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Determining Process Model Precision and
Generalization with Weighted Artificial Negative

Events
Seppe K.L.M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen and Bart Baesens

Abstract—Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One
common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life
behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance
checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual
executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept
of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing
with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a
novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision
(appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms
are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model
conformance in a visual manner.

Index Terms—process mining, conformance checking, artificial negative events, precision, generalization.
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1 INTRODUCTION

P ROCESS mining encompasses the research area con-
cerned with knowledge discovery from event logs

[1, 2, 3, 4]. One common process mining task pertains
to process conformance checking, where existing process
models are compared with real-life behavior as captured
in event logs so as to measure how well a process model
performs with respect to the actual executions of the pro-
cess at hand [5, 6]. As such, the “goodness” of a process
model is typically assessed over the following four qual-
ity dimensions [7, 8]: fitness (or: recall, sensitivity), indi-
cating the ability of the process model to correctly replay
the observed behavior; precision (or: appropriateness),
i.e. the model’s ability to disallow unwanted behavior;
generalization, which indicates the model’s ability to
avoid overfitting; and finally, simplicity (or: structure,
complexity), stating that simpler process models should
be preferred above more complex ones if they are able to
fit the observed behavior just as well, thus embodying
the principle of Occam’s Razor.

This paper focuses on the precision and generalization
dimensions. We propose a novel conformance checking
approach in order to measure how well a process model
performs with respect to the actual executions of a
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process as recorded in an event log. Our approach offers
the following contributions. First, although the use of
negative events for conformance checking itself was first
proposed in [9], an improved strategy for artificial neg-
ative event induction is applied [10], extending it with a
novel weighting method in order to tackle the problem
of event log completeness, so that obtained conformance
assessments are more robust when dealing with less
complete event logs (i.e. logs containing only a subset
of all possible process execution behavior). Apart from
utilizing an improved and weighted artificial negative
event induction strategy, the complexity of the origi-
nal generation algorithm was significantly reduced by
implementing a suffix tree based generation procedure.
Second, the concept of weighted artificial negative events
is used as the basis for two new conformance checking
metrics: Weighted Behavioral Precision (pwB) and Weighted
Behavioral Generalization (gwB). Most existing literature has
focused on the fitness and precision of process mod-
els, whereas the ability to generalize has been much
more difficult to estimate or describe. Our method is
able to assess both precision and generalization, taking
into account the inherent tradeoff between these two
dimensions in an explicit manner for the evaluation of
process models. Finally, all described algorithms have
been implemented in a number of ProM1 plugins; a Petri
net conformance checking tool was developed to inspect
model quality, conformance and deviations in a visual

1. Similarly to the WEKA toolset for data mining, ProM, a
plugin framework for process mining, is available as free, open
source software for use within the process mining community. See:
http://www.processmining.org.
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manner, using both a heuristic as well as a model-log
alignment based replay technique [11] for the calculation
of the proposed metrics.

The remainder of the paper is structured as follows.
Section 2 provides preliminaries in order to clarify some
basic terms and concepts. Section 3 introduces weighted
artificial negative events, together with an experiment in
order to illustrate the validity of the proposed extension.
In Section 4, the approach towards estimating process
model precision and generalization is put forward; Sec-
tion 5 empirically evaluates the proposed approach and
compares the technique with related methodologies. An
assessment of the scalability of the proposed metrics is
provided in this section as well. The paper is concluded
in Section 6, where remarks regarding future work are
also provided.

2 PRELIMINARIES

This section provides an overview of important concepts
and notations used throughout the paper, together with a
concise description of the basic (non-weighted) artificial
negative event generation procedure.

2.1 Notations and Definitions
We assume readers to be familiar with well-known
concepts used in the context of process mining, such as
event logs and the semantics of Petri net models (see e.g.
[12, 13]), as we will apply Petri nets to represent process
models in this paper. Remark, however, that every pro-
cess model representation with event-granular execution
semantics can be utilized with the described techniques
just as well. During the remainder of this paper, we will
use the following definitions and notations. Let AL with
size |AL| denote the finite set of activities that can occur
in an event log L. Let L be a multiset of traces. The
cardinality of an event log |L| denotes the total number
of traces in the log (including duplicates). |LD| denotes
the distinct cardinality of the event log, i.e. the number
of unique traces. A trace (denoted with a Greek letter)
σ ∈ L is a finite sequence with length |σ| and with
σi ∈ AL for all 0 < i ≤ |σ|, with σi the event (i.e. activity)
at position i in trace σ, so that σ = 〈σ1, σ2, . . . , σ|σ|〉.

Fig. 1 depicts an event log together with a set of
process models expressed as Petri nets to illustrate the
impact of the four quality dimensions, similarly as done
in [8]. Process model perfectModel shows a high quality,
“perfect” model: all traces contained in the event log
can be replayed by the model (fitness), the model does
not allow for extra behavior not found in the event
log (precision), the model does not overfit the event
log (generalization) and is structurally simple and easy
to understand (simplicity). The second process model
singleModel represents only one “single path” from start
to finish and is thus unable to generalize. In addition,
only a small subset of traces can be replayed correctly.
The third model (flowerModel) permits any sequence of
transitions (between starting and ending transitions). As

such, flower models are simple, generalize well and are
able to fit all traces, but score low on precision since a
lot of additional behavioral not found in the event log is
allowed. Next, connectedModel is comparable to a flower
model with regards to the four quality dimensions,
except that here, a fully connected Petri net is used
with an abundance of invisible “routing” transitions in
order to allow any sequence of activities2, making the
model much harder to understand. Finally, stackedModel
shows a model where each trace in the event log is
modeled as a separate path of transitions between the
start and end place (remark the occurrence of duplicate
transitions). Although well performing in terms of fitness
and precision, this model heavily overfits the event log
and is thus not able to generalize. In addition, the model
is not simple to interpret. Although the structural logic
behind a stacked model looks simple enough, finding
out which path should be followed in order to replay
a trace is more difficult, especially during execution
where the future behavior of a process instance is likely
unknown at the current point in time.

