
A Tale of Histories

Peter Van Weert?

Department of Computer Science, K.U.Leuven, Belgium
Peter.VanWeert@cs.kuleuven.be

Abstract. Constraint Handling Rules (CHR) is an elegant, high-level
programming language based on multi-headed, forward chaining rules.
A distinguishing feature of CHR are propagation rules. To avoid trivial
non-termination, CHR implementations ensure a CHR rule is applied
at most once with the same combination of constraints by maintaining
a so-called propagation history. The performance impact of this history
is often significant. We introduce two optimizations to reduce or even
eliminate this overhead, and evaluate their implementation in two state-
of-the-art CHR systems.

1 Introduction

Constraint Handling Rules (CHR) [4, 12] is a high-level committed-choice CLP
language, based on multi-headed, guarded multiset rewrite rules. Originally de-
signed for the declarative specification of constraint solvers, it is increasingly used
for general purposes, in a wide range of applications. Efficient implementations
exist for several host languages, including Prolog [5, 7], Haskell, and Java [13].

An important, distinguishing feature of CHR are propagation rules. Un-
like traditional rewrite rules, propagation rules do not remove the constraints
matched by their head. They only add extra, implied constraints. Logically, a
propagation rule corresponds to an implication.

The formal study of properties such as confluence and termination, led to the
extension of CHR’s operational semantics with a token store [4]. The token store
contains a token for every constraint combination that may match a propagation
rule. Each time a propagation rule is applied, the corresponding token is removed.
Trivial non-termination is thus avoided by applying a propagation rule at most
once with the same combination of constraints.

Practical implementations of CHR use the dual notion of a token store, called
a propagation history ; history for short [2, 5, 7, 13]. A history contains a tuple for
each constraint combination that already fired a rule. A rule is only applied with
some constraint combination, if the history does not contain the corresponding
tuple. This is also reflected in more recent CHR operational semantics [3].

The implementation and optimization of propagation histories never received
much attention [2, 7]. Our results show however that the propagation history
can have a significant impact on both space and time performance. This paper

? Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).

constitutes a first attempt to resolve this apparent discrepancy. We introduce
two novel optimization techniques that either reduce or eliminate the overhead
associated with propagation history maintenance

Contributions and Overview

– In Section 3 we explore the design space for the implementation of propaga-
tion histories. We show why implementing a history efficiently is challenging,
and review some approaches taken by existing CHR systems. We then intro-
duce an optimization for two-headed propagation rules.

– Section 4 introduces an innovative optimization that eliminates the need
for maintaining a propagation history for all non-reactive CHR rules. This
important class of CHR rules covers the majority of rules found in general-
purpose CHR programs. We prove that the optimization is correct with
respect to CHR’s refined operational semantics [3].

– We implemented these optimizations in two state of the art CHR implemen-
tations, K.U.Leuven CHR [7, 9] for SWI-Prolog, and K.U.Leuven JCHR for
Java [13]. Section 5 reports on the significant performance gains.

2 Preliminaries

To make this paper relatively self-contained, this section briefly reviews CHR’s
basic syntax and operational semantics. Gentler introductions are found for in-
stance in [2, 4, 7].

2.1 CHR Syntax

CHR is embedded in a host language H. A constraint type c/n is denoted by
a functor/arity pair; a constraint c(x1, . . . , xn) is an atom constructed from
these predicate symbols, and a list of arguments xi, instances of data types
offered by H. Two classes of constraints exist: built-in constraints, solved by an
underlying constraint solver of the host H, and CHR constraints, handled by a
CHR program. Many CHR systems support type and mode declarations for the
arguments of CHR constraints. A CHR program P, also called a CHR handler,
is a sequence of CHR rules. The generic syntactic form of a CHR rule is:

ρ @ Hk \ Hr ⇔ G |B

The rule’s name ρ uniquely identifies a rule. The head consists of two conjunc-
tions of CHR constraints, Hk and Hr. Their conjuncts are called occurrences
(kept and removed occurrences resp.). If Hk is empty, the rule is a simplification
rule. If Hr is empty, the rule is a propagation rule and the symbol ‘⇒ ’ is used
instead of ‘⇔’. If both are non-empty, the rule is a simpagation rule. Either Hk

or Hr has to be non-empty. The guard G is a conjunction of built-in constraints.
If ‘G | ’ is omitted, it is considered to be ‘true | ’. The rule’s body B, finally, is
a conjunction of CHR and built-in constraints.

2

reflexivity @ leq(X, X) ⇔ true.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. leq, a CHR program for the less-than-or-equal constraint.

Example 1. Fig. 1 shows a classic example CHR program, leq. It defines one
CHR constraint, a less-than-or-equal constraint, using four CHR rules. All three
kinds of rules are present. The constraint arguments are logical variables. The
handler uses one built-in constraint, namely equality. If the antisymmetry rule
is applied, its body adds a new built-in constraint to the built-in equality solver
provided by the host environment. The body of the transitivity propagation rule
adds a new CHR constraint, which is handled by the CHR program itself.

