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Abstract

The paper presents a new generalisation of the one-dimensional cutting stock problem
(1D-CSP) that considers cut losses that depend on the items’ cutting sequence. It is shown
that this generalisation can still be solved approximately by standard 1D-CSP approaches.
Furthermore, a pattern-based heuristic (denoted HSD) is presented that specifically considers
sequence dependent cut losses (SDCL). A computational study shows that whenever some
variability in SDCL occurs consideration of SDCL in the HSD heuristic is beneficial. Finally,
two case studies illustrate the relevance of this new generalisation.

Keywords: Cutting stock; sequence dependent cut losses; integer programming; pattern
based heuristic

1 Introduction

Cutting stock problems arise in many different industries such as in textile, glass, steel, wood and
paper. To reduce operating cost, companies strive to minimize waste of stock material when cutting
stock down to customer orders. A great deal of research effort has thus focused on developing
effective ways for improving operations. The present paper focusses on the one-dimensional cutting
stock problem (1D-CSP). Many papers refer to material waste for a 1D-CSP as material that is
not used in the cutting patterns (leftovers). However, this is not the only material loss that occurs
in practical contexts. Another type of material loss is intrinsically due to the process of cutting
the material (by use of a blade, laser, etc.). The overall loss due to cuts is usually negligible,
thus it is normally not taken into account. Nevertheless, cut losses cannot always be ignored in
practical cases and may even depend on the item order.

We generalize the 1D-CSP to include sequence dependent cut losses (SDCL) that may occur
between any pair of adjacent items or at the start and end of a cutting pattern. This generalisation
allows to further improve efficiency and reduce cut losses that may occur in some situations. The
1D-CSP with SDCL can be approximately solved by any 1D-CSP or 1D bin packing (1D-BPP)
approach. This paper investigates the conditions that make it beneficial to consider the SDCL
nature of the problem. To this end, we present a heuristic approach specifically considering
SDCL, and compare it with a 1D-BPP approach on a range of generated instances, with varying
characteristics. Finally, we also describe two applications of the 1D-CSP with SDCL and validate
our approach.
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Figure 1: Example of an input instance.

2 Problem formulation

Consider the well known 1D-CSP: a set of items I, each ¢ € I having length [; and demand d;, is
to be cut from an unbounded set of larger stock items, each of length L (with I; < L Vi € I). A
feasible cutting pattern p is a subset of items ¢ € I with multiplicity (denoted a;) for which the
total length Ziep a; - l; is at most L. The objective is to find a minimum set of feasible cutting
patterns that cover each item’s demand.

The 1D-CSP with SDCL generalizes the problem to include sequence dependent cut losses
between items: between each pair of adjacent items 7 and j in a cutting pattern, the presence
of an additional cut loss c¢;; should be taken into account. A cutting pattern is then not only
determined by the included items and their multiplicity, but also by the sequence of the items
within the pattern. Consequently, feasible patterns are cutting patterns for which the sum of item
lengths (with multiplicity) and the sum of the SDCL ¢;; between adjacent items is smaller than
L. Finally, the problem also considers start and end cut losses, cg; and ¢;o. These occur at the
start (resp. end) of the pattern before the first (resp. after the last) item 4 is cut and should also
be considered in order to fit within L.

To illustrate the problem, consider the instance shown in Fig. 1 with input data listed in Tables
1(a) and 1(b). The cut losses ¢;; are of the same order of magnitude as the smallest item and show
a very high variability. Fig. 2(a)-2(c) show three feasible solutions for this instance. The example
clearly illustrates that changing the order in which the items are cut determines a different amount
of material loss due to the cut losses and leftovers. As a result, the solution in Fig. 2(b) requires
fewer stock material than the solution in Fig. 2(a). Several solutions may require an equal amount
of stock material. For example, Fig. 2(c) shows another solution requiring three cutting patterns.
The solution in Fig. 2(c) is more suitable for more industrial purposes, as the leftover in the last
pattern may be reusable. Larger leftovers are more likely to be reusable, allowing for further
operating cost reductions. We therefore introduce a secondary objective, namely maximization
of the sum of the squared leftovers produced by the solution, targeting reusability of the leftover
material. The square function is desirable because it allows distinction based on the leftover sizes
as shown above. This objective was developed in analogy with Fleszar and Hindi (2002), where
maximization of the sum of square loads on a bin packing problem allows to find the optimal space
utilization.
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Figure 2: Three solutions to the example shown in Fig. 1. The cut losses are drawn with a dashed
background, while the leftovers are coloured gray.

2.1 Mathematical modelling

One possible (well known) integer linear programming formulation for the 1D-CSP with SDCL is
based on the selection of a subset of patterns from the set of all possible feasible cutting patterns
P, that covers each item’s demand. A cutting pattern p of n, items is defined as a sequence
(i1,92,...,1pn,) With i1,4s,...4,, € I. Feasible cutting patterns are patterns (iy,dz,...,i,,) for
which the following inequality holds:

lp = le —|— Zcijij+1 —|— COil —|— Cinpo S L (1)

j=1 =1

with /, denoting the length of the pattern p, including SDCL.

