
Clubbing Seals:
Exploring the Ecosystem of Third-party Security Seals

Tom Van Goethem‡, Frank Piessens‡, Wouter Joosen‡, Nick Nikiforakis†

‡iMinds-Distrinet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

†Department of Computer Science, Stony Brook University
nick@cs.stonybrook.edu

ABSTRACT
In the current web of distrust, malware, and server compro-
mises, convincing an online consumer that a website is se-
cure, can make the difference between a visitor and a buyer.
Third-party security seals position themselves as a solution
to this problem, where a trusted external company vouches
for the security of a website, and communicates it to visi-
tors through a security seal which the certified website can
embed in its pages.

In this paper, we explore the ecosystem of third-party se-
curity seals focusing on their security claims, in an attempt
to quantify the difference between the advertised guaran-
tees of security seals, and reality. Through a series of au-
tomated and manual experiments, we discover a real lack
of thoroughness from the side of the seal providers, which
results in obviously insecure websites being certified as se-
cure. Next to the incomplete protection, we demonstrate
how malware can trivially evade detection by seal providers
and detail a series of attacks that are actually facilitated by
seal providers. Among other things, we show how seals can
give more credence to phishing attacks, and how the cur-
rent architecture of third-party security seals can be used as
a completely passive vulnerability oracle, allowing attackers
to focus their energy on websites with known vulnerabilities.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access;
H.3.5 [Online Information Services]: Web-based ser-
vices; K.4.4 [Electronic Commerce]: Security

Keywords
Web applications; security seals; web-based attacks

1. INTRODUCTION
Nowadays, it has become rather uncommon for an entire

month to go by without some news of a major security in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660279.

cident. Whether by bugs in cryptographic libraries [11, 22],
malware installed on points-of-sale terminals [20], the ex-
ploitation of web application vulnerabilities [21, 26, 28], or
social engineering [1, 5], databases with credentials and per-
sonal details of millions of users seem to be finding their way
into the hands of attackers, on a regular basis.

The monetary losses due to these events and due to cyber-
crime in general, are sizable. According to a recent report
on the economic cost of cybercrime and cyber espionage, the
cost of these activities reach 100 billion dollars each year,
just for the United States alone [24]. Note that these losses
are not just direct monetary losses, but also indirect ones.
One interesting indirect loss is the opportunity cost to busi-
nesses due to reduced trust in online services.

Trust has always been a barrier to the adoption and use
of new technology. In the context of the web, people are
called to trust the websites of online companies, many of
which do not have an offline brick-and-mortar presence, with
their sensitive personal and financial information. In a 2008
survey, 75% of online shoppers did not like the fact that they
had to provide their credit card and personal information
online [13], while in a 2013 survey, only 61% of U.S. Internet
users were banking online [9].

In such an environment of distrust, companies can dis-
tinguish themselves from others by not only securing their
infrastructure but also convincing the user that they did so.
This is even more so for smaller companies which do not
enjoy the implicit trust afforded by the wide recognition of
logos and household company names.

One way of achieving this goal is through the use of third-
party security seals. A third-party security seal is an image
that a website can embed in its HTML code which signals
to consumers that the website has been scanned by a se-
curity company and has been found to be without issues,
i.e., without vulnerabilities and without malware. Seals are
typically provided by large security companies, like McAfee
and Symantec, and are meant to be recognizable by the
user and lend the credibility and trust associated with these
large companies, to the certified site. Depending on the seal
provider, security seals can cost anywhere between hundreds
to thousands of dollars per year which can be a significant
reoccurring security investment, especially for smaller com-
panies.

Prior research on the topic of third-party security seals
has mostly focused on whether a user recognizes their pres-
ence on certified websites and whether they result in higher
confidence and thus increased sales [4, 10, 15, 18].

918

In this paper, we perform a three-pronged analysis of
third-party security seal providers. Instead of measuring
whether users trust security seals, we want to know whether
these seals should be trusted in the first place. First, we
compile a list of ten popular seal providers and analyze their
certification methods. We discover that, among others, the
security checking of seal-using websites is done almost en-
tirely in a black-box fashion where the seal providers try a
list of automated attacks on their clients. By designing and
deploying a known vulnerable web application, we witness
the inaccuracy and haphazardness of these scanners, with
the best one detecting less than half of the known vulnera-
bilities.

Second, we turn our attention to existing businesses that
use third-party security seals, discovering more than 8,000
websites certified to be secure by the studied seal providers.
By gathering and comparing features that are telling of a
website’s security hygiene, e.g., the use of HttpOnly cookies
and Anti-CSRF tokens in HTML forms, we show that seal-
using websites are not more prudent than other websites of
an equivalent nature and popularity. Moreover, by obtain-
ing explicit permission for a manual penetration test on nine
seal-using websites, we demonstrate how a moderately moti-
vated attacker can discover high-risk vulnerabilities in most
certified websites, in less than one working day.

Finally, taking into account the workings of seal providers,
we detail a series of attacks on websites that are actually fa-
cilitated by the use of third-party security seals. Among
others, we describe the architecture of a completely passive
vulnerability oracle that allows an attacker to discover easily
exploitable websites by monitoring the appearance and dis-
appearance of third-party security seals on seal-using web-
sites.

Our main contributions are:

• We perform the first study of third-party security seals
that tests the claimed security guarantees, exposing a
lack of thoroughness and sophistication

• We show that seal-certified websites do not have differ-
ent security practices when compared to other equiva-
lent non-seal-using websites

• We demonstrate that even moderately motivated at-
tackers have no problem finding critical vulnerabilities
in websites that are certified to be secure

• We describe how attackers can abuse third-party secu-
rity seals proposing, among others, a completely pas-
sive vulnerability oracle that takes advantage of the
way seal providers react when one of their clients has
been detected as vulnerable

2. SECURITY SEALS
In this section, we describe the general workings of third-

party security seals and list the ten seal providers that we
analyzed, together with their features and deviations from
the generic model of a third-party security seal.

2.1 General Architecture
In general, third-party security seals follow the architec-

ture shown in Figure 1 which is comprised of two distinct
components. We arrived at this architecture through the
analysis of all ten investigated providers, and the recording
of common features.

Figure 1: High-level view of the architecture and
delivery of third-party security seals

First, if seal providers are to give meaningful security cer-
tifications to other websites, they must have a way to assess
the security stance of those websites. This is done through
the use of an automated scanner which periodically checks
the websites of their clients for the presence of security is-
sues, usually involving vulnerabilities and, in some cases,
malware. While the exact scanning frequency depends on
each seal provider and the version of the seal a customer
has bought, the scans are usually repeated either on a daily
or a weekly basis. The clients of seal providers are given ac-
cess to a web-based “control panel” where they can inspect
the findings of the latest security scan. If the scan discovered
vulnerabilities, the client is given a description of the vul-
nerability, its exact location and nature (e.g. reflected XSS
found on parameter page of index.php), and some generic
guidance for its remediation, usually in the form of links
towards whitepapers and other security resources. When a
vulnerability is discovered, the owners of certified websites
are typically given a “grace period” of a few days which they
can use to correct the discovered vulnerability before it af-
fects their certification, i.e., the visual component displayed
on their website.