Head Normal Form In the Head Normal Form of a CHR program P, de-
noted HNF(P), a variable occurs at most once in rule heads. For instance, in
HNF(leq), the normalized form of the transitivity rule from Fig. 1 is:

transitivity @ leq(X, Y), leq(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

2.2 The Refined Operational Semantics

The behavior of most current CHR implementations is formally captured by the
refined operational semantics [3], commonly denoted as ωr. The ωr semantics
is formulated as a state transition system, in which transition rules define the
relation between subsequent execution states. The version presented here follows
[2, 7], and is a slight modification from the original specification [3].

Notation Sets, multisets and sequences (ordered multisets) are defined as usual.
We use S[i] to denote the i’th element of a sequence S,++ for sequence concatena-
tion, and [e|S] to denote [e]++S. The disjoint union of sets is defined as follows:
∀X,Y, Z : X = Y t Z ⇔ X = Y ∪ Z ∧ Y ∩ Z = ∅. For a logical expression X,
vars(X) denotes the set of unquantified variables, and πV (X)⇔ ∃v1, . . . , vn : X
with {v1, . . . , vn} = vars(X) \ V . The meaning of built-in constraints is assumed
determined by DH, a consistent (first order logic) built-in constraint theory.

Execution States An execution state of ωr is a tuple 〈A,S,B,T〉n. The execution
stack A is a sequence, used to treat constraints as procedure calls. Its function
is explained in more detail below. The CHR constraint store S is a set of iden-
tified CHR constraints. An identified CHR constraint c#i is a CHR constraint
c associated with a unique constraint identifier i. The two connated mapping
functions, chr(c#i) = c and id(c#i) = i, are extended to sequences and sets in
the obvious manner. The constraint identifiers are used to distinguish otherwise
identical constraints (chr(S) is a multiset of constraints). The counter n repre-
sents the next free CHR constraint identifier. The built-in constraint store B is

3

1. Solve 〈[b|A], S,B,T〉n �P 〈S++A, S, b∧B,T〉n if b is a built-in constraint and S ⊆ S
such that ∀c ∈ S : vars(c) 6⊂ fixed(B) and ∀H ⊆ S : (∃K,R : H = K++R ∧ ∃ρ ∈ P :
¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B))→ (S ∩H 6= ∅).

2. Activate 〈[c|A], S,B,T〉n �P 〈[c#n : 1|A], {c#n} t S,B,T〉n+1 if c is a CHR con-
straint (which has not yet been active or stored in S).

3. Reactivate 〈[c#i|A], S,B,T〉n �P 〈[c#i : 1|A], S,B,T〉n if c is a CHR constraint
(re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i : j|A], S,B,T〉n �P 〈B ++ A,K t S, θ ∧ B,T′〉n with S = {c#i} t
K tR1 tR2 t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching
substitution such that appl(ρ,K,R1 ++[c#i]++R2, θ,B) = B.

Let t = (ρ, id(K++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.

5. Propagate 〈[c#i : j|A], S,B,T〉n �P 〈B ++ [c#i : j|A], S \ R, θ ∧ B,T′〉n with S =
{c#i} tK1 tK2 t R t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a
matching substitution such that appl(ρ,K1 ++[c#i]++K2, R, θ,B) = B.

Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.

6. Drop 〈[c#i :j|A], S,B,T〉n �P 〈A, S,B,T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i :j|A], S,B,T〉n �P 〈[c#i :j+1|A], S,B,T〉n if the current state cannot
fire any other transition.

Fig. 2. The transition rules of the refined operational semantics ωr.

an abstract logical conjunction of built-in constraints, modeling all constraints
passed to the underlying solvers. The propagation history T, finally, is a set of
tuples, each recording a sequence of constraint identifiers of CHR constraints
that fired a rule, and the unique name of that rule.

Given an initial query Q, a sequence (conjunction) of built-in and host lan-
guage constraints, an initial execution state is of the form 〈Q, ∅, true, ∅〉1.

Transition Rules The transition rules of ωr are listed in Fig. 2. The top-most
element of A is called the active constraint. Each newly added CHR constraint
initiates a search for partner constraints that match the heads of the rules in an
Activate transition. A built-in constraint is passed to the underlying constraint
solver in a Solve transition. If the newly added built-in constraint may affect
the outcome of guards, similar searches for applicable rules are initiated for the
affected CHR constraints. Constraints whose variables are all fixed are never
reactivated; formally:

Definition 1. A variable v is fixed by a conjunction of constraints B, denoted
v ∈ fixed(B), if and only if DH |= π{v}(B)∧π{θ(v)}(B)→ v = θ(v) for arbitrary
substitution θ.