The following model minimizes the number of patterns used, and then maximizes the sum of
the squared leftovers. Let variables z, (p € P) denote the number of occurrences of the pattern p
in the cutting plan. Let r, € Ry denote the leftover of pattern p (i.e r, = L —{,), and a;, € N
the multiplicity of the item 4 in the pattern p. The integer model is then defined as:

min Z(M — rf,):cp (2)

peP
s.t.:
> apz, =d; Viel (3)
peEP
zp €N Vp € P (4)

where M € R, is a suitably large constant.

2.2 Related work and similar problems

According to Dyckhoff’s (1990) typology, the 1D-CSP with SDCL can be categorised as 1/V/I/R.
It is a one-dimensional problem with an unlimited supply of objects of identical size and a set of
items to be cut. The problem can also be classified as a Single Stock Size Cutting Stock Problem
(SSSCSP) according to the typology introduced in Wischer et al. (2007). In both cases, however,
the classification is not pure since the addition of sequence dependent waste should be included.



The literature on this type of problems is vast, starting as early as the 1960’s with the seminal
work of Gilmore and Gomory (1963). Many different models and approaches to the 1D-CSP have
been studied since then, and many extensions to the problem definition include more practical
considerations. Consideration of multiple stock lengths (e.g. Holthaus, 2002), sequencing and
minimization of different cutting patterns to avoid machine setup costs (e.g. Armbruster, 2002;
Yanasse and Limeira, 2006; Mobasher and Ekici, 2013), consideration of reusing leftovers (e.g.
Trkman and Gradisar, 2007; Cui and Yang, 2010) have been of particular interest.

The inclusion of ordering significance within patterns has also been reported. Lewis et al.
(2011) studied the truss cutting problem (TCP), a problem originating from the roofing industry
that has strong connections to this work. Profiles of equal width having trapezoidal shapes, have
to be cut from wooden boards with the aim of minimizing area waste. Lewis et al. show that
the TCP is a special case of 2D-CSP and can actually be solved with a 1D packing approach.
Sequence dependent cut losses (inter-item wastage) in this setting are specifically due to the shape
of the items that may fit better together in certain arrangements. Given that the items have equal
width, Lewis et al. solve the problem as a 1D grouping/packing problem using an algorithmic
framework for bin packing problems. Feasibility of a grouping/packing for the TCP is determined
by solving some form of a sequencing problem on a losses matrix. In the present contribution the
concept of SDCL is more abstract, and we do not restrict losses to the geometric considerations
applicable to the TCP. In the same paper, the possibility of including two different orientations
for each item is investigated. This, however, cannot be modelled by 1D-CSP with SDCL. Another
fundamental difference with our work is that we include considerations about the size of the
leftovers in the objective. The 1D-CSP with SDCL cannot be solved directly by applying the
procedures of Lewis et al. (2011). Finally, the algorithmic framework of Lewis et al. focusses on
1D-BPP problems. In our work, we specifically model items to have a certain demand, typically
larger than one. Regardless, we compare this paper’s approach and the work of Lewis et al.
on a restricted formulation of the TCP, disallowing orientation changes and disregarding leftover
considerations, in Section 5.2.

The 1D-CSP with SDCL also presents interesting analogies with other combinatorial optimiza-
tion problems. It can be modelled as a distance constrained vehicle routing problem (DCVRP or
DVRP). The three index formulation by Laporte (1992) denoted VRP4 can be adapted to model
1D-CSP with SDCL, ignoring the capacity constraints on the vehicles. However, if the second
objective function (sum of squared leftovers) is to be considered in the DCVRP model, it becomes
nonlinear: since leftover sizes are variable depending on the patterns’ sequence, the resulting ob-
jective function is quadratic. In this vehicle routing context, the stock material and the items of
the 1D-CSP with SDCL are represented respectively by the vehicles and the cities (duplicated to
cover the demand of each item) of the DVRP, while the dummy item 0 corresponds to the depot
in vehicle routing. The cut losses matrix C is replaced by an analogous matrix C’ indicating
the distances between items (cities), increased by (half of) the corresponding item lengths (i.e.
chy = 5+ e).

Moreover the problem can be modelled as a slight variation of the Multiple Travelling Sales-
man Problem (mTSP). Following the description by Bektas (2006), the variations relevant for this
work are related to the number of salesmen and to the so called special restrictions. The presented
problem also shares similarities with the parallel machine scheduling problem with sequence de-
pendent setup times (see e.g. Lopes and de Carvalho (2007)). Sequence dependent setup times
basically model the same idea as SDCL in a scheduling context. Main differences lie with the fact
that for the parallel machine scheduling problem, the number of machines (~ corresponding to
cutting patterns) is bounded, but no limit on the usage time for each machine is defined. Typi-
cally, the objective is to optimize some measure of throughput (e.g. total makespan), rather than
minimizing the number of machines subject to a finite maximum makespan (i.e. corresponding to
the stock material length).




2.3 An approximation by 1D-CSP

Under one specific assumption, the 1D-CSP with SDCL can also be solved as a standard 1D-CSP
or 1D-BPP. Let ¢;; denote the maximum cut loss in the cut loss matrix ¢;;. If I; +¢;; < L —¢55
Vi € I holds, then a 1D-CSP with SDCL instance can be converted to a standard 1D-CSP instance
by setting [} :=l;4¢;; Vi € [ and L* := L—¢;;. Any cutting pattern or packing found by a 1D-CSP
(or 1D-BPP) approach on this converted instance is feasible in any sequence. Consequently, the
solution is also feasible for the 1D-CSP with SDCL. An important question addressed in Section
4 considers the conditions where an SDCL approach is better than a standard 1D-CSP approach.

