
Improving fuzzy matching through syntactic knowledge 

 

Authors: Tom Vanallemeersch, Vincent Vandeghinste 

Affiliation: Centre for Computational Linguistics, University of Leuven 

 

Abstract 

Fuzzy matching in translation memories (TM) is mostly string-based in current CAT tools. 

These tools look for TM sentences highly similar to an input sentence, using edit distance to 

detect the differences between sentences. Current CAT tools use limited or no linguistic 

knowledge in this procedure. In the recently started SCATE project, which aims at improving 

translators’ efficiency, we apply syntactic fuzzy matching in order to detect abstract similarities 

and to increase the number of fuzzy matches. We parse TM sentences in order to create 

hierarchical structures identifying constituents and/or dependencies. We calculate TER 

(Translation Error Rate) between an existing human translation of an input sentence and the 

translation of its fuzzy match in TM. This allows us to assess the usefulness of syntactic 

matching with respect to string-based matching. First results hint at the potential of syntactic 

matching to lower TER rates for sentences with a low match score in a string-based setting. 

 

Acknowledgments 

This research is funded by the Flemish government agency IWT1 (project 130041, SCATE). 

 

1. Introduction 

Computer-aided translation (CAT) has become an essential aspect of translators’ working 

environments. CAT tools speed up translation work, create more consistent translations, and 

reduce repetitiveness of the translation work. One of the core components of a CAT tool is the 

translation memory system (TMS). It contains a database of already translated fragments, called 

the translation memory (TM), which consists of translation units: segments of texts (sentences, 

titles, cell tables, etc.) together with their translation. Given a sentence to be translated (which 

we will call the query sentence), the CAT tool looks for source language sentences in a TM 

which are identical (exact matches) or highly similar (fuzzy matches), and, upon success, 

suggests the translation of the matching sentence to the translator. 

In current CAT tools, techniques for retrieving fuzzy matches from a TM mainly consider 

sentences as simple sequences of words2 and contain very limited linguistic knowledge, for 

instance in the form of stop word lists. Few tools use more elaborate syntactic knowledge.3 In 

                                                           
1 Innovation by Science and Technology 
2 Words are generally defined as sequences of characters surrounded by spaces. 
3 One example is the tool Similis (http://www.similis.org), which determines constituents such as noun phrases in 

sentences and allows for retrieving TM sentences which share constituents with the query sentence. 

http://www.similis.org/


the SCATE project (Smart Computer Aided Translation Environment),4 which primarily aims 

at improving translators’ efficiency and consistency, we study the use of syntactic information 

for detecting TM sentences which are not only similar when comparing words but also when 

comparing the syntactic information associated with the sentences (such information consists 

for instance of parse trees with constituents and part-of-speech tags). We investigate whether 

such abstract, syntax-based matching is able to increase the number of matches (recall) and 

produce matches which lead to more useful translation suggestions. As the SCATE project is a 

collaboration between university teams and companies such as translation agencies, which 

provide feedback on techniques developed within the project and on their potential application 

in an industrial environment, we do not neglect the aspect of matching speed. This is for 

instance relevant in case of syntax-based matching methods like comparison of parse trees. 

The remainder of this paper is structured as follows. In the next section, we provide background 

on matching methods which are based on words or syntactic information, and on how to 

evaluate their results. In the subsequent section, we detail our methodology, i.e. the matching 

and evaluation methods we applied. We then proceed to present the results from our first, 

exploratory tests, and finally provide conclusions and a lookout to future research. 

 

2. Background 

There is a great variety of methods for matching flat sequences of elements and for matching 

complex structures like trees. Flat sequences may consists of various elements, like words or 

characters (one may compare a pair of words based on their characters). Trees are structures 

with hierarchically linked nodes. For instance, parse trees structure a sentence into its syntactic 

constituents, assign part-of-speech tags to words, and assign dependency relations to 

constituents (for instance subject).  An example of a parse tree is shown in Figure 1. 

 

Figure 1: parse tree with syntactic constituents and part-of-speech tags 

 

2.1 Strings 

Methods acting upon flat sequences are called string-based. They include methods like 

Levenshtein distance (Levenshtein 1966) and percent match (Bloodgood and Strauss 2014). 