The order in which occurrences are traversed is fixed by ωr: an active con-
straint tries its occurrences in a CHR program in a top-down, right-to-left order.
To realize this order in ωr, identified constraints on the execution stack are oc-
currenced (in Activate and Reactivate transitions). An occurrenced identified

4

CHR constraint c#i : j indicates that only matches with the j’th occurrence of
c’s constraint type are considered when the constraint is active.

Each active constraint traverses its different occurrences by a sequence of
Default transitions, followed by a Drop transition. During this traversal all
applicable rules are fired (i.e. Propagate and Simplify transitions). The ap-
plicability of a CHR rule is defined as follows:

Definition 2. Given a conjunction of built-in constraints B, a rule ρ is applica-
ble with sequences of identified CHR constraints K and R, denoted appl(ρ,K,R,B),
if and only if a matching substitution θ exists for which appl(ρ,K,R, θ,B) is de-
fined. The latter partial function is defined as appl(ρ,K,R, θ,B) = B if and only
if K ∩R = ∅ and, renamed apart, ρ is of the form (Hk or Hr may be empty):

ρ @ Hk \ Hr ⇔ G |B

such that chr(K) = θ(Hk), chr(R) = θ(Hr) and DH |= B→ πvars(B)(θ ∧G).

As with a procedure, when a rule fires, other constraints (its body) are exe-
cuted, and execution does not return to the original active constraint until after
these calls have finished. By putting the body on the activation stack, the differ-
ent conjuncts of the body are solved (for built-in constraints) or activated (for
CHR constraints) in a left-to-right order. This approach corresponds closely to
that of the stack-based programming languages to which CHR is compiled.

Derivations Execution proceeds by exhaustively applying transitions. Formally,
a derivation D is a sequence of states, with D[1] a valid initial execution state for
some query Q, and D[i]�PD[i+ 1] for all subsequent states D[i] and D[i+ 1].
We also say these transitions D[i]�PD[i+1] are transitions of D. The common
notational abbreviation σ1 �?

P σn denotes a finite derivation [σ1, . . . , σn].

3 Propagation History Implementation

As stated also in [2, Section 4.3.4], a propagation history is very easy to imple-
ment naively, but quite challenging to implement efficiently. Obviously, tuples
have to be stored in some efficient data structure, e.g. a balanced tree or a hash
table. Naively implemented, tuples are only added to the propagation history,
but never removed. Note that this is also the case in the ωr formalism (cf. Sec-
tion 2.2). This potentially leads to unbounded memory use.

The main challenge is thus to avoid this memory problem, with minimal over-
head. All tuples referring to removed constraints are redundant. Formally, for a
state 〈A,S,B,T〉n, these are all tuples not in live(T,S) = {(ρ, I) ∈ T |I ⊆ id(S)}.
Practice shows that eagerly removing redundant tuples after each constraint re-
moval is not feasible due to time or space overheads. CHR implementations
therefore commonly use ad-hoc garbage collection techniques, which may result
in excessive memory use, but perform adequately in practice.

One technique is to lazily remove redundant tuples during history checks (see
[2]). A second technique is denoted distributed propagation history maintenance

5

(see [7]). With this technique, no global propagation history is maintained. In-
stead, the runtime representation of each individual CHR constraint contains
(a subset of) the history tuples they occur in. When a constraint is removed,
the corresponding part of the propagation history is thus removed as well. Both
techniques could easily be combined.

We refer to [2, 7] for some more details on the implementation of propagation
histories in current CHR systems. Many design choices, however, are not fully
covered by these theses:

– Is one global history maintained, or one history per rule?
– Is the distributed history information stored in all constraints of the match-

ing combination, or only in one of the partners? In the latter case, is the
active constraint used, or the constraint matching some fixed occurrence?

– In which cases are more eager garbage collection techniques feasible?
– How to exploit functional dependencies?

In the following subsection we introduce an improved technique to maintain
the propagation history of two-headed propagation rules.

3.1 Two-headed Propagation Rules

For two-headed propagation rules, a distributed propagation history can be im-
plemented more efficiently. Assume that, if there are multiple propagation rules,
a separate history is maintained per rule, as is the case e.g. in the K.U.Leuven
JCHR system [13]. By default, history tuples for a two-headed rule contain two
constraint identifiers. It is however more efficient to simply store, in each con-
straint, the identifiers of all partner constraints it fired with whilst active. This
avoids the creation of tuples, and allows for more efficient hash tables. We refer
to Section 5 for empirical results.

Care must be taken when both heads are occurrences of the same constraint
type, as for instance in the transitivity rule of Example 1. One possibility is
to maintain a separate history per occurrence. Another trick is to use negated
constraint identifiers if the the active constraint matches one of the occurrences.

With a similar reasoning, a reduction of the tuple size for all propagation
rules is possible. Experiments only showed negligible performance gains though.

