (2)
whenever a compartment is called, it must check whether the caller did indeed
have the capability to access it.

The first step can be achieved in two ways. One option is to modify Salus’
salus_create service call (see Section 3.4.2). After creating the compartment,
the kernel generates a new cryptographic random number (i.e., the access token)
and stores it at a specific location in the compartment’s private section. Finally
the salus_create service call returns the (location, access token) tuple as the
unforgeable reference.

Alternatively, newly created compartments can be taken ownership of on a
first-call basis, by providing a take_ownership entry point that generates and
returns an unforgeable reference on its first call. Only the first compartment that
requests ownership will be provided with the unforgeable reference, subsequent
calls to this entry point will be rejected. While malicous compartments may

EVALUATION 75

1 take_ownership :
i f (token != 0)

3 return −1;
else

5 {
token = gen_rand () ;

7 return token ;
}

Listing 3.1: An implementation of the take_ownership entry point.

“steal” newly created compartments by taking ownership as soon as possible,
they do not gain any additional power, since compartments are created from
unprotected memory and hence do not possess any sensitive information that
may leak to an attacker. Listing 3.1 shows a sample implementation of the
take_ownership entry point in pseudo code.

In the second step, a called compartment must check whether the caller did
indeed have the capability to access the compartment. To perform this check,
the caller must pass the access token of the unforgeable reference to the called
entry point. If and only if the provided token is identical to the token stored
in the compartment’s private section, will the call be serviced. Otherwise an
error value will be returned. Note that the compartment is able to specify for
every entry point whether or not it requires the access token to access it. The
take_ownership entry point, for example, will never require a capability.

3.5 Evaluation

The effectiveness of Salus’ protection mechanisms is evaluated in Section 3.5.1
and its performance impact is discussed in Section 3.5.2.

3.5.1 Security Evaluation

To evaluate Salus’ security, we make a distinction between memory-safe
and memory-unsafe compartments. A memory-unsafe compartment can
be exploited by an attacker using low-level attack vectors such as buffer
overflows [6,42,122,146], format string vulnerabilities [31] or non-control data
attacks [25]. A memory-safe compartment does not contain such vulnerabilities,
for instance because it was written in a memory-safe language or simply because
the compartment doesn’t contain any memory-safety bugs.

76 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

Since memory-safe compartments cannot be exploited directly, the only attack
vector against them is through exploitation of another compartment in the
same address space. However, recent research [4,96–98] has shown that memory
protection mechanisms such as those offered by Salus, are able to provide full
source code abstraction. This means that, even when other compartments
have been successfully exploited, an attackers’ capabilities are limited to
interacting with the memory-safe compartment through its public interface.
A carefully constructed interface can thus effectively limit the attack surface
of a compartment. But in many cases, creating a secure interface is still a
challenging problem [73]. Recall the example of a certificate signing compartment
introduced in Section 3.3.1: even if the private cryptographic key is never
exposed, an attacker could potentially still use the compartment’s interface
to sign arbitrary certificates [53]. By taking advantage of Salus’ support
for caller/callee authentication however, the risk of such an attack can be
minimized by only servicing requests from compartments that would issue them
as part of the normal operation of the application (e.g. in Figure 3.1, the signer
compartment should only accept requests from the validator compartment).

Memory-unsafe compartments may still contain vulnerabilities that can be
exploited by attackers. Even though Salus does not prevent such attacks,
compartmentalization can still provide significant security benefits. Firstly,
high-risk components can be identified and be placed in separate compartments.
Effective but high-overhead countermeasures [5,147] can be used to harden such
compartments. By only applying these countermeasures to likely vulnerable
compartments, their performance impact remains limited.

Secondly, Salus’ ability to provide unforgeable references and it’s ability to
restrict access to system calls, can be used to enforce fine-grained access policies.
Enabling a compartment to issue open/close and read/write system calls,
essentially provides it access to the entire file system3. Alternatively, small,
secure compartments can be created that provide similar support but may limit
access to a specific folder. Since the compartment cannot issue open system
calls herself, it can only access the file system through the received “capability”
compartment (see Section 3.1 for an example).

Thirdly, compartmentalization can automatically thwart certain types of attacks.
For instance, limiting entrance of compartments to valid entry points significantly
reduces the chance of an attacker finding enough gadgets to successfully execute
a return-oriented-programming (ROP) attack [23,111].

Fourthly, compartmentalization can be used as a building block for new
countermeasures. For instance, a custom loader could be implemented that loads
compartments at different locations in memory for every program execution.

3Of course this is restricted by the access rights the application is executing in

EVALUATION 77

This is similar to address space layout randomization (ASLR) [13], but can be
applied at a much finer-grained level.

Finally, even when a compartment has been successfully exploited, Salus can still
limit the impact of the attack. Because Salus provides entry point enforcement,
caller/callee authentication and system call privilege containment, an attacker
will likely have to compromise multiple vulnerable compartments before reaching
her intended target. This significantly increases the effort an attacker must take
to successfully exploit the application. The ability to confine attackers to the
exploited compartment even allows implementing a tightly controlled sandbox
where user-provided machine code can be executed securely.

3.5.2 Performance Evaluation

To evaluate the performance of Salus, we performed micro- and macrobench-
marks. All tests were run on a Dell Latitude E6510. This laptop is equipped
with an Intel Core i5 560M processor running at 2.67 GHz and contains 4 GiB
of RAM. A Ubuntu Server 12.04 distribution with (modified) Linux 3.6.0-rc5
x86_64 kernel was used as the operating system.

System-wide impact

To show that legacy applications not using the modularization technique are
not impacted by our changes to the Linux kernel, we ran the SPECint 2006
benchmark. All tests finished within ±0.4% compared to the vanilla kernel.

Microbenchmarks

To measure the overhead caused by switching the access rights, we created a
microbenchmark that measures the cost of a call to a secure compartment and
compare it to the cost of calling a regular function and calling a system call.
The compartment used in the benchmark immediately returns to the caller.
The system call and function behave similarly.

Table 3.2 displays the results of this microbenchmark. Calling a compartment is
about 677 times slower compared to calling a regular function. This overhead is
attributed to the need to modify the access rights of pages. Compared to calling
a system call, the compartment is only 20 times slower. Due to these high
costs, there is a trade-off to be made between a low number of compartment
transitions and small compartments with additional security guarantees.

78 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

Table 3.2: Compartment access overhead.

Type CPU cycles Relative

Function Call 5,944 1
System Call 193,970 32.63
Compartment Call 4,024,227 677.02

Table 3.3: Requests per second of an TLS-enabled webserver where every TLS
session is protected in its own compartment, for an increasing number of clients.

Concurrency Vanilla Salus Relative perf.

1 109.11 96.54 -11.52%
2 165.56 153.62 -7.21%
4 184.31 164.78 -10.60%
8 199.98 175.35 -12.32%
16 206.82 181.00 -12.48%
32 207.78 181.50 -12.65%
64 206.64 180.35 -12.72%
128 206.49 180.97 -12.36%

Secure Web Server

As a macrobenchmark, we compartmentalized an TLS-enabled web server based
on an example provided by PolarSSL library4. For every new connection a new
compartment is created, securing session keys even in the event that an attacker
is able to inject shellcode in the compartment providing its own TLS session.

The secure compartment was built using the PolarSSL cryptographic library
and a subset of the diet libc library. A simple static 74-byte page is returned to
the clients over an TLS-connection protected by a 1024-bit RSA encryption key.

We used the Apache Benchmark to benchmark this web server for an increasing
number of clients that are concurrently requesting pages. The results are shown
in Table 3.3. The performance overhead tops at 12.72% and is mainly attributed
to the many compartment boundaries crosses during the TLS negotiation phase.

4https://polarssl.org/

https://polarssl.org/

EVALUATION 79

Figure 3.5: Salus’ performance overhead on the gzip macro benchmark drops
significantly as the input file size increases.

Compartmentalized parser

As input files are often under the control of an attacker and sanitation of their
content can be difficult, parsers are a likely attack vector for many applications.
As a second benchmark, we isolated the decompressing function of gzip (GNU
zip). While disabling unused system calls for the entire process would result
in similar security guarantees, we are interested in the impact of repeated
compartment crossings in a parser setting. Applications that place their parser
and the rest of the application in different compartments, would incur a similar
overhead as only one additional compartment boundary needs to be crossed.

To benchmark the application, we created input files with randomized content,
ranging from 16KiB to 64MiB in size, compressed them and measured the time
taken to decompress the files with the hardened application. The application
was run 100 times on each file. File I/O used a buffer of 32KiB and the output
was redirected to the null device. Figure 3.5 displays the results.

Given the relatively high overhead of a call to a compartment and the low
computation cost of the decompressing function, it is unsurprising that for
small input files the overhead can be as high as 21.9%. When the input size is
increased however, the overhead drops steadily to -0.5% for 64MiB input files,
even though also the number of compartment-border crossings increases from 8
to 8200. We attribute this significant drop in overhead to the increased amount
of slow disk I/O that needs to be performed as the input file size gets bigger,
an effect that we predict to see in most parser-like compartments. The small
performance gain of 0.5% can be attributed to cache effects.

The way an application is partitioned will have a significant impact on

80 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

performance. Applications should be compartmentalized in logical blocks where
each compartment has direct access to most of its required data. Once a logical
block has finished, control and all data should be passed to the next compartment,
reducing the number of inter-compartment calls. Smaller, heavily protected
compartments such as an TLS compartment, provide strong security but may
impact performance more significantly when called repeatedly. This makes the
performance impact of compartmentalization difficult to predict. Therefore we
advocate for automatic partitioning tools that analyze the application’s call
graph and information flow to reduce the number of compartment crosses and
help the programmer decide which compartments should be hardened.

3.6 Related Work

Various security measures have been proposed to harden applications. Many
of them aim to protect against very specific vulnerabilities such as buffer
overflows [6,42,122,146], format string vulnerabilities [31] or non-control data
attacks [25]. While these countermeasures make it significantly more difficult
for an attacker to compromise software applications, they cannot offer complete
protection. Static verification of source code [60], in contrast, is able to provide
such hard security guarantees, but typically comes at a significant economic
cost in terms of programming and verification effort.

Singaravelu et al. [112] proposed to isolate security-sensitive parts of applications
in complete isolation from the rest of the system. Many research proposals
have since been filed based on this principle. Each of them provides some
way of executing modules in isolation, relying on a trusted code base ranging
from only a few thousands of lines of code [77, 119] to only the protected
modules themselves and a small runtime library [11,78]. More recently, specially
tailored hardware support has been proposed in academia [87, 89, 120] and
industry [7,51,81]. While these research prototypes offer provable security to
the sensitive data that they protect [4, 96–98], they do not attempt to reduce
the impact of a vulnerability elsewhere in the code by executing modules with
the least amount of privileges possible [106]. An attacker who successfully gains
control over the platform is still able to interact with other protected modules
unrestrictedly.

Other work focuses on confining possible software vulnerabilities. Early work
focused on reducing the size of the kernel itself [72], where process privileges
are managed by capabilities. Recently Watson et al. [138] proposed applying
a similar idea to partition applications themselves, where capabilities can be
granted to each created partition. As partitions live in their own process,

RELATED WORK 81

interaction takes place through remote procedure calls and passed data must
be marshalled. Salus avoids these drawbacks by executing compartments in the
same address space and unprotected memory can be used to gradually partition
legacy applications (see section 3.3.6).

Provos et al. [100] and Brumley et al. [17] propose separating sensitive
applications into a privileged monitor and one or multiple slave components.
Monitor and slaves communicate through system sockets and thus also require
arguments to be marshalled. Subsequent work by Provos [99] argues for finer
grained access policies for system calls. Bittau et al. [15] also propose splitting
applications into compartments (called sthreads) executing with least privilege.
Developers can tag memory locations and a security policy enforces that a
compartment can only access memory locations with a matching tag. When an
sthread requires more privilege operations, it can request so by calling a callgate.
A security policy enforces which callgates an sthread can call. Salus’ unforgeable
references enable a much more flexible security policy. Compartments can be
provided temporary access to system resources by encapsulating them in a
compartment. As all interaction to the resource passes by this compartment,
the caller’s access rights can easily be revoked at a later point in time [82].

Native Client (NaCl) [108,145], which builds upon the concepts of software fault
isolation [137], takes another approach and attempts to completely sandbox x86
code. Accesses to the environment from within a sandbox are tightly controlled
by runtime facilities. While NaCl focuses on downloaded, untrusted binary
code, it could be used to partition entire applications. Interaction between two
NaCl partitions is provided through a service similar to Unix domain sockets,
making porting existing legacy applications a challenging undertaking. Salus
on the other hand can provide a similar tightly controlled sandbox by placing
such partitions in one compartment while the remaining legacy application
is placed in another. A specially created wrapper can ensure that all system
call privileges are revoked before execution control is given to the sandboxed
code. There are however two major differences compared to NaCl. First,
Salus only impacts performance when compartment boundaries are crossed.
NaCl on the other hand places constraints on the binary code itself, resulting
in a varying performance impact. Second, Salus employs a non-hierarchical
separation of privilege, allowing compartments to be completely isolated from
other compartments (possibly provided by other vendors) while compartments
of the same vendor can co-operate easily.

Finally, our earlier work [119,120] is the most related to Salus. It also employs a
program-counter based access control mechanism, but assumes a secure interface.
Therefore it has the same limitation as other research prototypes [11, 77, 78]
that provide strong isolation of sensitive data: it does not reduce the possible
impact of exploited vulnerabilities.

82 SALUS: NON-HIERARCHICAL MEMORY ACCESS RIGHTS TO ENFORCE POLP

3.7 Conclusion

Protected-module architectures isolate sensitive parts of applications. They
guarantee that sensitive data can only be accessed via a well-defined interface.
In practice, however, it is hard to isolate security-sensitive parts, as most code
in an application is sensitive up to some level. As a result, modules of such
platforms may need to provide insecure interfaces; an attacker may not access
the sensitive data directly, but access to the provided interface may still lead to
unwanted behavior.

We presented Salus, a new security architecture providing strong isolation
guarantees of both sensitive data and software vulnerabilities. Salus significantly
reduces the impact of insecure interfaces by (1) supporting the authentication
of compartments and (2) enabling compartments to enforce that they can only
be accessed through unforgeable references. This allows likely attack vectors
and targets to be placed in different compartments, such that an attacker
must successfully attack multiple compartments before an attack target can be
reached.

3.8 Post-Publication Remarks

As already discussed in Section 2.8, hardware-based capability systems have
been presented since the publication of Salus. Such systems are also able to
prevent unrestricted access to “objects” (i.e., compartments [10], segments [144]
or components [136]) and can be applied in similar use-cases as Salus. Moreover
CHERI’s [144] and CODOMs’ [136] hardware implementation can provide much
faster protection-domain crosses, at increased hardware costs. Revocation of
capabilities however, is much more costly and requires scanning large memory
ranges. The approach taken by Salus provides an interesting alternative, but
has the disadvantages that it relies on the unlikelyhood that an attacker is able
to correctly guess an access token.

Chapter 4

ICE: A Passive, High-Speed,
State-Continuity Scheme

Publications & Acknowledgments

Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-speed,
state-continuity scheme. Accepted for publication in Annual Computer Security
Applications Conference (2014), ACSAC’14.

Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-speed,
state-continuity scheme (extended version). CW Reports CW672, Department
of Computer Science, KU Leuven, September 2014.

The main research effort of this work was lead by Raoul Strackx with the help
of Bart Jacobs to provide a formal proof of correctness and the guidance of
Frank Piessens.

Abstract

The amount of trust that can be placed in commodity computing platforms
is limited by the likelihood of vulnerabilities in their huge software stacks.
Protected-module architectures, such as Intel SGX, provide an interesting
alternative by isolating the execution of software modules. To minimize the
amount of code that provides support for the protected-module architecture,

83

84 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

persistent storage of (confidentiality and integrity protected) states of modules
can be delegated to the untrusted operating system. But precautions should
be taken to ensure state continuity: an attacker should not be able to cause a
module to use stale states (a so-called rollback attack), and while the system
is not under attack, a module should always be able to make progress, even
when the system could crash or lose power at unexpected, random points in
time (i.e., the system should be crash resilient).

Providing state-continuity support is non-trivial as many algorithms are
vulnerable to attack, require on-chip non-volatile memory, wear-out existing
off-chip secure non-volatile memory and/or are too slow for many applications.

We introduce ICE, a system and algorithm providing state-continuity guarantees
to protected modules. ICE’s novelty lies in the facts that (1) it does not rely
on secure non-volatile storage for every state update (e.g., the slow TPM chip).
(2) ICE is a passive security measure. An attacker interrupting the main
power supply or any other source of power, cannot break state-continuity. (3)
Benchmarks show that ICE already enables state-continuous updates almost 5x
faster than writing to TPM NVRAM. With dedicated hardware, performance
can be increased 2 orders of magnitude.

We present a machine-checked proof of ICE’s security guarantees and evaluate
a prototype implementation on commodity hardware.

4.1 Introduction

Protection of sensitive data in commodity computing platforms is extremely
challenging. Modern operating systems provide process isolation primitives, but
the kernel itself is too large to be implemented free from vulnerabilities. Moreover
the operating system’s functionality is extended continuously to support new file
systems, process scheduling algorithms, peripherals, etc. Commodity systems
are also prone to physical attacks, even by ill-equipped and resource-constrained
home users [22, 50]. These vulnerabilities limit the amount of trust that can
be placed in commodity systems. In servers these limitations are remedied by
programmable hardware security modules (HSMs). On client devices, highly-
sensitive applications such as online banking or e-government often resort to
smart cards. Unfortunately, these solutions are expensive, cumbersome and the
security guarantees that they can provide to the overall applications are limited.

Two recent advances in computer security indicate that this situation may
change in the near future. First, protected-module architectures (PMAs) have
been developed that provide strong isolation directly to modules running at

INTRODUCTION 85

application level [11, 21, 77, 78, 87, 105,119,120,134]. The OS is still relied upon
to provide services such as disk and network access, but they are not trusted.
Protected modules’ memory regions cannot be accessed from unprotected
memory; modules are in complete control over their own content and can only
be accessed through the interface they expose. Last year Intel disclosed Software
Guard eXtension (SGX) [7, 51, 81], its hardware-implemented protected module
architecture for commodity processors. SGX goes even further than other
state-of-the-art protected-module architectures and also provides protection
against hardware attacks; modules (called enclaves in SGX1) are only stored
in plaintext within the CPU package. When they are evicted to main memory
they are confidentiality, integrity and version protected.

Second, Agten et al. [4] and Patrignani et al. [98] proposed fully-abstract
compilation techniques to such protected module architectures. While the strong
isolation guarantees offered by these architectures is vital, they are difficult to
implement without compiler support. Care must be taken not to introduce
software vulnerabilities during compilation. Fully-abstract compilation ensures
just this; machine-code-level attacks exists if and only if also a corresponding
attack at source-code level exists. This enables easy reasoning and verification
of the security guarantees these modules provide.

Unfortunately an important attack vector has been largely overlooked.
Protected-module architectures, including SGX, only provide strong isolation
guarantees while the system executes continuously. Without support for state
continuity, protected modules need to remain stateless, significantly hampering
their applicability. Consider as a running example a password-checking module.
To defend against dictionary attacks, the user will be locked out indefinitely
after three failed attempts. The module confidentiality and integrity protects
its state before handing it to the untrusted operating system for storage. But
when the module needs to recover its state after a reboot, it cannot distinguish
between a fresh and a stale state and the guess-limited security measure cannot
be guaranteed.

While having similarities with replay attacks at first glance, the state itself
is replayed in a rollback attack. Providing support for state continuity is
therefore much harder, especially when practical limitations are considered.
Parno et al. [93] show that many seemingly obvious algorithms are flawed.
Others are prone to simple hardware attacks. An uninterruptible power source
(UPS), for example, may simply be disconnected. Or an in-kernel attacker may
prevent the execution of the interrupt handlers the security measure relies upon.
Adding non-volatile memory on-chip could simplify a solution, but requires

1We will use the term “protected module” when referring to isolated memory areas in any
protected-module architecture and use “enclave” when referring to SGX specifically.