Levenshtein distance is one of the most commonly applied matching methods. It looks for the 

shortest path to transform one sequence into another sequence through deletions, insertions and 

substitutions. This shortest path is expressed as a distance. The distance can be converted into 

a score by normalizing on the sentence length. Although commercial TMS developers do not 

tend to provide details on their matching methods, Levenshtein distance on sequences of words 

                                                           
4 http://www.ccl.kuleuven.be/scate 



is widely believed to be the major approach (Bloodgood and Strauss 2014), and is also referred 

to in publicly available system descriptions (Eisele and Lavecchia 2011, Koehn and Senellart 

2010a). Table 1 shows an example of Levenshtein distance calculation. 

 

A total of 470 workers had accepted early retirement  

 

4 substitutions + 

3 deletions = 

cost 7 
Many staff also took    early retirement 

1 1 1 1 1 1 1 0 0 

 

Table 1: Levenshtein distance 

 

2.2. Trees 

Tree-based methods include tree edit distance (Bille 2005) and tree alignment distance (Jiang 

et al. 1995). These are two methods with a mathematical rather than linguistic origin. The first 

method looks for the shortest path to convert one tree to another one by deleting, inserting, and 

substituting nodes. The second method looks for the easiest way to combine the two trees into 

a single one by adding empty nodes. When applying these methods to parse trees, node 

comparison may involve several features on a node, such as word form, lemma (for instance, 

the infinitive of a verb, the singular form of a noun), part-of-speech tag (for instance, verb) or 

constituent (for instance, noun phrase). Tree-based methods have also been proposed in the 

literature on example-based machine translation, see for instance Cromieres and Kurohashi 

(2011). Figure 2 provides an example of a parse tree alignment based on the shortest tree 

alignment distance. In this example, the parse trees have a stronger match than the sentences in 

Table 1, thanks to the fact that the trees contain similar syntactic information: not only some 

words match, but also some constituent labels and part-of-speech tags.5 

 

 

Figure 2: aligned parse trees 

 

 

                                                           
5 The VBD node matches the VBN node as the tags both refer to verbs and the surrounding nodes also match.  



2.3 Trees as strings 

Linguistic knowledge can be exploited in both string-based and tree-based methods. The most 

obvious matching configuration in this context is applying tree edit distance or tree alignment 

distance to parse trees. However, it is also possible to use linguistic knowledge in string-based 

methods. For instance, flat sequences need not consist of word forms, but may also contain 

word lemmas, part-of-speech tags, etc. Lexical knowledge may be exploited by matching words 

in flat sequences through lexical similarity. For instance, Gupta (2014) uses a paraphrase 

database. 

Considering tree-based matching methods, the aspect of speed should not be neglected. While 

methods like Levenshtein distance are highly efficient, even for long sentences, methods like 

tree alignment distance perform a high number of calculations on a pair of trees. One way to 

diminish the problem of speed is to convert trees to flat sequences in order to be able to apply 

string-based methods to them. One such method (Li et al. 2008) is based on work by Prüfer 

(1918 !). It converts a tree to a flat Prüfer sequence by visiting the nodes in the tree in a certain 

order. Prüfer sequences capture some of the hierarchical information in the tree. Figure 3 

illustrates this. Matching on Prüfer sequences helps to select matches in an efficient way before 

applying a more finegrained and time-consuming method like tree alignment distance. 

Another way to tackle the aspect of speed is the use of an index, which allows to reduce the set 

of source sentences in the TM which are candidate for fuzzy matching methods. One example 

of such an index is a suffix array; see Koehn and Senellart (2010b). For the sake of briefness, 

we will not go into further detail on the creation of indices. 