2.2 Artificial Negative Events

Our precision and generalization evaluation approach is
based on the use of weighted artificial negative events.
The definition of which expands on earlier work on arti-
ficial negative events, with the initial formulation found
in [9] and subsequent improvements detailed in [10]. A
concise overview on (non-weighted) artificial negative
events is given below so as to provide background before
continuing with our new extension.

Negative events represent information about activities
that were prevented from taking place. Such events are
rarely logged in real-life life logs [8], so that in [9],
a generation algorithm is proposed to induce negative
events in an artificial manner in an event log, which
can be summarized as follows. Negative events record
that at a given position in a trace, a particular event
cannot occur. Thus, at each position in each trace in the
event log, it is examined which negative events can be
induced, by checking whether traces exist in the event
log where the negative event under consideration does
occur and was preceded with a similar execution history.
If this check fails, no counter-evidence for the candidate
negative event could be found in the event log, and the
negative event is inserted in the original trace.

As an example, consider the event log exampleLog from
Fig. 1. After running the artificial negative generation
algorithm, negative events are inserted into the traces,
so that the trace 〈a, c, d, e, k〉 for instance now reads as:〈
(b− , c− , d− , e− , f− , g− , h− , i− , j− , k−) , a , (a− ,
d− , e− , f− , g− , h− , i− , j− , k−) , c , . . . , (a− , b− ,
c− , d− , e− , f− , g− , h− , i− , j−) , k

〉
(a super scripted

2. The fully connected model may appear rather unrealistic. How-
ever, note that Causal Nets [14], another representational form for pro-
cess models, may end up looking like connectedModel after converting
such models to Petri nets.
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#σL Trace σ
113 〈a, c, d, e, k〉
110 〈a, b, i, g, h, j, k〉
74 〈a, b, g, i, h, j, k〉
63 〈a, b, g, h, i, j, k〉
39 〈a, c, d, f, c, d, e, k〉
30 〈a, c, d, f, b, i, g, h, j, k〉
19 〈a, c, d, f, b, g, i, h, j, k〉
16 〈a, c, d, f, b, g, h, i, j, k〉
8 〈a, c, d, f, c, d, f, b, g, h, i, j, k〉
8 〈a, c, d, f, c, d, f, c, d, e, k〉
8 〈a, c, d, f, c, d, f, b, i, g, h, j, k〉
5 〈a, c, d, f, c, d, f, b, g, i, h, j, k〉
3 〈a, c, d, f, c, d, f, c, d, f, b, i, g, h, j, k〉
2 〈a, c, d, f, c, d, f, c, d, f, c, d, e, k〉
2 〈a, c, d, f, c, d, f, c, d, f, b, g, h, i, j, k〉

#L = 500
#DL = 15

Event log exampleLog

Fig. 1. An event log exampleLog together with five process models. The process models illustrate the impact of the
four quality dimensions: fitness, precision, generalization and simplicity.

minus symbol is used to indicate negative events; the
negative events before a positive event are inserted as a
set).

In [9] and [15] respectively, a fitness and precision
metric are proposed in order to evaluate process models
on these two quality dimensions, using event log traces
in which artificially generated negative events have been
induced. In accordance with the construction of a confu-
sion matrix in the field of data mining, sets of true and
false positive and negative events are defined as follows.
Let NE (σi) be a function denoting the set of negative
events which can be induced before σi in a trace σ. Each
trace σ ∈ L is replayed on a process model after inducing
negative events with NE (σi) for each σi ∈ σ. During
trace replay, whenever a positive event is encountered,
a check is performed to determine whether a model
element can be found which can be executed to fire the
corresponding positive event. For Petri nets, we thus
check if a transition mapped to the positive event at
hand is enabled, in which case the event is added to the
set of true positive events; if not, the event is added to
the set of false negatives, followed with a forced firing
of a disabled transition mapped to the positive event.

Negative events on the other hand are treated differently
from positive ones when evaluating a process model.
As negative events denote activities which should be
prevented from being executed by the process model at
hand given a certain context (i.e. a marking for a Petri
net), it is thus checked whether it would be possible to
fire a transition mapped to the negative event at hand,
given the marking obtained so far (if so, the negative
event is a false positive; if not, a true negative), but the
corresponding model element itself is not fired.

3 WEIGHTED ARTIFICIAL NEGATIVE EVENTS

Our precision and generalization evaluation approach is
based on the use of weighted artificial negative events.
Weighted artificial negative events extend the concept
of artificial negative events with a scoring mechanism
in order to make the evaluation of process models more
robust as event logs become less complete.

3.1 Rationale and Formulation

Generating a robust set of negative events boils down
to finding an optimal set of negative examples under
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the counteracting objectives of correctness (prevent gen-
eration of incorrect negative events which would lead
to pessimistic conformance scores) and completeness
(induce “non-trivial” negative events which are based
on constraints imposed by complex structural behavior).
The existence of the tradeoff between these two goals is
due to the completeness assumption made over an event
log, which comes into play for each process mining task.
Under its most strict form, a completeness assumption
requires that the given event log contains all possible
traces that can occur. Without some assumption regard-
ing the completeness of a given event log, it would be
impossible to induce any negative events at all, since
no single candidate negative event can be introduced
in the knowledge that the given log does not cover
all possible cases. Process discovery algorithms make a
similar assumption in order to derive models which are
not overly general.