86 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

modification of manufacturing processes leading to increased manufacturing
costs. Alternatively, using non-volatile memory off-chip (e.g., isolating disk
space) may be susceptible to a clone attack where a hardware-level attacker may
easily overwrite the state with a previously recorded stale state. Using TPM
NVRAM or TPM monotonic counters instead, would foil such attacks, but
would significantly impact performance and usability. Most implementations
only provide 1,280 bytes of NVRAM that supports only 100,000 write cycles
over the chip’s lifetime [93]. Accessing NVRAM every second, would wear it
out in less then 28 hours. Monotonic counters, on the other hand, only need to
be incrementable every 5 seconds [132].

Hardware upgrades to the TPM chip could reduce some of these architectural
constraints, at an economic cost. However, any solution placing the TPM on
the performance-critical path, would require additional upgrades over time to
bridge the ever growing TPM/CPU performance gap. We present ICE, an
alternative solution that only requires TPM accesses at boot time and is thus
not affected by TPM speed.

ICE avoids architectural challenges (1) by proposing a simple implementation
technique where on-chip dedicated registers are backed off-chip by a capacitor
and persistent memory. Upon a sudden loss of power, the contents of the
dedicated registers is written to persistent memory. (2) ICE is a passive
protection scheme; in the event of a crash or power loss, security is guaranteed
instantly. A hardware attacker may disconnect the capacitor, but state
continuity remains guaranteed. (3) At the moment freshness information is
backed up to persistent storage, it is considered public data. Overwriting it
with stale freshness information will be detected upon recovery.

In summary, we make the following contributions:

• We present ICE, the first algorithm providing state-continuity guarantees
with a minimal TCB that does not rely on the speed of secure, non-volatile
memory (e.g., the (slow) TPM chip) nor does it rely on an uninterruptible
power source.

• We formally verify and machine check the security properties of ICE using
the Coq proof assistant.

• Because SGX-enabled machines or emulators are not yet available, we
validate our claims based on a prototype implementation on top of
Fides [119], an existing hypervisor-based protected module architecture
similar to SGX. Benchmarks show that states can already be stored
almost 5x faster on commodity hardware than writing to TPM NVRAM.
Dedicated hardware support would increase performance substantially.

PROBLEM DEFINITION 87

• We provide new insights that can steer the future design of hardware
security modules e.g., the TPM.

The remainder of this chapter is structured as follows. First we detail our
attack model and the security properties that we need to guarantee. Next
in Sections 4.3 and 4.4, we present our algorithm and discuss three possible
implementations. Finally, we evaluate the security and performance of ICE and
discuss how it can affect future directions of hardware security modules.

4.2 Problem Definition

4.2.1 Attacker Model

ICE can defend against an attacker with three powerful capabilities. First, we
assume that an attacker is able to compromise the entire software stack, with
the exception of ICE-implementing modules. This enables versatile attacks
ranging from modifying the contents of the hard drive to preventing enclaves
from ever resuming execution.

Second, we assume that an attacker has control over the system’s power supply
or is able to launch attacks leading to a similar result. Power-interruption
attacks differ from kernel-level crashes as they also affect software modules
executing in complete isolation from the rest of the system: modules may
stop executing before they can commit their new state. SGX enclaves are
especially vulnerable to such attacks. In order to prevent denial-of-service
attacks by malicious enclaves that never return control to the kernel, SGX
supports interruption of enclaves [57]. When the interrupt is handled in the
untrusted kernel, an in-kernel attacker can easily prevent the enclave from ever
resuming execution.

Third, we consider hardware attacks. We implement ICE as a library that
modules can be statically linked with and take advantage of the security
guarantees provided by the protected-module architecture. In case of SGX
this implies that an attacker may place probes on memory buses or perform
cold boot attacks [50]. Defending against physical attacks against the CPU
package itself or the TPM chip [114,126,141] are orthogonal problems and not
considered.

With respect to cryptographic capabilities of the attacker, we assume the
standard Dolev-Yao model [37]: cryptographic messages can be manipulated,
for instance by duplicating, re-ordering or replaying them, but the underlying
cryptographic primitives cannot be broken.

88 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

We do not consider side-channel attacks in general (e.g., attacks based on cache
behavior [90, 133]) but similar to Parno et al. [93] make one exception: we
do consider attacks where an attacker prevents the module from recording its
new state when she is able to infer (e.g., based on timing differences) that this
state would be unpreferable. When input is given to a module, it should either
complete the computation or no valuable information should be deducible from
it.

4.2.2 Security Properties

State continuity can be factored into two properties: safety2 and liveness. To
ensure safety, ICE must be resilient against a rollback attack where an attacker
provides the module with a valid, but stale state. A rollback attack is related
to a replay attack but it is much harder to defend against. Where in a replay
attack identical input is provided, the state of the module itself is replayed in a
rollback attack.

The second property, liveness, states that benign events should never force
the system into a state from which it cannot progress. In practice this means
that the system should be allowed to crash at any time during the operation
of the algorithm, including when it is recovering from a previous crash. Note
that this is not the same as protection against denial-of-service. Protection
against denial-of-service is not in scope; in-kernel attackers can easily prevent
the system from progressing (e.g., by removing the fresh state from disk, or by
breaking the kernel altogether). Liveness only ensures progress is not hampered
by random crashes. This is important, since random crashes (or power loss)
may occur even when a system is not under attack.

4.2.3 Applicability

ICE’s high-speed state-continuity guarantees enable a large range of applications:

Fortified Applications. Almost all non-trivial applications need to keep some
kind of state: login credentials must not be rolled back to a stale state, firewall
settings must not be revertible and systems must be able to prove that stored log
files are fresh and have never been tampered with. State-continuity guarantees
can also enable more privacy friendly applications. Many use cases (e.g., road
pricing or smart electricity meters) require sensitive data to be collected and

2We deviate from the definition of “safety” by Avizienis et al. [9] and follow the same
terminology of closely related work by Parno et al. [93]

STATE-CONTINUITY AS A LIBRARY 89

sent to a remote server. With strong hardware isolation, attestation and state-
continuity guarantees, a (possibly malicious) user can download a software
module that collects sensitive data and only sends an aggregated value to a
remote party. Privacy sensitive data does never have to leave the user’s system.
We will discuss in Section 4.7 how low-end devices can also benefit from ICE.

A Building Block for Protocols. High-performance, state-continuous storage
enable protocols to provide stronger security guarantees. Consider distributed
algorithms as an example. Fault-tolerant algorithms have been proposed
to reduce the impact of failing network participants (e.g., they may crash,
process inputs incorrectly or their local state may get corrupted), but there is
a theoretical upper bound that at most one third of the participants may be
faulty. Chun et al. proposed append-only memory (A2M) [27] to harden existing
distributed algorithms and applications such as NFS. Acting as a trusted log,
this memory protects against equivocation; the ability of a network node to make
contradicting statements to different entities. The authors propose hardened
versions of PBFT [20], SUNDR [69] and Q/U [2], but leave implementation
with a small TCB as future work. ICE is able to implement fast, append-only
memory almost trivially.

Avoiding the TPM Chip as a Bottleneck. Many applications and protocols
could also be implemented based on guarantees provided by the TPM chip
[93]. Unfortunately the TPM was never designed with performance as a main
requirement and a wide application of this approach would result in a severe
bottleneck, especially in a server setting where each client connection requires
TPM access. ICE avoids this bottleneck and other TPM constraints; a virtually
unlimited number of monotonic counters of variable length can be provided,
almost unlimited, never wearing-out NVRAM can be offered, etc.

4.3 State-Continuity as a Library

Before introducing a running example and describing ICE in full detail, we first
introduce the system hardware we rely on and discuss how freshness information
is recorded.

90 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

Mem
Guarded
Mem

HDD

OS

AppAppApp

Trusted Guarded Untrusted

S
G

X
 e

n
cla

v
e
s

CPU

AppApp

TPM

Figure 4.1: ICE provides state-continuity guarantees to isolated modules while
trusting only a few key components.

4.3.1 Architecture

Assuming ICE is implemented on top of Intel SGX, we only need to place trust
in the CPU package and TPM chip (see Figure 4.1). Attacks against any other
component cannot compromise security.

Enclaves. Intel SGX, as any other protected-module architecture [11,21,77,78,
87,105,119,120,134], provides enclaves with total control over their own code
and data by enforcing a specific access control mechanism; only when executing
within the boundaries of an enclave can its content be accessed. Access attempts
from code running at any privilege level outside the enclave (including from
other enclaves), will be blocked. Enclaves can only be accessed through an
interface they expose explicitly.

SGX can also make hardware attacks against enclaves significantly more
challenging by ensuring that their content is only stored in plaintext inside the
CPU package. The operating system may choose to write pages of enclaves to
RAM memory or swap disk, but only after they are confidentiality and integrity
protected. Freshness data is included as well to ensure that no stale pages
can be swapped back in. However, when the system shuts down or goes into
hibernation or sleep mode, enclaves are destroyed and this freshness information
is lost [57]. Since enclaves live in the same address space and maintain their
state between invocations, they can be seamlessly integrated in applications.

TPM. We store long term secrets and freshness information in TPM NVRAM.
These secrets should only be accessible from the SGX enclave that provided
them.

STATE-CONTINUITY AS A LIBRARY 91

regs NVRAM

controller
CPU

crash

reboot

capacitor
power
supply trusted untrusted

Figure 4.2: Architecture of guarded memory. When power suddenly fails on-chip
dedicated registers are backed up to off-chip, shadow memory (NVRAM). Only
on-chip components need to be trusted. Hardware attacks against NVRAM,
main power supply or the capacitor cannot break state continuity.

Guarded Memory. To enable fast state updates, we propose the addition
of a small amount of guarded memory; dedicated registers on-chip that are
backed off-chip by shadow, non-volatile memory (NVRAM) and a capacitor
(see Figure 4.2). When a controller detects that the main power supply is
disconnected from the CPU package, it copies the registers’ content to non-
volatile memory. When power is re-applied, the controller restores the register’s
content from shadow memory. Note that only on-chip components need to be
trusted. An attacker who gained full access to shadow memory nor one who is
able to disconnect the capacitor or the system’s power supply at any moment
in time, cannot break state continuity.

The controller must also guarantee that guarded memory can be used to store
sensitive data in a way that is inaccessible to an attacker. This is achieved by
implementing an exclusive access mechanism. At boot time guarded memory is
publicly accessible. The first enclave that requests exclusive access will receive
it until the next reboot. From then on only that enclave can access guarded
memory. Access requests from other enclaves or unprotected memory will be
blocked. When power goes down, exclusive access is lost and data stored in
guarded memory must be considered as being public.

Persistent Storage. ICE uses operating system services to access persistent
storage. These services are not trusted: an attacker may copy, replace and
destroy files. To differentiate between the actual state of a module and states
stored on disk, we call the latter (ICE) cubes whenever ambiguity might arise.

92 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

4.3.2 Guards: Storing Freshness Info

Just as message authentication codes (MACs) can be used to guarantee message
integrity, we will use guards to prove that a cube is fresh. Guards are 2-tuples:

guardi(n) = (Hashi(n)︸ ︷︷ ︸
guard value

, i︸︷︷︸
guard index

)

where the first element, the guard value represents the hash value after hashing
the base value i times, the guard index.

A guard is incremented by hashing the guard value and incrementing the index:

guardi(n) = (Hashi(n), i)

guardi+1(n) = (Hashi+1(n), i+ 1)

Based on the construction of guards, they possess two important properties: (1)
two guards can be compared based on the guard index:

(n, i) ≤ (m, j)⇔
{
n = m if i = j

(Hash(n), i+ 1) ≤ (m, j) if i < j

and, (2) an attacker is unable to calculate any preceding guard as this would
imply inverting the hash function.

4.3.3 ChkPassword: A Running Toy Example

Guaranteeing state-continuity is non-trivial and can only be accomplished
by a module provider taking the required security precautions. We only
provide a library offering state-continuous storage. To demonstrate the subtle
vulnerabilities that need to be resolved, consider as a running toy example
ChkPassword, a password-checking module displayed in listing 4.1. It exposes
an interface of two functions: set_passwd that modifies the user’s password
and check_passwd3 that handles login attempts. To prevent dictionary attacks,
ChkPassword will lock out a user indefinitely after 3 incorrect attempts. We
assume that when the module is created, the INIT function is called before any
service call is handled. When ChkPassword executes on the platform for the
first time, a default password is selected (line 7), otherwise its previous state is
restored (line 10).

3Calling ChkPassword from unprotected memory would enable an attacker to intercept the
provided password before it reaches the module. Users of ChkPassword should establish a secure
channel from another module before exchanging sensitive data [7, 119]. Such considerations
are out of scope.

STATE-CONTINUITY AS A LIBRARY 93

stat ic int attempts_le f t ;
2 stat ic char ∗password ;

4 void INIT(void) {
State ∗ s t a t e ;

6 i f (r e t r i e v e (&s t a t e) == UNINITIALIZED){
password = " d e f au l t " ;

8 attempts_le f t = 3 ;
} else

10 re s tore_and_restar t (s t a t e) ;
}

12

int ENTRY_POINT check_passwd (char ∗ guess) {
14 State ∗ s t a t e = new State () ;

16 // s t o r e (input , s t a t e) t u p l e
c o l l e c t_ s t a t e (s t a t e) ;

18 co l l e c t_ input (s ta te , "CHECK_PASSWD") ;
c o l l e c t_ input (s ta te , guess) ;

20 s t o r e (s t a t e) ;

22 // check passwd
i f (at tempts_le f t > 0 &&

24 strcmp (password , guess) == 0) {
attempts_le f t = 3 ;

26 return OK;
} else {

28 attempts_le f t = max(attempts_le f t −1 ,0) ;
return INCORRECT;

30 }
}

32

int ENTRY_POINT set_passwd (char ∗oldpwd , char ∗newpwd) { . . . }

Listing 4.1: ChkPassword: A running example.

To ensure state continuity, ChkPassword needs to fulfill three requirements.
First, it must protect against subtle timing attacks. When an attacker is able
to infer that the provided password is incorrect based on timing differences
between a correct and incorrect password,4 she may be able to crash the system
before the login attempt could be recorded. Ensuring that each execution
path takes exactly the same amount of CPU cycles is hard. Similar to Parno
et al. [93], we take a much simpler approach and store the state with the newly
provided input before it is used in any computation. Hence, ChkPassword stores
its current state (the number of attempts left and the correct password) together
with the provided guess (line 17-20) before checking the provided password.

4A similar attack exists when a (unique) callback to unprotected memory is made before
an undesirable state is stored.

94 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

An unexpected crash while the password is being verified (i.e., after line 20),
will then result in the current state being restored and execution is restarted;
another attempt is made to check the same provided password.5 We assume
restore_and_restart restores the current state and restarts execution of the
last called entry point (line 10). Alternatively, if the system crashed before the
input could be recorded and thus was never used in any meaningful computation
(i.e., before line 20), the guess can simply be discarded.

Second, in order to guarantee that re-execution of the same input on the same
state always leads to an identical result, modules must be deterministic. This
implies that modules must consider all sources of non-determinism (e.g., the
result of a random number generator) as input and thus store such data before
using it in any computation.

Third, an attacker must not be able to infer any value from the size of the
stored states on disk; modules must ensure that all cubes are equal in size.

4.3.4 ICE Libraries

We will provide state-continuous storage in two steps. In Section 4.3.4 we
introduce libice0, a library providing support at the cost of scarce platform
resources for every instance. Then in Section 4.3.4, we present libicen that
alleviates resource pressure by storing freshness information in a single, state-
continuous module ice0. As all libicen library instances connect to the same,
unique ice0 instance, a virtually unlimited number of modules is supported.

Both libice0 and libicen provide the same interface: store(State *) and
retrieve(State **). To avoid repeated TPM or ice0 accesses, libice0 and
libicen keep a cached copy. In order to distinguish between these copies and
explicitly state where they are stored, we will reference them similarly to fields
of a struct. For example, the encryption and MAC keys stored in the TPM
chip will be referenced as tpm.keys. The variables used by the ICE algorithm
are referenced as ice.keys and so on. Besides storing keys and the guard we
also keep track of the state of the algorithm using a mode variable. Stored
inside the TPM chip (tpm.mode), this variable indicates whether ICE was once
initiated correctly. In libice0 (ice.mode) this variable is used to indicate
whether ICE was initiated or recovered since reboot. We assume that when a
module is resurrected after a crash, ice.mode is initialized with value Clear.
As a shorthand, we also assume that setting this variable takes exclusive access
of guarded memory. Listing 4.2 uses these variables to differentiate between

5Decrementing the counter only after the password check failed does not impact the
module’s security properties for the same reason, assuming that the check is implemented
securely.

STATE-CONTINUITY AS A LIBRARY 95

1 void s t o r e (State ∗ s t a t e) {
switch (i c e .mode) {

3 case Clear :
return _in i t_state (s t a t e) ;

5 case Activated :
return _update_state (s t a t e) ;

7 } }

9 int r e t r i e v e (State ∗∗ s t a t e) {
switch (tpm .mode) {

11 case Clear :
return UNINITIALIZED ;

13 case Activated :
∗ s t a t e = _recovery_step () ;

15 return RECOVERED;
} }

Listing 4.2: libice0 relies on tpm.mode and ice.mode to distinguish between
storing an initial state, updating a stored state and recovery.

State guard MAC
encrypted

Figure 4.3: Stored states are confidentiality and integrity protected. Freshness
is based on the enclosed guard.

an initial state being stored and a state being updated. Similarly, tpm.mode is
used to determine whether a state was ever stored.

libice0: State-Continuous Storage for One Module

In order to provide state continuity, we must guarantee that an attacker is not
able to fabricate recorded states (called cubes) and that no stale cubes can
be provided as being fresh. The former is trivially guaranteed by including a
message authentication code in each cube (see Fig. 4.3). Guaranteeing freshness
is more challenging, but as modules maintain their state between invocations,
we only need to consider power off and reboot events. Let’s call events during
such power cycles an execution stream. An execution stream starts by either
storing an initial state of a module or when the state of a module is recovered
after a crash. It ends when the system crashes or when it is shut down properly.

To keep track of the fresh cube, we will generate a (base) guard when the
execution stream starts and store it securely in TPM NVRAM. For every state
the module requests storage of in the current execution stream, we will increment
the guard and include it in the generated cube. Using guarded memory we will

96 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

void _in i t_state (State ∗ s t a t e) {
2 i c e . guard = gen_guard () ;

i c e . keys = gen_keys () ;
4 hdd . wr i t e (new Cube(i c e . guard , i c e . keys , s t a t e)) ;

i c e .mode = Activated ;
6 gmem. guard = i c e . guard ;

tpm . guard = i c e . guard ;
8 tpm . keys = i c e . keys ;

tpm .mode = Activated ;
10 }

Listing 4.3: libice0: Storing the initial state.

ensure that only the guard included in the last (and thus fresh) cube is leaked
at the moment the system crashes. As no preceding guards were leaked (and
cannot be calculated), it serves as a pointer to the fresh cube. Upon recovery,
if the guard6 that is stored in the provided cube can be provided to libice0,
then this proves that the cube is fresh.

Creation of an Initial State. When storage of the initial state of the module
is requested, a new base guard and keys are generated (see listing 4.3). Next,
a new cube is constructed and written to disk. Exclusive access of guarded
memory is taken by setting the ice.mode variable to Activated and the fresh
guard is written to guarded memory. In case exclusive access cannot be assigned
(i.e., another module already received it), the module simply stops its execution.
For clarity, such error handling is not displayed. Finally the keys and guard are
stored in the TPM’s NVRAM and tpm.mode is set to Activated, committing
the start of a new execution stream.

Updating a State. When storage of a new input-state pair is requested in
the same execution stream, the previously used guard and keys are still stored
in libice0’s memory and no TPM accesses are required. To safely store the
input-state pair, a new cube is created with the subsequent guard and stored on
disk (see listing 4.4). Finally the step is committed by writing the fresh guard
to guarded memory.

Recovering from a Crash. Recovering from a crash is more challenging and
is achieved in two steps (see listing 4.5, error handling is omitted for clarity).