3 Algorithms

We present a heuristic approach to the 1D-CSP with SDCL. Starting from an exact enumerative
pattern based approach, presented in Section 3.1, a heuristic approach (denoted HSD) is developed
that overcomes the shortcomings of the exact approach. This heuristic approach is described in
Section 3.2.

3.1 An exact enumerative pattern based approach

A general MILP solver was not able to efficiently solve the three index model (Laporte, 1992) due
to the subtour elimination constraints (SEC) and the item duplication required to cover demand.
The following approach is therefore based on the solution of the model (2) - (4) which is the classical
set cover (SC) formulation where 7, are pre-computed constants. Solving this model requires the
computation of the set P formed by all efficient patterns. Efficient patterns are those for which
the sequence of items within a pattern is optimal, i.e. that the total material loss incurred by
the items and the cut losses is minimized. We refer to this optimization as inner optimization.
The set P includes all patterns that can be generated using the given set of items, having a total
length smaller than L, and for which the inner optimization is optimal. Patterns for which the
inner optimization of the pattern is not optimal, can be safely ignored due to consideration of the
second objective. The pseudocode of this approach is presented in Algorithm 1.

Algorithm 1 An enumerative approach
Require: I, ¢;;, L, d
P+
for all s € S(I) do > For all item subsets s
if LengthLowerBound(s) < L then
p « TSPOPT(s,c;;) > Find optimal pattern for subset s
if Length(p) < L then
P« PU{p}
end if
end if
end for
Solution < SC(I,P,d)
return Solution

The algorithm consists of two phases: generating all efficient patterns and solving model (2) -
(4) to obtain the final solution. The pattern generation phase iterates over all possible subsets
S(I) (with repetition of items 7 if d; > 1) to check if they form feasible and efficient patterns; in
which case they are added to the pattern set P.

Checking for feasibility and efficiency requires solving a TSP problem on the cut losses matrix,
restricted to the items (with multiplicity) in the considered pattern. If the optimal tour length
(the minimal losses for the considered items), increased by the items’ lengths, is lower than L,
then the pattern is feasible. Clearly not all subsets of items need to be checked. A simple lower



bound on the pattern length of the best permutation (LengthLowerBound) can be obtained by
summing only the items’ lenghts, without considering SDCL (or by considering that each loss is
equal to the lowest value in the matrix C'). The TSP optimization is only necessary when this
lower bound does not exceed L.

Obviously, the main drawbacks of this algorithm are the memory needed for representing all
the patterns, and the high computation time required to solve the TSP. The following heuristic
approach tries to overcome these shortcomings.

3.2 Heuristic approach

The main purpose of the heuristic is to modify the previous exact approach in order to overcome
its drawbacks. The high memory required to represent the whole set of feasible patterns can be
managed by reducing the number of patterns considered, at the expense of the optimality guar-
antee. The second critical point is the large time required to solve the T'SP. A simple alternative
is to solve the TSP heuristically, which leads to a sharp decrease in computational time required.
In order to obtain a good quality TSP solution, we adopted an iterated version of dynasearch
(Congram, 2000) followed by a 3-OPT (Lin, 1965) local search.

The pseudocode is presented in Algorithm 2. A solution of the 1D-CSP with SDCL is given

Algorithm 2 Heuristic approach
Require: I, ¢;; L, d
U + GenerateUnitaryPatterns(/,d,L)

d «+d > Make a copy of the required demand
k<1
while TotalAmount(d’) > 0 do > While demand not fully satisfied
Ba + GenerateLongPatterns(!, ¢;;, d’,U)
P, UU ch

Sk < SC(I, d’, Py)
Update d’ considering all patterns p € Sy, fixed
k+—k+1

end while

Solution « SC(I, d, Uy Py)

Output: Solution

by the patterns and the corresponding number of occurrences required to completely satisfy the
item demand. If a part of the solution is fixed by imposing some patterns, the remaining problem
consists of finding other patterns to include in the solution in order to fulfil the demand.

Let U be the set of all the unitary patterns, formed by one item. If the set U is a proper subset
of the pattern set considered as input of the SC step, it will always provide a feasible solution. In
the worst case it will be given by adopting d; times each unitary pattern {i} Vi € I. Let Bq be
the set of the longest feasible patterns considering item set I and demand vector d.

Each iteration k of the algorithm generates a solution to the problem by applying the SC
model to a set of patterns P, with U C Py in order to guarantee feasibility. More precisely,
P, is determined as the union of U and a set ch C Bgs, which includes the best patterns
of By according to the leftover criterion. Note that d’ is the vector representing the current
unsatisfied demand for each item. In the pseudocode, the set By is computed by the function
GenerateLongPatterns.

GenerateLongPatterns starts from the unitary patterns U and iteratively generates good
feasible patterns of increasing length. First, the unitary patterns are merged with themselves,
generating all the possible patterns of length 2 (avoiding repetitions). Subsequently, the inner
optimization algorithm is applied to the generated patterns and the best ones are kept according
to the following criteria:



1. The ratio Z942-, where LOAD is the sum of the lengths of the items in the pattern and

WASTE is the sum of the cut losses. If it is high, it means that the stock material is filled
properly.