Assuming a strict completeness assumption as defined
above is often unrealistic in practice. The original version
of the negative event induction algorithm [9, 10] there-
fore allows to configure the completeness assumption
made on an event log by means of a window size param-
eter and takes concurrent and recurrent behavior into
account as well when testing whether a negative event
can be induced by generating additional varying behav-
ior based on existing traces. This approach, however,
comes with two drawbacks. First, even when taking into
account existing techniques to estimate the completeness
of a given event log without an a-priori known process
model [16], which could be applied in order to guide
the artificial negative event generation algorithm, the
problem still remains that negative events would be
either induced or not, without some kind of strength
or confidence associated to their presence based on the
structure contained in the given log. Second, generating
trace variants in order to provide more behavior which
can be used as counter-evidence towards the presence
of a negative event is a time-consuming step, requiring
the discovery of structural properties in the event log
followed with the recursive generation of the variants.

To resolve these issues, we propose a scoring method
which can be used to weight negative events in terms
of their confidence. That is, the higher the weighting
of a negative event, the less likely it is deemed that
this negative event will be refuted by additional traces
as generated by the real underlying, unknown process
and vice versa. The calculation of this weight is done
in the following manner (formalized as a definition for
function NE (σi) in Algorithm 1): we calculate the score
for a negative event with activity a ∈ AL\{σi} (lines
3-4). For each trace υ containing activity a at υj (lines
5-7), the event window before υj is compared with
the event window before σi in the original trace σ in
order to obtain the “unmatching window ratio”, i.e. the
length of the unmatching window divided by the total
window length in σ, working backwards from σi and
υj :

|window |−|matching window |
|window | (lines 8-15). Remark that it is

possible for a single trace υ to contain multiple activities
equal to the negative event under consideration, so
that one trace can give rise to multiple comparisons,
and thus different unmatching window ratios. Remark
also that the current σ ∈ L itself may also contain
the activity for the candidate negative event under
consideration. Finally, to obtain the final weighting for
a negative event, the minimum unmatching window
ratio is taken over all comparisons performed (line
16): Min∀window comparisons(

|window |−|matching window |
|window | ). To

induce all weighted artificial negative events, function
NE (σi) is called for each σi ∈ σ, σ ∈ L.

Algorithm 1 Weighted artificial negative event genera-
tion algorithm.

1) given an activity σi in trace σ ∈ L, event log L with
activities AL

2) function NE (σi) % Induce set of neg. events
3) let N := ∅ % Neg. events induced at this position
4) for each a ∈ AL \ {σi} do
5) let s := 1 % Score for this neg. event
6) for each υ ∈ L do
7) for each υj ∈ υ : υj = a do
8) % Calculate unmatching window ratio:
9) let ws := i− 1 % Window size

10) let mw := 0 % Matching window size
11) let l := 1
12) while l < Min(i, j)− 1 ∧ σi−l = υj−l do
13) let mw := mw + 1
14) let l := l + 1
15) let uwr := ws−mw

ws % Unmatching window
ratio for this comparison

16) let s := Min(s, uwr)
17) let N := N + {a−s } % Neg. event with activity

a and weight s
18) return N

An example can help to clarify the weighting pro-
cedure. Consider the trace σ ∈ L =

〈
a , b , c , x ,

d
〉
; we wish to obtain the unmatching window ratio

for a negative event, say y, inserted before σ4 = x
by comparing the window before σ4 (i.e.:

〈
a , b , c

〉
,

|window | = 3) with the window before υ5 in the trace
υ =

〈
e , a , f , c , y , g

〉
, which is another trace in L that

does contain event y. The window in υ is thus:
〈
e , a ,

f , c
〉
. These two windows (

〈
a , b , c

〉
and

〈
e , a , f , c

〉
)

are now compared as follows. We calculate the matching
window length, starting backwards from both windows.
The first pair of events, σ3 = υ4 = c, are indeed equal, so
the matching window length is incremented with 1. The
next pair, (σ2 = b) 6= (υ3 = f), however, is not equal, so
the comparison is ended at this point, even though the
next pair σ1 = υ2 = a is equal again. The unmatching
window ratio for this result thus amounts to 3−1

3 = 0.66.
The final weighting for this negative event is obtained by
taking the minimum unmatching window ratio over all
similar window comparisons which could be performed.

The weighting for each negative event can be sum-
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marized as follows: the longer a matching prefix can be
found equal to the prefix before the negative event under
consideration, the smaller the unmatching window will
become and a lower weight will be given to the negative
event. A weighting of 0 (minimum) indicates that a trace
was found containing the same full prefix as seen before
the negative event under consideration, indicating that
this behavior in fact did occur and as such cannot be sup-
ported at all as being disallowed (i.e. negative) behavior.
A weighting of 1 (maximum) indicates that there did
not exist any trace where the candidate negative event’s
activity occurred and was preceded by a matching prefix
(even of length 1). Strong evidence then exists that the
behavior represented by the candidate negative event
should indeed be disallowed.

The scalability of the weighted negative artificial event
induction procedure as described above is weak. The
complexity of inducing all weighted artificial negative
events in an event log L with Algorithm 1 can be ex-
pressed as follows: O

(
(|L|×|µ|)×(|AL|)×(|L|×|µ|×|µ|)

)
.