6We must also check that this guard was created during the last execution stream as a
matching guard/cube becomes public at the end of every execution stream.

STATE-CONTINUITY AS A LIBRARY 97

void _update_state (State ∗ s t a t e) {
2 i c e . guard = ++i c e . guard ;

hdd . wr i t e (new Cube(i c e . guard , i c e . keys , s t a t e)) ;
4 gmem. guard = i c e . guard ;

}

Listing 4.4: libice0: Updating a state.

First, the last stored cube is read from disk. By verifying three properties its
freshness is ensured:

• Validity: Cubes must not have been forged by an attacker. This is ensured
by the MAC stored in each cube and the accompanying key stored securely
in the TPM chip (line 17).

• Correct execution stream: The cube received from the untrusted OS must
have been created during the last execution stream. At the start of
each execution stream a new base guard is generated and stored in TPM
NVRAM. All guards used during this execution stream are successors of
this base guard. Hence, the cube was created during the last execution
stream if and only if (line 18):

tpm.guard ≤ cube.guard

• Public guard: libice0 ensures that guarded memory always contains the
same guard as the last (fresh) cube stored on disk7, and that no preceding
guards leak or can be calculated. Hence, if the guard stored in guarded
memory matches the guard included in the cube at hand and the two
previous properties hold as well, it is guaranteed that the cube is fresh
(line 19).

In the second step the fresh state is re-stored as part of a new execution stream:
libice0’s variables are restored from TPM NVRAM, a new base guard is
generated, the fresh state packaged in a new cube and the base guard is written
to guarded and TPM NVRAM memory. To ensure that after an unexpected
crash during the execution of this step, recovery can be restarted, libice0 must
(1) backup the previous fresh guard before overwriting it in guarded memory. As
this value is public, any persistent storage can be used (for clarity not displayed
in listing 4.5). (2) The new base guard is written to TPM NVRAM as the last
step.

7There is one exception as writing cubes to disk and updating guarded memory cannot be
executed atomically. This exception is resolved later in this section.

98 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

G
M

e
m

H
D

D

c
ra

s
h

t0

s
e
t_

p
a
s
s
w

d

g

c
h

e
c
k
_p

a
s
s
w

d

g' g''

c
ra

s
h

t1

c
ra

s
h

t2

C0(g, k, s)

Cattempt1(g, k, s')

Cattempt2(g, k, s'')

step 2step 1initialization

write cube write GMem write TPM NVRAM computeuser input

stale cube fresh cube

c
h

e
c
k
_p

a
s
s
w

d

time

Figure 4.4: Graphical overview of the steps taken by a module storing its initial
state and taking two steps in the same execution stream. Depending on the
timing of a crash, three distinct situations can occur.

1 State ∗_recovery_step () {
Cube cube = hdd . read () ;

3 i f (i s_ f r e sh (&cube)) {
State ∗ s t a t e = ex t r a c t (cube , tpm . keys) ;

5 i c e . guard = gen_guard () ;
i c e . keys = tpm . keys ;

7 hdd . wr i t e (new Cube(i c e . guard , i c e . keys , s t a t e)) ;
i c e .mode = Activated ;

9 gmem. guard = i c e . guard ;
tpm . guard = i c e . guard ;

11 return s t a t e ;
}

13 else abort () ;
}

15

bool i s_ f r e sh (Cube ∗cube) {
17 return (check_mac (cube , tpm . keys) &&

tpm . guard ≤ cube−>guard &&
19 gmem. guard . va lue == cube−>guard . va lue) ;

}
21

bool operator≤(Guard g1 , Guard g2) {
23 while (g1 . index < g2 . index) {

g1 . va lue = Hash (g1 . va lue) ;
25 ++g1 . index ;

}
27 return g1 . va lue == g2 . va lue ;

}

Listing 4.5: libice0: Recovering from a crash.

STATE-CONTINUITY AS A LIBRARY 99

Let’s reconsider ChkPassword and discuss how crashes are resolved. Depending
on the timing of a crash, we can differentiate between three main situations.
Fig. 4.4 displays them graphically. One, ChkPassword was just created and
the user called set_passwd to change the default password. This led to the
execution of _init_state but the system crashes before tpm.mode could be
set (see listing 4.3 line 9, t0 in Fig. 4.4). When ChkPassword is re-created, it
requests its previous state (listing 4.1, line 6). As tpm.mode still read Clear
(listing 4.2 line 3), the module will restart from its default settings. As no input
was ever used, state-continuity is guaranteed trivially.

Two, the system didn’t crash when the user modified the module’s default
password and now calls check_passwd providing "attempt1" as password.
After libice0 stores a new cube Cattempt1 on disk and updates guarded memory,
the system crashes while the password is being verified (listing 4.1 line 23, t1
in Fig. 4.4). The module is re-created and execution flow eventually executes
_recovery_step (listing 4.5) As only a single cube is available containing
the leaked guard from guarded memory (or a successor thereof), only cube
Cattempt1 is considered fresh. After returning the stored input-state tuple in
Cattempt1, ChkPassword will restore the attempts_left and password variables
and execution is restarted with input "attempt1" (listing 4.1 line 10).

Three, assume that the previous password was incorrect and the user enters
"attempt2" for her second attempt. After storing the new cube Cattempt2 on
disk, the system crashes before the incremented guard could be written to
guarded memory (listing 4.4 line 4, t2 in Fig. 4.4). This is an interesting point
of failure as both cubes Cattempt1 as Cattempt2 can be considered fresh8. However,
recovery based on either will preserve state continuity. This is obvious for cube
Cattempt2 as this is the latest cube written to disk. Recovery from Cattempt1,
however will purge any record of the login attempt made using "attempt2".
This is also safe as it was never used in any valuable computation (instructions
after listing 4.1 line 24 were not executed yet). Hence, an attacker is not able
to deduce any valuable information.

libicen: State-Continuous Storage for n Modules

By depending on scarce resources such as TPM NVRAM and guarded memory,
libice0 can in practice only provide state-continuous storage to a limited
number of modules. libicen will alleviate this strain by using a single, unique
ice0 module to store freshness information on behalf of other modules. To

8The recovery step as displayed in listing 4.5, line 19, only accepts cube Cattempt1 as fresh.
However, an attacker incrementing the guard stored in guarded memory, will trick libice0
to accept cube Cattempt2 as being fresh as well.

100 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

void _init_step (State ∗ s t a t e) {
2 mod . guard = gen_guard () ;

mod . keys = gen_keys () ;
4 hdd . wr i t e (new Cube(mod . guard , mod . keys , s t a t e)) ;

mod .mode = Activated ;
6 i c e 0 . s t o r e (mod . id , mod . keys , mod . guard) ;

}

Listing 4.6: libicen: Initialization of a new module.

1 void _update_state (State ∗ s t a t e) {
++mod . guard ;

3 hdd . wr i t e (new Cube(mod . guard , mod . keys , s t a t e)) ;
i c e 0 . s t o r e (mod . id , mod . guard) ;

5 }

Listing 4.7: libicen: Updating a state.

safely exchange sensitive information between libicen and the ice0 module,
inter-module communication must guarantee endpoint authentication and
confidentiality, integrity and freshness of messages. We will state this explicitly
by passing a module identifier to ice0 calls.

Creation of an initial state. Similarly to libice0, an initial state of the
module is stored by generating a new guard and cryptographic keys and writing
a new cube to disk (see listing 4.6). Finally the ice0 module is requested to
(state-continuously) store the keys and guard.

Updating a state. To update a state, libicen first writes a new cube to disk,
before the updated fresh guard is stored in ice0 (see listing 4.7).

Recovering from a crash. To recover from a crash, the (presumably) fresh
cube is read from disk (see listing 4.8). Next, the keys and guard are requested
from the ice0 module. As the fresh guard is always stored safely in ice0, a
cube with a correct MAC and that contains the fresh guard, must be fresh.
Once the cube’s freshness has been validated, libicen needs to generate a new
guard, create and write a new cube to disk and store the new guard in ice0
before a new step is taken.

The fact that a new guard is generated may be surprising since libicen’s
guards never leak. But if this security measure is omitted, state continuity

IMPLEMENTATIONS 101

1 State ∗_recovery_step () {
Cube cube = hdd . read () ;

3 i c e 0 . r e t r i e v e (mod . id , &mod . keys , &mod . guard)
i f (i s_ f r e sh (&cube)) {

5 State ∗ s t a t e = ex t r a c t (cube . s ta te ,
tpm . keys)

7 mod . guard = gen_guard () ;
hdd . wr i t e (new Cube(mod . guard ,

9 mod . keys ,
cube . s t a t e)) ;

11 mod . s t a t e = Act ivated ;
i c e 0 . s t o r e (mod . id , mod . keys , mod . guard)

13 return s t a t e ;
}

15 else abort () ;
}

17

bool i s_ f r e sh (Cube ∗cube) {
19 return check_mac (cube , mod . keys) &&

mod . guard . va lue == cube . guard . va lue ;
21 }

Listing 4.8: libicen: Recovering from a crash.

cannot be guaranteed. Let’s reconsider ChkPassword and show that if no new
guards are created upon recovery, an attacker can create (fresh) cubes for every
password in a dictionary attack and later tests them one by one. To explain
the first step, recall that modules are required to first store input-state tuples
before processing input. This enables an attacker to input a password, store the
resulting cube on disk and then crash the system before the input is committed;
the system keeps crashing before writing the new guard to guarded memory
(listing 4.7 line 4). These instructions are repeated for every password in the
dictionary. In the second step of the attack, the module is finally allowed to
check a password. If it is incorrect, the attacker crashes the system. Upon
recovery the fresh cube is requested from disk, but as all cubes contain the
same guard value, all are considered fresh and another guess can be made.
This example shows that seemingly obvious state-continuous algorithms may
be susceptible to subtle bugs and should be formally verified.

4.4 Implementations

To be feasible in practice, any system providing state-continuous storage needs
to be (1) small enough to allow formal verification (2) operate seamlessly with
legacy software (3) incur a low performance overhead and (4) not wear out TPM

102 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

Mem CMOS HDD

Hypervisor

OS

AppAppApp

Trusted Guarded Untrusted

m
o
d
u
le
s

CPU

AppApp

TPM

Figure 4.5: ICE can provide state-continuity guarantees to isolated modules of
many state-of-the-art protected-module architectures on commodity hardware.

NVRAM. ICE is able to meet all these conditions, but depending on hardware
support available, it is able to withstand different levels of hardware attacks.
We describe implementations on platforms ranging from existing, commodity
hardware platforms to distant future architectures.

4.4.1 ICE on Commodity Hardware

Given that SGX-enabled platforms will only become available in the near
future, we implemented9 a prototype of ICE on a commodity platform. A
hypervisor-based protected-module architecture provided support for module
isolation and we used CMOS memory as guarded memory. Obviously, since the
hypervisor cannot prevent isolated modules to be evicted from the CPU cache
to main memory in plaintext and CMOS memory is an easy attack vector, this
implementation cannot protect against sophisticated hardware attacks.

Architecture

We opted to implement our prototype on top of Fides [119], a pre-existing PMA
architecture. Its support for secure communication between modules enables
an elegant implementation of libicen, where ice0 can be implemented as a
protected module. Alternatively, other protected-module architectures could
implement similar secure communication primitives, or include ice0 as part of
the security platform. Fides’ architecture with trusted/untrusted components
are displayed in Fig. 4.5.

9Our research prototype is publicly available at https://distrinet.cs.kuleuven.be/software/
sce/

https://distrinet.cs.kuleuven.be/software/sce/
https://distrinet.cs.kuleuven.be/software/sce/

IMPLEMENTATIONS 103

While any non-volatile memory can serve as an alternative, CMOS memory is
an interesting candidate for guarded memory. As it stores wall-clock time,
it is updated every second and it must support a large number of write
operations over its entire lifespan. Second, as it does not require a special
communication protocol, it can be accessed easily and without much overhead.
Being only accessible through direct I/O, it can also be isolated easily by
hardware virtualization support.

Prototype Implementation

We added support to Fides for isolating and accessing CMOS memory. Using
virtualization support to isolate programmed I/O, only 21 lines of code (LOC)
had to be added to the hypervisor. Another 61 LOCs were required to implement
system calls to access CMOS memory from the module. This totals the size of
the hypervisor to 9,492 LOCs. While Fides at this moment does not support
TPM chip accesses, we estimate, based on the Flicker [78] source code10, that
this straightforward effort would require an addition of less than 2,000 LOCs.
As ICE only accesses the TPM at boot time, this does not impact performance.

While CMOS memory can be read/write accessed by the hypervisor, BIOS
support for real-world implementations is required to allocate memory and
exclude the area from its checksum to avoid that values written to CMOS
memory are cleared on reboot. In practice, we must also ensure that the guard
stored in CMOS memory is not lost when the system crashes while the previous
guard is being overwritten. This can be solved by implementing a two-phase
commit protocol where first a new guard is written before overwriting the
previous one. In the event of an unexpected crash, the old guard may not have
been overwritten yet and both guards leak to an attacker. However, this does not
impact security as such an event is similar to an unexpected loss of power before
the guard is updated; an attacker can easily calculate the new guard based on
the one leaked. This situation is covered by the formal, machine-checked proof.

As available space in CMOS memory is BIOS-specific, some systems may have
insufficient space to store two hash values. There are two options (1) they
may use an alternative hash function with a smaller hash value [16] or (2) only
partially store the hash value (e.g. the 2 least significant bytes). As the value is
only compared to the expected value, only the operator<= function of libice0
needs to be trivially modified (listing 4.5, line 27). To prevent an attacker from
guessing a correct value, the number of recovery attempts can be tracked by
storing a counter in TPM NVRAM. This counter can be decremented before
the provided guess is tested, preventing a crash attack. Full support for state

10https://sparrow.ece.cmu.edu/group/flicker.html

https://sparrow.ece.cmu.edu/group/flicker.html

104 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

Table 4.1: Breakdown of lines of codes for libice0 and libicen.

libice0 libicen
asm C asm C

ICE 0 372 0 341
SHA-512 0 371 0 371
AES-NI 1,566 176 1,566 176
Total 1,566 919 1,566 888

continuity is in this case not required as the chances of repeated crashes during
recovery are expected to be low in practice and thus losing a few recovery
attempts is not an issue. To conservatively evaluate performance for a strong
security implementation, we used the SHA-512 hash algorithm to create guard
values. In Section 4.6 we will show that writing to CMOS is 5x more time
consuming than libice0’s computations. Hence, writing less data to CMOS
will have a positive impact on performance.

To implement libice0 and libicen, we used the polarssl11 library to calculate
SHA-512 hash values and the Intel AES-NI reference implementation to take
advantage of AES hardware support. This totals to 2,485 LOCs and 2,454 LOCs
for libice0 and libicen respectively (Table 4.1).

4.4.2 SGX-Based Implementation

By relying on SGX’ guarantees that enclaves never leave the CPU package in
plaintext, ICE can also withstand physical attacks but some security measures
must be taken. First, dedicated hardware support for guarded memory is
required. As proposed in Section 4.3.1, dedicated registers can be added to the
CPU storing the fresh guard while the system is powered on. When power is
suddenly lost, the content of these registers can be backed up to non-volatile
memory using a small capacitor. Attackers who disconnect the capacitor or are
able to read and write from/to non-volatile memory may prevent modules to
ever advance again, but state-continuity remains guaranteed. Only dedicated
registers need to be protected from inspection by a (hardware) attacker but
as they are included in the CPU package, they share the same protection as
enclaves residing in one of the CPU’s caches. To prevent that the contents
of these dedicated registers can be accessed by a (software-level) attacker, we
propose a simple permission mechanism; the first enclave that requested access
is granted it exclusively. Attempts to access these registers from any other
locations will be prevented.

11http://polarssl.org/

http://polarssl.org/

IMPLEMENTATIONS 105

Second, we must guarantee that the base guard stored in TPM NVRAM at the
beginning of every execution stream, will not leak to an attacker. This can be
established by setting up a secure channel from the ice0 module to the TPM
chip [132]. Authentication data can be sealed to the ice0 module using SGX
seal functionality [7, 57].

Third, in Section 4.3.4 we assumed that modules can easily and safely interact
with one another. Fides supports such interaction explicitly by allowing modules
to be authenticated and called from other modules. Unfortunately SGX enclaves
cannot be called from other enclaves [57]. While this issue could be resolved with
another hardware modification, it is not required. Using local attestation [7],
enclaves can authenticate each other and set up a secure channel. As messages
need to be passed in unprotected memory, they need to be confidentiality and
integrity protected. A packet number must also be included to prevent replay
attacks.

4.4.3 Distant Future Architectures

The wide deployment of TPM chips makes them a logical location to
store freshness information and cryptographic keys over execution streams.
Unfortunately, hardware attacks against the chip have been presented [114,
126, 141]. Moreover, the TPM chip is overly complex for our use case. This
increases the risk of software vulnerabilities in the chip. We propose hardware
replacements that provide stronger protection against physical attacks with
only minimal hardware support.

To prevent ICE’s cryptographic keys to leak to a hardware attacker launching
offline attacks, we can replace it with a physically uncloneable function (PUF)
[91]. PUFs are based on tiny variations in the manufacturing process of every
individual hardware chip. This guarantees that PUFs are unique and are hard
to copy. It has been shown that PUFs can be used to extract cryptographic
keys. Their primary advantages over non-volatile memory, are (1) that they can
only be read while they are powered and (2) physical tampering will destroy the
PUF’s intrinsic data. This makes them much more resilient against hardware
attacks.

If we closely examine the libice0 algorithm, we can observe that the base
value of guards is always randomly selected. This enables it to be replaced
by a reconfigurable PUF (rPUF) [67]. Similar to PUFs, rPUFs can be used
to safely store random bits of data from an offline hardware attacker. But
rPUFs have the additional functionality that they can be reconfigured; upon
instruction the intrinsic secret data can be randomly modified. Once a rPUF
has been reconfigured, it can never be reverted. Unfortunately, rPUFs still

106 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

are a theoretical concept. Logical rPUFs have been proposed [61], where a
PUF is combined with the contents of a non-volatile register. Only when the
register contents is unchanged, will the logical rPUF return the same result.
Upon reconfiguration, the register content is hashed and cannot be reverted.
In contrast to “real” rPUFs, security sensitive information is still present after
power-off and may be susceptible to attack.

While PUFs and rPUFs protect against a hardware attacker, we must ensure
that malicious software on the platform cannot access these hardware primitives.
This can be guaranteed by loading the ice0 module on power-on [40] in memory
and only allowing PUF/rPUF accesses from that memory region. In case the
PUF/rPUF are implemented on a separate chip, a secure channel to the CPU
needs to be established as well.

4.5 Security Evaluation

Since state-continuous algorithms must deal with sudden system crashes at
any point in time, they are prone to subtle vulnerabilities. To guarantee ICE
is indeed secure against a powerful attacker, we developed formal proofs of
correctness.

4.5.1 Safety Properties

One of the properties that a safe state-continuous algorithm must guarantee, is
that once a module starts computing with user-provided input, it must complete
the initiated step or never advance at all. Provided input that was not yet used
in any computation, however, may simply be discarded. To prove libice0’s
safety, we first consider deterministic modules that only take their last state as
input and later extend the proof to modules that also take non-deterministic
(user) input. Finally we formally prove libicen’s safety guarantees.

Safety of libice0 in the event of deterministic modules was proven by a
machine-checked proof12 with the Coq proof assistant [12]. The proof required
118 definitions, 201 lemmas and totals 37,726 lines. For non-deterministic
modules and libicen, we created formal proofs, but leave machine-checks as
future work.

12The correctness proof is publicly available at https://distrinet.cs.kuleuven.be/software/
sce/

https://distrinet.cs.kuleuven.be/software/sce/
https://distrinet.cs.kuleuven.be/software/sce/

SECURITY EVALUATION 107

1 void ice_program (void) {
while (t rue) {

3 switch (i c e .mode , tpm .mode) {
case (Activated , _) :

5 normal_step () ;
break ;

7 case (Clear , Clear) :
i n i t_s t ep () ;

9 break ;
case (Clear , Act ivated) :

11 recovery_step () ;
break ;

13 } } }

Listing 4.9: To prove ICE0’s correctness, we created a small application that
will keep advancing a module.

