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1. Introduction

Modeling and analyzing household consumption behavior is a central research topic in

micro-economics since its introduction by Samuelson [1] in 1938. In particular, the concept

of revealed preference has attracted a lot of attention in the literature. For recent overviews

we refer to Varian [2] and Smeulders et al. [3]. Here, we restrict ourselves to investigating

the computational complexity of testing three well-known axioms of revealed preference:

the weak, strong and generalized axioms of revealed preference (WARP, SARP and GARP).

As far as we are aware, each known method for testing GARP relies on computing the tran-

sitive closure of a directed graph, and a straightforward algorithm for such an operation

runs in cubic time relative to the number of observations in the dataset. The main contri-

bution of this Note is the description of a quadratic time algorithm, based on computing

strongly connected components. This algorithm solves a graph-theoretic problem, which is

a generalization of GARP. This graph-theoretic problem is of some independent interest.

Furthermore, we also argue that any algorithm for testing WARP, SARP or GARP will need at

least a linearitmic number of operations.

This Note is organized as follows. In Section 2, we describe WARP, SARP or GARP.

Next, in Section 3 we introduce an arc coloring problem that generalizes testing GARP. In

Section 4, we present an quadratic time algorithm solving this problem. Finally, in Sec-

tion 5, we prove the lower bound on any algorithm for testing WARP, SARP or GARP and we

conclude in Section 6.

2. Notation and Definitions

Consider a unitary household acting in an economy with m goods and suppose that we

have observed n (non-negative) consumption quantity bundles qi =
(
qi

1, . . . ,q
i
m
)
∈ Rm

+ with

corresponding positive prices pi =
(

pi
1, . . . , pi

m
)
∈ Rm

++, for i = 1, . . . ,n. The component qi
j

(respectively pi
j), for j = 1, . . . ,m, corresponds with the quantity of good j bought by the

household (respectively the unit price of good j) at the time of observation i, i = 1, . . . ,n. We

denote the set of observations by S =
{(

pi,qi
)

: i ∈ N
}

, where N = {1, . . . ,n} and we refer
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to S as the dataset. For ease of exposition, we use i ∈ N to refer to the observation
(

pi,qi
)

and denote the scalar product by piq j for i, j ∈ N.

In revealed preference theory, a unitary household is said to directly prefer bundle qi

over another bundle q j if and only if qi was chosen while q j was affordable at prices pi

(and hence could have been chosen); this translates into piqi ≥ piq j. A household is said to

prefer qi over q j if and only if there exists a sequence (possibly empty) of observations r, s,

. . . , t such that piqi ≥ piqr, prqr ≥ prqs, . . . , and ptqt ≥ ptq j. These notions of preference

are used in the definition of WARP, SARP and GARP [2].

Definition 2.1 A dataset S satisfies WARP if and only if, for all observations i and j, when

qi 6= q j and the household directly prefers qi over q j, then p jq j < p jqi.

Definition 2.2 A dataset S satisfies SARP if and only if, for all observations i and j, when

qi 6= q j and the household prefers qi over q j, then p jq j < p jqi.

Definition 2.3 A dataset S satisfies GARP if and only if, for all observations i and j, when

the household prefers qi over q j, then p jq j ≤ p jqi.

The main differences between the axioms are as follows. WARP does not test the revealed

preferences for transitivity and does not allow for indifference. Both SARP and GARP do test

for transitivity, and GARP, in addition, allows for indifference. As a result, datasets which

satisfy SARP also satisfy WARP and GARP. Testing whether a given dataset S satisfies WARP(
SARP, GARP

)
is defined as the following decision problem:

Instance: A dataset S.

Question: Does S satisfy WARP?
(

SARP, GARP
)

3. Literature Review and the Arc Coloring Problem

In this section, we review the current methods for testing WARP, SARP and GARP in Sec-

tion 3.1, and we present an arc coloring problem in Section 3.2.
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3.1 The Current State-of-the-art Concerning WARP, SARP and GARP

Varian [2] shows that the question of testing whether a given dataset S satisfies WARP, SARP

or GARP can be answered in polynomial time. We now give an informal sketch of the proce-

dures used. This sketch assumes the dataset S is such that the bundles are pairwise distinct,

i.e., qi 6= q j for each i 6= j. For testing WARP, we compare for each ordered pair (i, j) of

observations with qi 6= q j, the quantities piqi and piq j, on the one hand, and p jq j and p jqi,

on the other hand. Because we perform O(n2) comparisons in total, we infer that testing

WARP can be done in O(n2) time.