The second component of a seal-provider is the seal itself.
When a website owner subscribes her website for a third-
party security seal, she is given a snippet of HTML code (or
JavaScript code which creates an HTML snippet) which she
is instructed to place in her page, at the position where she
wants the third-party seal to appear. The general format of
seal snippets is as follows:� �
<a href="https ://seal -provider.com/info?

client=example.com">
<img src="https ://seal -provider.com/shield?

client=example.com"/>
� �
This snippet always involves an HTML image tag which

dynamically requests an image from the web server of the
seal provider. If a website is found to be secure, the server
will respond with an image of a seal, as shown in Figure 1,
which typically includes the logo of the seal provider and
is meant to be recognizable by the visitors of the seal-using
website and lend it the credibility associated with the seal-
provider. Usually, the image is wrapped in an anchor tag

919

#Clients Name Yearly Cost
Vulnerability

Scan
Malware

Scan
Server-side

access
Server
AuthN

Disappearing
seal

Grace
Period
(Days)

3,980 Norton Secured $995 3 3 – – – NA

3,029 McAfee SECURE $300 3 3 – – 3 Unknown
463 Trust-Guard $697 3 – – – 3 7
459 SecurityMetrics $120 3 3 – – – 0
281 WebsiteProtection

(GoDaddy)
$84 3 3 3 – 3 0

118 BeyondSecurity $360 3 – – 3 3 0
109 ScanVerify $100 3 – – – 3 2
68 Qualys $495 3 3 – – 3 3
48 HackerProof $2,295 3 – – – 3 5
4 TinfoilSecurity $2,388 3 – – 3 – NA

Table 1: Overview of evaluated seal providers and their features

which is clickable, leads to the domain of the seal provider,
and shows the visitor of a certified website more information
about the seal and the seal provider, e.g., the coverage of the
scan that produced the seal, and the day of the last scan.
Apart from providing more information, this linked page
creates an obstacle for website owners who wish to create
the illusion of being certified, e.g., by showing a fake security
seal on their website, possibly scraped by the website of a
seal provider’s paying client. Since the extra information
is provided in a page under the seal-provider’s domain, a
non-paying user cannot mimic that part of the certification.

Interestingly, for the majority of seal providers, when a
vulnerability is discovered and the certified website fails to
correct it within its allotted grace period, the security seal
merely becomes invisible. That is, even when a website is
vulnerable, a visitor of that website will never see a “nega-
tive” security seal. The only way that a visitor can discover
this fact is by the examination of the HTML source code of
a page and the discovery of the aforementioned HTML snip-
pet – a task well out of reach of common users of the web.
As such, the vast majority of web users are not able to dis-
tinguish between a website that does not use a third-party
security seal, and one that does but is vulnerable.

2.2 Seal Providers
To discover third-party seal providers, we searched in a

popular search engine for phrases such as “site security seal”
and“site safety seal”. For each result, we manually examined
the website of each seal vendor to ensure that the seal cov-
erage included the detection of vulnerabilities, as opposed
to other types of seals that verify a site’s identity and the
proper use of SSL. Due to the extensive labor involved with
the evaluation of each seal provider and its clients, we lim-
ited ourselves to ten providers of security seals.

Table 1 lists the ten investigated third-party security seal
providers ordered by the number of their clients that we
could discover (we describe the process of client discovery
in Section 3). One can see that the services vary greatly in
terms of popularity as well as in terms of cost. Interestingly,
there seems to be no correlation between the popularity of
a seal provider and the price of seal. Since the two, by far,
most popular seal providers are also two large, recognizable
antivirus companies, it is likely that the popularity of seal
providers is related more to brand recognition and less to
other factors, such as price and word-of-mouth.

Five out of the ten seal providers support malware scan-
ning in addition to vulnerability scanning, yet only one pro-
vides the option of scanning the server for malware over the
FTP protocol. As such, the other services can only discover
malware on the indexable pages and directories of a website.
Only two out of the ten investigated services have the option
of server authentication, i.e., scanning the part of a website
that is behind a registration wall. In these two cases, website
owners can give the credentials of a user to the seal provider
and the location of the login page. This means that the vul-
nerability scanners of the majority of seal providers will not
be able to find vulnerabilities and malware that reside on
the authenticated part of a website.

The investigated seal providers exhibit varied behavior
when it comes to how they react in the presence of a discov-
ered vulnerability. The majority of seal providers returns an
invisible image when the client fails to mitigate the vulnera-
bility within the grace period. However, there are two types
of deviation from this behavior: the Norton Secured seal
will always be shown, even when vulnerabilities were found,
and similarly, for SecurityMetrics and TinfoilSecurity, the
seal will also remain visible, but the status page on the seal
provider website will no longer show that there is a passing
certification.

Finally, we would like to stress that although security seals
have been around for more than a decade, it is still a mar-
ket that is actively being developed. During the course of
our research, McAfee and Godaddy rebranded their security
seal products. The McAfee SECURE seal, which previously
offered both a malware scan and vulnerability analysis as a
single package, was split and now only offers a security seal
for passing the malware scan. In our research, we evaluated
the combination of the malware scan and vulnerability scan,
as was originally offered. WebsiteProtection, a GoDaddy
product, was rebranded as SiteLock, which most likely re-
flects a change in the third-party that GoDaddy relies on
for their security seal product. As in the case of the McAfee
security seal, our research is mainly based on the original
product that was offered by GoDaddy.

3. ADOPTION
As explained in Section 2.1, when website owners sub-

scribe their websites to seal providers, they are given a small
HTML snippet that they have to include in their websites.
This snippet is responsible for fetching and displaying the se-
curity seal to the visitors of the certified site. In this section,

920

Alexa Ranking

N
u

m
b

e
r

o
f

s
it
e

s

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
4

0
0

8
0

0
1

2
0

0

Figure 2: Distribution of seal-using websites in the
Alexa top 1 million websites

we take advantage of this snippet in order to automatically
detect seal-using websites, in an effort to understand the
nature of websites that choose to certify themselves using
security seals.

More specifically, using a crawler based on PhantomJS,
we performed a shallow crawl of the top 1 million websites
according to Alexa, searching for inclusions of specific re-
mote images and anchor tags from each of the ten studied
seal providers. To account for seal-using websites that are
not part of the top 1 million Alexa websites, we used some
advanced search features of Google’s search engine, which we
based on the same HTML snippets. For example, the follow-
ing search query site:scanverify.com/siteverify.php re-
turns a list of websites using seals by ScanVerify. Using these
processes we were able to discover a total of 8,302 seal-using
websites.

From the 8,302 websites, 73.64% was part of Alexa’s top 1
million websites ranking. Figure 2 shows the distribution of
these websites across the ranks of Alexa. The distribution
is right-skewed where the usage of third-party security seals
decreases together with the ranking. Our findings indicate
that websites that are already popular, still choose to use
seals as a mechanism of convincing users that they do take
security seriously.

To identify the nature of these 8,302 websites, we used
TrendMicro’s public website categorization database [31].
Figure 3 shows the ten most popular categories of seal-using
websites. As one can see, the “Shopping” category is by far
the most popular with 35.74% of the entire dataset being
categorized as such. Given the motivation for using third-
party security seals that the seal providers themselves use,
this result makes intuitive sense. Security seals are adver-
tised as capable of increasing a user’s trust for any given
website which, in turn, translates to increased sales. As a
matter of fact, most seal providers’ advertising campaigns
heavily rely on testimonials where existing clients claim to
have seen a significant increase of sales (in the range of 5%-
20%) after the adoption of their security seal. As such, shop-
ping websites are the primary target audience for buying
security seals from seal providers. This result is also inter-
esting from a security point of view. Websites belonging to
e-shops are highly dynamic in nature, with frontends and
backends, and various e-commerce modules. As such, their
extended attack surface, together with the prospect of exfil-
trating financial and personal data upon compromise, make
shopping websites more attractive targets over other cate-
gories of websites, such as blogs and news websites.