That is, for each trace in the event log L, and for each
position in that trace (|µ| is equal to the length of the
longest trace in the event log L and forms an upper
bound for the number of positions iterated), function
NE (σi) is evaluated to induce the negative events for this
position, which considers each activity in AL as a candi-
date negative event. For each such candidate event, the
traces in the event log are iterated again together with its
activities, and a window comparison is performed when-
ever an activity is encountered which is equal to the cur-
rent candidate negative event (worst case meaning every
position in every trace with a maximum window length
of |µ|). This evaluates to O

(
|L|2 × |µ|3 × |AL|

)
. To deal

with the problem of scalability, we utilize Ukkonen’s
algorithm [17] in order to construct a suffix tree over the
event log in order to quickly perform window lookups.
As an example, consider the trace 〈a, b, c, d, e, f, g〉. A
suffix tree over this trace yields the following retrievable
suffixes: 〈a, b, c, d, e, f, g〉 (the trace itself), 〈b, c, d, e, f, g〉,
〈c, d, e, f, g〉, 〈d, e, f, g〉, 〈e, f, g〉, 〈f, g〉 and 〈g〉. Suppose
now we want to find the matching length for the
window 〈x, c, d〉 (i.e. 2). As it stands, the suffix tree
does not contain an entry point for x and as such,
the matching length is deemed to be 0. One solution
is to iterate over the trace and add the suffixes of
〈a, b, c, d, e, f, g〉, 〈b, c, d, e, f, g〉, . . . , 〈g〉, but the more op-
timal and preferred approach is to construct the suffix
tree over the reversed trace, i.e. 〈g, f, e, d, c, b, a〉 resulting
in the following suffixes: 〈g, f, e, d, c, b, a〉, 〈f, e, d, c, b, a〉,
〈e, d, c, b, a〉, 〈d, c, b, a〉, 〈c, b, a〉, 〈b, a〉 and 〈a〉. To find
the matching window length of 〈x, c, d〉, the window is
traversed backwards so that now, 〈d, c〉 is found with
a length of 2. Observe that this reversal has the effect
of losing the online property of Ukkonen’s algorithm,
but retains linear-time construction complexity. The com-
plexity of the implemented weighted artificial negative
event generation algorithm to generate all weighted ar-
tificial negative events in an event log is thus as follows:

O
(
(|L| × |µ|) + (|L| × |µ|) × (|AL|) × (|µ|)

)
; the suffix

tree construction step is executed once and is linear in
the size of the alphabet (in this case, the length of the
longest trace times the log size is an upper bound) [17].
Next, every trace in the event log is iterated once more
at each position, and each activity is still evaluated as
a candidate negative event. However, the lookup of the
matching window now scales linearly with the length
of the longest trace. As such, the overall complexity
evaluates to O

(
|L| × |µ|2 × |AL|

)
, so that the induction

algorithm now scales linearly with the size of the event
log and the activity alphabet.

This contribution regarding the weighting of negative
events and the application of suffix trees greatly im-
proves the robustness of the negative event induction
to varying levels of event log completeness and the time
needed to generate artificial negative events compared
to existing techniques, especially since the trace variant
generation step can be dropped without a significant loss
of accuracy in the weighting of a negative event, as will
be shown in the following subsection.

3.2 Empirical Validation

To validate our weighted artificial negative event ap-
proach, we apply the proposed generation technique
(Algorithm 1) on a number of process event logs in a
controlled environment for which the reference model
is known beforehand. Having such a reference model
allows us to construct a complete and correct set of
negative events, as defined by the process model itself,
by which the artificially generated set of events can then
be evaluated. Note that, in real-life process mining set-
tings, a true reference model is, naturally, almost always
unavailable, so that these models are only applied in this
section as a means to validate the performance of the
weighted artificial negative event generation procedure.

Twenty-five different event logs, containing a variety
of structural constructs and differing in complexity, have
been utilized. Twenty of these logs were used before by
Alves de Medeiros et al. [18] and have since become
part of a widely used benchmarking set in the field of
process mining. Additionally, another log, complex, was
built, containing complex behavior (e.g. nested loops and
parallelism). Table 1 lists the main characteristics of these
event logs. The overview also includes four real-life logs
which will be used in further sections.

The first validation task investigates whether the
weight given to generated artificial negative events is
able to correctly differentiate between correct and in-
correct negative events as indicated by the reference
model. Our tests indeed show that this is the case
for the logs included in our experiment. Fig. 2 depicts
the distribution of artificial negative event weights for
event log driversLicenseLoop. The distributions for the
other logs are similar and omitted for brevity. For most
candidate negative events, the weighting technique is
able to correctly and unambiguously (i.e. with absolute
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Table 1
Characteristics of event logs and reference models used
in the weighted artificial negative event validation setup.

Event Log |AL| |L| |LD| pa
ra
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du
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es
?

a10skip 12 300 6 � �
a12 14 300 5 �
a5 7 300 13 � � �

a6nfc 8 300 3 � � �
a7 9 300 14 �
a8 10 300 4 �

betaSimplified 13 300 4 � � �
choice 12 300 16 �

driversLicense 9 2 2 �
driversLicenseLoop 11 350 87 � � � � �

herbstFig3p4 12 32 32 � �
herbstFig5p19 8 300 6 � � �
herbstFig6p18 7 300 153 � �
herbstFig6p31 9 300 4 �
herbstFig6p36 12 300 2 � �
herbstFig6p38 7 300 5 � �
herbstFig6p41 16 300 12 �

l2l 6 300 10 � �
l2lOptional 6 300 9 � �

l2lSkip 6 300 8 � �
complex 19 6107 1006 � � �

hospital (real-life) 626 1143 981 – – – – –
incident (real-life) 18 24770 1174 – – – – –
telecom (real-life) 42 17812 1908 – – – – –
ticketing (real-life) 9 276599 3140 – – – – –