For testing SARP, a directed graph G with n vertices is built where each vertex cor-

responds with an observation and there is an arc from vertex i to vertex j if and only if

piqi ≥ piq j. Next, the dataset S satisfies SARP if and only if G is acyclic. Observe that build-

ing the graph can be done in time O(n2), whereas checking whether G is acyclic is done in

time O(n2), using, for example, a topological ordering algorithm. Thus, testing SARP can be

done in O(n2) time.

The current algorithm for testing GARP is based on computing the transitive closure [2,

4] and proceeds as follows. A binary n× n matrix M is defined to summarize the direct

preference relations. The entry Mi j is given by Mi j = 1 if piqi ≥ piq j and Mi j = 0 otherwise.

Next, the transitive closure of M, denoted by MT , is computed. Based on MT , GARP is

decided by checking whether there exists a pair (i, j) satisfying MTi j = 1 and p jq j > p jqi.

The dataset satisfies GARP if and only if such a pair (i, j) does not exist. The bottleneck of

this procedure is the computation of the transitive closure of M. Varian [4] uses the O(n3)-

algorithm proposed by Warshall [5] and mentions the possibility of computing the transitive

closure using matrix multiplication. In the literature, the best-known algorithm for matrix

multiplication on general matrices runs in time O(n2.376) [6].

3.2 An Arc Coloring Problem

We present an arc coloring problem that is a generalization of GARP. We denote by G=(V,A)

a finite directed graph with |V | vertices and |A| arcs. In this Note, we are only interested in
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directed graphs without loops. For two distinct vertices u and v ∈V , we denote by u→ v the

arc from u to v. For a given subset A1 ⊆ A of arcs we denote by G(A1) the subgraph of G

defined by G(A1) = (V,A1). A directed graph G = (V,A) is complete if and only if for each

pair of distinct vertices u and v in V we have u→ v∈ A or v→ u∈ A. A sequence of vertices

[v0,v1, . . . ,v`,v0] is called a cycle of length `+1 in G = (V,A) if and only if vi−1→ vi ∈ A

for i = 1, . . . , ` and v` → v0 ∈ A. A graph is acyclic if it contains no cycle; otherwise it is

cyclic. A vertex-induced subgraph (subsequently called induced subgraph in this Note) is

a subset of vertices of G together with all arcs whose endpoints are both in that subset. A

strongly connected component (SCC) of G is a maximal induced subgraph S = (V (S),A(S)),

where for every pair of vertices u and v ∈ V (S), there is a cycle containing both u and v.

Each directed graph has a unique partition of its vertices into strongly connected compo-

nents [7]. We denote by Gscc = (V,Ascc) the subgraph of G containing only arcs that appear

in a strongly connected component of G. Given a directed graph G = (V,A) and a set C of

colors, an arc coloring of G is a function f : A→ C . We consider the decision problem,

called ARC COLORING, defined as follows.

ARC COLORING

Instance: A complete directed graph G = (V,A), a color set C = {c1,c2, . . . ,ck}, an arc col-

oring f of G and two subsets C1,C2 ⊆ C satisfying C = C1∪C2.

Question: Is the coloring f such that for any cycle in G in which all arcs have colors belong-

ing to C1, the color of all arcs in that cycle also belongs to C2?

Note that C1 and C2 need neither be non empty nor be disjoint. Notice also that a Yes-answer

does not imply C1 ⊆C2; C1 may contain colors associated with arcs that do not form cycles.

For different, but related problems in which an arc coloring is given and certain properties

in a directed graph are studied, we refer to [8, 9].

We now argue that the problem of testing whether a given dataset S satisfies GARP

is a special case of ARC COLORING. Given a dataset S =
{(

pi,qi
)

: i ∈ N
}

we build a

complete directed graph G = (V,A) with n vertices, where each vertex corresponds with an

observation. The color set C = {c1,c2,c3} has three colors and we consider the arc coloring
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function f of G defined as follows: for each u→ v ∈ A

f (u→ v) :=


c1, if puqu > puqv,

c2, if puqu = puqv,

c3, if puqu < puqv.

(1)

Observation 3.1 ARC COLORING with f defined by (1), with C1 = {c1,c2} and C2 =

{c2,c3} is equivalent to GARP.