 

Figure 3: conversion of parse tree to Prüfer sequence 

 

2.4 Metrics 

While the usefulness of a translation suggestion should ultimately be determined by the user of 

a CAT tool, human evaluation is time-consuming. Automatic evaluation metrics may be used 

as a proxy during the development of fuzzy matching methods, similarly to the modus operandi 

in the development of machine translation (MT) systems. A wide range of metrics have been 

designed for MT since the advent of statistical MT, such as BLEU (Papineni et al. 2002), NIST 

(Doddington 2002) and TER (Snover et al. 2006). The latter stands for Translation Error Rate6 

and is an edit distance which does not only take account of substitutions, deletions and 

insertions but also of shifts of blocks of words (which take little effort but change the word 

order drastically). The minimal TER rate is 0 (no editing required, i.e. sentences are equal). 

                                                           
6 Originally called Translation Edit Rate. 



There is no predefined maximum, as TER results from dividing the number of edits by the 

number of words in the reference translation. MT metrics can also be used in the context of 

fuzzy matching, to compare the translation suggestion with the desired translation (Simard and 

Fujita 2012). This is especially true for TER, as it is expresses the effort needed to correct a 

translation suggestion. TER can not only be calculated for a single sentence pair but also for a 

set of sentences. In the latter case, long sentences requiring much editing effort have a stronger 

influence on TER than short sentences requiring much effort.  

 

3. Methodology 

In order to measure the usefulness of syntax-based matching methods, we compare their 

translation suggestions to the desired translation using TER. Our baseline consists of translation 

suggestions produced by Levenshtein distance on words, as this is the standard matching 

method. In order for a syntax-based matching method to provide added value, we expect its 

TER to be lower than that of the baseline, as a lower TER indicates less editing effort. In this 

regard, we make a distinction between fuzzy match score ranges. CAT tools typically use a 

fuzzy matching threshold of 70% (Bloodgood and Strauss 2014), which means matches with a 

Levenshtein score below 0.7 (exact matches have score 1) are ignored, as their translations are 

considered not useful enough to be provided as suggestions. Therefore, we would like to know 

whether syntax-based matching methods can make a difference not so much in the high fuzzy 

range (70 to 100 %) but in lower ranges, in order to improve the recall of the TM, and ultimately 

improve translators’ efficiency. 

Applying syntax-based matching methods on a TM requires preprocessing its source sentences.  

We use the Stanford parser (Klein and Manning 2003, de Marneffe et al. 2006) to parse English 

sentences, and derive Prüfer sequences from the parses. We mainly focus on the language pair 

English-Dutch. We match each sentence in the TM enriched with parses and Prüfer sequences 

to all other TM sentences using the baseline method (Levenshtein on words) and using syntax-

based matching methods, more specifically Levenshtein on Prüfer sequences. While 

Levenshtein distance commonly involves an identical cost for each type of operation (deletion, 

insertion, substitution), we apply a more sophisticated weighting scheme to elements in Prüfer 

sequences: we compare features on nodes to one another and combine them in a weighted 

manner, according to the formula in Figure 4. 

 

Figure 4: substitution cost of node pair in Prüfer sequence 



The comparison of word forms and lemmas is based on a character-based Levenshtein 

comparison.7 If two terminal nodes have a different lemma or word form but these are very 

short (say, determiner the vs. a), a substitution costs less than if the lemma or word form is 

long, as the distance is longer in the latter case. The substitution cost also accounts for deletions 

and insertions. Some examples: 

 Comparison of terminal node hd|VB|fall|fall with terminal node hd|VBZ|fall|falls leads to 

cost 0+0+0+lambda(word form)*(1-0.5)). The label hd stands for syntactic function “head”, 

VBZ stands for part-of-speech tag “verb, third person singular present”, and the last two 

features are lemma and word form.  

 Deletion of non-terminal node nsubj|NP||: each feature value is compared to the empty 

string. 

By increasing the two lambdas for syntactic information, we can emphasize the importance of 

syntactic structure during matching. By increasing the two lambdas for lexical information, we 

emphasize lexical similarity between sentences. In case of tree alignment distance, we apply a 

similar weighting scheme when comparing nodes. 

In order to speed up matching and avoid having to compare a query sentence to all source 

sentences in the TM, we build a suffix array from flat sequences using the SALM toolkit8 and 

exploit it in a way similar to Koehn and Senellart (2010b). This speeds up the matching process 

by a factor of 6. 