confidence) indicate whether the negative event is valid
(weight of 1) or invalid (weight of 0). As logs become
more complex or less complete, more candidate negative
events will occur for which it is impossible (based on
the given log) to unambiguously derive whether these
candidates are valid or not. They are given a weight
between 0 and 1. Our experiment shows that these
weights correspond to our initial requirement, namely
the assignment of a lower weight to incorrect negative
events (as determined by the reference model available
in this controlled setup) and a higher weight to correct
negative events. While it is the case that – for sufficiently
complete logs – the correctness of the multitude of
negative events can be determined in a straightforward
manner based on the given log (i.e. all negative events
with weight equaling 1), it should be noted that the
negative examples which cannot be derived as easily
often reveal the most discerning information, such as
the presence of non-free choice constructs, for example,
where a choice in a process model is bounded by choices
made earlier in the process, and where one thus desires
the induced negative events to reflect this behavior. This
underlines the strength of the weighting mechanism as
described above, as it now becomes possible to consider
all candidate negative events in further analysis tasks,
taking into account the confidence measure given to their
existence.

The second validation task investigates how the
weighting given to negative events evolves in compar-

Fig. 2. Overview of generated artificial negative events
with their calculated weights for event log driversLi-
censeLoop. White colored bars represent correct nega-
tive events as indicated by the reference model, whereas
black coloring indicates incorrect negative events.

ison to the completeness of the given input event log.
Fig. 3 depicts the evolution of negative event weights
versus the completeness of the log (shown again for
driversLicenseLoop). To generate the logs containing all
distinct traces, CPNTools3 was used to simulate complete
event logs (bounded in the number of loops allowed)
from the reference Petri nets. Starting from this complete
log, distinct traces were randomly removed to obtain
smaller sized, less complete logs. More precisely, to
generate the artificial negative events, the input log in
which negative events are induced is kept constant over
all runs, corresponding with the logs listed in Table 1,
whereas the log used to build the suffix tree is modified
for each run and set equal to the differently sized logs.
This ensures that the same negative events are generated
in each run, allowing to better compare the evolution
of their weights. If the differently sized logs themselves
would have been used to induce the negative events
herein, their varying sizes would impact the average
weight for the correct and incorrect negative events, as
an increase in log size could create a large additional
amount of negative events, making it impossible to
track their global weight evolution. This operation was
repeated twenty times. The results again support our
requirement that correct negative events are generally
given a higher weight than incorrect ones, and that
this difference further increases as the input event log
becomes more complete. For some logs, however, the

3. See: http://cpntools.org.
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Fig. 3. Evolution of artificial negative event weights in
comparison with event log completeness for driversLi-
censeLoop, averaged over twenty iterations with the 95%
confidence interval shown above and below the average.
Negative events with low weights are refuted as additional
traces are added (i.e. reach a weight of 0) whereas
negative events with higher weights remain stable.

mean weight obtained for the incorrect negative events
remains high when these logs are very incomplete. This
behavior is somewhat expected and desired, as it could
be argued that the reference model can no longer be
accepted as the ideal solution in terms of quality when
the input event log gets too small. As such, the aim
of assigning a weighting to artificially induced negative
events is not to uncover the true underlying reference
model behind a log, even when the log is very incom-
plete (this would be impossible, in fact), but rather to
weaken the completeness requirement in a robust and
correct manner, so that less complete event logs can still
be used to evaluate more complex process models with-
out negatively impacting the quality assessment. Remark
that all artificial logs listed in Table 1 are sufficiently
complete, to ensure that their corresponding reference
model remains the optimal solution quality-wise.

4 CHECKING PRECISION & GENERALIZATION

Based on the definition of weighted artificial negative
events as explained in the previous section, we now
introduce two new metrics, Weighted Behavioral Precision
(pwB) and Weighted Behavioral Generalization (gwB), to assess
the conformance of process models in accordance with
a given event log.

To calculate the precision and generalization of a
process model in comparison with a given log, all traces
σ ∈ L are replayed on the given process model. For
each such trace, we calculate values according with
the sets of true positive events TP (positive events

which could be replayed without error), false positive
events FP (negative events which could be replayed and
are thus erroneously permitted by the process model),
allowed generalizations AG (generalized events which
could be replayed without error and confirm the model’s
ability to generalize) and disallowed generalizations DG
(generalized events which could not be replayed by the
process model). The concept of allowed and disallowed
generalizations requires some further explanation. Con-
sider the trace σ =

〈
a , b , d , e

〉
from a log L with AL =

{a, b, c, d, e}. We induce artificial negative events, so that
σ− =

〈
(b− , c− , d− , e−) , a , (a− , d− , e−) , b , (a− ,

b− , c− , e−) , d , (a− , b− , c− , d−) , e
〉

(assume the
weight of each negative event equal to 1, i.e. complete
confidence). Consider now the positive event σ2 = b. The
set of negative events preceding this positive event is
NE (σi) = {a−, d−, e−}. By comparing these events with
the full activity alphabet AL, it is possible to deduce
which alternative events should also be permitted by the
process model after the execution of a (i.e. before σ2 = b),
namely AL\{b, a, d, e} = {c} (the activity alphabet minus
the positive event and its preceding negative events).
The process model can then be queried to investigate
whether these deduced generalized events are indeed
accepted or not. We have assumed the negative events
in this example to have a weight of 1; it follows that
the strength of a negative event also indicates something
about the strength of this candidate event towards gener-
alization. In short: negative events with a weight of 1 are
unusable to assess generalization capabilities of a process
model, whereas negative events with a weight of 0 (the
ones not listed in trace σ−) are completely unusable to
assess precision, but fully valid to determine a model’s
capability to generalize. Consequently, negative events
with a weight between the extrema of 0 and 1, impact
both precision and generalization. From now on, we will
thus assume that, when artificial negative events are
generated in traces, all activities in AL are inserted before
each positive event, excluding the positive event itself,
together with their associated weights.