This observation follows from the fact that, with these choices of C1 and C2, a graph being

a yes-instance of ARC COLORING is equivalent to having the property that each cycle in G

either consists solely of arcs with color c2, or contains an arc colored with color c3.

In the next section, we present an algorithm for solving ARC COLORING that runs in

time O(n2), and we argue that this complexity is the best possible. Observation 3.1 implies

that this algorithm also decides whether a given dataset S satisfies GARP in time O(n2).

4. The Algorithm

Recall that an instance of ARC COLORING is given by a complete directed graph G = (V,A),

a color set C = {c1,c2, . . . ,ck} with k colors, an arc coloring f of G and two subsets C1 and

C2 of C satisfying C = C1∪C2. For ease of exposition, we denote by G(C1) (respectively

G(C2)) the subgraph of G consisting of arcs with colors in C1 and in C2, respectively. For

two subgraphs H and F of G, we write H ⊆ F to indicate that each arc in H is also present

in F . We present an algorithm based on the following result.

Lemma 4.1 An instance of ARC COLORING is a Yes instance if and only if

G(C1)scc ⊆ G(C2).

Proof
(
⇒
)

Suppose that we have a Yes instance of ARC COLORING. We will show that

G(C1)scc ⊆ G(C2). Clearly, if there is no arc in G(C1)scc (each SCC is a singleton) then

G(C1)scc ⊆ G(C2). Let u→ v be an arbitrary arc in G(C1)scc. Then, there exists a unique

SCC of G(C1), let us say B = (V (B),A(B)), such that u→ v ∈ A(B). Because B is a SCC,
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there exists a sequence of arcs vi−1→ vi ∈ A(B), for i = 0, . . . , `, and v`→ v0 ∈ A(B) such

that [v0,v1 . . . ,v`,v0] is a cycle in B. Because we have a Yes instance of ARC COLORING we

infer that the colors of all arcs in the cycle also belong to C2. This completes the proof that

G(C1)scc ⊆ G(C2).(
⇐
)

Now suppose that G(C1)scc⊆G(C2). Consider an arbitrary cycle, [v0,v1 . . . ,vl ,v0]

consisting of arcs using colors from C1. By definition of strongly connected components,

all vertices and arcs of a cycle are contained within a single SCC. All arcs of this cycle are

thus contained in G(C1)scc and because G(C1)scc ⊆ G(C2), we infer that these arcs are also

contained in G(C2). The color of each of these arcs is thus in C2. As a result, this is a Yes

instance of ARC COLORING. This completes the proof of Lemma 4.1. ut

We propose the following algorithm for deciding ARC COLORING. In step 1, the sub-

graphs are built by checking the color of all arcs in the graph G. Depending on whether this

color is in C1,C2 or both, they are added to graphs G(C1),G(C2) or both. The second step

involves computing the strongly connected components of G(C1). We will be basing our

complexity result on Tarjan’s algorithm [10], which achieves a strong worst-case bound and

is relatively simple. This algorithm uses a depth-first search, sequentially labelling all ver-

tices in a graph while following the arcs. When previously labelled nodes are encountered a

cycle exists, and the algorithm works backwards towards a root node of the corresponding

strongly connected component. The main difference between Algorithm 1 and the current

Algorithm 1 An algorithm for deciding ARC COLORING

1: build the subgraphs G(C1) and G(C2)
2: compute G(C1)scc
3: if every arc present in G(C1)scc is also in G(C2) then return Yes

4: else return No

procedure (see [2]) for testing GARP stems from the fact that the former algorithm com-

putes the strongly connected components of a directed graph whereas the latter computes

the transitive closure of a matrix.

Theorem 4.1 Algorithm 1 solves ARC COLORING in time O(|V |2). Moreover, the complex-

ity of Algorithm 1 is best possible.
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Proof The correctness of the algorithm results from Lemma 4.1. Let us now analyze its

complexity. The first step of the algorithm, building the directed graphs G(C1) and G(C2),

can be done in time O(|V |2) because we check the color of each arc. The second step,

computing G(C1)scc, when implemented using Tarjan’s algorithm [10], is completed in time

O(|V |2). Finally, the last step (the if loop) has a running time of O(|V |2). Therefore, the

overall running time of the algorithm is bounded from above by 3×O(|V |2) = O(|V |2).