Model

We modeled the state of a concrete system as a 7-tuple (T, N, I, H, P, t, g)
where record T holds the contents of the TPM’s secure storage. To be able
to model cryptographically secure random numbers, a monotonic counter is
also kept in T. N keeps the content of the guarded memory. Whether it can
be accessed by an attacker depends on the mode of the countermeasure that is
stored in the I record together with the current guard, cryptographic key and
the current state of the module. H models the hard disk drive of the machine
and stores the cubes. P models all public data, including cubes that were ever
stored on disk and leaked guards from guarded memory. The algorithm itself is
represented as a small program (see listing 4.9) that keeps advancing a module
ϕ and is written as a term t. Finally a ghost element g tracks the last executed
state and facilitates checking the proof.

Based on the state space S of these 7-tuples, we built a state machine with
a step relation SM ⊆ S × S where every step is either a program step or an
attack step. A program step takes one evaluation step on term t. To ensure that
our proof also holds in practice, we ensured that all instructions are feasible
on commodity systems. For example, we do not consider that the TPM chip
and guarded memory can be accessed simultaneously. We modeled the module
requiring state continuity as a deterministic function ϕ. Whenever the module
is executed with input state i, this argument is copied to ghost element g.

In an attack step an attacker is able to perform 4 operations:

• Crash the system: The system may crash at any point. This will (1)

108 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

lift the protection of guarded memory and its contents becomes public
knowledge. (2) I (i.e. libice0’s memory area) is cleared and does not
leak. (3) libice0 is restarted (term t is set to its initial value).

• Modify HDD: The contents of the hard disk drive may be modified by
an attacker at any time. Cubes can be deleted, restored from public
information in P, or cubes can be crafted by an attacker using publicly
known cryptographic keys in P.

• Modify guarded memory: When the protection of guarded memory is
down, an attacker is able to modify its contents and set it to any publicly
derivable guard value. A guard g′ = (v′, i′) is publicly derivable from
guard g = (v, i) when its guard value v′ can be computed from v:

∃n ∈ N, v′ = Hashn(v)

The guard index is not considered and can be chosen arbitrarily.

• Use random number: At any time an attacker is able to request a new
random number from the TPM chip.

libice0’s State-Continuity Guarantees

To prove libice0’s correctness, we differentiate between modules that take
non-deterministic input and modules that only operate on their last state.

libice0: State Continuity of Deterministic Modules. Before we discuss the
proof in more detail, we first introduce some definitions. We define R∗ as the
reflexive-transitive closure of a state relation R i.e. R∗ = ∪n∈NRn. The image
R(X) of a set X under a relation R is defined as R(X) = {s′|∃s ∈ X.(s, s′) ∈ R}.
We also define the composition P ;R of a state predicate P and a state relation
R as P ;R = (P × S) ∩R. Similarly, we define R;P as R;P = R ∩ (S × P)

To prove state continuity we use rely-guarantee reasoning and reason about
reset, interference and program steps separately. We say a submachine with step
relation S is safe under a precondition P , a rely condition R, and a guarantee
condition G, denoted safe(P,R,G, S), if, when starting from a state that satisfies
the precondition, all steps by the submachine satisfy the guarantee condition,
assuming that all steps by the environment satisfy the rely condition:

safe(P,R,G, S) = (S ∪R)∗(P);S ⊆ G

Finally we define SM as a step relation SM ⊆ S × S where each step is either a
program step or an attacker step.

SECURITY EVALUATION 109

Theorem 1 (libice0’s deterministic safety). We wish to prove the following:

safe({s0}, Id, A, SM)

where the precondition allows just the initial state s0, the rely condition is the
identity relation (since there is no environment), and the guarantee condition is
the set of allowed steps. A step is allowed when libice0 either calls ϕ with its
last output or it is a stutter step where ϕ is not called or it re-executes with the
last input:

A = {(s, s′) ∈ SM |g(s′) = g(s) ∨ g(s′) = ϕ(g(s))}

First we separate reset steps from non-reset steps: SM = SReset ∪ SNonreset. We
can do so using the following inference rule:

Reset

S = SReset ∪ SNonreset IReset;R ⊆ R; IReset
IReset;SReset ⊆ G;QReset P ⊆ QReset

safe(QReset, R, (G; IReset), SNonreset) QReset ⊆ IReset

safe(P,R,G, S)

Here, the reset postcondition QReset is a state predicate that always holds
immediately after a reset. It must also hold initially (P ⊆ QReset). The reset
invariant IReset is a state predicate that holds in every reachable state, i.e. it
is preserved by the reset steps as well as the non-reset steps. It follows that a
reset step always starts in a state that satisfies the reset invariant. The reset
postcondition must imply the reset invariant.

We can further categorize the non-reset steps SNonreset into program steps SProg
and interference steps SItf. During an interference step, an attacker may, for
example, modify the contents of the hard disk, or of guarded memory when its
protection is not enabled. Again, we wish to reason about these steps separately.
We can do so using the following inference rule:

Interference

S = SProg ∪ SItf I;SItf ⊆ G; I ∩GItf
I;R ⊆ R; I P ⊆ I
safe(P,R ∪GItf, G; I, SProg)

safe(P,R,G, S)

Here, a global invariant I is established by the precondition P and maintained
by all steps. Furthermore, interference steps satisfy an interference guarantee
Gitf. Program steps are verified under a rely that is the union of the global rely
and the interference guarantee.

Now that we have isolated the program steps, we wish to perform simple forward
reasoning to verify these. For this purpose, we define the following auxiliary

110 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

safety judgment:

safe’(s,R,G, S)0 = true

safe’(s,R,G, S)n+1 = ∀s′ ∈ R(s).∀s′′ ∈ S(s′).

(s′, s′′) ∈ G ∧ safe’n(s′′, R,G, S)

We have the following inference rule:

Program

Id ⊆ R′ R ⊆ R′ R′;R′ ⊆ R′
∀n ∈ N, s ∈ P . safe’n(s,R′, G, S)

safe(P,R,G, S)

Note that safe’ assumes that the environment performs a single R′ step before
every program step. Therefore, R′ must subsume the reflexive-transitive closure
of R. This is expressed by the first three premises of the inference rule.

If the program contains a loop, such as the while-loop in libice0’s main
function (see listing 4.9), we can verify it as follows:

Loop

s ∈ I
∀m ∈ N, (∀k < m, s′ ∈ I . safe′k(s′, R,G, S))⇒

∀s′ ∈ I . safe′m(s′, R,G, S)
safe’n(s,R,G, S)

Using loop invariant I we prove that, if the program is safe starting from I for
less than m steps, then it is safe starting from I for m steps. This is a classical
inductive proof.

The invariants that we had to come up with were reasonably big and contained
a lot of information relating to how we modeled the secure random number
generator. For example, we had to prove for every step that guards that
were leaked all were created using the TPM’s SRNG. This ensured that newly
generated guards were not yet in the public domain. More interesting was the
cube invariant stating that any cube in the public domain and that is seen by
the algorithm as fresh, contains as module state either the ghost state g or
the result of ϕ(g). This led to a case split of the normal step, where a new
state is stored that depends on the previous round of libice0’s main function
(see listing 4.9) . Either the algorithm was initialized or took a normal step in
the previous round, or has recovered from a crash. In the former case, fresh
public cubes contain the last state (and equal the libice0’s internal memory)
that was given to ϕ and the algorithm will advance the module to a new state.
Alternatively, the last round was a recovery step in which case libice0 may

SECURITY EVALUATION 111

execute a stutter step, depending on when exactly the system was reset: before
or after a new cube was written to disk and the step committed by writing the
successor guard to guarded memory. In case the cube was not yet stored, fresh
cubes contain the same state as is stored in the ghost state g. Also note that
when the system was reset after the cube was written to disk but before the
step was committed, both options are feasible since the contents of guarded
memory is now publicly accessible and an attacker could complete the step.

libice0: State-Continuity of Non-Deterministic Modules. In the previous
paragraph we proved state continuity for deterministic modules. Using an
alternative formulation, we proved that when an application step ϕ is taken
from application state a in machine state s and followed by any number of
attack steps, then for the next application step it follows that either a new step
was taken (a′ = ϕ(a)) or the module re-executed the last step (a′ = a):

s
ϕ(a)−−−→ s′

att−−→
∗
s′′

ϕ(a′)−−−→ s′′′ ⇒ a′ = a ∨ a′ = ϕ(a)

Based on this theorem we can easily extend our model to allow non-deterministic
inputs to the module. Given a module that operates on its previous state and
(user) input, we prove that once it commits to an input, it will either use that
input to advance its state or it will never advance (e.g., because the attacker
crashes the system and erases the fresh cube).

Theorem 2 (libice0’s non-deterministic safety). More formally, consider
a module ϕ that accepts input i on application state a and machine state s
followed by any number of attack steps. When the module takes another step, it
will either advance to the next state, or it will re-execute its previous step with
the same input:

s
ϕ(a,i)−−−−→ s′

att−−→
∗
s′′

ϕ(a′,i′)−−−−−→ s′′′ ⇒ a′ = a ∧ i′ = i

∨a′ = ϕ(a, i) (i′ ∈ I)

where I is the set of possible input values.

The core principle of libice0’s deterministic state-continuity proof is that we
know that a state update is committed when we successfully incremented the
guard in guarded memory. At that point we can feed module ϕ other input. We
use this knowledge to partition the non-deterministic module ϕ as ϕ = ϕi ◦ ϕc
where ϕi requests input from the user and ϕc deterministically computes a new
state with the input state. By requesting the user’s input after a computation

112 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

step and storing it in a new state, only two possibilities arise. One possibility is
that the system crashes after the result of ϕi was committed. In that case the
input is stored and will be provided to ϕ in the next invocation where ϕc first
computes the result. The other possibility is that the state was not committed.
In that case ϕc will recompute the last state and request the user again for
input. This does not violate state continuity since the input value is not used
in any computation of the module. Hence, no information about the result of
ϕc can leak to an attacker.

libicen’s State-Continuity Guarantees

While libice0 only provides state-continuity properties for a single module,
libicen supports a virtually unlimited number of modules. As we did for
libice0 we will focus on safety guarantees for deterministic modules. Support
for non-determinism can be provided in a similar fashion as was explained in
the previous paragraph.

Theorem 3 (libicen’s safety). Given a deterministic module ϕ, we will argue
that libicen ensures state continuity: ϕ will only re-execute the last step or
take a new step. More formally we wish to prove:

safe({s0}, Id, A, S′M)

where we define S′M as a step relation S′M ⊆ S × S where each step is either
a program step of libicen or an attacker step. For s0, Id and A, we use the
same definitions as earlier.

In order to prove libicen’s correctness, we could take the same approach
as we did for libice0. Given the close similarity between libice0 and
libicen, however, we could also use the proof of libice0 and reason that
the modifications of libicen do not affect state continuity. We will take this
approach using three consecutive transformation steps α, β, γ and prove that
each transformation preserves state continuity:

S α−→ S1
β−→ S2

γ−→ Sn

First consider transformation α that transforms a state S of libice0 into a
state S1 where TPM NVRAM is used instead of guarded memory. It is obvious
that this does not affect the safety guarantees of libice0 since contents of this
memory will never leak to an attacker. Thus the attacker grows weaker instead
of stronger.

After the α transformation, two guards are stored in the TPM’s NVRAM: the
base guard (n, 0) and a guard (Hashi(n), i) used to determine which cube is

SECURITY EVALUATION 113

fresh. Since neither of them can be modified by an attacker and the latter is
always a successor of the former, the base guard can be omitted. The second
transformation β will remove the base guard and modify the code of the recovery
step. Since all changes happen within the module’s memory area which cannot
be influenced by an attacker in any new way, modifications of these instructions
do not affect state continuity.

Finally consider an abstraction function γ that abstracts states S2 in states
Sn where all interactions with the TPM’s NVRAM are replaced with a call
to an libice0 module. Hence, we can rely on libice0 to ensure integrity,
confidentiality and state continuity of the stored data. It is also obvious that
combining multiple steps into a single atomic step does not affect state continuity.

4.5.2 Liveness Properties

Given our strong attacker model, it is infeasible that any state-continuity
algorithm on commodity hardware is able to guarantee that a module is always
able to advance. An attacker could, for example, always delete the fresh cube.
Such situations could be resolved in ICE by re-executing the initial step, at the
cost of losing all previously stored states.

We do however wish to guarantee that progress can always be made in the
event of benign events, such as a sudden loss of power during any step in the
execution of the algorithm.

libice0’s liveness properties. To guarantee liveness under benign events,
libice0 needs to be able to recover from a crash during every step of its
execution. An important distinction can be made based on the value of the
tpm.mode field. This value indicates whether the algorithm has been initialized
correctly. A crash before this value is set, will result in a re-execution of the
initialization step. After setting this value, all crashes will result in the execution
of the recovery step. To ensure that the initialization step may be re-executed
in the event of a sudden crash, the tpm.mode value is set last.

After initialization we may update the state or we have to recover the fresh
state. In the former case we make sure to first store the cube before we update
the content of guarded memory. Recovery of a state is more challenging since
we have to modify the guards in both guarded and TPM NVRAM memory.
After creating a new cube with the module’s fresh state and storing it on disk,
we enable protection of guarded memory and write the new guard to it before
we update TPM NVRAM memory. This has an important consequence: in
case the system crashes before the recovery step is completed, the old guard

114 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

may already have been overwritten. This would prevent the re-execution of the
recovery step. Therefore we require that a backup of this guard is stored on
disk before the recovery step is called.

libicen’s liveness properties. Ensuring liveness of libicen is straightforward
since we only have to deal with two non-volatile data objects: cubes and calls
to libice0. For obvious reasons we ensure to first store new cubes on disk.
The libice0 algorithm guarantees that its modifications are done atomically
and are always retrievable.

4.6 Performance Evaluation

In this section we evaluate the performance of our prototype implementation. To
compare the performance impact of a solid state drive (SSD) against a rotating
hard drive (HDD), we used two machines with comparable hardware. The first
machine, a Dell Latitude E6510, a mid-end consumer laptop, is equipped with
an Intel Core i5 560M processor running at 2.67 GHz and 4 GiB of RAM. It is
also equipped with a magnetic hard disk (HDD), a Broadcom TPMv1.2 chip
and CMOS memory. The second testing laptop is a Dell Latitude E6520, has
an Intel Core i5-2520M CPU running at 2.50GHz and is equipped with an SSD.

Hardware Benchmarks. To better understand the performance cost of ICE
compared to TPM operations, we performed 4 benchmarks on the Latitude
E6510: read/write accessing TPM NVRAM, extending PCR registers and
generating random numbers. To perform these tests, we developed small TPM
applications using the TrouSerS13 open-source software stack. We also modified
the tpm_tis driver to keep timing measurements. Each test was run 100 times
and transferred 128 bytes to/from the TPM. Figure 4.6 displays the median
time for each test graphically. All operations take a significant amount of
time to complete. Especially writing to TPM NVRAM takes 4x longer than
reading from it. Related work shows similar results for TPM chips from other
vendors [93].

We also performed a similar benchmark on CMOS memory. We performed 10,000
one-byte write operations and measured the time using the rdtscp instruction.
Writing to CMOS takes about 3µs/byte, significantly faster than writing to
TPM NVRAM. We attribute this difference to the fact that CMOS memory

13http://trousers.sourceforge.net/

http://trousers.sourceforge.net/

PERFORMANCE EVALUATION 115

Figure 4.6: Microbenchmarks of various TPM operations show a significant
difference in performance cost over CMOS and (SSD) disk accesses. Where
applicable, 128 bytes were transfered.

is connected to the SPI-bus [56] and does not require a heavy communication
protocol as does the LPC-connected TPM chip.

Finally, we measured the median time of writing 10,000 128 bytes files to both
HDD and SSD disks. As Figure 4.6 shows, accessing the SSD disk is 5.4 times
faster than writing to TPM NVRAM. Writing to a magnetic disk is more costly.

Microbenchmarks. To measure the performance of both libice0 and libicen
libraries, we implemented two modules. The first module implements a password
verification function and limits the number of attempts that can be made before
the user is locked out indefinitely. The benchmark provided this module
with 10,000 wrong password guesses and measured the median time per guess.
Measurements show (see Table 4.2) that for a single step only 0.06 ms (0.43%)
were spent on computation when the module was linked with the libice0
library. When we used libicen’s services, two cubes need to be created and
computation time increased to 0.13 ms (0.71%). To securely write guards to
CMOS memory, 0.33 ms were spent (2.17% and 1.82% for libice0 and libicen
resp.). This shows a much higher cost to write guards to CMOS compared to
calculation time. But most of the time was spent committing cubes to solid
state disk (97.40% and 97.47% for libice0 and libicen resp.). libicen does
not spend twice the amount of time writing cubes to disk. Cubes only need to
be committed before a guard is incremented. Hence, libicen’s cubes can be
stored temporarily in memory and transferred to disk together with ice0’s new
cube without modifying the algorithm (see listing 4.7, lines 3-4), reducing disk
access times.

116 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

While most TPM chips NVRAM area is limited to 1,280 bytes [93], it could
be used to provide (state-continuous) storage to a single module to avoid
disk overhead. To show that such a module would still benefit from ICE,
we implemented a second benchmark called Noop. It does not perform any
computation but only stores a state of 1,280 bytes. As expected given the
performance of SHA-512 and Intel’s AES hardware support, the increase in
computation cost is negligibly with only 0.01 ms. As cubes are still smaller than
disk sectors, costs of disk accesses are comparable to the Password benchmark.
This totals the cost of storing new data in Noop at 15.05 ms to 17.65 ms for
libice0 and libicen resp,̇ significantly faster than 82.18 ms to access TPM
NVRAM. Finally we performed these tests on the Latitude E6510 which is
equipped with a magnetic HDD. As expected, the cost of writing cubes to
disk increased significantly and now accounts for 99.63%-99.74%. For both
benchmarks libicen consistently takes more time writing cubes to disk than
libice0. We attribute this behavior to the way we implemented its write
function: merging ice0’s and libicen’s cubes takes us 3 write system calls
before system buffers are flushed.

Expected Impact of Dedicated Hardware. These benchmarks show that
only up to 0.14% of time is spent on computation. With dedicated hardware
performance can be increased significantly.

Writing guards to CMOS memory is about 2.4 times more costly than
computation and takes up to 0.31% of the time in case of a revolving HDD
and up to 2.17% on our SSD testing platform. Hardware support for guarded
memory, as described in detail in Section 4.3.1, would reduce overhead of this
operation to almost zero.

But committing cubes to disk forms the real bottleneck, requiring up to 97.47%
(for SSD) to 99.74% (for HDD) of the time. Recently Viking Technology [128] and
Micron Technology [127] announced that they will ship capacitor-backed RAM
to market. Operating similar to guarded memory, these hardware components
contain fast, volatile memory that is written to flash memory when power
is suddenly lost. Adding these hardware components to our system would
eliminate disk access completely.

In summary, benchmarks show that our prototype implementation on commodity
hardware already outperforms TPM NVRAM write operations by almost 5 times.
Adding dedicated hardware support for guarded memory and capacitor-backed
RAM, may even enable state updates 587 times faster than TPM NVRAM
accesses!

IMPLICATIONS TOWARDS HARDWARE SECURITY MODULES 117

Table 4.2: Microbenchmarks for libice0 and libicen (time in ms).

Password Noop
SSD (in ms) -lice0 -licen -lice0 -licen
computation 0.06 0.13 0.07 0.14
writing guard 0.33 0.33 0.33 0.33
writing cubes 14.61 17.42 14.65 17.19
total 15.00 17.87 15.05 17.65

HDD (in ms) -lice0 -licen -lice0 -licen
computation 0.06 0.12 0.07 0.13
writing guard 0.35 0.35 0.35 0.35
writing cubes 112.80 183.23 111.54 183.83
total 113.21 183.71 111.96 184.31

4.7 Implications Towards Hardware Security Mo-
dules

The TPM chip does not allow software modules to be executed within its
protected boundaries. Instead, it is shipped with all supported security
primitives stored in dedicated memory. This results in a number of drawbacks.
First, as more resources are required, power usage and hardware costs increase.
To minimize the costs of the PC platform, the TPM is equipped with a
slow operating processor and limited NVRAM. Other specifications have been
developed for various platforms such as the Mobile Trusted Module (MTM) for
mobile devices. Unfortunately power and economic constraints still form an
obstacle for low-end applications such as sensor networks. Second, it increases
the possibility of software vulnerabilities in the TPM chip. Some vendors already
struggle with its complexity [104] and as functionality is added, the specification
may become even more complex.