4 Non-reactive CHR Rules

In this section we consider non-reactive CHR rules, i.e. rules that are never
matched by a reactivated CHR constraint. We will show that for this important
class of rules no propagation history has to be maintained.

Example 2. Consider the following common CHR pattern to compute the sum
of the arguments of elem/1 constraints:

sum, elem(X) ⇒ sum(X).
sum ⇔ true.
sum(X), sum(Y) ⇔ sum(X+Y).

6

If the type or mode declarations of the elem/1 constraint specify that its argu-
ment is always fixed, say a (ground) integer value, then elem/1 constraints are
never reactivated under ωr. As the sum/0 constraint is clearly also never reacti-
vated, the first rule is thus never matched by a reactivated CHR constraint.

Formally, non-reactive CHR constraints and rules are defined as follows:

Definition 3. A CHR constraint type c/n is non-reactive in a program P under
a refined operational semantics ω?r if and only if for all ω?r derivations D with
that program, for all Solve transitions in D of the form

〈[b|A],S,B,T〉n�P 〈S++A,S, b ∧ B,T〉n

the set of reconsidered constraints S does not contain constraints of type c/n.
A CHR rule ρ ∈ P is non-reactive if and only if all constraint types that occur
in its head are non-reactive in P.

Under the ωr semantics as defined in Section 2.2, only fixed, or ground, CHR
constraint types are non-reactive. Formally, a CHR constraint type c/n is fixed iff
for all CHR constraints c′ of type c/n, vars(c′) ⊆ fixed(∅) (see Definition 1). A
CHR compiler derives which constraints are fixed from their mode declarations,
or using static groundness analysis [10]. Both constraints in Example 2, for
instance, are fixed.

A substantially larger class of CHR programs, however, can be made non-
reactive by a slight modification of the refined operational semantics.

Example 3. Suppose the type or mode information implies the first argument of
fib/2 constraints is always fixed. The second argument on the other hand can
be a free (logical) variable:

fib(N,M1) \ fib(N,M2) ⇔ M1 = M2.
fib(N,M) ⇒ N ≤ 1 | M = 1.
fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

For this handler, a fib/2 constraint does not have to be reactivated when a built-
in constraint is added. Indeed: because there are no guards on this argument,
no additional rules become applicable by constraining it further.

Using constraints unbound, unguarded arguments to retrieve computation
results is very common in CHR. These constraints should not be reactivated. Un-
fortunately, this is insufficiently specified in the standard ωr semantics. We there-
fore propose a semantical refinement, based on the concept of anti-monotonicity [8].
Anti-monotonicity generalizes both fixed and unguarded constraint arguments:

Definition 4. A conjunction of built-in constraints B is anti-monotone in a set
of variables V if and only if:
∀B1, B2 : (πvars(B)\V (B1 ∧B2))⇔ (πvars(B)\V (B1))

⇒ (DH 6|= B1 → B)⇒ (DH 6|= B1 ∧B2 → B)

7

Definition 5. A CHR program P is anti-monotone in the i’th argument of a
CHR constraint type c/n, if and only if for every occurrence c(x1, . . . , xi, . . . , xn)
in HNF(P), the guard of the corresponding rule is anti-monotone in {xi}.

Based on these definitions, the anti-monotony-based delay avoidance opti-
mization reduces the amount of needlessly reactivated constraints [8]. Concretely,
let delay varsP(c) denote the set of variables that occur in the arguments of an
(identified) CHR constraint c in which P is not anti-monotone, then the Solve
transition of ωr (cf. Fig. 2) can be replaced with:

1. Solve’ 〈[b|A],S,B,T〉n �P 〈S ++ A,S, b ∧ B,T〉n if b is a built-in
constraint and S ⊆ S such that ∀c ∈ S : delay varsP(c) 6⊂ fixed(B)
and ∀H ⊆ S : (∃K,R : H = K ++ R ∧ ∃ρ ∈ P : ¬appl(ρ,K,R,B) ∧
appl(ρ,K,R, b ∧ B))→ (S ∩H 6= ∅).

The resulting semantics, denoted ω′r, is an instance of ωr1.
Clearly, the following properties hold for any CHR program P:

– If the CHR constraint type c/n is fixed, i.e. if c/n is non-reactive in P under
ωr, then P is anti-monotone in all n arguments of c/n.

– If P is anti-monotone in all n arguments of c/n, then that CHR constraint
type is non-reactive in P under ω′r.