2. The value of WASTE.

3. The level of item coverage, such that the final set contains patterns formed by a wide variety
of items.

The best patterns are merged with unitary patterns again considering all the possible combinations,
and the selection of the best patterns is performed. These steps are iterated as long as feasible
patterns can be generated, i.e. while patterns do not violate the stock material length constraint.
In general, the first criterion is more suitable for long patterns (for which it is more important
to maximize raw material utilization), while the second works better for small or medium size
patterns (for which large leftovers are acceptable, and the goal is to minimize cut losses).

When the function GenerateLongPatterns ends, the set Bda is defined and P, can be com-
puted as U U Bgr. At this point, the SC model is solved on P, and a feasible solution of the
problem is provided. This solution is formed by two types of patterns: patterns belonging to U
and patterns belonging to Bg». The latter are the best among the longest patterns that can be
generated at iteration k. They are imposed as part of the final solution The remaining demand
d’ is updated considering this part of the solution as fixed.

These operations are iterated until the overall demand d is satisfied. Afterwards, the SC step
is performed on all the generated patterns Uy Pj in order to obtain a better solution.

The whole procedure can be seen as a column generation based primal heuristic, more precisely
as a restricted master heuristic (see Joncour et al. (2010) for details). The restricted master
problem is model (2) - (4), and the initial columns given by the unitary patterns ensure feasibility.
Additional columns are generated heuristically by the GenerateLongPatterns procedure.

4 Computational study

The main research question in this work is to assess circumstances in which SDCL are relevant
to consider, rather than disregarding them and applying a 1D-CSP or 1D-BPP approach. We
therefore set up a computational study that compares the performance of the HSD heuristic and
a 1D-BPP approach on a set of instances with varying characteristics. For the 1D-BPP approach,
we opted for the MBS2+VNS heuristic from Fleszar and Hindi (2002). It performs well and
considers the maximization of the sum of squared loads, thus aiming for very dense packings, and
indirectly for reusable leftovers. This MBS2+VNS heuristic is applied to the 1D-BPP conversion
of the problem described in Section 2.3.

The tests were executed on an Intel Core i5-3550 3.30 GHz and 4GB RAM, under Windows
7. The algorithms were implemented in C++ (except MBS2 + VNS which was coded in Java).
CPLEX 12.4 was used as ILP solver. A time limit of 200 seconds was set for the SC steps of the
HSD heuristic.

4.1 Experimental setup

A set of instances was randomly generated in such a way that it includes instances with varying
item size and cut losses. Firstly, all the instances have been generated such that the stock size is
L =1000. Two datasets have been generated. The main dataset covers a wide range of parameter
values. The second, smaller, dataset consists of instances generated to study a specific feature.
Instances of the first dataset are uniquely identified by four parameters, denoted IS, N, CLV
and ID. The first parameter IS establishes the probabilistic distribution of the item sizes, computed
according to a truncated Poisson distribution with minimum and maximum values of respectively
50 and 200, and mean A = IS. The second parameter N = ., d; denotes the total number
of items to be cut. The demands d; are generated according to a uniform distribution between



5 and 10, forcing that N is fixed. N can take values 25, 50, 100, 200 and 300. It defines a first
approximation of the size of the instance. The third parameter CLV defines the variability of
the cut losses. Both a high and low variability of the cut losses are studied. The cut losses are
generated according to a uniform distribution; a setting of CLV = High denotes cut losses between
15 and 45, and CLV = Low denotes cut losses between 5 and 15. These distributions lead to an
average global cut losses variability corresponding respectively to 3% and 1% of the whole stock
size.

Finally, five instances (distinguished by ID) with the same settings of the first three parameters
have been generated. In what follows, we present the averaged results over these five instances,
per parameter setting. The overall number of instances in this dataset is equal to 150.

The main dataset contains no instances with a very low cut loss variability. Consequently,
the second set of instances was constructed with very small cut losses in order to compare the
performances of HSD and 1D-CSP approaches under these circumstances. N is fixed and equal
to 100 and item sizes have been generated according to a uniform distribution between 100 and
150. Five instances are generated for five different values of absolute cut loss variability (CL =
0,1,2,3,4). The cut losses vary uniformly between [1,1 4+ CL].

4.2 Experimental results and discussion

The averaged results of the tests performed on the main dataset are reported in Tables 1, 2 and
3. HSD indicates the heuristic based on sequence dependencies introduced in Section 3.2, while
MBS2+4 VNS refers to the heuristic by Fleszar and Hindi (2002). The tables report the following
results for both HSD and MBS2+VNS: the averaged values of the first objective (O1 = number
of stock material used), the second objective (O2 = sum of squared leftovers) and the execution
time of the algorithm (7', in seconds) per parameter setting, as well as the averaged lower bound
(LB) for those instances. This lower bound has been determined with the column generation
procedure of Vancroonenburg et al. (2014) that solves the linear relaxation of 1D-CSP with SDCL,
considering only O1. The lower bound LBpp is the lower bound for the bin packing conversion of
the problem. LBpgp enables assessing the quality of the heuristic results (with respect to O1) for
the bin packing version. For both HSD and MBS24 VNS, the average computation time required
for finding these bounds is reported, as well as the number of optimal solutions found (#OPT,
maximum = 5). The time limit is set to 12 hours.