Furthermore, note that reading the input of ARC COLORING, i.e., learning the color of

each of |V |(|V |−1) arcs, is a necessary step, and takes Ω(|V |2) time. We conclude that

O(|V |2) is the best possible complexity for any algorithm that solves ARC COLORING. ut

Corollary 4.1 GARP can be tested in O(n2) time.

5. Lower Bounds

Of course, a valid question is whether the O(n2) algorithm for GARP (and SARP) can be

sped up even further. This is not ruled out by Theorem 4.1 because GARP (and SARP) are

special cases of ARC COLORING. In this section we will derive a lower bound of Ω(n logn)

on the running time of any algorithm devised for testing either WARP, SARP or GARP. This

is achieved using a reduction from the Element Distinctness problem [11, 12].

Instance: A set x1, x2, . . . , xm of m integers.

Question: Are the integers xi, i = 1, . . . ,m, pairwise distinct?

Using a topological method, Yao [12] proves that any algebraic computation tree that solves

the m-Element Distinctness problem has a lower bound complexity of Ω(m logm). We next

show that this lower bound is valid for WARP, SARP and GARP by arguing that an algorithm

for testing these can also be used for determining whether m integers are pairwise distinct.

Theorem 5.1 Any algorithm for testing either WARP, SARP or GARP on a dataset S with n

observations has a running time bounded from below by Ω(n logn).

Proof Given an instance x1, x2, . . . , xm of the Element Distinctness problem, we build a

dataset S as follows. We assume that there are m goods. To describe the prices and the quan-
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tities of all goods for each observation we make use of a ‘default’ price (quantity) for each

good. The vector of default prices is (x1−0.1 , x2−0.1, . . . , xm−0.1) whereas the vector of

default quantities is (0, 0, . . . , 0). Note that to describe these default vectors, we need O(m)

operations. We consider a dataset S with m observations where an observation is identified

by the index of a good. This index means that for the considered observation, that particular

good, let us say j, has the price of x j + 0.1 (instead of x j − 0.1 as in the default vector)

whereas the quantity of that good is now 1 (instead of 0 in the default quantity vector).

The price (respectively the quantity) of each remaining good is exactly its default price (re-

spectively its default quantity). Note that all the quantities in S are pairwise distinct. Also,

observe that this second part of our reduction requires O(m) operations because given the

default price and quantity vectors, we need exactly O(m) numbers to describe the dataset S.

We now prove that the dataset S satisfies WARP, SARP or GARP if and only if the considered

instance of the Element distinctness problem is a yes instance.

Consider the directed graph built from S (see Section 3.1) and observe that there is an arc

from i to j if and only if piqi≥ piq j; that is xi+0.1≥ x j−0.1, as xi and x j are integers, this is

equivalent to xi≥ x j. As a result, if there is a cycle s→ u→ v. . . z→t→ s then the two-cycles

s→ u→ s, u→ v→ u, . . . , and t→ s→ t are all present. This observation implies that if the

graph does not contain any two-cycle then it does not contain any cycle and vice-versa. As a

result, S satisfies WARP if and only if S satisfies SARP. Another remark is that for all pair of

observations i and j we have piqi = xi+0.1 6= x j−0.1= piq j, because xi and x j are integers.

This means that for any pair of observations i and j we have piqi 6= piq j. These inequalities

imply that S satisfies GARP if and only if S satisfies SARP. Thus, for this particular dataset

S, testing SARP, WARP or GARP is equivalent. Observe now that a two-cycle i→ j→ i is

present in our graph if and only if xi = x j; in other words, there is a two-cycle in our graph

if and only if the two elements xi and x j are identical. It immediately follows that the dataset

S satisfies WARP, SARP and GARP if and only if the considered instance of the Element

Distinctness problem is a yes-instance. This proves that any algorithm for solving WARP,

SARP or GARP can be used to solve the Element Distinctness problem. Therefore, the lower
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bound of Ω(m logm) for solving the Element Distinctness problem is directly applicable to

any algorithm for solving WARP, SARP or GARP.

6. Conclusions

This Note presents an O(n2) algorithm for an arc coloring problem, where n is the number

of vertices in the graph. We show that this is the best possible complexity result for this

problem. We further argue that testing GARP is a special case of this problem, and as a

consequence we improve upon the best known complexity for algorithms for testing GARP.

Furthermore, we show that the element distinctness problem can be seen as a special case

of testing WARP, SARP or GARP. As it has been proven that element distinctness cannot

be tested in less than Ω(n logn) time, this provides a lower bound of the computational

complexity of tests for these axioms.
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