Shopping

Business / Economy

Computers / Internet

Health

Financial Services

Travel

Vehicles

Sports

Education

Entertainment

Number of sites

0 500 1000 2000

Figure 3: Ten most popular categories of seal-using
websites

4. SECURITY EVALUATION
Seal vendors claim that a security seal increases the trust-

worthiness of a certified website and leads to increased sales.
In this section, we seek to understand whether a user’s trust
should increase in the presence of a third-party security seal.

In order to assess the thoroughness of service provided
by the ten investigated seal providers, we conducted the
following three experiments. First we compare the secu-
rity practices of seal-using websites to other equivalent web-
sites which do not make use of seals. Second, by obtaining
permission for penetration testing, we investigate whether
a moderately interested attacker would be able to find a
vulnerability in a supposedly secure website, i.e., a website
bearing a security seal. Third, we set up a webshop including
multiple vulnerabilities, in order to understand which vul-
nerabilities are discoverable by seal providers and how easy
it is for a vulnerable site to obtain a clean bill of health.

4.1 Comparison to non-certified websites
When a website uses a third-party security seal, it may

seem reasonable to assume that the administrators of that
website are, in general, interested in the security of their site
and are thus taking all the necessary precautions to secure
their services and protect their users.

In this section, we test this assumption by comparing the
adoption of popular security mechanisms by seal-using web-
sites against the adoption of the same mechanisms by equiv-
alent websites which do not use third-party seals. Next to
security mechanisms we also test for issues that can be de-
tected in a non-intrusive way.

Comparison Dataset
To have meaningful comparisons between seal-certified and
non-certified websites, the second set of websites must be
similar to the first one, in all matters except for the adop-
tion of a security seal. While this is virtually impossible
to establish from the client-side without full knowledge of
an application’s codebase and environment, we provide an
approximate solution as follows.

For every seal-utilizing website, we attempt to identify
another site of the same category within ten places in the
Alexa ranking of the top 1 million websites. If, for instance,
buyfromhome.com is a seal-utilizing e-shop ranked at the

921

100th place, we search for another e-shop site either ten
ranks above, or ten ranks below the 100th place. The di-
rection of our search is decided probabilistically using the
probability distribution of a fair coin. As before, the cate-
gories of each site are determined using TrendMicro’s public
website categorization engine [31].

Using this process we were able to match 2,238 seal-using
websites to 2,238 other websites of equivalent rank and cat-
egory that do not use third-party security seals.

Security Indicators
In recent years, as a response to a continuous battery of
exploitations of web application vulnerabilities, browser ven-
dors and the research community introduced a series of client-
side security mechanisms that are today available in the vast
majority of modern browsers. These client-side mechanisms
are usually guided by server-side policies, where the web
server expresses its security desires through HTTP headers
and the browsers are responsible for enforcing them at the
side of the user. In addition, web application programmers
have come up with various “best practices” that should al-
ways be followed, e.g., an anti-CSRF token in all forms.

While the presence or absence of such security mechanisms
does not equate to proof of the presence or absence of ex-
ploitable vulnerabilities, they still can be used as indicators
of the security hygiene of any given website. In addition,
these mechanisms can be detected in a completely passive
fashion thereby not incurring any unnecessary stress on web
applications. In prior research, Nikiforakis et al. [25] com-
bined some of these indicators in a Quality-of-Maintenance
metric and applied it on servers offering remote JavaScript
libraries. Vasek and Moore investigated whether certain
server characteristics can be used as risk factors for predict-
ing server compromise [32], and found that HttpOnly cookies
can, for some types of compromise, be negative risk factors,
i.e., their presence is correlated more with non-compromised
websites rather than compromised ones.

For our experiment, we searched for the presence or ab-
sence of the following, passively discoverable, security mech-
anisms and best practices:

• HTTP Strict Transport Security (HSTS)

• Secure Cookies

• HttpOnly Cookies

• Content Security Policy (CSP)

• X-Frame-Options (XFO)

• iframe sandboxing

• Anti-CSRF Tokens

• X-Content-Type-Options

• SSL-stripping Vulnerable Form

A brief description of each of these mechanisms can be
found in this paper’s Appendix.

Results
For each of the 4,476 websites, we used a crawler based on
PhantomJS to automatically visit a site’s main page and
ten other pages within the same domain, which were ob-
tained using a shallow crawl. To simplify comparisons, we
counted the present security mechanisms and issues in a

Security Mechanism
or

Issue

Sites
w/

Seals
(%)

Sites
w/o

Seals
(%)

Significantly
different?
(p-value)

HSTS 1.05 1.06 7 (1.00)
Secure Cookies 1.83 0.42 7 (0.06)
SSL Stripping 15.45 15.64 7 (0.99)
X-Frame-Options 3.71 5.14 3 (0.02)
HTTP-Only Cookies 42.27 29.98 3 (<0.01)
CSP 0.00 0.00 – (NA)
Anti-CSRF Tokens 6.39 11.89 3 (<0.01)
X-Content-Type 0.00 0.00 – (NA)
iframe sandbox 0.18 0.04 7 (0.37)

Table 2: Comparison of the discovered issues and se-
curity mechanisms between websites with and with-
out seals. Highlighted entries denote the better
value, in the statistically significant cases.

binary fashion. If, for example, one page of the domain
example.com used an HttpOnly cookie, then we credited the
entire example.com domain with that security mechanism.

Table 2 shows the percentage of security mechanisms and
issues discovered in the seal-utilizing websites and in our
gathered set of equivalent websites. To compare the adop-
tion between our two sets of websites, we conducted a two-
sided hypothesis test for the comparison of two independent
proportions. For each row in Table 2, our null hypothesis
(H0) was that the true proportion of that mechanism is the
same between the two sets, while the alternative hypothe-
sis (HA) was that the true proportions of that mechanism
for the two sets are different from each other. The last col-
umn of Table 2 shows the results of each hypothesis test,
i.e., whether the adoption of each mechanism is different in
a statistically significant way, and reports the p-value of the
hypothesis test. Following standard practices in hypothesis
testing, 0.05 was the cut-off point for the computed p-value,
over which the null hypothesis is maintained.

As one can see, only one third of the measured propor-
tions were different in a statistically significant way, while
in two out of the three cases, the difference was credited
in favor of the websites without security seals. The lack of
more significant differences between the adoption of security
mechanisms can be interpreted as a lack of systematic dif-
ference between the security hygiene of seal-using websites
and the hygiene of equivalent websites that do not use seals.
This, in turn, hints towards the absence of a holistic secu-
rity strategy by the adopters of third-party security seals.
In other words, if the intuitive notion that bad security hy-
giene is correlated with increased probability of compromise
is true, seal-using websites are not more secure than their
non-seal equivalents.

4.2 Penetration Testing
Security seal providers claim to protect websites by peri-

odically scanning for the presence of thousands of vulner-
abilities. One could assume that this would result in the
detection of most easily discoverable vulnerabilities, thus
making the discovery of a vulnerability by an attacker, a
long and arduous task.

922

To test this hypothesis, we contacted 1,000 seal-using web-
sites asking for explicit permission to conduct a manual pen-
etration test. While the vast majority of websites never re-
sponded to our request, nine websites granted us permission
to proceed. In order to avoid bias in our experiment we sim-
ulated a moderately motivated attacker who only has eight
hours (one working day) to find a vulnerability before pro-
ceeding to the next target.