We now show how the maintenance of a propagation history for non-reactive
CHR rules can be avoided. The central observation is that when a non-reactive
rule is fired, the active constraint is more recent than its partner constraints:

Lemma 1. Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive
rule, and D an arbitrary derivation with this program. Then for each Simplify
or Propagate transition in D of the form

〈[c#i :j|A],S,B,T〉n�P 〈A′,S′,B′,T t {(ρ, I1 ++[i]++I2)}〉n (1)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.
Proof. Assume i′ = max(I1tI2) with i′ ≥ i. By Definition 2 of rule applicability,
i′ 6= i, and ∃c′#i′ ∈ S. This c′#i′ partner constraint must have been stored in an
Activate transition. Since i′ = max(I1t{i}tI2), in D, this transition came after
the Activate transitions of all other partners, including c#i. In other words, all
constraints in the matching combination of transition (1) were stored prior to
the activation of c′#i′. Also, in (1), c#i is back on top of the activation stack.
Because c is non-reactive, and thus never put back on top by a Reactivate
transition, the later activated c′#i′ must have been removed from the stack
in a Drop transition. This implies that all applicable rules matching c′ must
have fired. As all required constraints were stored (cf. supra), this includes the
application of ρ in (1). By contradiction, our assumption is false, and i′ < i. �

1 The Solve’ transition presented here differs from the one proposed in [8]. As shown in
Appendix A, the latter version is not entirely correct. The appendix further provides
a correctness proof for our version, and shows that it is stronger than that of [8].

8

Let ω′′r denote the semantics obtained by replacing the phrase

Let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

in the Simplify and Propagate transitions of ω′r with

If ρ is non-reactive, then ∀i′ ∈ id(H1∪H2) : i′ < i and T′ = T. Otherwise,
let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

To avoid trivial non-termination where the same combination of constraints fires
a propagation rule infinitely many times, we also assume the following property
to hold for ω′′r :

Definition 6 (Duplicate-free Propagation). For all derivations D of a CHR
program P where the j’th occurrence of c is kept, if the following holds:
– σ1 �P σ2 �?

P σ
′
1 �P σ

′
2 is part of D

– σ1 = 〈[c#i :j|A],S, . . .〉 and σ′1 = 〈[c#i :j|A],S′, . . .〉
– σ1 �P σ2 is a Propagate transition applied with constraints H ⊆ S
– σ′1 �P σ

′
2 is a Propagate transition applied with constraints H ′ ⊆ S′

– between σ2 and σ′1 no Default transition occurs of the form
σ2 �?

P 〈[c#i :j|A], . . .〉 �P 〈[c#i :j + 1|A], . . .〉 �?
P σ

′
1

then H 6= H ′.

This property, in combination with Lemma 1, allows us to show that ω′r and
ω′′r are equivalent:

Theorem 1. Define the mapping function α as follows:

α(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n
If D is an ω′r derivation, then α(D) is an ω′′r derivation. Conversely, if D is an
ω′′r derivation, then there exists an ω′r derivation D′ such that α(D) = D′.
Proof. If D is an ω′r derivation, then α(D) is an ω′′r derivation by Lemma 1.

For the reverse direction, let D be an ω′′r derivation, and D′ the derivation
obtained from D by adding the necessary tuples to the propagation history. That
is, for each Propagate or Simplify transition in D of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T〉n

the corresponding transition in D′ becomes of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T ∪ {(ρ, I)}〉n (2)

We treat the history T to be a multiset here, because otherwise possible dupli-
cates would disappear unnoticed. All Propagate and Simplify transitions in
D′ now have form (2). It suffices to show that for all these transitions (ρ, I) /∈ T.

First, we show that Lemma 1 still holds for the derivation D. That is, for all
transitions of D of form (2), if the active constraint matched the k’th occurrence
in ρ’s head, then I[k] = max(I). By definition of ω′′r , this is true for the tuples

9

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

foreach fib(N-1,M1)#id1 in ...

if N < U

if id < id1 and id < id2
. . .

(a) Unoptimized

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

if id < id2 and N < U

foreach fib(N-1,M1)#id1 in ...

if id < id1
. . .

(b) After Loop Invariant Code Motion

Fig. 3. Pseudocode for the second occurrence of the up to/1 constraint of Example 4.

that were not added to the history in the original derivation D. For those added
in both D and D′, this also holds by definition of ω′′r and Lemma 1.

Suppose, for some transition of form (2), that (ρ, I) ∈ T, and that the active
constraint matched the k’th occurrence of ρ. Then I[k] = max(I). Moreover,
when the (ρ, I) tuple was first added to the history, by uniqueness of constraint
identifiers, the active constraint was the same constraint as active in the consid-
ered constraint. As propagation is duplicate-free in D, and the active constraint
is non-reactive, this is not possible. �

This theorem shows the correctness of replacing the propagation history of
non-reactive CHR rules with more efficient constraint identifier comparisons.
The next subsection shows how this optimization can be implemented in typical
ωr-based CHR implementations.

4.1 Implementation and Further Optimizations

The standard CHR compilation scheme (see e.g. [2, 5, 7]) generates, for each
occurrence, a nested iteration that looks for matching partner constraints for the
active constraint. If the active constraint is not removed, all partner constraint
iterators are suspended until the body is fully executed. Afterwards, the nested
iteration is simply resumed to find more matching combinations.