Instead of using a separate chip, recent research shows that strong security
guarantees can also be provided when modules execute on the same processor as
untrusted, legacy software. Agten et al. [4] describe a fully abstract compilation
scheme and proof that modules at machine code level can only be attacked
iff vulnerabilities also exist at source code level. Furthermore, Noorman et al.
[87] apply minimal hardware modifications to implement a protected-module
architecture on a low-end processor.

ICE shows that with little additional hardware support, various security
primitives can be implemented as protected modules. This has several benefits:

118 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

(1) By executing protected modules on the same processor as legacy software,
overall power consumption and economic cost is reduced, enabling security
measures to be ported to low-end devices (2) Software primitives can be added
and updated after the chip was manufactured or deployed. (3) Hardware
optimizations will increase performance of the overall chip, protected modules
and untrusted software alike. (4) The overall complexity of the system is
reduced. We believe that these advantages can affect future versions or revisions
of hardware security modules, such as the TPM chip and the security of low-end
devices in general.

4.8 Related Work

Most research prototypes do not consider state continuity, leaving them
vulnerable to attack. Others propose special-purpose solutions without
addressing resource constraints. We divide these research results into four
categories: results proposing hardware modifications, results that isolate
persistent storage, module-isolation architectures that only require a minimum
TCB and special-purpose applications.

Hardware Modifications. XOM [70] protects against an attacker that is able
to snoop buses and modify memory by encrypting data and code before it is sent
to memory. While it makes it significantly more difficult to successfully attack
the system, Suh et al. [123] argue correctly that it is vulnerable to a memory
replay attack where stale memory pages are returned to the processor. Their
Aegis architecture mitigates this replay attack by storing hash trees of memory
pages in a secure location. When a memory page is loaded into the processor’s
cache, its freshness is checked by recalculating and comparing the hash values.
Subsequent research results also defend against replay attacks [21,57,139].

Memory replay attacks differ from rollback attacks in that memory contents is
replayed while the system is up and running. This enables much easier security
measures.

Schellekens et al. [107] propose an embedded-systems architecture to store
a trusted module’s persistent state in invasive-attack-resistent, non-volatile
memory. Their solution implements a light-weight authenticated channel
between the trusted module and non-volatile memory. Freshness of the stored
data is guaranteed per read/write instruction and based on a monotonic counter.
As their approach assumes that write instructions to non-volatile memory and
increments of the monotonic counter are atomic, unexpected loss of power
enables a rollback attack. We believe that their approach can be fixed by

RELATED WORK 119

keeping a log of instructions in secure non-volatile memory that need to be
completed in case power suddenly fails. On higher-end systems however, only
the TPM NVRAM can be used for such purposes and their approach would
lead to significant performance overhead. ICE eliminates the TPM chip on the
performance critical path altogether.

Research Systems Isolating Persistent Storage. Many architectures rely on
a large TCB that includes isolation of persistent storage [47,112,125]. In such
cases protection against rollback attacks are trivial: modules/programs can
overwrite their state on disk. In practice however, software vulnerabilities in
their TCB may be exploited and state-continuity support is hard to guarantee.
These systems are also not able to defend against disk clone attacks. In contrast,
ICE provides strong guarantees while only relying on a very limited TCB.

Protected-Module Architectures. In recent years many security architectures
have been proposed that attempt to minimize the TCB by only providing strong
isolation guarantees of modules [11,57,77,78,105,119]. Persistent storage can
only be accessed via services provided by the untrusted legacy operating system.
None of them address the issue of state continuity.

Many of these systems can be adapted to use the state-continuity approach
presented by Parno et al. [93]. This seminal work called Memoir, is to the
best of our knowledge the first and only work that addresses the issue of state
continuity in protected-module architectures. Based on Flicker [78], Memoir
uses TPM NVRAM to store freshness information upon every state update.
This significantly limits the applicability of their solution as NVRAM is slow
and only required to support up to 100K writes. The authors acknowledge this
constraint and propose two solutions: (1) adding capacitor-backed RAM to the
TPM chip and (2) Memoir-Opt, an alternative approach that stores freshness
information in (volatile) TPM PCR registers that are written to NVRAM
when power is lost unexpectedly. Both solutions rely on an uninterruptible
power source to safely store freshness when power suddenly fails. Failure in
this mechanism can lead to a rollback attack. ICE, in contrast, is a passive
state-continuity system that does not rely on an uninterruptible power source to
guarantee security; detaching the capacitor would only prevent stateful modules
from recovering their state but states could not be rolled back. Moreover, in
ICE the speed of updates to state-continuous modules is only limited by the
processor and (untrusted) non-volatile memory, not by the TPM chip.

Special-Purpose Applications. Chun et al. proposed the creation of append-
only memory [27] to harden existing distributed algorithms to defend against

120 ICE: A PASSIVE, HIGH-SPEED, STATE-CONTINUITY SCHEME

equivocation: making different statements to different nodes in the network.
An implementation with a minimal TCB was left as future work.

Levin et al. propose TrInc [68], a specialized system to attest successive
monotonic counters, to achieve similar results. TrInc assumes a dedicated
device that is able to locally store attestation requests of monotonic counters.
In the event of an unexpected loss of power, clients can request the last signed
attestations. This approach is similar to solutions where disk space is isolated,
but incurs only a limited TCB. ICE provides a more generic, low-overhead
alternative with only limited hardware modifications.

More recently Kotla et al. proposed a system [66] that allows offline data access
while guaranteeing that (1) a user cannot deny offline accesses without failing
an audit and (2) after proving that a user did not access the data, it cannot be
accessed in the future. While their solution is interesting and does not require
any software to be trusted, it only solves state-continuity in this specific setting.

4.9 Conclusion

Providing support for state continuity is challenging as including non-volatile
memory on-chip requires modification of fabrication processes. But off-chip
storage of freshness information can be slow (e.g. TPM NVRAM) or vulnerable
to attack. We presented ICE, a state-continuous system and algorithm with two
important properties: (1) only at boot time is the (slow) TPM chip accessed.
State updates after the system booted only require updates to dedicated registers
backed off-chip by a capacitor and non-volatile memory. (2) ICE is a passive
security measure. An attacker interrupting the main power supply or any other
source of power, cannot break state-continuity. We believe that the importance
of ICE lies in the fact that it shows that with only limited and cheap hardware
support, it enables the development of software-only implementations of trusted
computing primitives. This presents an interesting direction for future versions
or revisions of hardware security modules (e.g., the TPM chip) and may provide
an interesting approach to increase security in low-end, resource-constrained
applications such as sensor networks.

4.10 Post-Publication Remarks

Protected-module-enabled processor architectures such as OASIS [89] and Intel
SGX [57] provide strong security guarantees to protected modules, including in
the face of a hardware attacker. This leads to the question what is minimally

POST-PUBLICATION REMARKS 121

required from external hardware security modules such as the TPM chip. ICE
takes a valuable step to answer this question by eliminating high-performance
requirements of external non-volatile memory. Our own research in progress
takes another step by only relying on monotonic counters to provide state-
continuity guarantees. With added hardware support for ICE, the TPM’s
slow monotonic counters could be used for these purposes and provide an easy
migration path.

Chapter 5

Conclusion

World society ever increasingly depends on the security of computing devices.
In recent years, e-learning, e-government and online banking have become
commonplace. In the next decennia we can expect a sharp increase in e-health
applications such as applications monitoring the user’s heart rate and the
distance she has run. Also networked embedded applications, what is commonly
described as “the Internet of things”, will result in many more security sensitive
applications.

At the same time we have seen a shift in the goal of cybercriminals. In the
’90s their primary aim was to disrupt systems and gain media attention. Today
whole underground marketplaces have been created where vulnerabilities can be
bought and sold, traffic to malicious websites can be traded, user credentials are
auctioned, etc. Vulnerabilities are not exploited anymore solely to gain fame,
but to make profit, spy on industrial competition and military intelligence.

The increasing reliance on computing devices and increasing sophistication of
attacks, call for security systems with a strong, formal base. In this chapter
we discuss the progress that has been made towards this goal during this
PhD, elaborate on ongoing work and give our view on the long-term future of
protected-module architectures.

5.1 Contributions

Protection of legacy computing devices is non-trivial. Many security measures
are never applied in practice and/or fail to provide strong security guarantees.

123

124 CONCLUSION

The goal of this dissertation was to develop the required security primitives to
create secure subsystems in existing devices that could become widely applied
(see Section 1.3). We review each developed key primitive, discuss their weak
and strong points and propose new research directions.

Isolation As an initial key primitive, we proposed [120] a program-counter-
based access control mechanism to guarantee strong isolation of protected
modules. An attacker who gains access to the system at application or kernel
level, cannot directly access the module’s memory region. Modules can only
be called via an explicitly exposed interface and have complete control over
sensitive data they store. In contrast to Flicker [78], SPMs maintain their state
between invocations.

We developed two research prototypes based on this isolation mechanism with
a minimal TCB. Sancus [87] targeted low-end, embedded systems – a platform
whose security has previously been described as “a mess” [135] – and showed
that the access control mechanism can be enforced with minimal performance,
energy and die-size overhead. Fides on the other hand showed that by taking
advantage of virtualization technology, the same access control mechanism can
also be applied on commodity x86 platforms. While performance overhead of
SPM/unprotected memory boundary crosses is obviously significantly higher
than in Sancus, Fides can be used to easily fortify legacy applications today.
Isolating every TLS connection in its own SPM instance, for example, would
have protected against exploitation of the Heartbleed vulnerability [28,83]; an
attacker would still have been able to cause a buffer overread but as sensitive
information of other connections are located in separate modules, sensitive
information such as session keys or the server’s long-term key would not have
leaked.

Both prototypes assume a single-threaded, uninterruptable execution of SPMs
and buggy or malicious modules that never return control to unprotected
code can easily result in a denial-of-service. Various implementations have
already been proposed to provide interruption support to Sancus [35] or similar
PMAs [65] but its impact on fully-abstract compilation has not been fully
addressed yet. When a module is called while its interrupt is still handled in
unprotected memory, care must be taken to avoid race conditions. Variables
may end up in an inconsistent state and invariants may be broken [96]. An
easy solution would be to keep track of a busy boolean that is set when the
module is entered and reset when control is (explicitly) returned to unprotected
memory. When an attempt is made to enter the module while an interrupt
is handled, the boolean is still set and the module can refuse to handle the
call. While this would resolve the problem at hand, it is a crude solution and

CONTRIBUTIONS 125

modules are still not truly multithreaded. More complete solutions may have
to modify the isolation mechanism to provide special support for threads and
synchronization.

Inter-Module Communication Secure communication between modules is
paramount to build large, complex networks of protected modules. Placing
all components in a single module is usually infeasible, since it would require
complete mutual trust of all vendors involved. The proposed program-counter-
based access control mechanism was specially designed with communication
between protected modules in mind; SPMs can be authenticated and called
easily from another SPM and secrecy and integrity of arguments passed in
registers are trivially ensured.

Protected-module architectures provide strong security guarantees regarding
secrecy of stored sensitive data. But an in-application attacker has unrestricted
access to the provided interface and may launch versatile attacks. An X509
certificate-signing service implemented in a protected module, for example,
could easily guarantee that its private key will never leave the module. An
attacker with full access to its interface however, could request the signing of
certificates for domains that she does not own. This still poses a major security
threat [53]. In Chapter 3, we showed that secure subsystems could be fortified
by only servicing requests made through an unforgeable reference. Only callers
that ever received the capability (i.e., the unforgeable reference) to do so, can
access the protected module. The presented Salus prototype, used this approach
to compartmentalize legacy applications and isolate likely attack vectors from
potential attack targets.

Current implemented prototypes handle inter-module communication graciously,
but some aspects could still be improved. First, at the moment data can only be
passed through registers. To transfer large amounts of data, it needs to be split
into chunks small enough to be placed in registers and passed using multiple call
and returns. Alternatively, the integrity and confidentiality protected data could
be stored in unprotected memory and the cryptographic keys passed in registers.
In a much more elegant solution, unprotected memory could be reserved and
used as an extension of the register file; only the currently executing module
can access the memory region and must ensure that all sensitive information is
cleared before calling another module or unprotected code.

Second, calling modules must ensure that the called module is still present in
memory. Current prototypes provide the required primitives, but when modules
can be interrupted, these constructs may be susceptible to time-of-check-to-
time-of-use (TOCTOU) attacks. In a much more elegant solution, a module
identifier (e.g., the spm_id) of the called SPM could be passed in a dedicated

126 CONCLUSION

register. When the platform detects that the called SPM is no longer (correctly)
loaded in memory, an exception internal to the calling SPM could be thrown
and handled accordingly.

Finally, the construction of unforgeable references could be improved. Current
implementations rely on random numbers, but the creation of random number
generators is non-trivial, especially when energy and die-size overhead need to be
minimized. Explicit hardware support for capabilities, similar to data/address
separation in some processors (e.g., the MC68000 [84]), could pose a viable
alternative. When SPMs are created an access capability (i.e., a pointer to its
location) could be placed in a specially marked “capability” register. Unless
specified otherwise at creation time, SPMs are only accessible through capability
registers. To ensure that content of such registers cannot be forged but only
loaded from and stored to a newly-created “capability” section of SPMs, special
checks need to be added to existing processor hardware instructions as well.
Unfortunately this approach would have the same disadvantage as CHERI [144]
and CODOMs [136] of requiring memory to be scanned (eventually) to revoke
capabilities when SPMs are destroyed.

State-Continuous Execution Using strong isolation primitives and capability-
based inter-module communication, subsystems can be built consisting of small
modules with only limited mutual trust. Such subsystems are secure while they
execute continuously but in practice systems crash, lose power or need to be
rebooted. Only integrity and confidentiality protecting their state when it is
written to disk is insufficient. An attacker who gained access to these states
on disk, could execute a rollback attack. Similarly, in the event of a (possibly
unexpected) loss of power, state continuity must be preserved and the system
must always be able to advance. Both attacks are well within the attack model
that only a specific, limited set of primitives need to be trusted.

We have presented ICE in Chapter 4, a state-continuity algorithm and
architecture that provides state-continuity guarantees to protected-module
architectures. Unlike related work [93], it does not reduce the attack model and
avoids wearing out TPM NVRAM. With appropriate hardware support, ICE
removes secure and non-volatile storage as a performance bottleneck allowing
state-continuous, protected modules to be used on time-critical execution
paths [116,117].

Unfortunately, ICE assumes more than the minimal amount of security features
required to create secure subsystems. Non-volatile memory must be available to
store the initial guard and care must be taken that its contents is only returned
to the protected module that initially requested storage.

CONTRIBUTIONS 127

We are currently working on an alternative with much fewer security
requirements; only the state of a monotonic counter needs to be attestable. Its
value is not sensitive information and even when incremented (at any point
in time) by an attacker, state-continuity remains guaranteed. On commodity
platforms a TPM monotonic counter could be used for such purposes. This
makes the approach easily integratable with Intel SGX without reducing its
attack model or requiring any architectural changes. As TPM implementations
throttle the number of increments that can be made given a specific time
period to avoid wearing out memory or rolling over the counter, a significant
performance impact is to be expected. However, when used in combination with
ICE, only the initial guard needs to be stored state-continuously and overhead
is only incurred at boot-time. Subsequent state updates are handled by ICE
and its performance remains unaffected.

Proven-Secure Modules Development of secure software is hard. Logical
errors are easily made at source-code level, even by the best and most experienced
developers. To make matters worse, some programming languages require
developers to abide to strict rules. Non-compliance may not immediately lead
to software crashes or incorrect results, but may pose a security threat. Buffer
overflows and overreads are the most well-known examples of such vulnerabilities
and were discussed in detail in Section 1.1.

Writing software for protected modules is even more challenging. An attacker
who exploited an in-application or in-kernel vulnerability, may interact with the
protected module at machine-code level. Care must be taken that no sensitive
information can leak from the protected module, for example by lingering
sensitive information in registers not used to pass return values. Security checks
also must be inserted to enforce correct use of the exposed interface. Restrictions
guaranteed by the type system at source-code level are no longer present after
compilation and attackers may pass illegal values as arguments.

As a final key primitive, we presented a fully-abstract compilation mechanism
that guarantees that such attacks will never lead to more powerful attacks than
source-code level attacks; low-level attacks only exists iff also a high-level attack
against the module exists [4]. This is a significant step towards verification of
protected modules. Unfortunately not all aspects were addressed yet. Secure
communication between objects, for example, has not been considered.

To ease the development of protected modules, we also implemented the security
requirements in a fully-abstract tool chain. A fully abstract compiler was
written that automatically inserts the required security measures. Also a linker
was developed to layout the protected modules in memory according to the
protected-module architecture used (i.e., Fides). But more low-level security

128 CONCLUSION

checks had to be inserted as well. Consider as an example a protected module
whose source code is split over multiple files. In such cases variables may be
defined in one file while referenced in another. Such situations are usually
handled using an added indirection. At compilation time code is generated that
uses a Global Offset Table (GOT) to locate the correct variable. The GOT
table is then filled by the linker, possibly at run-time. While this is a flexible
solution when the location of variables may only be known at runtime (e.g.,
when the variable is defined in a library), this forms a security vulnerability in a
PMA setting. A GOT table stored in unprotected memory may be overwritten
by an attacker, and result in the use of unprotected memory to store a security
sensitive variable. We solved this problem by instructing a secure linker to store
a GOT table inside the SPM. When the module is called for the first time, the
GOT table is initialized. Addresses of variables located within the compiled
module are calculated based on the exact location of the module. Variables in
unprotected memory are fetched from an untrusted GOT table and verified that
their address lay outside the module’s boundaries. We are confident that this
solution solves the problem at hand, but it has not yet been formally verified.

5.2 Near Future

Next to continuing work on key primitives, new features and applications will
be developed in the near future. We give a short overview of our expectations.

5.2.1 New Security Guarantees

Existing PMAs already provide strong security guarantees, but some applications
require additional security primitives such as secure I/O and availability
guarantees. We expect that these features will be added to PMAs in the
next few years.

Secure I/O In Chapter 2 we presented Fides [119] and discussed its
benchmark results of an TLS-enabled webserver. Secrecy of both the long-
term cryptographic key as well as the session keys were guaranteed by the
protected modules they were stored in. The untrusted TCP/IP stack was still
used to set up connections with untrusted clients but the power of in-application
or in-kernel attackers was reduced to that of a network-level attacker; exchanged
messages could be dropped resulting in a denial-of-service, but any modification,
re-ordering or replaying of network packages would be detected and handled
accordingly.

NEAR FUTURE 129

Benchmarks showed that this setup is certainly feasible in a cloud-computing
setting where a trusted client device wishes to connect to protected modules
running on an otherwise untrusted server. But also a user may not fully trust all
software running on her own device and in- and output peripherals connected
to her system need to be able to communicate securely with protected modules.

This raises some interesting research questions. How can (existing) peripherals be
used to set up secure channels to protected modules with minimal architectural
or software modifications? Enforcing that I/O ports and memory mapped
I/O regions can only be accessed via a specific protected module acting as a
sentry, seems to be an obvious solution and this approach was already taken
in Sancus [87]. The x86 architecture and the operating systems that run on
them are much more complex than the embedded devices targeted by Sancus.
Many attack vectors exists [79,80,150,151]. For instance, I/O ports assigned
to peripherals may be reconfigured by a compromised OS, interrupts may be
spoofed, or vulnerabilities in firmware of connected devices may be exploited
by attackers [24, 38]. Effective solutions will also have to inform the user which
protected module will receive the sensitive information. Similarly, protected
modules need to be guaranteed that the provided input originated from an
input device and not from malware executing in unprotected memory.