In our manual penetration test, we evaluated websites for
several common vulnerabilities, such as SQL injection, cross-
site scripting and CSRF, as well as for application-logic at-
tacks. Despite the limited time available for evaluating each
website, we were able to find several severe vulnerabilities,
such as XSS and SQL Injection, for seven out of the nine
evaluated websites. Additionally, we found HTTP param-
eter tampering vulnerabilities, as well as application-flow
vulnerabilities, in three out of the four webshops that we
analyzed, allowing us to order products and services for ar-
bitrary prices.

These results clearly indicate that the hypothesis that at-
tackers with limited resources are unable to find vulnerabil-
ities in sealed websites, is false. In our manual analysis, we
could register on the websites under evaluation, access con-
tent that requires authentication, and reason about prices in
shopping carts – actions that are not supported by the auto-
mated scanners of most seal providers. Besides these general
limitations that render seal providers unable to find vulner-
abilities which require a series of coherent actions, we also
found easily discoverable vulnerabilities, which were missed
by the seal providers, in six out of nine websites. These
vulnerabilities consist of cross-site scripting vulnerabilities
where a GET or POST parameter was reflected without
proper encoding, and even a “textbook” SQL injection.

We also want to mention one incident that demonstrates
the haphazardness of the certification of certain seal providers.
In one specific case, an e-shop, certified to be secure by a
third-party seal provider, gave us an SQL error while con-
tacting them to ask for permission for a manual penetration
test. When reviewing the case, we realized that we had used
a contraction in our message to the website where we inad-
vertently introduced a single quote, e.g., the phrase “do not”
contracted to “don’t”. The SQL error was generated by that
single quote in the message body.

4.3 Vulnerable Webshop Experiment
Being able to accurately assess the state of security of a

website, is one of the key requirements of a seal provider,
if the seal is to be trusted by consumers. That is, if triv-
ially vulnerable websites can be certified as secure, then the
certification becomes void of meaning. To evaluate the accu-
racy of the tools used by seal providers to verify a website’s
security, we set up a webshop which included a number of se-
vere vulnerabilities. More specifically, we used an outdated
version of PrestaShop, a popular open source e-commerce
application, which suffers from a cross-site scripting vulner-
ability, and expanded the attack surface by including several
other vulnerabilities spanning many typical web application
vulnerability classes.

The vulnerable webshop reflects a realistic website con-
taining vulnerabilities we encountered in real-world websites
during our penetration testing. Next to a number of well
known vulnerabilities, such as SQL injection and XSS, we
also included vulnerabilities that are less popular, such as

a remote JavaScript inclusion from a stale domain and a
CSRF issue with OAuth login. In total, the following twelve
vulnerabilities (V1 to V12) were present in our vulnerable
web application:

• SQL Injection (V1): A textbook example of SQL in-
jection. One of the GET parameters was not properly
sanitized and a user-controlled SQL statement could
be executed.

• SQL Injection - Ajax (V2): Similar to V1, but
only Ajax requests were made to this endpoint. Con-
sequently, this endpoint could only be discovered by
executing JavaScript code.

• Sensitive files (V3): We uploaded a phpinfo.php

file, which discloses sensitive information of a PHP in-
stallation, and a .git folder, which can leak the con-
tents of several sensitive files.

• Stale remote JavaScript inclusion (V4): On each
page, a JavaScript file was included from an unregis-
tered domain. An attacker could register that domain,
and serve malicious JavaScript from it, which would be
executed on all pages of the vulnerable webshop.

• OAuth - CSRF parameter (V5): A “Login with
Facebook” link was added, which points to Facebook’s
OAuth endpoint. This link did not contain a state

parameter, which would allow an attacker to perform a
CSRF attack and make a victim log in as the attacker.

• Malware (V6): Every page of the webshop contained
a link to a malicious executable. This link was made
invisible using CSS in order to prevent infecting casual
visitors of our test website.

• Directory listing (V7): One of the directories that
stored images, allowed directory listing. This directory
also contained malicious executables.

• Reflected XSS (V8): A GET parameter on one page
of our web application was reflected without any en-
coding.

• Reflected XSS - form action (V9): Similar to V8,
but the endpoint was located in the action attribute
of a form element, as opposed to the href attribute of
a link as in V8.

• Reflected XSS - additional parameter (V10):
For this vulnerability, the query parameters were re-
flected without encoding. This only happened when
the controller parameter was set to a certain value,
so a GET parameter needed to be added for the dis-
covery of this vulnerability.

• Reflected XSS - JavaScript context (V11): In
this case, again a GET parameter was reflected in a
page, but the “<” and “>” characters were properly en-
coded. However, since the parameter was reflected in a
JavaScript string context, an attacker could terminate
the string with a quote, which was not escaped, and
inject arbitrary JavaScript code.

923

• DOM-based XSS (V12): On several pages, the frag-
ment of the URL (the portion after the # sign in the
URL), was written to the document, without any en-
coding.

From the ten seal providers listed in Table 1, we were
able to purchase seals (or get free trials) from eight of them.
The two missing providers implemented strict checks for the
existence of a valid business which we did not attempt to
bypass.

Table 3 shows the vulnerabilities that were discovered by
each seal provider. The names of the seal providers have
been anonymized, as our study is not meant to promote
one product over another, but rather to show the coverage,
or lack thereof, by all companies. The first thing that one
can notice is that all seal providers found less than half of
the vulnerabilities. Even more worrisome is that two seal
providers did not manage to find any vulnerabilities. By
analyzing the requests made to our web server, we found
that these seal providers merely ran Nmap and Nessus scans,
which listed open ports and checked for the presence of cer-
tain files. These scanners are not meant to discover vulnera-
bilities in web applications, thus they are far from sufficient
to evaluate the security of a website.

V8 and V9, the two “standard” reflected XSS vulnerabil-
ities, were found by the majority of seal providers. Even
though V1 was a textbook example of SQL injection, only
half of the seal providers managed to find this vulnerability.
Moreover, only Seal Provider 6 and 7 were able to find the
SQL injection vulnerability in the Ajax endpoint (V1). In-
terestingly, these were also the only two seal providers whose
scanners executed the JavaScript code of our web applica-
tion. Since more and more websites rely on JavaScript for
delivering functionality to end users, a lack of support for
JavaScript will certainly limit the number of vulnerabilities
that a vulnerability scanner is able to find.

From the four seal providers that claim to check for the
presence of malware, only two managed to find the malware
present on our vulnerable web application. Note that we
purposefully uploaded malware that was detected as such
by the vast majority of antivirus engines on VirusTotal, to
ensure that the malicious executables would be flagged by
any proper antivirus product. Interestingly, one of these seal
providers only managed to find the malware binary after
they were given FTP access to our server, an optional fea-
ture they provide. The inability to find publicly-reachable
malware by browsing our webshop, is another indication that
the security-scan employed by seal providers is incomplete.

Overall, it is clear that the coverage of security seals leaves
much to be desired. Even if a website would employ multiple
security seals, certain classes of vulnerabilities would still
remain fully undetected. While one can argue that some
of the vulnerabilities present in our webshop are of a more
exotic nature, such as V4 and V5, the fact is that these
vulnerabilities are known by the security community, and
can be easily discovered by an automated scanner as long
as the detection logic is present. The absence of support for
them, indicates that automated scanners may have trouble
detecting newer vulnerabilities, even if those are easier to
detect than traditional ones.