 

4. Results 

We applied the methodology in the previous section to a TM which was provided to the SCATE 

consortium by one of the companies participating in the project. The TM contains about 2,800 

sentences (110,000 words). We parsed the English source sentences using the Stanford parser, 

and derived Prüfer sequences. We used each source sentence in the linguistically enriched TM 

as query sentence and looked for the highest-scoring match in the remainder of the TM using 

the baseline matching method, Levenshtein distance on words. The fuzzy threshold was set to 

0.2. Figure 5 shows the distribution of the match scores. All matches below 0.2 are considered 

useless and get score 0. As expected, low-scoring matches are more frequent than higher-

scoring ones.9 After retrieving the translation of the highest-scoring match of a query sentence 

from the TM, we calculated its TER with the desired translation (the translation of the query 

sentence in the TM). We also calculated a single TER for the set of best matches in each fuzzy 

match score range (see previous section on combining TER rates of multiple sentences). Figure 

6 shows the TER rate per range (for instance, the leftmost dot refers to range 0.2-0.3). This 

figure also complies with expectations: TER diminishes as match scores increase. 

                                                           
7 Characters which only differ in case get a cost of 0.5. 
8 http://projectile.sv.cmu.edu/research/public/tools/salm/salm.htm 
9 Interestingly enough, though, there are far more matches between 0.2 and 0.3 (their frequency is higher than the 

maximal frequency shown on the y scale) than matches with score 0. Hence, sentences are less likely to be 

dissimilar to all other sentences than to be slightly similar to some of them. 



  
  

Figure 5: distribution of match scores for total 

set of best baseline matches in the TM 

Figure 6: TER for the set of best baseline 

matches per fuzzy match score range 

 

In order to find out the added value of syntax-based matching for specific fuzzy match score 

ranges, we applied Levenshtein matching to the Prüfer sequences of the sentences instead of 

the sentences themselves (we refer to this method as Prüfer matching). We set the lambdas of 

the weighting scheme described in the previous section higher for lexical features than for 

syntactic features in order to emphasize lexical similarity. For a given fuzzy match score range, 

we took all query sentences whose best baseline match had a match score in that range. We 

then applied Prüfer matching to the same query sentences and calculated TER for the translation 

of the best matches. Table 2 lists the Prüfer and baseline TER rates per range; rows where rates 

differ across matching methods are marked in bold. 

 

range baseline TER Prüfer TER 

0.2 – 0.3 0.94 0.93 

0.3 – 0.4 0.89 0.88 

0.4 – 0.5 0.80 0.79 

0.5 – 0.6 0.64 0.64 

0.6 – 0.7 0.42 0.42 

0.7 – 0.8 0.33 0.34 

0.8 – 0.9 0.16 0.16 

0.9 – 1 0.09 0.09 

 

Table 2: baseline and Prüfer TER per score range of baseline matches 

 

Although the differences in TER rates in Table 2 are very limited, they indicate that TER tends 

to be lower for Prüfer matching in lower fuzzy match score ranges. In the upper ranges, both 

matching methods tend to have the same best matches, leading the TER rates for the range to 

coincide. Hence, there is a potential for making matches in lower ranges more useful: replacing 

baseline matches with Prüfer matches in these ranges leads to a decreased effort when 



correcting translation suggestions.10 This also holds a potential for improving recall for 

Levenshtein matching: if lower range matches can be made more useful, one may envisage to 

lower the minimal fuzzy match score, now typically set at 0.7. However, the small TER rate 

differences show that there is still a clear need to exploit Prüfer sequences in a better way, for 

instance by varying more on the weights of lexical and syntactic features and testing on larger 

translation memories. The tests we are currently performing are still in the exploratory phase. 

An example of a query sentence leading to differently ranked match scores for two specific TM 

sentences is shown in Table 3. The second TM sentence is both syntactically and lexically more 

similar to the query sentence than the first TM sentence, but the baseline method can only detect 

part of this similarity because it merely matches word forms. Therefore, it considers the first 

TM sentence as the best match. Table 4 shows the TER rates of the corresponding translation 

suggestions; the translation of the second TM sentence is very close to the reference (it only 

differs in the period). 