Example 4. The following handler, called fibbo, performs a bottom-up compu-
tation of all Fibonacci numbers up to a given number (all arguments are fixed):

up to(U) ⇒ fib(0,1), fib(1,1).
up to(U), fib(N-1,M1), fib(N,M2) ⇒ N < U | fib(N+1,M1+M2).

If an up to(U) constraint is told, the first rule propagates two fib/2 constraints.
After this, the second rule propagates all required fib/2 constraints, each time
with a fib/2 constraint as the active constraint. When, finally, the up to(U)
constraint reaches its second occurrence, some mechanism is required to prevent
the second rule to propagate everything all over again.

A propagation history would require O(U) space. Because all constraints
are non-reactive, however, no propagation history is maintained. Instead, con-
straint identifiers are simply compared. Fig. 3(a) shows the generated code for
the second occurrence of the up to/1 constraint.

10

SWI JCHR
tree 2-hash hash 2-hash

eq(35) 3,465 N/A2 47 37 (79%)
leq(70) 3,806 2,866 (75%) 85 65 (76%)

Table 1. Benchmark results for the eq and leq benchmarks.

SWI JCHR
tree non-react hash non-react non-react+

wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%)
fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%)
fibbo(2000) 61,290 17,704 (29%) 206 275 (133%) 90 (44%)
fibbo(3000) timeout timeout 542 464 (85%) 153 (28%)

Table 2. Benchmark results for the wfs and fibbo benchmarks.

If none of the iterators return candidate partner constraints more than once,
propagation is guaranteed to be duplicate-free (see Definition 6). Most iterators
used by CHR implementations obey this property. If not, a temporary history
can be maintained whilst the active constraint is considering an occurrence.

Loop-invariant Code Motion Lemma 1 not only applies to propagation rules,
but also to simplification and simpagation rules. Whilst maintaining a history
for non-propagation rules is pointless, comparing partner constraint identifiers is
not. As shown in Fig. 3(b), the standard Loop-invariant Code Motion optimiza-
tion can be extended to include not only guards (e.g. N < U), but also identifier
comparisons. For multi-headed CHR rules — including simplification and sim-
pagation rules — this may considerably prune the search space of candidate
partner constraints. Moreover, if an iterator returns constraints in ascending
order of identifiers, the corresponding (nested) iteration can be stopped early.

5 Evaluation

We implemented the optimizations presented in this paper in the K.U.Leuven
CHR system [7, 9] for SWI-Prolog, and in the K.U.Leuven JCHR system [13] for
Java. The benchmark results are given in Tables 1 and 2. For each system, the
first column gives the reference timings: for SWI this is a tree-based propagation
history, for JCHR a hash-based history. Both systems use distributed history
maintenance (see Section 3). The 2-hash and non-react columns give timings
using the optimization for two-headed propagation rules given in Section 3, and
the optimization for non-reactive CHR rules of Section 4 respectively. For the
non-react+ measurements the non-reactiveness optimization was combined with
loop invariant code motion (currently only implemented in JCHR).

2 In the current SWI implementation, the history of a two-headed propagation rule
is only optimized if there are no other propagation rules in the program. In JCHR,
this is not relevant, as JCHR maintains a separate history per rule.

11

For both optimizations significant performance gains are measured. Note that
the improved timings in Table 1 for the SWI-Prolog system may be due to mov-
ing from a tree-based history to a hash-based one. For JCHR, however, this is
definitely not the case, showing the relevance of the improved data structure. Ta-
ble 2 contains one surprising timing for the fibbo(N) benchmark in JCHR: even
though identifier comparisons are cheaper than checking a propagation histories,
for N = 2000, the performance nevertheless worsened. Detailed profiling showed
that this is due to unpredictable behavior of the JVM’s garbage collector.

For non-reactive rules, space complexity is furthermore optimal: propagation
histories no longer consume space at all. The complexity for the history of the
fibbo handler, for instance, is improved from linear to constant (see Example 4).

6 Related Work, Conclusions and Future Work

Related Work The propagation history contributes to significant performance
issues when implementing CHR in a tabling environment [11]. Based on a similar
approach explored in [11], an alternative CHR semantics is proposed in [6]. Being
set-based, this semantics addresses the trivial non-termination problem without
the use of a propagation history. It would be interesting to see whether these
results can be transferred to CHR without abandoning its common multiset
semantics (see also Future Work).

In [2], a simple analysis is presented to eliminate the propagation histories for
certain fixed CHR constraints. Advanced CHR systems such as [9, 13] implement
more powerful versions of this analysis, extended towards non-reactive CHR
constraints, or made more accurate by abstract interpretation [10]. Our results
in Section 4, however, considerably reduce the benefits of these complex analyses,
as comparing constraint identifiers is much cheaper than maintaining a history.