Finally, we compared the coverage of the seal providers
with that of three popular web application vulnerability
scanners. Web application vulnerability scanners typically
work in a fully automated way and, despite their shortcom-

Seal provider Vulnerabilities
V1 V2 V3 V4 V5 V6 V7

Seal Provider 1 – – – – – N/A –
Seal Provider 2 – – – – – N/A –
Seal Provider 3 – – 3 – – 3 3
Seal Provider 4 – – – – – 3 –
Seal Provider 5 3 – – – – N/A –
Seal Provider 6 3 3 – – – – –
Seal Provider 7 3 3 – – – – –
Seal Provider 8 3 – 3 – – N/A –

V8 V9 V10 V11 V12 Coverage
Seal Provider 1 – – – – – 0/11 (00.0%)
Seal Provider 2 – – – – – 0/11 (00.0%)
Seal Provider 3 – – – – – 3/12 (25.0%)
Seal Provider 4 3 3 – – – 3/12 (25.0%)
Seal Provider 5 3 3 – – – 3/11 (27.3%)
Seal Provider 6 3 3 – – – 4/12 (33.3%)
Seal Provider 7 3 3 – – – 4/12 (33.3%)
Seal Provider 8 3 3 3 – – 5/11 (45.5%)

Table 3: Vulnerability detection results. For each
seal provider, the vulnerabilities that were discov-
ered are indicated with a checkmark.

Vulnerability
Scanner

Vulnerabilities

V1 V2 V3 V4 V5 V6 V7

Acunetix – 3 – – – N/A 3
HP WebInspect – 3 – – – N/A 3
Burp Suite 3 3 – – – N/A 3

V8 V9 V10 V11 V12 Coverage
Acunetix 3 3 3 – – 5/11 (45.5%)
HP WebInspect 3 3 3 – – 5/11 (45.5%)
Burp Suite 3 3 3 – – 6/11 (54.5%)

Table 4: Vulnerability detection results for Web Ap-
plication Vulnerability Scanners. For each vulnera-
bility scanner, the vulnerabilities that were discov-
ered are indicated with a checkmark.

ings [7], are a popular option for discovering vulnerabilities
in websites. As Table 4 shows, the coverage of the scanners is
higher than all but one of the tools employed by the security
seal providers, which again shows that the scans required to
obtain a security seal are far from rigorous.

5. ATTACKS
In the previous section, we showed that seal providers per-

form very poorly when it comes to the detection of vulner-
abilities on the websites that they certify. One, however,
could still argue that such products operate in a “best ef-
fort” manner and that, despite our findings, they still pro-
vide some tangible security benefits. In this section, we show
that, paradoxically, third-party security seals can assist at-
tackers in identifying vulnerable targets, and even provide
them with the exact vulnerability. In addition to attacks
against seal-using websites, we also show how an attacker
can, in some cases, use seal providers to attack non-seal
websites and how an interested party (attacker, or sketchy
webmaster of a vulnerable website) can trivially evade de-
tection by a seal provider.

924

5.1 Security Seal as an Oracle
Being able to accurately determine whether a website con-

tains a vulnerability is incredibly useful for attackers since
it allows them to focus their attention on websites that are
likely to provide some yield.

The way security seals are currently displayed on websites,
enables an adversary to pick the easiest prey from a herd of
seal-utilizing websites. More precisely, security seals, which
are generally hosted on the servers of the seal providers,
should only be visible when a website is found to be secure.
This means that if a vulnerability is found on a website,
and the webmaster fails to mitigate it within the allotted
grace period, the seal will stop showing. During our vul-
nerable webshop experiment, as discussed in Section 4.3, we
discovered that when a seal provider wanted the seal to stop
showing, they would either make the image transparent or
provide an image with 1x1 dimensions.

Because of the difference in image size or content, it is
possible to determine the security status of seal-using web-
sites in an automated way. Thus, an attacker could set up
a crawler to daily visit seal-using websites and be alerted
whenever the image of a seal changes. To evaluate the fea-
sibility of this attack scenario, we conducted the following
experiment: for a two-month period, we visited the set of
8,302 seal-utilizing websites on a daily basis and extracted
the security seal that was shown on each website. In addi-
tion, we also stored the webpage of the security seal provider
that results when a user clicks on the image of each seal.

Table 5 shows the results of this two-month-long experi-
ment. From all the seal-using websites, we discovered that
333 websites (Column 2 of Table 5) were given an invisible
security seal for at least one day of our experiment. That
is, in 333 cases, a website’s seal transitioned from a showing
seal to an invisible one, or vice versa. This indicates that
either a website went from secure to vulnerable for at least
one day, or was vulnerable for a series of days and went back
to secure when the webmaster mitigated the discovered vul-
nerabilities. Related to this, for 189 websites in our dataset
(Column 3 of Table 5), the seals were constantly invisible
for the entire monitored period.1

This could either be due to an expired contract between
the seal-using website and the seal provider, or due to a web-
site being constantly vulnerable. In any case, from an at-
tacker’s point of view, an invisible seal should provide more
than enough motive to start attacking a website.

Apart from the side-channel of seals appearing and dis-
appearing, we discovered that for three seal providers, the
combination of seal appearance and status page was different
when a website was no longer a client of the seal provider,
to when a website was vulnerable. For instance, for one seal
provider, the seal would remain intact but the status page
was indicating that the date of the last successful scan was
prior to the current date. As such, for these three cases,
shown in the last column of Table 5, we can relatively safely
conclude that the seal-using website was vulnerable during
our monitored period.

While a pointer towards a vulnerable website is already of
great help to attackers, a disappearing seal does not pinpoint
the exact vulnerability necessary to exploit a website. In the

1Note that the sum of these seals in Table 5 is 190, since one
website was including seals from two different providers.

Seal Provider
Sites

w/

changing seals

Sites

w/

blank seals

Sites
most likely
vulnerable

McAfee SECURE 260 64 -
HackerProof 3 11 -
WebsiteProtection 19 52 46
Qualys 27 15 20
Trust-Guard 5 23 -
BeyondSecurity 19 24 38
ScanVerify 0 1 -

Table 5: The number of websites whose security
seals never appeared, or disappeared and reap-
peared during our two-month-long experiment.

context of security seals, however, attackers can, in some
cases, elicit the exact vulnerability out of a seal provider.

In our evaluation of the thoroughness of the security checks
done by seal providers, we noticed that for each scan a very
similar set of requests were made. These requests checked,
among others, for the presence of certain files, whether a pa-
rameter was reflected without encoding, or whether a certain
SQL statement would be executed. By setting up a website
and purchasing a security seal (or getting a free trial), the
attacker can collect the series of requests and replay them
to the vulnerable website, thus discovering the exact vul-
nerability that caused the victim’s seal to disappear. In the
cases where the scan of a seal provider is dependent on the
web application discovered, the attacker could set up the
same web application as his victim and thus collect rele-
vant, probing requests. An attacker could even try to replay
the requests that he receives on his server directly on the
victim website and extract discovered vulnerabilities in a
MitM fashion. Note that once an attacker collects a trace
of attack requests, he can reuse them an “infinite” number
of times against vulnerable websites of that seal provider.