An interesting approach currently taken by Noorman et al. supplies peripherals
with a Sancus-enabled processor. A lightweight secure channel between the
input device and a protected module is established using Sancus’ attestation
features. To prevent malware vendors from connecting their own, legitimate
input device over a network and establishing “secure” I/O channels [46,92], a
(version protected) list of known connected peripherals must also be kept.

Availability Strong security guarantees can be provided when isolation of
sensitive data and secure execution of code is ensured. But these security
primitives do not suffice in all settings. Control mechanisms may also have to be
timely executed. Consider as an example, a pharmaceutical company shipping
medicine to drug stores. To verify that the shipped medicine never reaches a
temperature above a specific threshold (which may have a negative impact on
its effectiveness), each shipped container is supplied with an embedded device
running a temperature-checking module. The timely execution of this protected
module needs to be attested to the pharmaceutical company. Failure to do so,
may leave exceedingly high temperatures to go undetected.

In Section 5.1 we already acknowledged that Fides’ and Sancus’ lack of support
for interrupts and threads may result in a denial-of-service when malicious or
buggy modules never relinquish execution control. We presented subsequent
work in this area, discussed its good and weak points and highlighted possible

130 CONCLUSION

solutions. But proper support for threads and interrupts may not only ensure
responsiveness of the system, it may also guarantee timely execution of modules.
A real-time scheduler can be implemented in a protected module that is given
execution control every few milliseconds. Added protected “process” modules
can request time quanta per time period and, when granted, are guaranteed
that they will be dispatched for the requested amount of time. Protected
process modules that call unprotected code may not finish execution within
their provided time quantum and are preempted. Modules only calling other
protected modules (if any) on the other hand, may abide by strict timing rules
and can be used for time-critical parts of applications.

5.2.2 Writing Modules

When protected-module architectures become widely applied, one of the
interesting questions that requires answering is how protected modules will be
written. One option is to isolate sensitive parts of existing, legacy applications
and place them in protected modules. The ability to access unprotected memory
from protected modules significantly simplifies this effort and porting some legacy
libraries1 may be fairly simple. Other legacy code however, may exhibit repeated,
complex protected-module-boundary crosses and strong security guarantees
may be much harder to guarantee. Especially when the code is written in a
low-level language, or when input needs to be stored before it is processed
to ensure state-continuous execution. However, Salus showed that provable
security guarantees may not always be required. The bar for successful attacks
can be raised significantly by isolating possible attack vectors from likely attack
targets.

Strong security guarantees can probably be provided much easier when protected
modules are implemented in a higher-level language. Although not supported
by research yet, we expect that even more complex security guarantees such as
required for state-continuous execution can be enforced and hidden from the
developer using a more expressive type system. A “state-continuity” monad,
for example, could enforce that input-state tuples are always written to disk
before functions are executed.

An interesting research approach would be to develop a common, intermediate
language with built-in support for PMA primitives such as isolation. This would
simplify the development of fully-abstract compilers and ease sharing of code
with proven security guarantees between different programming languages.

1The PolarSSL TLS implementation, for example, has already been ported fairly
easily [119].

NEAR FUTURE 131

5.2.3 Applications

That protected-module architectures – especially when they also protect against
hardware-based attacks – can be used to implement software security-tokens
with strong security guarantees, seems too trivial to mention. But with the
expected arrival of Intel SGX in the near future, also some other interesting
applications become feasible. We give a short overview.

Trust Assessment Modules Many security measures have been developed to
prevent or detect attacks against vulnerabilities in legacy applications. Many of
these require sensitive information to be stored out of reach of an attacker and
resort therefore to a lower level: the kernel [85, 149]. HeapSentry, for example,
places a canary before and after each allocated block of memory. The kernel
verifies their correct value every few system calls. When an incorrect value is
detected, a buffer overflow has occurred and the application is stopped.

A similar approach could be applied to protect the kernel by storing copies of
guards at hypervisor level [129]. But also the hypervisor may be too large to be
implemented free from vulnerabilities and may also require security measures
against low-level exploits. It is clear that in practice the same approach cannot
be applied in perpetuity. An interesting alternative would be to apply PMA
features to increase security of the most privileged levels; guards could be
verified by protected modules. The checking module itself can be expected to
be small enough to be written securely. Hence, its integrity does not have to be
checked, breaking the need of an ever more privileged layer.

For such a solution to succeed, an attacker must not be able to prevent the
execution of protected modules. Architectural support guaranteeing timely
execution of subsystems of protected modules, as discussed earlier, seems to be
an obvious option.

Inverted Cloud Most Internet-based companies rely on advertisements and
the sale of user profiles to turn a profit. At the same time, user’s processors
grow ever more powerful but run idle for long periods of time. Using strong
security primitives, as provided by Intel SGX, an inverted cloud service could
be built that uses client’s processing power in exchange for services. This would
significantly reduce e-waste, and reduce operational costs for companies.

Applications already exists that invite users to donate processing power but
due to a lack of strong security guarantees, such applications can only send
work packages of public data to clients and security measures need to be taken

132 CONCLUSION

to ensure that returned results have not been manipulated. SETI@Home2,
for example, instructs two clients to execute the same work packages and
compares their results. This unfortunately reduces the available processing
power significantly.

An alternative architecture has already been proposed [118]. Salus’ compart-
ments are used to protect the client’s machine from potentially malicious work
packages. SGX’ strong isolation and attestation primitives are on the other
hand used to protect against malicious users. Unfortunately, a more detailed
evaluation is still required. Are users willing to exchange processing power (and
possibly battery life) for an ad-free experience? What is the latency of such a
system? Can for any type of problem work packages be constructed?

Obfuscated Software The strong isolation properties provided by PMA
architectures can not only provide strong security guarantees to sensitive data,
but also to code. Protected modules could obfuscate code in two steps. First,
the isolated generation of a public-private key pair is attested to a remote party.
This key pair is used by the remote entity to integrity and confidentiality protect
code and returns it to the protected module. In the second step, the protected
module checks the received obfuscated code and starts its execution.

Intel SGX is especially well equipped for such use cases since it allows enclave
pages to be simultaneously write and executable. Fides and Salus do not allow
such behavior, but SPMs may implement an interpreter or, more stealthily,
support Turing-complete [18,23] return-oriented programming based on its own
code.

Software obfuscation is sometimes used to harden application binaries against
manipulation [30]. Removing limitations of a trial version or cheating in online
games, for example, become much harder. It is also applied to implement
digital rights management (DRM). Unfortunately, it can also be applied to
implement malware that is much harder to investigate. Dunn et al. [39] showed
that also TPM features already can be applied for the same purposes. However,
widespread use of PMA architectures such as Intel SGX may significantly
simplify these attacks.

An interesting research direction to prevent such malicious use cases, is the
creation of verifiable proofs that code will never load and execute third party
instructions. Only if such a proof can be presented and verified, should it be
turned into a protected module. To allow legitimate use cases, we may have to
resort to whitelisting (vendors of) trusted protected modules.

2http://setiathome.berkeley.edu/

http://setiathome.berkeley.edu/

LONG-TERM AMBITIONS 133

5.3 Long-Term Ambitions

Long term predictions often fail miserably, but usually are interesting and
entertaining to read – especially in hindsight. As a final section of this
dissertation, we discuss possible long-term evolutions of PMA architectures but
acknowledge that it is unlikely that they will take place outside the lab in the
next decade, if ever.

One of the main advantages of PMA architectures is that they are evolutionary.
Legacy applications can apply them to selectively harden security sensitive
parts. Over time protected modules may form inter-connected secure “islands”
whose numbers grow ever larger. The main question then becomes what the
end result of this evolution will be.

One possibility is that some equilibrium is eventually reached. Security sensitive
parts of legacy applications have become isolated and adding even more protected
modules to applications may not be practically feasible. For example because
the performance overhead would become too large, because isolating remaining
parts of unprotected memory would be too cumbersome or simply because
applications have almost become impossible to attack and there is no need to
partition unprotected code any further. To which state legacy applications
finally evolve, likely depends on the third-party libraries that are available and
to the security guarantees they require.

Another possibility is that wide-spread PMA support leads to the development
of modules written in a high-level language that provide proven security
guarantees. Bindings to low-level languages could be provided so they can
be easily integrated in many existing applications. More interestingly, these
proven-to-be-secure modules could become important building blocks for security
sensitive applications and become key reasons to continue development in high-
level languages. Eventually new applications are written in high-level languages
based on verified components.

Operating systems may follow a similar approach. First, security sensitive
parts could be isolated. After which bindings with high-level languages could
be provided to kernel module vendors. Eventually the entire kernel could be
re-implemented in a higher-level language. This would also enable applications
written in higher-level languages to share the same address space with one
another and the kernel. The few legacy applications remaining, could be
executed in a sandbox. Hunt et al. [54] already took a similar approach
by implementing a complete kernel in a memory-safe language. While their
approach is infeasible in practice given the huge amount of legacy kernel modules
that would have to be discarded, it shows an interesting goal to strive for.

134 CONCLUSION

Many features are much easier to support when the operating system
and applications are written in memory-safe languages. Inter-application
communication, for example, becomes as trivial as calling an object as processes
can share the same virtual address space. Also the kernel/user space separation
can be lifted, making communication with the kernel and kernel modules much
easier.

Before such systems could become reality, many research questions still need
to be resolved. How can free and allocated memory be tracked, for example?
Applications that finished their execution should relinquish all allocated memory.
This becomes more complex as certain parts of the applications may still be
shared by other applications. Shared objects could simply be discarded, but
calls to non-existing objects should be handled graciously. Other questions
involve how objects should be created. Should a single protected module be
created per object, or should objects of the same class all be stored in a single
protected module? Another research question that requires answering is how
objects could be swapped out of memory to swap disk. ICE may be applied
in such situations, but how should available memory be managed? How can
objects be selected to be swapped to disk with a minimal amount of overhead?
A full-hardware implementation as used by Sancus may be too rigid in such
situations. A security-kernel approach as used by Fides in combination with
limited hardware support, may enable a much more flexible design but comes
at the cost of a software TCB.

Appendix A

Intel Software Guard
eXtensions

In June 2013 Intel publicly disclosed its work on Software Guard eXtensions
(SGX), its own x86 hardware support for a protected module architecture. This
work shows some remarkable similarities with already published research but
has some features that were much more advanced than state-of-the-art work
in academia. We give a very short overview on Intel SGX and how it relates
to work discussed in this thesis. The interested reader is kindly referred to the
SGX programming manual [57] and related papers [7, 51, 81] for further details.

Like any other protected module architecture, SGX offers strong security
guarantees against a software-level attacker. It supports the creation of strongly
isolated protected modules – called enclaves in SGX terminology – that live
in the same address space as the application that created them. SGX enforces
that an enclave’s memory region is only accessible from inside the enclave. Any
access attempt from unprotected memory or from another enclave, will result in
a memory access violation. This enables transparent integration in applications
as input arguments do not have to be marshalled, but can simply be passed as
a pointer to unprotected memory. Also similar to Fides and Sancus, enclaves
maintain their state between invocations.

In contrast to most other PMA architectures, Intel SGX also considers hardware-
level attacks against the entire platform but the CPU package. Most notably, it
assumes that an attacker has direct, physical access to main memory and is able
to snoop on memory buses. To prevent an attacker to modify enclave content or
extract sensitive data while stored in main memory, enclave memory is stored

135

136 INTEL SOFTWARE GUARD EXTENSIONS

in plaintext only in CPU cache within the CPU package. Before it can be
off-loaded to main memory or swap file by the untrusted OS, it is confidentiality,
integrity and version protected. Support to state-continuously store enclave
states between reboots or power-down, however, is not available.

SGX’s support for attestation of enclaves and sealing of sensitive data to a
particular enclave, is also closely related to academic work, but some novel
features were added. For instance, data can be sealed to an enclave’s sealing
identity, enabling future versions of the enclave to access data stored by older
versions. SGX also provides a more privacy friendly attestation technique based
on a special “quoting enclave” and a group signature scheme, avoiding that an
attestation can uniquely identify a platform or link multiple attestations. At the
core of attestation and sealing primitives however is a key derivation technique
very similar to Sancus. The used cryptographic keys are derived from the enclave
identity – its layout and initial content – and a key unique to the platform.
Unfortunately, as enclaves cannot directly call other enclaves, these hardware
primitives must also be used to implement intra-platform communications
between enclaves. This has the significant downside that exchanged messages
must be confidentiality, integrity and version protected and that, if required,
called enclaves must signal the receipt of messages to their sender.

When details about SGX were made public, some of its features were clearly
more advanced than state-of-the-art work on protected module architectures
of the academic research community. For instance, SGX does provide support
for interruption of enclaves. This prevents a badly implemented or malicious
enclave from hogging the CPU and ensures that availability of the system
remains under full control of the legacy operating system.

Another notably difference is that enclaves support multi-threading: enclaves
can be executed on multiple cores or multiple hardware threads simultaneously.
This is beneficial when the provided enclave functionality is called from multiple
threads and queuing execution requests would be too time-consuming.

Appendix B

Protected-Module
Architectures vs Microkernels

The operating system’s core responsibility is simple: provide applications with
a sound, abstract view of the underlying platform. For instance, applications
should be presented with a uniform, virtual address space. Their view on
memory should not depend on which physical memory regions it got assigned
nor on other applications that also happen to be present in memory.

The operating system must also ensure that these abstractions cannot be broken.
A buggy or otherwise misbehaving application must not result in the crash of
the entire system, nor should it affect the correct execution of other applications
or the kernel itself.

This problem has received much research attention and resulted in two main
approaches. Monolithical kernels implement most abstractions in the same
address space and privilege ring (i.e., kernel space). The kernel’s functionality
can be extended with kernel modules, for example, to implement a new file
system or to provide communication with newly added peripherals, but no
isolation1 between these modules is enforced.

Microkernels take the complete opposite approach. The kernel itself only
provides isolation of processes, inter-process communication (IPC) and basic
scheduling. All other abstractions are implemented by isolated processes
executing in user space. In contrast to monolithical kernels, this approach

1Some research prototypes exist that protect the kernel against buggy kernel modules and
provide some kind of light-weight isolation [124]. These architectures however, do not provide
strong security guarantees and do not protect against malicious kernel modules.

137

138 PROTECTED-MODULE ARCHITECTURES VS MICROKERNELS

ensures that vulnerabilities in one process do not automatically affect the rest
of the operating system.

Microkernels and PMA architectures share key properties. Both provide strong
isolation guarantees and support secure local communication. But microkernels
have never been widely applied. Why won’t PMAs share the same fate?

B.1 Why Microkernels Failed

From a research perspective, microkernels are clearly more secure than
monolithical kernels. There are however, a number of practical limitations
that prevented them from becoming pervasively applied.

First, in early microkernel implementations inter-process communication, one
of the most important mechanisms of microkernels, incurred a significant
performance overhead. Later versions managed to reduce this overhead 20
fold [71,72], but microkernels already got a bad reputation of being too slow.

Second, microkernels are difficult to program. All required abstractions need
to be placed within their own process executing in their own address space.
Consequently, when processes need to be called, their arguments need to be
marshalled. This makes sharing data between processes much more difficult.
Processes need to keep their own copy and care must be taken to keep all
these copies coherent. This virtually turns the microkernel into a distributed
system [131].

Monolithical kernels, on the other hand, don’t share this fate. Kernel and
all kernel modules execute in the same address space and data can be shared
as easily as passing a pointer. An unfortunate consequence of this is that
monolithical kernels may be exploited more easily. However, security at that
time (’80s and early ’90s) was of less importance. Buffer overflow vulnerabilities,
for example, only got major attention after the Morris worm in 1988 [113].
In addition, monolithical kernels that enforced strong isolation of kernel and
user applications already showed to be relatively robust. Earlier processor
and operating system architectures could not enforce such isolation and a
misbehaving application often resulted in a complete system crash. It seemed
feasible that (eventually) security measures could be developed that would
significantly raise the bar for attackers and may even make attacks practically
infeasible.

Third, monolithical kernels simply already existed. When Liedtke in 1993 [71]
finally presented how fast IPC calls could be practically implemented, the
market of personal computers was already booming. MS Windows 3.11, for

WHY PMAS WON’T SHARE THE SAME FATE AS MICROKERNELS 139

example, was released in the same year. Soon MS Windows dominated the
market, luring new users and applications vendors to a single, monolithical
operating system. Fast, secure microkernels may simply have arrived too late.

B.2 Why PMAs Won’t Share the Same Fate as
Microkernels

Even though PMAs share key properties, we don’t expect that they will share the
same fate as microkernels for a number of reasons. First, microkernels required
a complete re-implementation of the kernel and applications to make optimal
use of the provided isolation mechanisms. Early implementations transformed
monolithical kernels into microkernels but this was one of the causes of their
slow IPC performance [71]. PMAs on the other hand, can be integrated easily in
existing, legacy platforms. Operating systems do not have to be re-implemented
and legacy applications that do not take advantage of the provided security
properties, do not incur any performance overhead.

Second, PMAs can provide provably strong security guarantees to selected
sensitive parts of applications. Easy integration with legacy applications is
ensured as protected modules execute in the same address space. Consequently,
input arguments can simply be provided as pointers to unprotected code. No
marshaling is required.

Third, current PMA research projects focus not only on providing the required
security primitives, but also on how they can be easily applied. We expect
that future development of fully-abstract compilation of higher-level languages,
make it almost trivial for developers to write programs with strong security
guarantees.

Fourth, user’s expectations have changed. Recent years security sensitive
applications such as e-banking have been widely adopted by the general public.
Simultaneously, far-reaching security breaches have become public. Vendors of
security-sensitive applications will have to start focusing on security of their own
systems as well as their clients’. Strong, hardware-based security guarantees may
become a key selling point for application vendors. Recent public announcements
by Intel shows that processor vendors are willing to invest in hardware security
technology. Architectural changes to provide strong security guarantees with
minimal overhead, (e.g., guarded memory as presented in Chapter 4) may be
feasible. With Intel SGX, a significant step towards much more secure systems
will already be taken in the near future.

Bibliography

[1] Abadi, M., and Plotkin, G. D. On protection by layout randomization.
In Proceedings of the 25th Computer Security Foundations Symposium
(Los Alamitos, CA, USA, 2010), CSF’10, IEEE Computer Society, pp. 337–
351.

[2] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter,
M. K., and Wylie, J. J. Fault-scalable byzantine fault-tolerant services.
In Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles (New York, NY, USA, Oct. 2005), SOSP’05, ACM, pp. 59–74.

[3] Agten, P., Jacobs, B., and Piessens, F. Sound modular verification
of c code executing in an unverified context. In Accepted for publication
in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’15) (Jan. 2015).

[4] Agten, P., Strackx, R., Jacobs, B., and Piessens, F. Secure
compilation to modern processors. In Proceedings of the 25th Computer
Security Foundations Symposium (Los Alamitos, CA, USA, 2012), CSF’12,
IEEE Computer Society, pp. 171–185.

[5] Akritidis, P., Costa, M., Castro, M., and Hand, S. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-
bounds errors. In Proceedings of the 18th conference on USENIX security
symposium (2009), SSYM’09, USENIX Association, pp. 51–66.

[6] Aleph One. Smashing the stack for fun and profit. Phrack magazine 7,
49 (1996).

[7] Anati, I., Gueron, S., Johnson, S., and Scarlata, V. Innovative
technology for CPU based attestation and sealing. In Proceedings of the
2nd International Workshop on Hardware and Architectural Support for
Security and Privacy (New York, NY, USA, 2013), vol. 13 of HASP’13,
ACM.

141

142 BIBLIOGRAPHY

[8] Appel, A. W. Compiling with Continuations. Cambridge University
Press, New York, NY, USA, 1992.

[9] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
Basic concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing 1, 1 (Jan. 2004), 11–33.

[10] Avonds, N., Strackx, R., Agten, P., and Piessens, F. Salus: Non-
hierarchical memory access rights to enforce the principle of least privilege.
In Security and Privacy in Communication Networks (SecureComm’13)
(Sept. 2013), T. Zia, A. Zomaya, V. Varadharajan, and M. Mao, Eds.,
vol. 127 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, Springer International
Publishing, pp. 252–269.