The computational results reveal that HSD is the best performing heuristic in terms of number
of cutting patterns required. Considering SDCL is therefore relevant to find cutting patterns that
make better use of raw material. Even a cut losses variability as small as 1% of the stock size and
an item size as large as 17% of the stock size, should not be overlooked when considering SDCL.
However, the consideration of SDCL comes at a computational cost, as the HSD heuristic requires
significantly more computational time. It is possible to conclude that the computational effort is
higher when item sizes are smaller (as in the case of IS = 80) and cut losses are smaller (as in the
case of CLV = Low). In these cases, the inner optimization is more computationally intensive
since patterns are formed by a larger number of items. Smaller cut losses make HSD less effective
and increase its execution time.

Table 4 summarizes the results on the second set of instances that have very small cut losses.
As expected, MBS2+VNS performs better than HSD if the cut losses are very small. HSD can
only outperform MBS2+VNS if the absolute cut losses are larger and vary more (i.e. when cut
losses are between [1,3] and larger). In the cases where the results on O1 are identical, HSD
performs better than MBS24+VNS.



Main dataset HSD MBS2+VNS
N CLV LB Typ(s) Ol 02  T(s) #OPT. LBpp Tip(s) Ol 02 T(s) # OPT.
25 Low 3.0 1.2 3.0 526620.0 1.6 5 3.0 0.1 3.0 417392.6 0.0 5
25 High 3.0 0.3 3.0 124866.4 1.0 5 4.0 0.1 4.0 4543194 0.0 5
50 Low 5.0 13.3 5.0 449547.2 14.5 5 5.0 0.1 5.0 111841.2 0.2 5
50 High 5.8 5.2 5.8 352242.6 7.8 5 7.2 0.1 7.2  320836.6 0.2 5
100 Low 9.4 104.1 9.6 557879.0 63.4 4 10.2 0.2 10.2 374432.0 0.9 5
100 High 10.2 65.8 10.4 218870.4 33.6 4 13.2 0.2 13.2 134662.4 0.1 5
200 Low 17.8 831.6 17.8 433030.2 996.3 5 19.6 0.3 19.6 488221.4 2.1 5
200 High 20.2  3151.3 20.6 255675.6 149.8 3 26.8 0.6 26.8 122297.6 0.2 5
300 Low 26.4  2327.7 26.6 147403.6 13710.4 4 29.4 0.8 294 213160.4 0.3 5
300 High 29.8  4965.2 30.6 533039.4 416.2 1 39.6 0.9 40.0 300060.4 0.4 3

Table 1: Results on instances with 1.5 = 80. Missing values for the lower bounds denote that the column
generation model did not produce a bound with a time limit of 12 hours for at least one instance. Bold

indicates best results.

Main dataset HSD MBS2+VNS

N CLV LB Tpp(s) 01 02 T(s) #OPT. LBpp Trp(s) O1 02 T(s) # OPT.

25 Low 4.0 1.1 4.0 398896.6 0.4 5 4.0 0.1 4.0 248966.6 0.0 5

25  High 4.8 0.3 4.8 579865.4 0.2 5 5.0 < 0.1 5.0 136972.0 0.0

50 Low 7.0 48.9 7.0 116578.0 1.4 5 7.6 0.1 7.6 461525.6 0.1 5

50  High 8.0 45.7 8.2 311025.8 1.4 4 9.8 <01 9.8 263596.0 0.1 5
100 Low 13.8 21644 14.0 213577.4 7.0 4 14.8 0.2 14.8 388055.6 0.3 5
100  High 15.0 1090.2 15.4 379002.4 4.7 3 18.6 0.2 18.6 266930.8 0.1 5
200 Low - 31528.9 27.2 471917.8 76.7 - 28.8 0.5 28.8 478105.2 0.2 5
200 High 29.2  5925.7 30.0 281166.0  24.0 1 36.8 0.3 37.6 506611.2 0.3 1
300 Low - 40269.6 40.8 310140.0 1214 - 43.0 1.1 434 432623.6 0.3 3
300  High - 21508.1 44.8 305606.8  62.0 - 55.8 0.7 56.4 495685.2 0.6 2

Table 2: Results on instances with IS = 125. Missing values for the lower bounds denote that the
column generation model did not produce a bound with a time limit of 12 hours for at least one instance.
Bold indicates best results.

Main dataset HSD MBS2+VNS
N CLV LB  Tpp(s) 01 02 T(s) #OPT. LBpp Tip(s) O1 02 T(s) # OPT.
25 Low 5.0 0.1 5.0 204486.8 0.1 5 5.0 0.1 5.0 70145.6 0.0 5
25  High 5.4 0.1 5.6 277806.2 0.1 4 7.0 <01 7.0 637881.2 0.0 5
50 Low 9.6 11.6 9.8 183052.4 0.3 4 10.0 < 0.1 10.0 190604.4 0.1 5
50 High 10.2 09 104 222870.8 0.3 4 12.6 < 0.1 126 300492.6 0.2 5
100 Low 19.2 671.4 19.6 257374.6 1.5 3 19.8 0.1 19.8 117312.6 0.2 5
100 High 20.0 510.2 20.2 144705.6 1.0 4 24.6 0.1 24.6 467421.2 0.4 5
200 Low - 36825.5 37.6 439263.2 9.6 - 38.8 0.3 39.2 474066.6 0.4 3
200  High - 23508.4 40.0 135964.6 5.6 - 49.2 0.1 49.2  624402.4 2.8 5
300 Low - 22080.9 57.0 716090.4 354 - 58.6 0.6 59.0 522072.4 0.7 3
300 High - 42738.6 60.0 214577.6  17.4 - 74.6 0.2 74.6 1025290.8 4.1 5

Table 3: Results on instances with IS = 170. Missing values for the lower bounds denote that the
column generation model did not produce a bound with a time limit of 12 hours for at least one instance.
Bold indicates best results.