It could be argued that if attackers had in their possession
a tool that could check the security of websites, they could
run that tool against an arbitrarily large number of web-
sites. However, we experienced that the security scanners
often made a substantial number of requests, in one case
up to 180,000, to the probed web server. Running such a
scan on a large number of websites would require access to
a considerable amount of resources, something the average
wrongdoer may not have. As such, it would not come as a
surprise if an attacker would prioritize attacking a website
known to contain a specific exploitable vulnerability. Lastly,
it is worth reminding the reader that, as shown in Section 3,
more than a third of all seal-utilizing websites are e-shops,
thus holding the promise of personal and financial informa-
tion that are not typically present on an average website.

5.2 Cloaking
When an attacker compromises a website, it is in his best

interest to keep this hidden from the website owner. In case
the adversary uses the website to host malware and infect
the site’s visitors, the task of hiding the compromise becomes
more difficult. Not only could a change in the website alarm
the website administrators, but regular crawls by various
search engines will also look for the presence of malware, in
order to protect the users of these search engines.

925

To prevent detection, attackers make use of cloaking, where
the malware distinguishes between visits of crawlers and hu-
man users and only exposes itself to the latter. Among
others, attackers can use implementation-specific JavaScript
code to distinguish between JavaScript engines (and thus
their housing browsers), as well as cloaking at an IP-address
level [27].

For some seal providers, we noticed that their scanners do
not execute JavaScript. As such, an attacker can simply hide
the presence of malware by testing for JavaScript support.
Alternatively, attackers can, unfortunately, always resort to
cloaking at a network level. During the tests described in
Section 4.3 we witnessed that the scanning requests of seal
providers were always originating from the same IP range,
often a block that is registered to the seal provider. It would
thus be straightforward for an attacker to only expose his
malware in case a request does not originate from an IP ad-
dress related to a seal-provider. This way, an attacker could
easily compromise a seal-utilizing website, while the web-
site owner would remain under the impression the website
was still secure as a consequence of the daily or weekly suc-
cessful seal scans. Note that this detection can be done in
a straightforward manner, and is already used by attackers
for conducting blackhat SEO [17].

Next to attackers, website owners could also be interested
in hiding weaknesses from a seal provider. In case a seal
provider finds vulnerabilities on a website, it may take a
considerable amount of time and resources for the website
administrator to mitigate them. If this does not happen
within the grace period provided by the seal provider, the
security seal – a product the webmaster paid for – will dis-
appear. Hence, in some cases, it could prove very useful for
a webmaster, if the security provider is not able to find any
vulnerabilities. As such, a webmaster may be tempted to
also employ a cloaking technique to deceive seal providers.
In our vulnerable webshop experiment, we managed to cir-
cumvent the detection of vulnerabilities by rerouting all traf-
fic originating from seal providers to a static web page. For
all seal providers, this could be done by merely adding two
lines to our webserver’s configuration file. This, unfortu-
nately, requires much less effort than continuously mitigat-
ing vulnerabilities, and could thus be employed by sketchy
website owners who just want to convince their customers
their website is secure.

5.3 Abusing security seal services
In earlier sections, we showed how seal providers can be

abused to attack the websites that they certify as secure. In
this section, we describe how they can also be weaponized
against users, as well as against third-party websites.

Phishing
In an attempt to acquire sensitive credentials for websites,
adversaries often create phishing pages which typically re-
semble the original website which the phisher is targeting.
To trick a user in entering her credentials, attackers can try
a series of techniques to make the victim believe that she
is on the legitimate website. For instance, by registering a
domain that looks similar to the original domain, attackers
can often convince users they are on the genuine website.
Additionally, when the original website contains a security
seal, the attacker could replicate this seal on his phishing
webpage to increase his credibility. Moreover, if the claims

from seal providers are correct, i.e., that the appearance of a
seal leads to an increase of trust in the webpage, the victim
will feel safe on the phishing page.

To counter this type of attack, seal providers should only
allow a seal to be included from the authentic website which
they certify. In our evaluation, we found that two seal
providers would not display a security seal in case the Ref-

erer header did not match the sealed website. The seal,
however, would appear if the referrer header of a user’s
HTTP request was absent, which can be trivially achieved
by the use of the appropriate value for the meta referrer

HTML tag. As a result, an attacker can currently include a
security seal on his phishing page from all ten seal providers
that we evaluated. Note that these seals are fully functional
in the sense that the potential phishing victims can click on
them and be assured, by a page hosted the seal-provider’s
domain, that the seal is legitimate (not just a copy) and
that the seal-bearing website is secure. If a user is already
considering a phishing page enough to click on the security
seal, it is unlikely that he will spot the fact that the domain
mentioned in the seal provider’s page is different than the
one of the phishing page.

Attacking third-party websites
Since seal providers search for vulnerabilities on websites,
it is obvious that only the webmaster of a specific web-
site should be able to request a vulnerability scan for that
website. This is especially important since the attacks will
not be launched directly by the attacker, thus making him
harder to trace by the victim website at a later time.

Even though seal providers do attempt to verify owner-
ship of a website, we found that often their methods are
bypassable. For instance, several seal providers performed
owner verification through the upload of a specific file on
the website that requested a seal. The uploaded file should
have a specific randomly-generated filename and contain a
randomly-generated string. For three seal providers, we dis-
covered that the contents of the uploaded file did not have
to be an exact match as the ones provided. Consequently,
if an attacker would be able to partially control the con-
tent on a URL containing the requested filename, he would
be able bypass the ownership verification and get a security
report for that domain. While this may seem unlikely, for
several websites this can be easily achieved. On Twitter,
for example, users are appointed their own URL contain-
ing their username, so a user named foobar is reachable
at http://twitter.com/foobar. As such, an attacker can
register an account with a username equal to the filename
requested by the seal provider, and include the contents of
the file in his first or last name. The seal provider will then
successfully discover the “uploaded file” and proceed to per-
form a security scan and report the discovered issues to the
attacker.

6. DISCUSSION
In previous sections we showed that, given the current

state-of-practice, third-party security seals are not only of
limited value, but that they can also be used to attack seal-
using websites, as well as their users, and third-party web-
sites. In this section, we briefly describe the ways in which
seal providers can substantially better their services.

In terms of vulnerability discovery, we witnessed that the
vulnerability scanners of some seal providers were not ex-

926

ecuting client-side JavaScript. Given the ubiquitousness of
JavaScript, we argue that JavaScript support is a necessary
feature of any modern vulnerability scanner. For the seal
providers that did find some vulnerabilities, we believe that
their tools can be bettered if they are tried against web
applications with known vulnerabilities so that the develop-
ers can quantify the coverage of their tools and prioritize
the development of support for the missing functionality.
For the seal providers that found no vulnerabilities whatso-
ever, it is clear that either their tools are fully ineffective,
or that they are trying to combine incompatible technolo-
gies, e.g., searching for web application vulnerabilities using
a network-level scanner.

For the problem of cloaking, a straightforward solution is
to employ, from time to time, the use of VPN or cloud ser-
vices, to ensure that the IP addresses of the scanners are
not publicly traceable back to the seal provider. The result-
ing pages can then be compared to pages retrieved from the
seal provider’s usual IP block using a wide range of tech-
niques, such as text shingles [6], screenshot comparison, or
comparison of the HTML structure between the two pages.
Pages with large differences can be manually inspected by a
human analyst who can then reach out to the webmaster of
the seal-using website. To avoid being abused by phishing
pages, seal providers can stop showing the security seal when
the referrer header is absent, or does not match the certified
website. All browsers allow, by default, the sending of the
referrer header, thus the change will not affect the majority
of web users who do not alter the default configuration of
their browsing software.