[11] Azab, A., Ning, P., and Zhang, X. SICE: a hardware-level
strongly isolated computing environment for x86 multi-core platforms. In
Proceedings of the 18th ACM conference on Computer and communications
security (New York, NY, USA, 2011), CCS’11, ACM, pp. 375–388.

[12] Bertot, Y., and Castéran, P. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

[13] Bhatkar, S., DuVarney, D. C., and Sekar, R. Address obfuscation:
An efficient approach to combat a broad range of memory error exploits.
In Proceedings of the 12th USENIX security symposium (Berkeley, CA,
USA, 2003), vol. 12 of SSYM’03, USENIX Association, pp. 105–120.

[14] Billington, R. A., and Ridge, M. American History After 1865.
Rowman & Littlefield, 1981.

[15] Bittau, A., Marchenko, P., Handley, M., and Karp, B.
Wedge: Splitting applications into reduced-privilege compartments. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation (Berkeley, CA, USA, 2008), NSDI’08, USENIX
Association, pp. 309–322.

[16] Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici,
K., and Verbauwhede, I. Spongent: a lightweight hash function.
In Proceedings of the 13th international conference on Cryptographic
hardware and embedded systems (Berlin, Heidelberg, 2011), CHES’11,
Springer-Verlag, pp. 312–325.

[17] Brumley, D., and Song, D. Privtrans: Automatically partitioning
programs for privilege separation. In Proceedings of the 13th Conference

BIBLIOGRAPHY 143

on USENIX Security Symposium (Berkeley, CA, USA, 2004), vol. 13 of
SSYM’04, USENIX Association.

[18] Buchanan, E., Roemer, R., Shacham, H., and Savage, S. When
good instructions go bad: Generalizing return-oriented programming
to risc. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08) (New York, NY, USA, 2008), CCS
’08, ACM, pp. 27–38.

[19] Carter, N. P., Keckler, S. W., and Dally, W. J. Hardware
support for fast capability-based addressing. In Proceedings of the
Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 1994),
ASPLOS’94, ACM, pp. 319–327.

[20] Castro, M., and Liskov, B. Practical byzantine fault tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (Berkeley, CA, USA, 1999), vol. 99 of OSDI’99, USENIX
Association, pp. 173–186.

[21] Champagne, D., and Lee, R. Scalable architectural support for trusted
software. In Proceedings of the 16th International Symposium on High
Performance Computer Architecture (Los Alamitos, CA, USA, 2010),
HPCA’10, IEEE Computer Society, pp. 1–12.

[22] Chan, E. M., Carlyle, J. C., David, F. M., Farivar, R., and
Campbell, R. H. BootJacker: Compromising computers using forced
restarts. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2008), CCS’08, ACM,
pp. 555–564.

[23] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R.,
Shacham, H., and Winandy, M. Return-oriented programming without
returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2010), CCS’10, ACM,
pp. 559–572.

[24] Chen, K. Reversing and exploiting an apple firmware update. In Blackhat
USA (2009), pp. 1–9.

[25] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K.
Non-control-data attacks are realistic threats. In Proceedings of the 14th
conference on USENIX Security Symposium (Berkeley, CA, USA, 2005),
vol. 14 of SSYM’05, USENIX Association, pp. 177–192.

144 BIBLIOGRAPHY

[26] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J., and Ports, D. R. K.
Overshadow: A virtualization-based approach to retrofitting protection in
commodity operating systems. In Proceedings of the 13th conference on
architectural support for programming languages and operating systems
(New York, NY, USA, 2008), ASPLOS’08, ACM, pp. 2–13.

[27] Chun, B.-G., Maniatis, P., Shenker, S., and Kubiatowicz, J.
Attested append-only memory: Making adversaries stick to their word.
In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (New York, NY, USA, 2007), SOSP’07, ACM, pp. 189–
204.

[28] Codenomicon. The heartbleed bug. http://heartbleed.com, Apr. 2014.
Accessed: 2014-11-05.

[29] Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D.,
Moskal, M., Santen, T., Schulte, W., and Tobies, S. VCC:
A practical system for verifying concurrent C. In Theorem Proving in
Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,
Eds., vol. 5674 of Lecture Notes in Computer Science. Springer-Verlag,
2009, pp. 23–42.

[30] Collberg, C., and Nagra, J. Surreptitious Software – Obfuscation,
Watermarking, and Tamperproofing for Software Protection, 1st ed.
Addison-Wesley Professional, 2009.

[31] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.,
Frantzen, M., and Lokier, J. Formatguard: automatic protection
from printf format string vulnerabilities. In Proceedings of the 10th
conference on USENIX Security Symposium (Berkeley, CA, USA, 2001),
SSYS’01, USENIX Association, pp. 1–9.

[32] Cowan, C., Beattie, S., Day, R. F., Pu, C., Wagle, P., and
Walthinsen, E. Protecting systems from stack smashing attacks with
stackguard. In Proceedings of Linux Expo (May 1999), pp. 1–11.

[33] Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke,
P., Beattie, S., Grier, A., Wagle, P., and Zhang, Q. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks.
In Proceedings of the 7th Conference on USENIX Security Symposium
(Berkeley, CA, USA, 1998), vol. 81 of SSYM’98, USENIX Association,
pp. 346–355.

[34] Datta, A., Franklin, J., Garg, D., and Kaynar, D. A logic of
secure systems and its application to trusted computing. In Proceedings

http://heartbleed.com

BIBLIOGRAPHY 145

of the 30th IEEE Symposium on Security and Privacy (Washington, DC,
USA, 2009), S&P’09, IEEE, IEEE Computer Society, pp. 221–236.

[35] de Clercq, R., Piessens, F., Schellekens, D., and Verbauwhede,
I. Secure interrupts on low-end microcontrollers. In 25th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP 2014) (2014), ASAP’14, IEEE, pp. 1–6.

[36] Dennis, J. B., and Van Horn, E. C. Programming semantics for
multiprogrammed computations. Communications of the ACM 9, 3 (Mar.
1966), 143–155.

[37] Dolev, D., and Yao, A. C. On the security of public key protocols. In
IEEE Transactions on Information Theory (Piscataway, NJ, USA, Sept.
1983), vol. 29, IEEE Press, pp. 198–208.

[38] Duflot, L., Perez, Y.-A., Valadon, G., and Levillain, O. Can
you still trust your network card? Presented at CanSecWest’10, 2010.
Presentation: http://www.ssi.gouv.fr/en/the-anssi/publications-109/
press-releases/can-you-still-trust-your-network-card-185.html.

[39] Dunn, A. M., Hofmann, O. S., Waters, B., and Witchel, E.
Cloaking malware with the trusted platform module. In Proceedings of
the 20th USENIX Conference on Security (Berkeley, CA, USA, 2011),
SEC’11, USENIX Association.

[40] El Defrawy, K., Aurélien Francillon, D., and Tsudik, G. Smart:
Secure and minimal architecture for (establishing a dynamic) root of trust.
In Proceedings of the Network & Distributed System Security Symposium
(Feb. 2012), NDSS’12.

[41] England, P., Lampson, B., Manferdelli, J., and Willman, B. A
trusted open platform. Computer 36, 7 (July 2003), 55 – 62.

[42] Erlingsson, Ú. Low-level software security: Attacks and defenses. In
Foundations of Security Analysis and Design IV, A. Aldini and R. Gorrieri,
Eds., vol. 4677 of Lecture Notes in Computer Science. Springer-Verlag,
2007, pp. 92–134.

[43] Erlingsson, U., Younan, Y., and Piessens, F. Low-level software
security by example. In Handbook of Information and Communication
Security, P. Stavroulakis and M. Stamp, Eds. Springer-Verlag, 2010,
pp. 633–658.

[44] Etoh, H., and Yoda, K. Protecting from stack-smashing attacks. Tech.
rep., IBM Research Divison, Tokyo Research Laboratory, 2000.

http://www.ssi.gouv.fr/en/the-anssi/publications-109/press-releases/can-you-still-trust-your-network-card-185.html
http://www.ssi.gouv.fr/en/the-anssi/publications-109/press-releases/can-you-still-trust-your-network-card-185.html

146 BIBLIOGRAPHY

[45] Ferrucci, D. A. Introduction to "this is watson". IBM Journal of
Research and Development 56, 3/4 (May/July 2012), 15.

[46] Fink, R. A., Sherman, A. T., Mitchell, A. O., and Challener,
D. C. Catching the cuckoo: Verifying tpm proximity using a quote
timing side-channel. In Trust and Trustworthy Computing (2011), J. M.
McCune, B. Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres,
Eds., vol. 6740 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 294–301.

[47] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh,
D. Terra: A virtual machine-based platform for trusted computing. In
Operating Systems Review (New York, NY, USA, 2003), vol. 37 of OSR’03,
ACM, pp. 193–206.

[48] Graham-Cumming, J. Searching for the prime suspect: How
heartbleed leaked private keys. http://blog.cloudflare.com/
searching-for-the-prime-suspect-how-heartbleed-leaked-private-keys, Apr.
2014. Accessed: 2014-11-05.

[49] Grawrock, D. Dynamics of a Trusted Platform: A Building Block
Approach, 1st ed. Intel Press, Feb. 2009.

[50] Halderman, J., Schoen, S., Heninger, N., Clarkson, W., Paul,
W., Calandrino, J., Feldman, A., Appelbaum, J., and Felten, E.
Lest we remember: Cold boot attacks on encryption keys. In USENIX
Security Symposium (New York, NY, USA, 2008), SSYM’08, ACM, pp. 45–
60.

[51] Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., and
Del Cuvillo, J. Using innovative instructions to create trustworthy
software solutions. In Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy (New York,
NY, USA, 2013), HASP’13, ACM, p. 11.

[52] Honeywell Information Systems Inc. Multics - The Multics Virtual
Memory. Honeywell, 1972.

[53] Hoogstraten, H., Prins, R., Niggebrugge, D., Heppener, D.,
Groenewegen, F., Wettinck, J., Strooy, K., Arends, P., Pols,
P., Kouprie, R., Moorrees, S., van Pelt, X., and Hu, Y. Z. Black
Tulip - report of the investigation into the DigiNotar certificate authority
breach. Tech. rep., FoxIT, 2012.

[54] Hunt, G. C., and Larus, J. R. Singularity: Rethinking the software
stack. In SIGOPS Operating Systems Review (New York, NY, USA, Apr.
2007), vol. 41, ACM, pp. 37–49.

http://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-leaked-private-keys
http://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-leaked-private-keys

BIBLIOGRAPHY 147

[55] IBM. Deep blue. http://www-03.ibm.com/ibm/history/ibm100/us/en/
icons/deepblue/, 1997. Accessed: 2014/11/05.

[56] Intel Corporation. Intel 6 Series Chipset and Intel C200 Series
Chipset, 2011.

[57] Intel Corporation. Software Guard Extensions Programming
Reference, 2013.

[58] ITF. Procedures for obtaining 2014 ITF approval of player analysis
technology. http://www.itftennis.com/media/166067/166067.pdf, 2013.
Accessed: 05/11/2014.

[59] ITF. Player analysis technology approval report. http://www.itftennis.
com/media/166644/166644.pdf, 2014. Accessed: 05/11/2014.

[60] Jacobs, B., and Piessens, F. The verifast program verifier. CW
Reports CW520, Department of Computer Science, K.U.Leuven, August
2008.

[61] Katzenbeisser, S., Koçabas, U., Leest, V., Sadeghi, A.-R.,
Schrijen, G.-J., Schröder, H., and Wachsmann, C. Recyclable
PUFs: Logically reconfigurable PUFs. In Cryptographic Hardware and
Embedded Systems (CHES’11) (2011), B. Preneel and T. Takagi, Eds.,
vol. 6917 of Lecture Notes in Computer Science, Springer-Verlag, pp. 374–
389.

[62] Kauer, B. OSLO: improving the security of trusted computing. In
Proceedings of 16th USENIX Security Symposium (Berkeley, CA, USA,
2007), SSYM’07, USENIX Association, pp. 1–9.

[63] King, S., Chen, P., Wang, Y., Verbowski, C., Wang, H., and
Lorch, J. SubVirt: Implementing malware with virtual machines. In
Symposium on Security and Privacy (2006), S&P’06, IEEE Computer
Society.

[64] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R.,
Norrish, M., et al. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (New York, NY, USA, 2009), SOSP’09, ACM, pp. 207–220.

[65] Koeberl, P., Schulz, S., Sadeghi, A.-R., and Varadharajan, V.
Trustlite: a security architecture for tiny embedded devices. In Proceedings
of the Ninth European Conference on Computer Systems (New York, NY,
USA, 2014), EuroSys’14, ACM, p. 10.

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www.itftennis.com/media/166067/166067.pdf
http://www.itftennis.com/media/166644/166644.pdf
http://www.itftennis.com/media/166644/166644.pdf

148 BIBLIOGRAPHY

[66] Kotla, R., Rodeheffer, T., Roy, I., Stuedi, P., and Wester, B.
Pasture: secure offline data access using commodity trusted hardware. In
Proceedings of the 10th USENIX conference on Operating Systems Design
and Implementation (2012), OSDI’12, USENIX Association, pp. 321–334.

[67] Kursawe, K., Sadeghi, A.-R., Schellekens, D., Skoric, B.,
and Tuyls, P. Reconfigurable physical unclonable functions-enabling
technology for tamper-resistant storage. In Proceedings of the International
Workshop on Hardware-Oriented Security and Trust (2009), HOST’09,
IEEE, pp. 22–29.

[68] Levin, D., Douceur, J. R., Lorch, J. R., and Moscibroda, T. Trinc:
Small trusted hardware for large distributed systems. In Proceedings of the
6th USENIX symposium on Networked systems design and implementation
(Berkeley, CA, USA, 2009), vol. 9 of NSDI’09, USENIX Association, pp. 1–
14.

[69] Li, J., Krohn, M. N., Mazières, D., and Shasha, D. Secure
untrusted data repository (SUNDR). In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation (Berkeley,
CA, USA, 2004), vol. 6 of OSDI’04, USENIX Association.

[70] Lie, D., Chandramohan, T., Mark, M., Patrick, L., Dan, B.,
John, M., and Mark, H. Architectural support for copy and tamper
resistant software. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2000), vol. 35 of ASPLOS’00, ACM, pp. 168–177.

[71] Liedtke, J. Improving IPC by kernel design. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles (New York,
NY, USA, 1993), SOSP’93, ACM, pp. 175–188.

[72] Liedtke, J. Toward Real Microkernels. Communications of the ACM
39, 9 (1996), 77.

[73] Longley, D., and Rigby, S. An automatic search for security flaws in
key management schemes. Computers & Security 11, 1 (1992), 75–89.

[74] Martignoni, L., Paleari, R., and Bruschi, D. Conqueror: tamper-
proof code execution on legacy systems. In Proceedings of the 7th
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA’10) (July 2010), Lecture Notes in Computer Science,
Springer-Verlag, pp. 21–40. Bonn, Germany.

[75] Martignoni, L., Poosankam, P., Zaharia, M., Han, J.,
McCamant, S., Song, D., Paxson, V., Perrig, A., Shenker, S.,

BIBLIOGRAPHY 149

and Stoica, I. Cloud terminal: Secure access to sensitive applications
from untrusted systems. In Procceedings of the 2012 USENIX Annual
Technical Conference (2012), ATC ’12.

[76] Martin, A. The ten page introduction to trusted computing. Tech. Rep.
RR-08-11, Oxford University, Computing Laboratory, Dec. 2008.

[77] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V.,
and Perrig, A. TrustVisor: Efficient TCB reduction and attestation. In
Proceedings of the IEEE Symposium on Security and Privacy (Washington,
DC, USA, May 2010), S&P’10, IEEE Computer Society, pp. 143–158.

[78] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and
Isozaki, H. Flicker: An execution infrastructure for TCB minimization.
In Proceedings of the ACM European Conference in Computer Systems
(New York, NY, USA, Apr. 2008), EuroSys’08, ACM, pp. 315–328.

[79] McCune, J. M., Perrig, A., and Reiter, M. K. Bump in the ether:
A framework for securing sensitive user input. In Proceedings of the
USENIX Annual Technical Conference (Berkeley, CA, USA, June 2006),
ATEC ’06, USENIX Association.

[80] McCune, J. M., Perrig, A., and Reiter, M. K. Safe passage for
passwords and other sensitive data. In Proceedings of the Symposium on
Network and Distributed Systems Security (Feb. 2009), NDSS’09, Internet
Society.

[81] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V.,
Shafi, H., Shanbhogue, V., and Savagaonkar, U. R. Innovative
instructions and software model for isolated execution. In Proceedings of
the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy (New York, NY, USA, 2013), HASP’13, ACM,
p. 8.

[82] Miller, M., Yee, K.-P., and Shapiro, J. S. Capability myths
demolished. Tech. Rep. SRL2003-02, Johns Hopkins University, 2003.

[83] Mitre. Cve-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0160, Dec. 2013. Accessed: 05/11/2014.

[84] Motorala. Programmer’s Reference Manual, 1992.

[85] Nikiforakis, N., Piessens, F., and Joosen, W. HeapSentry: Kernel-
assisted protection against heap overflows. In Proceedings of the 10th
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’13) (July 2013), K. Rieck, P. Stewin, and J.-P.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

150 BIBLIOGRAPHY

Seifert, Eds., vol. 7967 of Lecture Notes in Computer Science, Springer
Verlag, pp. 177–196.

[86] NIST. National vulnerability database. https://nvd.nist.gov. Accessed:
2014-11-05.

[87] Noorman, J., Agten, P., Daniels, W., Strackx, R., Herrewege,
A. V., Huygens, C., Preneel, B., Verbauwhede, I., and Piessens,
F. Sancus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In 22nd USENIX Security Symposium
(Aug. 2013), SSYM’13, USENIX Association.

[88] Omer Levy, Arvind Kumar, P. G. Advanced Security Features of Intel
vPro Technology. Intel Technology Journal 12, 4 (Dec. 2008), 229–238.

[89] Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig, A.,
and Vasudevan, A. OASIS: on achieving a sanctuary for integrity and
secrecy on untrusted platforms. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (New York, NY, USA,
2013), CCS’13, ACM, pp. 13–24.

[90] Page, D. Theoretical use of cache memory as a cryptanalytic side-channel.
Technical Report CSTR-02-003, University of Bristol, April 2002.

[91] Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. Physical
one-way functions. Science 297, 5589 (2002), 2026–2030.

[92] Parno, B. Bootstrapping trust in a "trusted" platform. In Proceedings of
the 3rd Conference on Hot Topics in Security (Berkeley, CA, USA, 2008),
HOTSEC’08, USENIX Association, pp. 1–6.

[93] Parno, B., Lorch, J. R., Douceur, J. R., Mickens, J., and
McCune, J. M. Memoir: Practical state continuity for protected
modules. In Proceedings of the IEEE Symposium on Security and Privacy
(Washington, DC, USA, May 2011), S&P’11, IEEE Computer Society,
pp. 379–394.

[94] Parno, B., Mccune, J. M., and Perrig, A. Bootstrapping trust in
commodity computers. In Proceedings of the IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2010), S&P’10, IEEE Computer
Society, pp. 414–429.

[95] Parno, B., McCune, J. M., and Perrig, A. Bootstrapping Trust in
Modern Computers, 1st ed. Springer Publishing Company, Incorporated,
2011.

https://nvd.nist.gov

BIBLIOGRAPHY 151

[96] Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D.,
and Piessens, F. Secure compilation to protected module architectures.
In Accepted for publication in Transactions on Programming Languages
and Systems (TOPLAS) (New York, NY, USA), ACM.

[97] Patrignani, M., and Clarke, D. Fully abstract trace semantics
of low-level isolation mechanisms. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing (Mar. 2014), SAC’14, ACM,
pp. 1562–1569.

[98] Patrignani, M., Clarke, D., and Piessens, F. Secure Compilation
of Object-Oriented Components to Protected Module Architectures. In
Proceedings of the 11th Asian Symposium on Programming Languages and
Systems (APLAS’13) (2013), C.-c. Shan, Ed., vol. 8301 of Lecture Notes
in Computer Science, Springer International Publishing, pp. 176–191.