 

Query sentence Merger falls within scope of Regulation but does raise serious 

concerns about compatibility with common market 

Match 

score 

Rank 

TM sentence 1, 

baseline match 

Merger falls within scope of Regulation but raises no serious 

concerns 

0.56 1 

TM sentence 2, 

baseline match 

The merger does fall within the scope of the Regulation and does 

raise serious doubts as to its compatibility with the common 

market 

0.48 2 

TM sentence 1, 

Prüfer match 

Sentence: Merger falls within scope of Regulation but raises no 

serious concerns 

Prüfer sequence:   …   amod|JJ|serious|serious   dobj|NP||   

det|DT|no|no   conj|VP||   hd|VBZ|raise|raises   …   

0.81 2 

TM sentence 2, 

Prüfer match 

Sentence: The merger does fall within the scope of the Regulation and 

does raise serious doubts as to its compatibility with the common 

market 

Prüfer sequence:   …   prep|PP||   pobj|NP||   hd|NN|market|market   

pobj|NP||   amod|JJ|common|common   …   prep|PP||   

hd|IN|within|within   hd|VP||   hd|VB|fall|fall   hd|VP||   

aux|VBZ|do|does   |S||   nsubj|NP||   … 

0.82 1 

 

Table 3: two TM sentences with different ranking according to matching method 

 

Query sentence, 

translation 

De fusie valt binnen het toepassingsgebied van de verordening en er bestaat 

ernstige twijfel over de verenigbaarheid ervan met de gemeenschappelijke 

markt 

TER 

TM sentence 1, 

translation 

De fusie valt weliswaar binnen het toepassingsgebied van de verordening, 

maar er bestaat geen ernstige twijfel 

0.55 

TM sentence 2, 

translation 
De fusie valt binnen het toepassingsgebied van de verordening en er 

bestaat ernstige twijfel over de verenigbaarheid ervan met de 

gemeenschappelijke markt . 

0.05 

 

Table 4: editing effort needed to correct the translation of the two TM sentences in Table 3 

                                                           
10 It should be said, though, that translators using CAT tools may opt for a setting in which they are offered multiple 

translation suggestions. In such a setting, there should be sufficiently large differences in ranking for a matching 

method to improve over other ones. 



Besides our tests with Prüfer matching, we also performed match tests with tree alignment 

distance. As the former type of matching is much faster than the latter, the former may act as a 

filter before tree alignment distance is applied. However, we noted tree alignment distance is 

prohibitively slow even when only a small amount of parses is involved. Therefore, we need to 

optimize our implementation of tree alignment distance, which currently performs an 

exhaustive search for the optimal alignment. A drastic pruning of possible alignment paths will 

have to take place in order to make application of the method viable, especially when two parses 

with a large number of nodes are compared. Apart from the problem of speed, we also noted 

that low parse quality can hamper syntax-based fuzzy matching. Similar sentences may happen 

to be parsed in very different ways. This problem may be diminished through the use of parse 

forests, which describe a multitude of parses for a single sentence. 

 

5. Conclusions and future research 

We have presented a methodology for testing whether the exploitation of translation memories 

using syntax-based fuzzy matching can improve the recall (by increasing the number of 

matches) and the usability of TM matches. We compare a sentence to translate, the query 

sentence, with TM sentences through standard Levenshtein distance on the one hand (the 

baseline) and through the parse trees of the sentences on the other. The aspect of matching 

speed is approached through the use of an index (suffix array) and through the derivation of flat 

sequences from parse trees, Prüfer sequences, which allow to apply string-based methods. Our 

tests are still in an exploratory phase. First results indicate that replacing baseline matches by 

matches based on Prüfer sequences slightly improve the TER of translation suggestions for low 

fuzzy match score ranges. This shows a potential for improving usability of matches and 

increasing recall of standard Levenshtein matching. We also performed tests with tree 

alignment distance, which acts directly on trees, but our current implementation of this 

matching method is still prohibitively slow. 