The problem of seals being used as a vulnerability oracle
is, unfortunately, not straightforward to solve. When a seal
provider hides a seal as a reaction to a discovered vulnerabil-
ity, this event is detectable and abusable by an attacker, as
discussed in Section 5.1. Alternatively, if a seal provider does
not hide, or in some way alter, the presence of a seal when
a vulnerability is detected, then the certification power of a
seal is compromised because any website can acquire it re-
gardless of the presence or absence of vulnerabilities. Thus,
given the current architecture of security seals, the honesty
of a seal provider, and the security of a seal-using website
seem to be contradictory goals.

The only solution to this conundrum appears to be a vig-
ilant webmaster. If a webmaster is able to fix a discovered
vulnerability within the grace period allotted by the seal
provider, then the vulnerable website can avoid detection by
attackers, while the seal provider can maintain its certifica-
tion honesty. As such, the companies that do not currently
provide a grace period – possibly thinking that this results
to higher security standards – are actually doing a disservice
to their clients.

7. RELATED WORK
While there has been some evidence of the improper cer-

tification done by security seal providers, this evidence is ei-
ther anecdotal or gathered in an ad-hoc manner for a handful
of websites [16, 33]. To the best of our knowledge, this pa-
per is the first to systematically evaluate the certification of
popular third-party security seals, at a large scale and from
a security point of view. In this section, we review prior
work on all aspects of third-party seals and the effectiveness
of automated vulnerability scanners.

Third-party Seals
Third-party seals originally received attention from the user-
interface and economics community, where researchers tried
to identify whether a seal is recognizable and whether it
leads to an increase of trust and thus increased sales for
the seal-bearing website. In 2002, Head and Hassanein [10]
discovered that the awareness and influence of third-party
seals was low and calling for more research on the placement
and appearance of seals that would increase their awareness
level. Belanger et al. [4] studied the role of various factors
in how trustworthy a website appears to consumers, includ-
ing third-party security seals. The authors discovered that
the users valued security features (such as the presence of
encryption) more than security seals. Kimery et al. dis-
cover that while a consumer’s attitude in online merchants
is positively correlated with the consumer’s trust of those
merchants, the presence of third-party seals does not affect
the consumer’s trust [19].

Interestingly, not all researchers have reached the same
conclusions. Houston et al. [14] survey 106 students and dis-
covered a positive correlation between the presence of a seal
and the perceived quality of a product which is in turn cor-
related with a consumer’s willingness to buy. Hu et al. [15]
empirically examined the effects of various seals and, con-
trary to the aforementioned research, concluded that most
seals that deal with trust do in fact increase a consumer’s
intent to purchase. Later research by Kim et al. [18] showed
that seals have a positive effect of reducing security-related
concerns of consumers, but only after the consumers are ed-
ucated about security and privacy threats, as well as the role
of third-party security seals.

The seal providers themselves rely mostly on testimoni-
als by existing clients in order to convince businesses to
adopt third-party seals. The majority of the testimonials,
as well as much of the seal-provider’s own advertising, re-
volve more around the increased sales and monetary gains
resulting from the adoption of a security seal, rather than
the number of vulnerabilities discovered.

Edelman [8] approached third-party seals from a different
angle. Instead of investigating the effect of seals on con-
sumers, he investigated the trustworthiness of sites that em-
ploy third-party trust seals. Trust seals are different from
the security seals that we investigated in this paper, in that
they certify a merchant’s trustworthiness, instead of their se-
curity. These trust seals are typically focusing on the privacy
policy of online merchants and attempt to ensure that the
merchant does not abuse the details collected by their cus-
tomers. Edelman argued that a trustworthy company does
not need an external entity to certify its trustworthiness. By
using “site safety” information provided by SiteAdvisor, he
found that websites using these seals are more likely to be
untrustworthy than websites that do not use trust seals.

Effectiveness of Automated Vulnerability Scanners
A core component of a third-party security seal vendor is
the automated vulnerability scanner that dictates whether
a website should be “awarded” the seal or not.

Doupé et al. conducted the most recent survey of the thor-
oughness of black-box automated vulnerability scanners, by
evaluating eleven different scanners against a known vulner-
able web application [7]. The authors discovered that many
of the evaluated scanners could not cope with modern web

927

application technologies, such as the presence of JavaScript,
and thus could not fully explore websites, much less discover
all known vulnerabilities in a test web application.

One difference between security seals and generic web ap-
plication scanners that is worth mentioning, is the latter’s
higher tolerance for false positives. In a common penetra-
tion test, the tester can go through a relatively large number
of false positives without any adverse effects for the tested
service. Contrastingly, security seal vendors do not have this
luxury, as false positives that stop the seal from appearing
on their clients websites will not be tolerated by the clients
who pay for the certification of their websites. As such, it
is possible that the scanners of third-party seal providers
choose to err on the safe side in order to lower or altogether
avoid false positives which, almost unavoidably, will result
in less true positives.

8. CONCLUSION
Providers of security seals claim that websites that make

use of their services will appear more trustworthy to the eyes
of consumers and will thus have an increase in their sales. In
this paper, we put the security guarantees of seal providers,
i.e., the guarantees that indirectly influence a consumer’s
feelings of trust, to the test. Through a series of automatic
and manual experiments, we discovered that third-party se-
curity seals are severely lacking in their thoroughness and
coverage of vulnerabilities. We uncovered multiple rudimen-
tary vulnerabilities in websites that were certified to be se-
cure and showed that websites that use third-party security
seals do not follow security best practices any better than
websites that do not use seals. In addition, we proposed a
novel attack where seals can be used as vulnerability oracles
and describe how an attacker can abuse seal providers to dis-
cover the exact exploit for any given vulnerable seal-using
website.

Overall, our findings show that current state-of-practice
of third-party security seals is far from ideal. While we pro-
pose steps that seal providers can take that will substantially
increase the accuracy and effectiveness of their security cer-
tification, the issue of inadvertently creating a vulnerability
oracle seems to be central to the current architecture of secu-
rity seals and appears to not have a technical solution which
does not sacrifice, either the honesty of a seal provider, or
the security of the certified website.

Acknowledgments: We want to thank the anonymous
reviewers for the valuable comments. This research was per-
formed with the financial support of the Prevention against
Crime Programme of the European Union (B-CCENTRE),
the Research Fund KU Leuven, and the EU FP7 projects
NESSoS and STREWS.

9. REFERENCES
[1] L. Arsene. Xbox Live Accounts of Microsoft

Employees Hacked Using Social Engineering.
http://www.hotforsecurity.com/blog/xbox-live-

accounts-of-microsoft-employees-hacked-using-

social-engineering-5716.html.

[2] A. Barth. HTTP State Management Mechanism.
IETF RFC, 2011.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proceedings

of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 75–88, New
York, NY, USA, 2008. ACM.

[4] F. Belanger, J. S. Hiller, and W. J. Smith.
Trustworthiness in electronic commerce: the role of
privacy, security, and site attributes. The Journal of
Strategic Information Systems, 11(3):245–270, 2002.

[5] P. Bright. Anonymous speaks: the inside story of the
HBGary hack. http://arstechnica.com/tech-
policy/2011/02/anonymous-speaks-the-inside-

story-of-the-hbgary-hack/.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic Clustering of the Web. Computer
Networks and ISDN Systems, 29(8-13), Sept. 1997.

[7] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t
Pentest: An Analysis of Black-box Web Vulnerability
Scanners. In Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), Bonn, Germany, July 2010.