[99] Provos, N. Improving host security with system call policies. In
Proceedings of the 12th Conference on USENIX Security Symposium
(Berkeley, CA, USA, 2003), SSYM’03, USENIX Association.

[100] Provos, N., Friedl, M., and Honeyman, P. Preventing privilege
escalation. In Proceedings of the 12th Conference on USENIX Security
Symposium (Berkeley, CA, USA, 2003), SSYM’03, USENIX Association.

[101] Reynolds, J. Definitional interpreters for higher-order programming
languages. In Proceedings of the 25th ACM National Conference (New
York, NY, USA, 1972), ACM, pp. 717–740.

[102] Rosenberg, J., and Abramson, D. A. MONADS-PC: A capability
based workstation to support software engineering. In Proceedings of
the 18th Hawaii International Conference on System Sciences (1985),
pp. 222–231.

[103] Rutkowska, J. Subverting VistaTM Kernel For Fun And Profit. In
Blackhat Briefings (2006).

[104] Sadeghi, A.-R., Selhorst, M., Stüble, C., Wachsmann, C., and
Winandy, M. TCG inside?: a note on TPM specification compliance.
In Proceedings of the first ACM workshop on Scalable trusted computing
(New York, NY, USA, 2006), STC’06, ACM, pp. 47–56.

[105] Sahita, R., Warrier, U., and Dewan, P. Protecting Critical
Applications on Mobile Platforms. Intel Technology Journal 13, 2 (June
2009), 16–35.

152 BIBLIOGRAPHY

[106] Saltzer, J., and Schroeder, M. The protection of information in
computer systems. In Proceedings of the IEEE (1975), vol. 63, IEEE,
pp. 1278–1308.

[107] Schellekens, D., Tuyls, P., and Preneel, B. Embedded trusted
computing with authenticated non-volatile memory. In First International
Conference on Trusted Computing and Trust in Information Technologies
(TRUST’08) (2008), P. Lipp, A.-R. Sadeghi, and K.-M. Koch, Eds.,
Lecture Notes in Computer Science, Springer-Verlag, pp. 60–74.

[108] Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf,
K., Yee, B., and Chen, B. Adapting software fault isolation to
contemporary CPU architectures. In Proceedings of the 19th USENIX
Security Symposium (2010), SEC’10.

[109] Seshadri, A., Luk, M., Qu, N., and Perrig, A. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes.
In Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles (New York, NY, USA, 2007), SOSP’07, ACM, pp. 335–
350.

[110] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and
Khosla, P. Pioneer: Verifying integrity and guaranteeing execution of
code on legacy platforms. In Proceedings of ACM Symposium on Operating
Systems Principles (New York, NY, USA, Oct. 2005), SOSP’05, ACM,
pp. 1–15.

[111] Shacham, H. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security (New York, NY,
USA, 2007), CCS ’07, ACM, pp. 552–561.

[112] Singaravelu, L., Pu, C., Härtig, H., and Helmuth, C. Reducing
TCB complexity for security-sensitive applications: three case studies.
In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems (New York, NY, USA, 2006), EuroSys’06, ACM,
pp. 161–174.

[113] Spafford, E. H. The internet worm program: An analysis. SIGCOMM
Computer Communication Review 19, 1 (Jan. 1988), 17–57.

[114] Sparks, E. R. A security assessment of trusted platform modules. Tech.
Rep. TR2007-597, Dartmouth College, Department of Computer Science,
June 2007.

BIBLIOGRAPHY 153

[115] Strackx, R., Agten, P., Avonds, N., and Piessens, F. Salus: Kernel
support for secure process compartments. In Accepted for publication in
Endorsed Transactions on Security and Safety, EAI.

[116] Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-
speed, state-continuity scheme. In Accepted for publication in Annual
Computer Security Applications Conference (2014), ACSAC’14.

[117] Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-
speed, state-continuity scheme (extended version). CW Reports CW672,
Department of Computer Science, KU Leuven, September 2014.

[118] Strackx, R., Philippaerts, P., and Vogels, F. Idea: Towards an
Inverted Cloud. In Accepted in Engineering Secure Software and Systems
(ESSoS’15) (Mar. 2015), Lecture Notes in Computer Science, Springer
Berlin Heidelberg.

[119] Strackx, R., and Piessens, F. Fides: Selectively hardening
software application components against kernel-level or process-level
malware. In Proceedings of the 19th ACM conference on Computer and
Communications Security (New York, NY, USA, October 2012), CCS’12,
ACM, pp. 2–13.

[120] Strackx, R., Piessens, F., and Preneel, B. Efficient Isolation of
Trusted Subsystems in Embedded Systems. In Security and Privacy
in Communication Networks (SecureComm’10) (2010), S. Jajodia and
J. Zhou, Eds., vol. 50 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering,
Springer Berlin Heidelberg, pp. 344–361.

[121] Strackx, R., Younan, Y., Philippaerts, P., and Piessens, F.
Efficient and effective buffer overflow protection on ARM processors.
In Information Security Theory and Practices. Security and Privacy of
Pervasive Systems and Smart Devices – Proceedings of the 4th IFIP
WG 11.2 International Workshop (WISTP’10) (Apr. 2010), P. Samarati,
M. Tunstall, J. Posegga, K. Markantonakis, and D. Sauveron, Eds.,
vol. 6033 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp. 1–16.

[122] Strackx, R., Younan, Y., Philippaerts, P., Piessens, F.,
Lachmund, S., and Walter, T. Breaking the memory secrecy
assumption. In Proceedings of the Second European Workshop on System
Security (New York, NY, USA, 2009), EuroSec’09, ACM, pp. 1–8.

154 BIBLIOGRAPHY

[123] Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and
Devadas, S. AEGIS: architecture for tamper-evident and tamper-
resistant processing. In Proceedings of the 17th annual international
conference on Supercomputing (New York, NY, USA, 2003), ICS’03, ACM,
pp. 160–171.

[124] Swift, M. M., Martin, S., Levy, H. M., and Eggers, S. J. Nooks:
An architecture for reliable device drivers. In Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop (New York, NY, USA,
2002), EW’10, ACM, pp. 102–107.

[125] Ta-Min, R., Litty, L., and Lie, D. Splitting interfaces: Making trust
between applications and operating systems configurable. In Proceedings
of the 7th symposium on Operating systems design and implementation
(Berkeley, CA, USA, 2006), OSDI’06, USENIX Association, pp. 279–292.

[126] Tarnovsky, C. Deconstructing a “secure” processor. In Blackhat (2010).

[127] Technology, M. Hybrid memory - bridging the gap between DRAM
speed and NAND nonvolatility. http://www.micron.com/products/
dram-modules/nvdimm. Accessed: 06/11/2014.

[128] Technology, V. NV-DIMM: Achieving greater ROI from SSDs. http:
//www.vikingtechnology.com/uploads/NV_DIMM_ROI.pdf. Accessed:
06/11/2014.

[129] Tian, D., Zeng, Q., Wu, D., Liu, P., and Hu, C. Kruiser:
Semi-synchronized non-blocking concurrent kernel heap buffer overflow
monitoring. In Proceedings of the Network & Distributed System Security
Symposium (Feb. 2012), NDSS’12, Internet Society.

[130] Tiobe Software. Tiobe software: Tiobe index. http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html. Accessed: 2014-11-06.

[131] Torvalds, L. Hybrid kernel, not NT. forum comment http://www.
realworldtech.com/forum/?threadid=65915&curpostid=65936, May 2006.
Accessed: 2014-11-06.

[132] Trusted Computing Group. Design Principles Specification Version
1.2, 2011.

[133] Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., and Miyauchi,
H. Cryptanalysis of des implemented on computers with cache. In
Proceedings of the 5th international conference on cryptographic hardware
and embedded systems (CHES’03) (2003), C. D. Walter, c. K. Koç, and
C. Paar, Eds., vol. 2779 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 62–76.

http://www.micron.com/products/dram-modules/nvdimm
http://www.micron.com/products/dram-modules/nvdimm
http://www.vikingtechnology.com/uploads/NV_DIMM_ROI.pdf
http://www.vikingtechnology.com/uploads/NV_DIMM_ROI.pdf
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.realworldtech.com/forum/?threadid=65915&curpostid=65936
http://www.realworldtech.com/forum/?threadid=65915&curpostid=65936

BIBLIOGRAPHY 155

[134] Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., and
Datta, A. Design, implementation and verification of an extensible
and modular hypervisor framework. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (Washington, DC, USA, 2013),
S&P’13, IEEE Computer Society, pp. 430–444.

[135] Viega, J., and Thompson, H. The state of embedded-device security
(spoiler alert: It’s bad). IEEE Security and Privacy 10, 5 (Sept. 2012),
68–70.

[136] Vilanova, L., Ben-Yehuda, M., Navarro, N., Etsion, Y., and
Valero, M. CODOMs: Protecting software with code-centric memory
domains. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (Piscataway, NJ, USA, June 2014), ISCA ’14,
IEEE Press, pp. 469–480.

[137] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.
Efficient software-based fault isolation. In Proceedings of the fourteenth
ACM symposium on Operating systems principles (New York, NY, USA,
1993), SOSP ’93, ACM, pp. 203–216.

[138] Watson, R. N., Anderson, J., Laurie, B., and Kennaway, K.
Capsicum: practical capabilities for UNIX. In Proceedings of the 19th
USENIX Security symposium (Berkeley, CA, USA, 2010), SSYM’10,
USENIX Association.

[139] Williams, P., and Boivie, R. CPU support for secure executables.
In Trust and Trustworthy Computing (TRUST’11) (2011), J. McCune,
B. Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres, Eds.,
vol. 6740 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp. 172–187.

[140] Wilson, P., Frey, A., Mihm, T., Kershaw, D., and Alves, T.
Implementing embedded security on dual-virtual-cpu systems. IEEE
Design & Test of Computers 24, 6 (Nov. 2007), 582–591.

[141] Winter, J., and Dietrich, K. A hijacker’s guide to the LPC bus.
In Public Key Infrastructures, Services and Applications (EuroPKI’11)
(2012), S. Petkova-Nikova, A. Pashalidis, and G. Pernul, Eds., vol. 7163 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 176–
193.

[142] Witchel, E., and Asanović, K. Hardware works, software doesn’t:
Enforcing modularity with mondriaan memory protection. In Proceedings
of the 9th Conference on Hot Topics in Operating Systems (Berkeley, CA,
USA, 2003), vol. 9 of HOTOS’03, USENIX Association.

156 BIBLIOGRAPHY

[143] Witchel, E., Cates, J., and Asanović, K. Mondrian memory
protection. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2002), ASPLOS’02, ACM, pp. 304–316.

[144] Woodruff, J., Watson, R. N. M., Chisnall, D., Moore, S. W.,
Anderson, J., Davis, B., Laurie, B., Neumann, P. G., Norton,
R., and Roe, M. The CHERI capability model: Revisiting RISC in
an age of risk. In Proceedings of the 41st International Symposium on
Computer Architecture (2014), ISCA’14.

[145] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy,
T., Okasaka, S., Narula, N., and Fullagar, N. Native client: A
sandbox for portable, untrusted x86 native code. In Proceedings of the
30 IEEE Symposium on Security and Privacy (2009), S&P’09, IEEE,
pp. 79–93.

[146] Younan, Y., Joosen, W., and Piessens, F. Code injection in C
and C++ : A survey of vulnerabilities and countermeasures. Tech. Rep.
CW386, Department of Computer Science, KULeuven, 2004.

[147] Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens,
F., and Joosen, W. Paricheck: an efficient pointer arithmetic checker
for c programs. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (New York, NY, USA, 2010),
ASIACCS ’10, ACM, pp. 145–156.

[148] Younan, Y., Pozza, D., Piessens, F., and Joosen, W. Extended
protection against stack smashing attacks without performance loss.
In Proceedings of the 22nd Annual Computer Security Applications
Conference (Washington, DC, USA, 2006), ACSAC’06, IEEE Computer
Society, pp. 429–438.

[149] Zeng, Q., Wu, D., and Liu, P. Cruiser: Concurrent heap buffer
overflow monitoring using lock-free data structures. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2011), PLDI’11, ACM, pp. 367–
377.

[150] Zhou, Z., Gligor, V. D., Newsome, J., and McCune, J. M. Building
verifiable trusted path on commodity x86 computers. In Proceedings of the
IEEE Symposium on Security and Privacy (May 2012), S&P’12, pp. 616–
630.

BIBLIOGRAPHY 157

[151] Zhou, Z., Yu, M., and Gligor, V. Dancing with giants: Wimpy
kernels for on-demand isolated I/O. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (May 2014), S&P’14.

List of Publications

Articles in International Reviewed Journals

• Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D.,
and Piessens, F. Secure compilation to protected module architectures.
In Accepted for publication in Transactions on Programming Languages
and Systems (TOPLAS) (New York, NY, USA), ACM.

• Strackx, R., Agten, P., Avonds, N., and Piessens, F. Salus: Kernel
support for secure process compartments. In Accepted for publication in
Endorsed Transactions on Security and Safety, EAI.

Papers at International Conferences and Symposia,
Published in Full in Proceedings

• Strackx, R., Younan, Y., Philippaerts, P., Piessens, F.,
Lachmund, S., and Walter, T. Breaking the memory secrecy
assumption. In Proceedings of the Second European Workshop on System
Security (New York, NY, USA, 2009), EuroSec’09, ACM, pp. 1–8.

• Strackx, R., Younan, Y., Philippaerts, P., and Piessens, F.
Efficient and effective buffer overflow protection on ARM processors. In
Information Security Theory and Practices. Security and Privacy of
Pervasive Systems and Smart Devices – Proceedings of the 4th IFIP WG
11.2 International Workshop (WISTP’10) (Apr. 2010), vol. 6033 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 1–16.

• Strackx, R., Piessens, F., and Preneel, B. Efficient Isolation of
Trusted Subsystems in Embedded Systems. In Security and Privacy in
Communication Networks (SecureComm’10) (2010), vol. 50 of Lecture

159

160 LIST OF PUBLICATIONS

Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer Berlin Heidelberg, pp. 344–361.

• Agten, P., Nikiforakis, N., Strackx, R., Groef, W. D., and
Piessens, F. Recent developments in low-level software security. In
Information Security Theory and Practice. Security, Privacy and Trust
in Computing Systems and Ambient Intelligent Ecosystems (WISTP’12)
(2012), vol. 7322 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 1–16. WISTP.

• Agten, P., Strackx, R., Jacobs, B., and Piessens, F. Secure
compilation to modern processors. In Proceedings of the 25th Computer
Security Foundations Symposium (Los Alamitos, CA, USA, 2012), CSF’12,
IEEE Computer Society, pp. 171–185.

• Gadaleta, F., Strackx, R., Nikiforakis, N., Piessens, F., and
Joosen, W. On the effectiveness of virtualization-based security. In
Current Issues in IT Security (2012), Max Planck Institute. Security’12.

• Strackx, R., and Piessens, F. Fides: Selectively hardening
software application components against kernel-level or process-level
malware. In Proceedings of the 19th ACM conference on Computer
and Communications Security (New York, NY, USA, October 2012),
CCS’12, ACM, pp. 2–13.

• Swinnen, A., Strackx, R., Philippaerts, P., and Piessens, F.
Protoleaks: A reliable and protocol-independent network covert channel.
In Proceedings of the International Conference on Information System
Security (December 2012), ICISS’12, Springer Verlag, pp. 119–133.

• Strackx, R., Noorman, J., Verbauwhede, I., Preneel, B., and
Piessens, F. Protected software module architectures. In Securing
Electronic Business Processes, H. Reimer, N. Pohlmann, and W. Schneider,
Eds., ISSE’13. Springer-Verlag, 2013, pp. 241–251.

• Noorman, J., Agten, P., Daniels, W., Strackx, R., Herrewege,
A. V., Huygens, C., Preneel, B., Verbauwhede, I., and Piessens,
F. Sancus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In 22nd USENIX Security Symposium
(Aug. 2013), SSYM’13, USENIX Association.

• Avonds, N., Strackx, R., Agten, P., and Piessens, F. Salus:
Non-hierarchical memory access rights to enforce the principle of least
privilege. In Security and Privacy in Communication Networks
(SecureComm’13) (Sept. 2013), vol. 127 of Lecture Notes of the Institute

LIST OF PUBLICATIONS 161

for Computer Sciences, Social Informatics and Telecommunications
Engineering, Springer International Publishing, pp. 252–269.

• Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-
speed, state-continuity scheme. In Annual Computer Security Applications
Conference (2014), ACSAC’14.

• Strackx, R., Philippaerts, P., and Vogels, F. Idea: Towards an
Inverted Cloud. In Accepted in Engineering Secure Software and Systems
(ESSoS’15) (Mar. 2015), Lecture Notes in Computer Science, Springer
Berlin Heidelberg.

• Strackx, R., and Lambrigts, N. Idea: State-Continuous Transfer
of State in Protected-Module Architectures. In Accepted in Engineering
Secure Software and Systems (ESSoS’15) (Mar. 2015), Lecture Notes in
Computer Science, Springer Berlin Heidelberg.

Technical Reports

• Agten, P., Strackx, R., Jacobs, B., and Piessens, F. Secure
compilation to modern processors: Extended version. CW Reports
CW619, Department of Computer Science, KU Leuven, April 2012.

• Strackx, R., Jacobs, B., and Piessens, F. ICE: A passive, high-
speed, state-continuity scheme (extended version). CW Reports CW672,
Department of Computer Science, KU Leuven, September 2014.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMINDS - DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Heverlee
raoul.strackx@cs.kuleuven.be

http://www.cs.kuleuven.be/

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Attacking Software
	Existing Security Measures
	More Secure Libraries
	Hardening Legacy Software Automatically
	Memory-Safe Languages
	Software Verification
	OS Protection Features
	Hardware Security Modules

	Why Software Security Is Still a Mess
	A New Deal: Protected-Module Architectures
	Building Secure Subsystems: Contributions to the Research Area
	Independent Research Results by Industry
	Thesis Outline

	Fides: Selectively Hardening Software Application Components
	Introduction
	Objectives
	Attacker Model
	Security Properties

	Overview of the approach
	Layout of a Self-Protecting Module
	Primitive Operations
	Life Cycle of a Self-Protecting Module
	Secure Local Communication
	Updating SPMs
	The Vault
	Remote Attestation

	A Prototype Implementation
	The Fides architecture
	Automated Compilation of Modules

	Evaluation
	Security Evaluation
	Performance Evaluation

	Related Work
	Conclusions
	Post-Publication Remarks

	Salus: Non-Hierarchical Memory Access Rights to Enforce PoLP
	Introduction
	Attacker Model & Security Properties
	Overview of the Approach
	Compartments of Least Privilege
	Provided Services
	Life Cycle of a Compartmentalized Application
	Secure Communication
	Unforgeable references
	Writing Compartmentalized Applications

	Implementation
	Program Counter-Based Access Control
	System Call API
	Conflicting System Calls
	Unforgeable references

	Evaluation
	Security Evaluation
	Performance Evaluation

	Related Work
	Conclusion
	Post-Publication Remarks

	ICE: A Passive, High-Speed, State-Continuity Scheme
	Introduction
	Problem Definition
	Attacker Model
	Security Properties
	Applicability

	State-Continuity as a Library
	Architecture
	Guards: Storing Freshness Info
	ChkPassword: A Running Toy Example
	ICE Libraries

	Implementations
	ICE on Commodity Hardware
	SGX-Based Implementation
	Distant Future Architectures

	Security Evaluation
	Safety Properties
	Liveness Properties

	Performance Evaluation
	Implications Towards Hardware Security Modules
	Related Work
	Conclusion
	Post-Publication Remarks

	Conclusion
	Contributions
	Near Future
	New Security Guarantees
	Writing Modules
	Applications

	Long-Term Ambitions

	Intel Software Guard eXtensions
	Protected-Module Architectures vs Microkernels
	Why Microkernels Failed
	Why PMAs Won't Share the Same Fate as Microkernels

	Bibliography
	List of Publications