The values for TP , FP , AG and DG are now calcu-
lated as follows between an event log L and a process
model. Each trace σ ∈ L is replayed on the process
model. For every positive event σi ∈ σ, function NE (σi)
is called to induce the set containing all artificial negative
events with their weights at this position. Starting from
the state reached so far in the trace replay (e.g. the
current marking in case of a Petri net), we inspect
whether each negative event n ∈ NE (σi) could be
fired by the process model. If this is indeed the case,
the value of FP is incremented with the weight of
the negative event Weight(n), and the value of AG is
incremented with 1 −Weight(n). If the process model is
unable to parse the negative event, DG is incremented
with 1 −Weight(n). Remark that we only inspect the
possibility of executing each negative event, without
actually firing the corresponding process model ele-
ment. After evaluating the negative events at the current
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position towards checking precision and generalization
conformance, the positive event itself is parsed. When
this event could be fired without error, the value of TP
is increased by 1.

Concerning the implementation of trace replay, a
heuristic procedure has been developed to evaluate
event logs on Petri nets, similar to other approaches
described in literature [6, 9]. However, evaluating traces
containing negative events requires a modified trace
replay procedure, which explores from the marking ob-
tained after firing the last encountered positive event
all invisible transition “paths” in order to determine
if a negative event can be enabled or not, an aspect
which is not taken into account in earlier techniques.
Additionally, some words should be devoted to the
aspect of force firing. As the force firing of transitions
produces additional tokens, it might follow that these
tokens subsequently lead to the undesirable enabling
of negative events. Adriansyah et al. have proposed a
replay technique which avoids force firing altogether
by allowing the process model and log to move in-
dependently (thus resulting in a model-log alignment).
As such, we have added a second replay procedure
to establish a best fitting firing sequence based on the
alignment technique as described in [19, 20], which
evaluates positive events based on whether the event
under consideration could be successfully aligned with
a transition execution in the process model. For nega-
tive events, the same evaluation procedure as before is
utilized (with invisible path exploration), starting from
the marking obtained after the last aligned model-log
move. In our heuristic approach, we skip the evaluation
of the set of negative events following immediately after
a force fired positive event. More details on how to
replay an event log with negative events in a Petri net
are described in a technical report [21].

The precision and generalization metrics are now cal-
culated as:

pwB =
TP

TP + FP
gwB =

AG

AG +DG

Remark that the weight of a negative event
(its impact on precision) was defined as
Min∀window comparisons(

|window |−|matching window |
|window | ), i.e.

the minimal unmatching window ratio over all
window comparisons performed. As such, the
impact of a negative event on generalization equals
1 − Min∀window comparisons(

|window |−|matching window |
|window | )

or, also, Max∀window comparisons(
|matching window |

|window | ) i.e. the
maximal matching window ratio found over all window
comparisons performed.

We have, thus far, presented a unified technique to
calculate precision and generalization based on event
traces with weighted artificial negative events. Note
finally that fitness can still be calculated as in [9] (i.e.
using the true positive and false negative values).

All described techniques and methods are imple-
mented in a series of ProM plugins. For the sake

of brevity, we do not describe in depth further de-
tails regarding the architecture, parameters and struc-
ture of the various objects included in the plu-
gins. Instead, binaries and source code, together
with installation instructions can be retrieved from
http://processmining.be/neconformance.

5 EXPERIMENTAL EVALUATION

This section presents a comparative analysis of our
proposed Weighted Behavioral Precision (pwB) and Weighted
Behavioral Generalization (gwB) metrics in respect to various
other approaches found in the literature.

5.1 Setup
The following techniques are included in the experimen-
tal setup. For precision, the Advanced Behavioral Appro-
priateness (a

′

B) metric is included, as defined by Rozinat
et al. [6]. Although this metric provides a theoretically
sound method in order to evaluate the precision of a
process model, it has been argued that a number of
drawbacks exist, among which an exhaustive calculation
requirement and an implementation which is only ap-
proximate [7]. Second, the ETC Precision metric (etcp) as
proposed by Muñoz-Gama and Carmona [22] evaluates
precision based on the concept of so-called escaping
edges. Adriansyah et al. define a similar precision metric
as ETC Precision (etcp) in [11], based on their model-log
alignment replay technique, denoted here as Alignment
Based Precision (pA). The same authors have also defined
One Align Precision (a1p) and Best Align Precision (ap)
metrics [23, 24], which combine the concept of model-log
alignments with the metrics defined by Muñoz-Gama
and Carmona. Adriansyah et al. also propose a gener-
alization metric in [11] where a Bayesian estimator is
applied in order to derive a model’s ability to generalize,
based on the idea that the likelihood of new, unseen
behavior in a certain state depends on the number of
times this state was encountered and the number of
different decisions (i.e. activities) observed in this state.
This technique has been included as Alignment Based
Generalization (gA). In [6], an Advanced Structural Appro-
priateness (a

′

S) metric is defined to determine whether a
process model overfits an event log. However, this metric
only takes into account certain structural properties of a
process model (redundant invisible transitions and alter-
native duplicate transitions), so that it is not fully able to
evaluate generalization. More precisely, it is argued that
this metric better fits with the fourth quality dimension –
simplicity, as redundant and duplicate transitions mainly
hinder a model’s ability to be well and easily understood
than its ability to parse event traces. As such, we do
not include this entry in our setup. Finally, we compare
our approach with a related technique described by De
Weerdt et al. [15] and Goedertier et al. [9], where the
notion of precision (Behavioral Precision, pB) based on
negative events was initially put forward. Since our tech-
nique extends both the generation procedure of negative
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events and the replay procedure applied, we expect to
gain a performance increase. This earlier approach does
not define a generalization metric. Other, less related,
precision and generalization metrics exist [18, 25, 26, 27],
which either target a process modeling representation
other than Petri nets or are unimplemented in ProM, so
that the set of evaluated conformance metrics is limited
to the entries described above.