HSD MBS2+VNS

CL LB Tig(s) 01 02 T(s) # OPT. LBpp Trp(s) 01 02 T(s) # OPT.
0 134 0.4 13.6 526327.8 19.1 4 13.4 0.3 13.4 464630.0 1.3 5
1 134 12244 13.6 422938.8 16.4 4 13.4 0.3 13.4 311685.0 1.0 5
2 134 12973 13.6 491371.8 17.2 4 13.6 0.3 13.6 370179.0 0.7 5
3 134 766.7 13.4 290571.6  15.9 5 13.6 0.3 13.6 2727594 1.4 5
4 134 11459 13.6 386685.6 14.1 4 13.6 0.2 13.6 1775274 0.8 5

Table 4: Summary of results on the second set of generated instances, with low cut loss variability. Cut
losses are drawn uniformly from [1,1+ CL]

5 Two case studies

Having shown experimentally when the specific nature of SDCL becomes interesting, we conclude
this paper with two industrial cases. The first case study considers a cutting stock problem at
joineries, where SDCL are rather small. The second case study investigates the truss cutting
problem (Lewis et al., 2011) while omitting item orientations. In this problem, SDCL exist due to
the conversion of a 2D problem to a 1D problem. Because of this conversion, the SDCL are rather
large. Following from our computational study in Section 5.2, we can expect that the consideration
of SDCL will be most significant for the TCP.

5.1 Case study 1: joinery stock cutting with angle specific cutting losses

Cutting stock is an important daily activity in joineries: wooden, aluminium and plastic profiles
of standard length are cut to specific order lengths for assembling door and window frames. These
frame assemblies require the profiles to be cut under specific angles, either 45 (oblique) or 90
(right) degrees. Cutting profiles always destroys a small part of the material, proportional to the
width of the saw blade. This loss depends on the angle under which the material is cut: cutting
a plastic profile under a right angle may cause a material loss of 5 mm, whereas cutting the same
profile under an oblique angle may cause an 8 mm loss.

To illustrate how this can make a difference, consider the example in Fig. 3. It shows three
profiles A, B and C that need to be cut from a standard length. Fig. 4 shows two possible ways. It
is clear that solution (a) requires 4 oblique cuts and 2 orthogonal cuts, while solution (b) requires
4 oblique cuts and only 1 orthogonal cut. This results from the fact that profile C is cut after
profile A in solution (b). This allows the orthogonal cut at the end of profile C, and the orthogonal
cut at the start of profile A, to be cut in one saw blade motion, which reduces cut loss. Although
this loss might seem negligible, it does not hold when the cut angle diversity is high and when the
stock length to average profile length is high. Inefficient cutting patterns may lead to unnecessary
cut losses and more material waste.

Real life data was obtained from a company developing joinery stock cutting software. Con-
verting the data instances to 1D-CSP with SDCL instances can be done as follows:

e Each of the trapezoidal assembly parts are modelled by an item. The length of the item I;
is set to the longest base of the trapezoid.

Figure 3: Simple joinery stock cutting example showing three profiles A,B and C that need to be cut
from a standard length profile.
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Figure 4: Two possible solutions of the simple problem in Fig. 3.

Instance I Cij
Profile L (mm) py; (mm) std (mm) pe,; (mm) std (mm) ”é" %
3001 5400 1156.05 442.18 15.41 1.91 0.214 0.013
3001 6000 1156.05 442.18 15.41 1.91 0.193 0.013
3001 6500 1156.05 442.18 15.41 1.91 0.178 0.013
3001 7000 1156.05 442.18 15.41 1.91 0.165 0.013
3002 5400 1690.08 514.76 13.15 3.54 0.313 0.008
3002 6000 1690.08 514.76 13.15 3.54 0.282  0.008
3002 6500 1690.08 514.76 13.15 3.54 0.260 0.008
3002 7000 1690.08 514.76 13.15 3.54 0.241 0.008
3082 5400 607.48 136.89 10.88 4.26 0.112 0.018
3082 6000 607.48 136.89 10.88 4.26 0.101 0.018
3082 6500 607.48 136.89 10.88 4.26 0.093 0.018
3082 7000 607.48 136.89 10.88 4.26  0.087 0.018
5182 5400 557.56 224.17 12.08 3.98 0.103 0.022
5182 6000 557.56 224.17 12.08 3.98 0.093 0.022
5182 6500 557.56 224.17 12.08 3.98 0.086 0.022
5182 7000 557.56 224.17 12.08 3.98 0.080 0.022

Table 5: Instance characteristics of joinery stock cutting data. Four different instances were created with
a stock length L of respectively 5400 mm, 6000 mm, 6500 mm and 7000 mm, for each profile type.

e The sequence dependent cut losses c;; are set as follows:

lossgo if endcut(i) = startcut(j) = 90°,
cij =  lossgo + lossys  if endcut(i) = 45° & startcut(j) = 90° or vice-versa, (5)
2 X lossys if endcut(i) = startcut(yj) = 45°.
Start and end losses cg; and ¢;g are set as follows:
loss if startcut(i) = 90°,
Coi = { % (i) (6)
lossys otherwise.

lossgy if endcut(z) = 90°,
Cio = . (7)
lossys otherwise.