[8] B. Edelman. Adverse Selection in Online “Trust”
Certifications. In Proceedings of the 11th International
Conference on Electronic Commerce, ICEC ’09, pages
205–212, 2009.

[9] S. Fox. Pew Research : 51% of U.S. Adults Bank
Online.
http://www.pewinternet.org/2013/08/07/51-of-u-

s-adults-bank-online/.

[10] M. M. Head and K. Hassanein. Trust in e-commerce:
evaluating the impact of third-party seals. Quarterly
Journal of Electronic Commerce, 3:307–326, 2002.

[11] OpenSSL ‘Heartbleed’ vulnerability (CVE-2014-0160).
https://www.us-cert.gov/ncas/alerts/TA14-098A.

[12] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). IETF RFC, 2012.

[13] J. Horrigan. Pew Research : Online Shopping.
http://www.pewinternet.org/2008/02/13/online-

shopping/.

[14] R. W. Houston and G. K. Taylor. Consumer
Perceptions of CPA WebTrust assurances: Evidence of
an Expectation Gap. International Journal of
Auditing, 3(2):89–105, 1999.

[15] X. Hu, Z. Lin, and H. Zhang. Trust promoting seals in
electronic markets: an exploratory study of their
effectiveness for online sales promotion. Journal of
Promotion Management, 9(1-2):163–180, 2002.

[16] T. Hunt. Why I am the world’s greatest lover (and
other worthless security claims).
http://www.troyhunt.com/2013/05/why-i-am-

worlds-greatest-lover-and.html.

[17] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and
M. Abadi. deSEO: Combating Search-result Poisoning.
In Proceedings of the 20th USENIX Conference on
Security, SEC’11, 2011.

[18] D. J. Kim, C. Steinfield, and Y.-J. Lai. Revisiting the
role of web assurance seals in business-to-consumer
electronic commerce. Decision Support Systems,
44(4):1000–1015, 2008.

[19] K. M. Kimery and M. McCord. Third-party
assurances: the road to trust in online retailing. In
Proceedings of the 35th Annual Hawaii International
Conference on System Sciences. IEEE, 2002.

928

[20] B. Krebs. A First Look at the Target Intrusion,
Malware. http://krebsonsecurity.com/2014/01/a-
first-look-at-the-target-intrusion-malware/.

[21] B. Krebs. Adobe Breach Impacted At Least 38 Million
Users. http://krebsonsecurity.com/2013/10/adobe-
breach-impacted-at-least-38-million-users/.

[22] A. Langley. Apple’s SSL/TLS Bug. https://www.
imperialviolet.org/2014/02/22/applebug.html.

[23] M. Marlinspike. New Tricks for Defeating SSL in
Practice. Blackhat, 2009.

[24] McAfee. The Economic Impact of Cybercrime and
Cyber Espionage.
http://www.mcafee.com/sg/resources/reports/rp-

economic-impact-cybercrime.pdf.

[25] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: large-scale
evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM conference on Computer
and Communications Security (CCS), pages 736–747,
2012.

[26] N. Olivarez-Giles. Snapchat Data Breach Exposes
Millions of Names, Phone Numbers.
http://blogs.wsj.com/digits/2014/01/01/

snapchat-alleged-leak-4-million-users/.

[27] M. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis,
D. Nojiri, N. Provos, and L. Schmidt. Trends in
circumventing web-malware detection. Google, Google
Technical Report, 2011.

[28] D. Reisinger. Syrian Electronic Army hacks Forbes,
steals user data.
http://www.cnet.com/news/syrian-electronic-

army-hacks-forbes-steals-user-data/.

[29] D. Ross and T. Gondrom. HTTP Header
X-Frame-Options. IETF RFC, 2013.

[30] S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In Proceedings of the
19th international conference on World wide web,
WWW ’10, pages 921–930, New York, NY, USA,
2010. ACM.

[31] Trend Micro Site Safety Center.
http://global.sitesafety.trendmicro.com/.

[32] M. Vasek and T. Moore. Identifying Risk Factors for
Webserver Compromise. In Proceedings of the
Eighteenth International Conference on Financial
Cryptography and Data Security, FC’ 14, 2014.

[33] J. Vijayan. ‘Hacker Safe’ seal: Web site shield, or
target? http:

//www.computerworld.com/s/article/9057878/

_Hacker_Safe_seal_Web_site_shield_or_target_?

[34] M. West. Play safely in sandboxed IFrames. 2013.

APPENDIX
Client-side Security Mechanisms
Here we present brief descriptions of the client-side security
mechanisms that we used as indicators of an overall“security
hygiene” when comparing seal-using websites, to websites of
an equivalent ranking and category that do not use seals.

• HTTP Strict Transport Security (HSTS): HSTS
is a security policy mechanism where a web server can
force complying browsers to interact with it using only

HTTPS connections [12]. By sending out the HSTS
policy via the appropriate HTTP header, a web server
specifies a period of time during which the browser is
instructed that all requests to that website need to be
sent over HTTPS, regardless of what a user requests.

• Secure Cookies: Using the Secure flag on Set-Cookie

headers limits the scope of a cookie to only secure chan-
nels [2], making the cookie less likely to be stolen by a
MitM attacker.

• HttpOnly Cookies: Cookies are, by default, acces-
sible to JavaScript code, which can lead to the theft
of cookies in an XSS attack. To defend against this, a
website operator can use the HttpOnly flag on cookies,
making them unavailable to client-side JavaScript.

• Content Security Policy (CSP): To mitigate a wide
range of injection vulnerabilities, such as Cross-Site
Scripting (XSS), a website operator can make use of
the CSP mechanism. CSP provides a standard HTTP
header that allows website owners to declare approved
sources of content that browsers should be allowed to
load on any given webpage [30]. Whenever a requested
resource originates from a source that is not defined in
the policy, it will not be loaded.

• X-Frame-Options (XFO): When an attacker is able
to load a website, or part of a website in a frame or
iframe element, the website might be vulnerable to
Clickjacking attacks. The XFO response header can
be used to instruct a user’s browser whether a certain
page is allowed to be embedded in a frame [29].

• iframe sandboxing: The sandbox attribute for the
iframe element, introduced in HTML5, enables a set
of extra restrictions on any content loaded in a frame,
which can be used to limit the capabilities given to
untrusted framed pages [34].

• Anti-CSRF Tokens: The “best practice” defense for
Cross-Site Request Forgery (CSRF) attacks is the in-
clusion of a secret long random token (also known as
nonce) with each request, and validation of that token
at the server side [3]. To check for nonces, we searched
for forms that contained a hidden form element that
was most likely used as a nonce. More specifically, form
elements were marked as nonces when their name con-
tained the keywords “token”, “nonce”, or “csrf”, and
when their value was a long alpha-numerical string.

• X-Content-Type-Options: Internet Explorer has a
MIME-sniffing feature that will attempt to determine
the content type for each downloaded resource. This
feature, however, can lead to security problems for servers
hosting untrusted content. To prevent MIME-sniffing,
a web server can send the X-Content-Type-Options re-
sponse header with the nosniff value.

• SSL-stripping Vulnerable Form: For performance
reasons, some websites only implement HTTPS for cer-
tain webpages that contain sensitive information (such
as a log-in page), which may result in forms vulnera-
ble to SSL stripping [23]. As a result, a MitM attacker
can replace all HTTPS form links on the HTTP page
to HTTP links, which will allow the attacker to later
intercept sensitive form data.

929