The included metrics are compared with our new
conformance checking approach, using both our own
heuristic trace replay method and the replay method
based on model-log alignments. For reasons of com-
pleteness and to confirm the capability of the developed
replay techniques to correctly parse traces (based on
the known reference and example models), we report
Behavioral Recall (rB) in the results as well (also using
both replay methods).

5.2 Fixed Log Sizes
In this comparative analysis experiment, the event log
test set introduced in Section 3 will be utilized. Remark
that most event logs stem from a-priori known reference
models and will be evaluated on the same model. As
such, we expect well-performing conformance checking
techniques to reach high precision and generalization
scores for these combinations. For the real-life logs, no
reference model is known, so that we will evaluate
these logs on discovered Petri net models (using the
HeuristicsMiner [28] discovery algorithm). Finally, we
also incorporate the five models from Fig. 1 in our exper-
imental setup (event log: exampleLog), as this allows us to
evaluate which conformance checking technique is best
able to punish Petri net models of extremely low quality
(low precision for connectedModel and flowerModel, and
low generalization for singleModel and stackedModel).

Table 2 shows the results of our experiment for the
evaluated metrics on all event log-Petri net pairs. For
each result, scores are reported as a number between
0 (worst) and 1 (best). Run times are given between
parenthesis as seconds. Calculations were limited to
24 hours of computational time. Runs exceeding this
amount of time or runs which resulted in a crash or
error are left out. All experiments were executed on
a workstation with 2 processors (2.53Ghz; 4 cores per
processor) and 64GB of memory. The Java heap size
for each individual experiment was set to 4GB. Stack
size was left default, as no single stack overflow error
occurred during the experimentation.

Based on the results listed in Table 2, the following
observations can be made. First, many conformance
checking techniques have difficulties dealing with large
or complex event logs. For many real-life logs, only
the artificial negative event-based conformance checking
techniques and ETC Precision (etcp) were able to always
find a result, the others encountering out-of-time or out-
of-memory errors; note that the hospital log forms a
noteworthy exception – as the artificial negative event-
based conformance checking techniques were not able

to compute a result in time. Next, focusing on precision,
it is found that many metrics unduly punish precision
errors due to input logs being less complete. For all
artificial cases, our Weighted Behavioral Precision metric
(pwB) is able to find a precision value close to 1. For
the real-life logs, the existing metrics return a lower
value than the results obtained by Weighted Behavioral
Precision (pwB). Although the true precision of these mined
models is unknown, the almost-0 score obtained by ETC
Precision (etcp) appears to be overly pessimistic. Concern-
ing the exampleLog models, we observe that for connect-
edModel and flowerModel, the Weighted Behavioral Preci-
sion metric (pwB) correctly punishes the many precision
errors found in these models. Note that some metrics
have issues when traversing the possible invisible paths
in connectedModel, with Behavioral Precision (pB) being
unable to detect any imprecisions at all. Concerning
generalization, the Alignment Based Generalization metric
(gA) returns unexpectedly high values for stackedModel
and singleModel (the score of 0 for driversLicense is also
unexpected and perhaps due to a bug). The Weighted
Behavioral Generalization metric (gwB) is able to punish
each generalization issue, and does so in a more strict
manner. Therefore, for real-life applications, it remains
recommended to first focus on model fitness and pre-
cision, followed by generalization with lower priority.
A final remark should be made concerning the differ-
ences between the two implemented replay techniques
(heuristic and alignment based) when using the Weighted
Behavioral Precision/Generalization metrics (pwB and gwB).
For many logs, we cannot observe a significant difference
in values between the two techniques, although the run
times are higher when using the alignment based replay
procedure. Some interesting differences are observed for
the telecom, incident and the connectedModel and single-
Model logs, where the alignment based replay procedure
is less punishing with regards to precision.

5.3 Varying Log Sizes

This section discusses the scalability (in terms of run
time) and stability (in terms of obtained values) of the
evaluated metrics under varying sizes of event logs (and
thus completeness). To do so, the process model of the
complex log was used as a basis from which twenty sets
of differently sized event logs (ranging between 500 and
10 000 traces) were generated – thus totaling 400 event
logs. We then evaluate each log on the reference model
using the metrics discussed above.