Four instances contained SDCL and were made available. The instances were tested with
four different values of L: 5400 mm, 6000 mm, 6500 mm, and 7000 mm, which are the most
common, commercially available, stock lengths for this case study. Table 5 reports the following
characteristics of the instances: the mean item length (y;,) and the item length standard deviation,
the mean cut loss (y,;) and the cut loss standard deviation, and the mean item length to stock
size ratio and the mean cut loss to average item length ratio.

Table 6 presents the performance of both HSD and MBS2+VNS on the real life data set. It
shows that for instances with profile 5182, savings can be made on O1 when using HSD instead of
MBS2+VNS. When considering the instance characteristics (Table 5), it becomes clear that these
particular instances have a small average item length (denoted p;,) to large object size L ratio,
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HSD MBS2+VNS
Profile L (mm) LB Tip(s) O1 T(s) LBgp Tip(s) O1 T(s)

3001 5400 - - 49 3.2 49 34 49 8.4
3001 6000 - - 44 7.1 44 46 44 4.6
3001 6500 41 28869.6 41 7.4 41 52 41 8.9
3001 7000 38 19780.9 38 13.1 38 52 38 2.8
3002 5400 8 0.1 8 0.2 8 0.1 8 0.1
3002 6000 8 45.9 8 0.2 8 0.1 8 <0.1
3002 6500 7 0.4 7 0.3 7 0.1 7 0.1
3002 7000 7 31158 7 0.3 7 0.2 7 <01
3082 5400 6 17794 6 2.3 6 0.1 6 0.3
3082 6000 5 10449.8 6 3.9 6 0.3 6 0.3
3082 6500 - - 5 4.8 5 0.3 5 0.1
3082 7000 5 2033.6 5 7.3 5 0.3 5 0.2
5182 5400 - - 188 264.2 189 1296.7 190 148.8
5182 6000 - - 170 3241 171 67579 171 107.8
5182 6500 - - 157 5814 157 37649.2 158 200.3
5182 7000 - - 145 7763 - - 146 129.6

Table 6: Summary of results on 12 real life instances of the joinery stock cutting problem. Note that
missing lowerbounds indicate that the lowerbound could not be calculated withing 12 hours of computation
time. Bold indicates best results.

and a large average cut loss (denoted g, ;) to average item length ratio. Consequently, many items
fit in a single stock length L, and thus incur more cut losses. In this case, the total cut losses
are larger than average. Furthermore, the standard deviation (denoted std.) of the cut losses is
higher, resulting in a higher maximum ¢;;. The bin packing approach MSB2+VNS is therefore
less suited.

5.2 Case study 2: the truss cutting problem

The truss cutting problem (TCP) is a problem originating from the roofing industry (Lewis et al.,
2011). Profiles (having trapezoidal shapes) of equal width have to be cut from wooden boards with
the aim of minimizing area waste. Lewis et al. show that the TCP is a special case of 2D-CSP and
can be solved with a 1D packing approach. Sequence dependent cut losses (inter-item wastage)
are due to the shape of the items that may fit better together in certain arrangements.

The TCP can be converted to the 1D-CSP with SDCL as follows. Each trapezoidal piece is
modelled as an item with length I; equal to the central width of the parallel part, while the left
and right sloped edges are projected vertically (denoted p; and ¢;) and contribute as losses. The
sequence dependent losses c¢;; between items 4, j are then set as follows:

cij = max (g, pj) (8)

As shown by Lewis et al. , adjacent trapezoids can always be flipped along their horizontal axis,
such that their adjacent sloped parts overlap. Therefore, Equation 8 only considers the maximum
projection between the central parallel parts of the two adjacent items. Finally, Lewis et al.
consider a bin packing formulation. However, the TCP in a practical setting actually considers
many identical trapezoids to be cut. In our cutting stock setting, identical trapezoidal pieces can
easily be modelled as a single item with demand > 1.

Figure 5 shows an example of how this conversion works. Notice that the loss between any
two adjacent items, e.g. (4,J) is equal to the maximum projection between 7,j. In this case,
¢;; = max (¢;,pj) = p;. Also notice that item %k has been flipped along its horizontal axis.

Table 7 summarizes the results of both HSD and MBS2+VNS on the ‘r-dataset’ from (Lewis
et al., 2011). As opposed to the ‘a-dataset’, which features instances with all items different
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Figure 5: An example of converting the geometric sequence dependencies in the TCP to the more
general 1D-CSP SDCL. (top) Three trapezoidal items, annotated with their central width and left and
right projections, need to be cut from stock material of length L. (middle) An example arrangement of
the three trapezoidal figures. Notice that trapzoid k is flipped for minimal waste. (bottom) Conversion
of the three trapezoids to abstract items with SDCL, and a feasible arrangement.