Conclusions We showed that maintaining a propagation history comes at a
considerable runtime cost, both in time and in space. We introduced two opti-
mizations to reduce or eliminate this overhead. We showed that for two-headed
propagation rules more efficient data structures can be used. This is interesting,
as rules with more than two heads are relatively rare. We then argued that non-
reactive CHR propagation rules do not require the maintenance of a propagation
history. Instead, cheap constraint identifier comparisons can be used. Further-
more, these comparisons can be moved early in the generated nested loops, thus
pruning the search space of possible partner constraints. We formally proved the
correctness of the optimization for non-reactive rules with respect to CHR’s re-
fined operational semantics. We implemented both optimizations, and observed
significant performance gains.

Future Work For reactive CHR rules a propagation history still has to be
maintained. This includes the rules of most true constraint solvers. Most con-
straint solvers though, such as the archetypal leq handler of Example 1, have set
semantics. As argued by [6] (see Related Work paragraph), if constraints have set

12

semantics, a propagation history is less compelling. Under the refined operational
semantics, however, set semantics alone does not suffice to justify the elimina-
tion of propagation histories, that is without affecting a program’s semantics. A
stronger property called idempotence is required. We are currently developping
an analysis to derive this property, and have already observed promising perfor-
mance improvements for several programs. For certain programs, an automated
confluence analysis (see e.g. [4]) would be useful, as rules that remove duplicate
constraints may be moved to the front of a confluent CHR program.

Acknowledgements The author thanks Tom Schrijvers for his invaluable aid in
the implementation of the optimizations in the K.U.Leuven CHR system. Thanks
also to Bart Demoen and the anonymous referees for their useful comments.

References

1. B. Demoen and V. Lifschitz, editors. ICLP ’04: Proc. 20th Intl. Conf. Logic Pro-
gramming, volume 3132 of LNCS, Saint-Malo, France, September 2004. Springer.

2. Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, Univer-
sity of Melbourne, Australia, December 2005.

3. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In
Demoen and Lifschitz [1], pages 90–104.

4. Thom Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998.

5. Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules
compiler and runtime system. volume 14(4) of Journal of Applied Artificial Intel-
ligence, pages 369–388. Taylor & Francis, April 2000.

6. Beata Sarna-Starosta and C.R. Ramakrishnan. Compiling Constraint Handling
Rules for efficient tabled evaluation. In M. Hanus, editor, PADL ’07: Proc. 9th
Intl. Symp. Practical Aspects of Declarative Languages, volume 4354 of LNCS,
pages 170–184, Nice, France, January 2007. Springer.

7. Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Belgium, June 2005.

8. Tom Schrijvers and Bart Demoen. Antimonotony-based delay avoidance for CHR.
Technical Report CW 385, K.U.Leuven, Dept. Comp. Sc., July 2004.

9. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation
and application. In Th. Frühwirth and M. Meister, editors, CHR ’04, Selected
Contributions, pages 8–12, Ulm, Germany, May 2004.

10. Tom Schrijvers, Peter J. Stuckey, and Gregory J. Duck. Abstract interpretation
for Constraint Handling Rules. In P. Barahona and A.P. Felty, editors, PPDP ’05,
pages 218–229, Lisbon, Portugal, July 2005. ACM Press.

11. Tom Schrijvers and David S. Warren. Constraint Handling Rules and tabled exe-
cution. In Demoen and Lifschitz [1], pages 120–136.

12. Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. As time
goes by: Constraint Handling Rules – A survey of CHR research between 1998 and
2007. Submitted to Journal of Theory and Practice of Logic Programming, 2008.

13. Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-
friendly, flexible and efficient CHR system for Java. In T. Schrijvers and Th.
Frühwirth, editors, CHR ’05, K.U.Leuven, Dept. Comp. Sc., Technical report CW
421, pages 47–62, Sitges, Spain, 2005.

13

A On Anti-Monotony-based Delay Avoidance

In [8], the following version of the Solve transition is proposed:

1. Solve† 〈[b|A],S,B,T〉n�P 〈S++A,S, b∧B,T〉n if b is a built-in constraint
and S ⊆ S such that ∀c ∈ S \S : ∃V1, V2 : vars(c) = V1∪V2∧V1 ⊆ fixed(B)∧
all variables in V2 appear only in arguments of c that are anti-monotone in P.

Proposition 1. Using our notation, this Solve† transition is equivalent to:

1. Solve‡ 〈[b|A],S,B,T〉n �P 〈S ++ A,S, b ∧ B,T〉n if b is a built-in
constraint and S ⊆ S such that ∀c ∈ S \S : delay varsP(c) ⊆ fixed(B).

Proof. Let c ∈ S \ S, with S defined as in Solve†. Then sets V1 and V2 exist,
as defined in Solve†. By definition, V2 ⊆ vars(c)\delay varsP(c), and thus
V2 ∩ delay varsP(c) = ∅. Therefore, delay varsP(c) ⊆ V1 ⊆ fixed(B).