We will pursue tests by applying matching methods using different settings and optimizing 

them, by making use of additional, larger translation memories in order to increase the 

likelihood of finding useful fuzzy matches, and by investigating the use of parse forests (Mi et 

al. 2008) to overcome parsing errors during matching. We will also create an additional type of 

translation suggestion, which does not consist of the full translation of a sentence in TM, but 

from the translation of the matching parts only; this will be realized through the use of word 

alignment from a statistical MT system. 

 

  



References 

 

Bille, P. (2005): A survey on tree edit distance and related problems. Theoretical Computer Science, Volume 337, 

Issues 1–3, 9 June 2005. pp. 217–239. 

Bloodgood M. and B. Strauss (2014). Translation memory retrieval methods. In Proceedings of the 14th 

Conference of EACL. Gothenburg, Sweden. pp. 202–210. 

Cromieres F. and S. Kurohashi (2011). Efficient retrieval of tree translation examples for syntax-based machine 

translation. In Proceedings of EMNLP '11. Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 

508–518. 

de Marneffe, M.C.,  B. MacCartney, and C.D. Manning (2006). Generating Typed Dependency Parses from Phrase 

Structure Parses. In Proceedings of the 5th International Conference on Language Resources and Evaluation 

(LREC). Genova, Italy.  

Doddington, G. (2002). Automatic Evaluation of Machine Translation Quality using N-gram Co-occurrence 

Statistics. In Proceedings of the Second Human Language Technologies Conference (HLT). Morgan Kaufmann. 

San Diego, California, USA. pp. 138–145.  

Eisele, A. and C. Lavecchia (2011). Using statistical machine translation for computer-aided translation at the 

European Commission. Proceedings of the Third Joint EM+/CNGL Workshop “to the User: Research Meets 

Translators” (JEC ’11). Luxemburg. pp. 3–12.  

Gupta, R. and O. Constantin (2014). Incorporating Paraphrasing in Translation Memory Matching and Retrieval. 

In Proceedings of the 17th Annual Conference of EAMT. 

Jiang, T., L. Wang, and K. Zhang (1995). Alignment of trees—an alternative to tree edit. Theoretical Computer 

Science, 143. pp. 137–148. 

Klein D. and C.D. Manning (2003). Fast Exact Inference with a Factored Model for Natural Language Parsing. In 

Advances in Neural Information Processing Systems 15 (NIPS 2002). Cambridge, MA: MIT Press. pp. 3–10.  

Koehn, P. and J. Senellart (2010a). Convergence of Translation Memory and Statistical Machine Translation. In 

JEC 2010: Second joint EM+/CNGL Workshop “Bringing MT to the user: research on integrating MT in the 

translation industry”, AMTA 2010, Denver, Colorado, November 4, 2010. pp. 21–31.  

Koehn, P. and J. Senellart (2010b). Fast approximate string matching with suffix arrays and A* parsing. In AMTA 

2010, Denver, Colorado, October 31 – November 4, 2010. 

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics 

Doklady 10 (8). pp. 707–710.  

Li, G.,  X. Liu, J. Feng, and L. Zhou (2008). Efficient Similarity Search for Tree-Structured Data. Scientific and 

Statistical Database Management Lecture Notes in Computer Science. Volume 5069, Springer. pp 131–149.  

Mi, H., L. Huang, and Q. Liu (2008). Forest-Based Translation. In Proceedings of ACL-08: HLT, Columbus, Ohio, 

USA. pp 192–199. 

Papineni, K., S. Roukos, T. Ward, and W.J. Zhu (2002). BLEU: a method for automatic evaluation of Machine 

Translation. In Proceedings of the 40th Annual Meeting of the ACL. Philadelphia, USA. pp. 311–318.  

Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik und Physik. 27. pp. 

742–744.  

Simard, M. and A. Fujita (2012). A Poor Man’s Translation Memory Using Machine Translation Evaluation 

Metrics. In Proceedings of the 10th Biennial Conference of AMTA. 

Snover, M., B. Dorr, R. Schwartz, L. Micciula, and J. Makhoul (2006). A study of translation edit rate with targeted 

human annotation. In Proceedings of the 7th Conference of AMTA, “Visions for the Future of Machine 

Translation”. Cambridge, Massachusetts, USA. pp. 223–231. 

 