(d; = 1¥i € I), the r-dataset is more realistic since it features instances with fewer items having
a demand higher than one. Given that our approach is focussed on cutting stock problems where
demand is an important factor, we only consider the r-dataset. Table 7 also shows results produced
by the Algorithm A heuristic from Lewis et al. (2011). Lewis et al. kindly provided their code,
which we modified to not consider orientations'. As their algorithmic framework is local search
based with a time-limit as stopping criterion, the executable was configured with a time-limit
of 60 s. This was deemed sufficient by the authors (confirmed by Lewis et al. after personal
correspondence), and experimentation does indicate that the algorithm converges much sooner.
We report both the initial solution found by this code, the time required to find it, as well as the
final solution found. These results can serve as a reference point for determining the quality of
HSD when SDCL are really important. Finally, the code also generates a lower bound for the
instances, which is also reported as LBrg.

The r-dataset contained 1200 instances, with a fixed stock size of L = 4200 (mm) and item
sizes ranging from small to large with respect to the stock size. The instances can be grouped
according to the number of items N that need to be cut (N = ). _; d;), ranging from 100 to 500,
with each group containing 240 instances.

When considering the performance of HSD and MBS2+VNS, it is clear that HSD outperforms
MBS2+VNS for O1. This was expected, as the SDCL contribute a lot in these instances. Another
interesting observation is that more than 87% of the instances were solved to optimality by the
HSD heuristic, as determined by the column generation lower bound.

When comparing HSD with Algorithm A, HSD overall performs slightly better. HSD finds
more optimal results and thus has an overall better average O1. However, it must be noted that
Algorithm B described in Lewis et al. (2011) has slightly better performance (with respect to
Algorithm A), at additional computational cost. Algorithm B uses an exact approach for solving
the inner optimization problem?, enabling it to find better packings. However, we did not test
Algorithm B in this work.

i€l

ILewis et al. also allow items to be flipped along their vertical axis, thus allowing two orientations: left-to-right
(not flipped), and right-to-left (flipped).
2Referred to as the TCP sub problem by the Lewis et al.
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Lewis et al. (2011) Alg. A init.* Lewis et al. (2011) Alg. A final*

N  # instances LBrp, 01 T(s) # OPT. 01 T(s) # OPT.
100 239° 38.6 43.3 < 0.1 125 42.9 60 201
200 240 75.5 84.4 < 0.1 66 83.5 60 152
300 239°  115.0 1289 < 0.1 75 127.6 60 139
400 238" 154.5 173.2 < 0.1 67 171.3 60 118
500 23990 193.0 2174 0.3 73 215.1 60 115

HSD? MBS2+VNS?

N  # instances LBy, LB Trp(s) 01 T(s) #OPT. LBgp Trp(s) 01 T(s) +# OPT.
100 239° 38.6 42.7 45.7 42.8 1.9 220 47.2 0.2 47.3 0.8 228
200 240 75.5 83.0 70.8 83.0 2.0 223 92.7 0.3 92.9 1.3 205
300 239°  115.0 126.8 71.1 127.0 7749 217 140.7 0.2 141.1 2.1 180
400 238%  154.5 170.2 76.7 170.4 2.0 194 188.1 0.3 188.8 2.6 154
500 23920 193.0 213.9 93.8 214.1 2.0 198 237.0 0.2 237.8 3.8 149

Table 7: Summary of the results on the TCP instances. Bold indicates best results.

*Code from Lewis et al. (2011), adapted to ignore orientation changes.

“Note that one instance (with N = 500) could not be solved by the HSD heuristic, due to an out-of-
memory error in the SC step. This instance was excluded for all algorithms, and is not considered for the
averages.

®Note that 5 instances were infeasible for the bin packing approximation due to the maximum item length
+ maximum cut loss exceeding L. These instances were excluded for all algorithms, and are not considered
for the averages.

6 Conclusion

The present paper introduced a one dimensional cutting stock problem with sequence dependent
cut losses (1D-CSP with SDCL) that considers minimization of the number of raw materials
required for cutting a set of items. As a secondary objective, the reusability of leftover material
is considered.

It was shown that the problem can be approximately solved using a standard one dimensional
cutting stock problem or one dimensional bin packing approach. Therefore, the main research
question was to identify beneficial conditions to specifically consider SDCL. To this end, a heuristic
pattern based approach specifically taking the SDCL into account was developed.

A computational study on a set of generated instances with varying characteristics showed
that it is clearly beneficial to consider SDCL, whenever the item size is small, i.e. up to 17% of
the stock size, and when cut losses are not too small and have some variability, i.e. larger than
0.2% of the stock size).

Finally, two practical applications of the 1D-CSP with SDCL model show the relevance of
considering SDCL. In a joinery stock cutting case, it is shown that raw material waste can be
avoided by considering SDCL, even though the SDCL are very small (< 0.3% of the stock size).
In a roofing industry case, it is shown that the 1D-CSP with SDCL model is flexible enough to
tackle a 2D cutting problem. In this setting, the consideration of SDCL is indispensable since the
SDCL are rather large.
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