Conversely, assume c ∈ S \ S, with S defined as in Solve‡. Then the required
sets V1 and V2 exist: simply take V1 = delay varsP(c) and V2 = vars(c) \ V1. �

In [8] the resulting semantics is shown to be correct with respect to the
original refined operational semantics ωr [3], where Solve is specified as:

1. Solve? 〈[b|A],S,B,T〉n�P 〈S++A,S, b∧B,T〉n where b is a built-in
constraint and S ⊆ S such that vars(S \S) ⊆ fixed(B).

That is, all constraints with at least one non-fixed argument have to be reac-
tivated. The original specification of the ωr semantics therefore prohibits any
form of delay avoidance for non-fixed arguments, as illustrated by this example:

Example 5. Consider the following CHR program:

c(X) ⇒ X = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable, Solve? specifies that
the c(X) constraint has to be reactivated when ‘X = 2’ is added to the built-
in constraint solver, which leads to a final constraint store {b#3}. This is the
only final store allowed by the original refined semantics. However, as the pro-
gram is clearly anti-monotone in c’s argument, the Solve‡ transition might not
reactivate c, which then leads to an incorrect final constraint store {a#1}.

This counterexample shows the proof in [8] must be wrong. The essential
problem is that Solve? specifies that constraints with non-fixed arguments have
to be reactivated, even if the newly added built-in constraint does not enable any
new matchings with them. This problem is not restricted to delay avoidance. It
was first noted in [2, 7] in a different context:

Example 6. Consider the following CHR program:

c(X) ⇒ Y = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.

14

For the query ‘a, c(X)’ with X a free logical variable the original Solve? tran-
sition specifies that the c(X) constraint must be reactivated when ‘Y = 2’ is
added to the built-in constraint solver. The only final store allowed by the origi-
nal refined semantics is thus {b#3}. However, actual CHR implementations will
not reactivate the c(X) constraint, as the newly added ‘Y = 2’ constraint does
not affect X, the only variable occurring in c(X).

Because the original refined operational semantics is thus inconsistent with
the behavior of actual (Prolog) CHR implementations, a slightly more relaxed
version of the Solve transition was defined in [2, 7]. This is also the version of
ωr we presented in Section 2.2. The following theorem shows that our definition
of Solve’ in Section 4 is correct with respect to this relaxed ωr semantics:

Theorem 2. Let P be an arbitrary CHR program, and σ = 〈[b|A],S,B,T〉n an
arbitrary state with b a built-in constraint. If σ �P 〈S ++ A,S, b ∧ B,T〉n is a
valid Solve’ transition of ω′r, then it is a valid ωr Solve transition as well.
Proof. By definition of Solve’, S ⊆ S, and

(1) ∀c ∈ S : delay varsP(c) 6⊂ fixed(B),
(2) ∀H ⊆ S : (H = K++R ∧ ∃ρ ∈ P :

¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B))→ (S ∩H 6= ∅).
As the lowerbound of the Solve transition in ωr is also exactly (2), it suffices
to prove that ∀c ∈ S : vars(c) 6⊂ fixed(B). This is obvious given (1), as by
definition ∀c : delay varsP(c) ⊆ vars(c). �

The optimized semantics of [8] on the other hand remains incorrect with
respect to the relaxed ω′r semantics. The reason is that the Solve‡ transition
only restricts the constraints that are not reactivated. The constraints that are
reactivated, on the other hand, are not restricted:

Example 7. Consider the following CHR program:
c ⇒ X = 2, b.
c, a ⇔ true.
c, b ⇔ true.

For the query ‘a, c’ the Solve transition of Fig. 2 specifies that the c constraint
may not be reactivated when the ‘X = 2’ constraint is told. This leads to the
only final store allowed by the ωr semantics of Section 2.2, namely {b#3}. The
Solve‡ transition, however, allows the c’s reactivation. The resulting semantics
thus may lead to an incorrect final constraint store {a#1}.

The final theorem show that our Solve’ transition is indeed stronger then
Solve‡, since it never reactivates more constraints:

Theorem 3. Let P be a CHR program, and σ = 〈[b|A],S,B,T〉n astate with b
a built-in constraint. If σ�P 〈S++A,S, b ∧ B,T〉n is a valid Solve‡ transition,
and σ�P 〈S′++A,S, b ∧ B,T〉n a valid Solve’ transition of ω′r, then S′ ⊆ S.
Proof. By definition of Solve‡: ∀c ∈ S\S : delay varsP(c) ⊆ fixed(B), and by
definition of Solve’: S′ ⊆ S ∧ ∀c ∈ S′ : delay varsP(c) 6⊂ fixed(B). Therefore
clearly (S\S) ∩ S′ = ∅, and thus (S′ ⊆ S ∧ S′ ∩ (S\S) = ∅)→ S′ ⊆ S. �

15