Regarding scalability, it is investigated whether the
run time performance of a metric depends heavily on
the size of the evaluated log. Fig. 4 provides an overview
of the required run times for each evaluated technique
over various log sizes. The run times of most techniques
remain within acceptable bounds. For the Advanced Be-
havioral Appropriateness metric (a

′

B), however, calcula-
tions always exceeded the allotted 24 hours. This is due
to the extensive process model state space exploration
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Fig. 4. Run times (averaged over twenty iterations) of evaluated conformance checking techniques over various log
sizes. The grey bands indicate the 95% confidence intervals below and above the means.

which is performed by these metrics. Also, calculating
Best Align Precision (ap) requires exponentially more time
as the log size is increased. In [23], the authors indeed
acknowledge the long calculation time required towards
calculating this metric. In addition, for logs containing
2 000 or more traces, the metric was not able to obtain
any result due to out-of-memory errors. Concerning the
calculation of the artificial negative event based metrics
(Behavioral Precision pB , Weighted Behavioral Precision pwB
and Weighted Behavioral Generalization gwB), it is important
to note that Fig. 4 includes the time taken to induce
the negative events in the reported run time (note the
exponential time increase for Behavioral Precision). Fig. 5
shows the run time required for the generation of all
artificial negative events separately and illustrates the
scalability benefit gained by our implementation using
suffix trees to induce the weighted artificial negative
events and shows linear complexity in terms of log size,
as was discussed above.

Concerning stability, we evaluate whether the ob-
tained precision and generalization values are sensitive
to various levels of log completeness, as well as inves-
tigate the actual score values themselves. Fig. 6 depicts
an overview of the retrieved metric values. The follow-
ing remarks can be made based on the results. First,
the Weighted Behavioral Precision metric (pwB) improves

slightly upon the non-weighted Behavioral Precision (pB)
and Alignment Based Precision (pA) metrics and that it
highly exceeds the ETC Precision (etcp) and One Align
Precision (a1p) metrics (recall that, since we are dealing
with simulated event logs from a reference model, we
expect precision to be high as the evaluated log reaches
a sufficient size). On the other hand, the Best Align
Precision metric (ap) outperforms our approach, although
this metric comes with high run times and is less able to
deal with larger event logs. We were not able to confirm
the statement made in [23] regarding the similarity in
results between One Align Precision (a1p) and Best Align
Precision (ap), since there exists a wide gap between
the results for these two metrics. Finally, although the
Advanced Behavioral Appropriateness metric (a

′

B) results in
the highest precision value, the result is only approx-
imate (the state space exploration phase was canceled
after 24h). Moreover, this metric only investigates basic
structural relations between model and log activities, so
that this metric as well presents a tendency to be overly
optimistic. Concerning generalization, the Weighted Be-
havioral Generalization metric (gwB) applies the concept
of weighted artificial negative events towards checking
generalization, which takes into account full behavioral
properties found in both process model and event log.
Although the metric remains very stable over various log
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Fig. 5. Run times (averaged over twenty iterations) of
(weighted) artificial negative event procedure over vari-
ous log sizes, illustrating the speed benefit obtained by
our technique compared to the original artificial negative
induction method. The grey bands indicate the 95% con-
fidence intervals below and above the means.

sizes (the slight drop at the beginning is due to the fact
that the activity alphabet is incomplete for the very small
logs), it is noted that this metric estimates generalization
in a very strict manner, especially when compared with
the Alignment Based Generalization metric (ag). However,
as seen in Subsection 5.2, this probabilistic metric also
returns very high values for the experiment models with
a very low generalization capability, i.e. singleModel and
stackedModel, whereas Weighted Behavioral Generalization
(gwB) does punish these models.

6 CONCLUSION & FUTURE WORK

In this paper, a novel conformance checking approach
was put forward to determine how well a process model
performs in terms of precision and generalization. The
validity of the approach was illustrated by evaluating
the proposed artificial negative event weighting method
and by performing an experimental setup to benchmark
our metrics in comparison with related techniques.

Our approach offers the following contributions. First,
we have outlined an improved strategy for artificial
negative event induction, extending it with a weighting
method in order to indicate the confidence given to
a candidate negative event, which helps to deal with
incomplete logs, and implementing it in a manner which
greatly improves the scalability of the technique. Second,
these weighted artificial negative events form the basis
of two novel metrics for precision and generalization.
The introduction of a new generalization metric is an
important contribution, due to the fact that the metric
does not rely on a probabilistic estimator. Third, it was

illustrated how these metrics can be applied on Petri net
models and we have implemented both a heuristic and
log-model alignment based approach in order to perform
trace replay. All described techniques and metrics are
made available in a number of ProM plugins, being
the first implementation to provide a full conformance
checking framework using negative events.

In closing, a number of possible improvements are
put forward as the focus for future work. Although the
Weighted Behavioral Generalization (gwB) metric provides a
solid first step towards determining a process model’s
ability to generalize, it was found that the metric per-
forms a rather strict evaluation. This is mainly due to
the fact that, currently, the usefulness of a negative event
towards generalization is direct inversely related to its
use towards precision. Thus, the same weighted negative
event can be used towards assessing both precision and
generalization. It would be reasonable to constrain this
behavior in future additions. Finally, the current way of
calculating an artificial negative event’s weight ignores
the number of times a matching prefix window was
encountered in the event log. More specifically, a single
trace in the event log with a matching window can
lead to a drop in weighting for an artificial negative
event. In scenarios where noise is assumed to be absent,
this poses no issue (as seen in the experiments). It is
possible to take the trace frequencies into account during
the construction of the suffix tree (thus retaining the
scalability benefits), although modifying the weighting
scheme or metrics to incorporate this information in
a robust manner is not a simple task, as some event
logs might – by nature – be skewed in terms of trace
frequency distribution. Note also that trace frequencies
are already taken into account in the calculation of the
metric values themselves, i.e. a non-conforming trace
with a higher frequency will have a larger impact than
a low frequent one. We plan to investigate this aspect in
future work.
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Fig. 6. Results of evaluated conformance checking techniques (averaged over twenty iterations) over various log sizes.
The grey bands (narrow) indicate the 95% confidence intervals below and above the means.
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