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Abstract. Fixed-Size Least Squares Support Vector Machines (FS-LS-
SVM) is a powerful tool for solving large scale classification and regres-
sion problems. FS-LSSVM solves an over-determined system of M linear
equations by using Nyström approximations on a set of prototype vectors
(PVs) in the primal. This introduces sparsity in the model along with
ability to scale for large datasets. But there exists no formal method
for selection of the right value of M . In this paper, we investigate the
sparsity-error trade-off by introducing a second level of sparsity after per-
forming one iteration of FS-LSSVM. This helps to overcome the problem
of selecting a right number of initial PVs as the final model is highly
sparse and dependent on only a few appropriately selected prototype
vectors (SV) is a subset of the PVs. The first proposed method performs
an iterative approximation of L0-norm which acts as a regularizer. The
second method belongs to the category of threshold methods, where we
set a window and select the SV set from correctly classified PVs closer
and farther from the decision boundaries in the case of classification. For
regression, we obtain the SV set by selecting the PVs with least mini-
mum squared error (mse). Experiments on real world datasets from the
UCI repository illustrate that highly sparse models are obtained without
significant trade-off in error estimations scalable to large scale datasets.

1 Introduction

LSSVM [3] and SVM [4] are state of the art learning algorithms in classification
and regression. The SVMmodel has inherent sparsity whereas the LSSVM model
lacks sparsity. However, previous works like [1],[5],[6] address the problem of
sparsity for LSSVM. One such approach was introduced in [7] and uses a fixed-
size least squares support vector machines. The major benefit which we obtain
from FS-LSSVM is its applicability to large scale datasets. It provides a solution
to the LSSVM problem in the primal space resulting in a parametric model and
sparse representation. The method uses an explicit expression for the feature
map using the Nyström method [8],[9] as proposed in [16]. In [7], the authors
obtain the initial set of prototype vectors (PVs) i.e. M vectors while maximizing
the quadratic Rènyi entropy criterion leading to a sparse representation in the
primal space. The error of FS-LSSVM model approximates to that of LSSVM for
M � N . But this is not the sparsest solution and selecting an initial value of M
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is an existent problem. In [11], they try to overcome this problem by iteratively
building up a set of conjugate vectors of increasing cardinality to approximately
solve the over-determined FS-LSSVM linear system. But if few iterations don’t
suffice to result in a good approximation then the cardinality will be M .

The L0-norm counts the number of non-zero elements of a vector. It results
in very sparse models by returning models of low complexity and acts as a
regularizer. However, obtaining this L0-norm is an NP-hard problem. Several
approximations to it are discussed in [12]. In this paper, we modify the iterative
sparsifying procedure introduced in [13] and used for LSSVM the technique as
shown in [14] and reformulate it for the FS-LSSVM. We apply this formulation
on FS-LSSVM because for large scale datasets like Magic Gamma, Adult and
Slice Localization we are overwhelmed with memory O(N2) and computational
time O(N3) constraints when applying the L0-norm scheme directly on LSSVM
[14] or SVM [13]. The second proposed method performs an iteration of FS-
LSSVM and then based on a user-defined window selects a subset of PVs as
SV. For classification, the selected vectors satisfy the property of being correctly
classified and are either closer or farther from the decision boundary since they
well determine the extent of the classes. But for regression, the SV set comprises
those PVs which have the leastmse and are best-fitted by the regressor. Once the
SV set is determined we re-perform FS-LSSVM resulting in highly sparse models
without significant trade-off in accuracy and scalable to large scale datasets.

The contribution of this work involves providing smaller solutions which use
M ′ < M PVs for FS-LSSVM, obtaining highly sparse models with guarantees
of low complexity (L0-norm of w̃) and overcoming the problem of memory and
computational constraints faced by L0-norm based approaches for LSSVM and
SVM on large scale datasets. Sparseness enables exploiting memory and com-
putationally efficiency, e.g. matrix multiplications and inversions. The solutions
that we propose utilize the best of both FS-LSSVM and sparsity inducing mea-
sures on LSSVM and SVM resulting in highly sparse and scalable models. Table
1 provides a conceptual overview of LSSVM, FS-LSSVM and proposes Reduced
FS-LSSVM along with the notations used in the rest of the paper. Figures 1 and
2 illustrate our proposed approaches on the Ripley and Motorcycle dataset.

Table 1. For Reduced FS-LSSVM, we first perform FS-LSSVM in the Primal. Then a
sparsifying procedure is performed in the Dual of FS-LSSVM as highlighted in the box
in the middle resulting in a reduced SV set. Then FS-LSSVM is re-performed in the
Primal as highlighted by the box on the right. We propose two sparsifying procedures
namely L0 reduced FS-LSSVM and Window reduced FS-LSSVM.

LSSVM FS-LSSVM Reduced FS-LSSVM

SV/Train N/N M/N M ′/M

Primal w w̃ w′

φ(·) ∈ R
Nh Step 1 φ̃(·) ∈ R

M Step 2 φ′(·) ∈ R
M′

Dual α → α̃ → α′

K ∈ R
N×N K̃ ∈ R

M×M K′ ∈ R
M′×M′



Sparse Reductions for Fixed-Size Least Squares Support Vector Machines 163

Fig. 1. Comparison of the best randomization result out of 10 randomizations for the
proposed methods with FS-LSSVM for Ripley Classification data

Fig. 2. Comparison of the best randomization result out of 10 randomizations for the
proposed methods with FS-LSSVM for Motorcycle Regression data
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2 L0 reduced FS-LSSVM

Algorithm 1 gives a brief summary of the FS-LSSVM method. We first propose
an approach using the L0-norm to reduce w̃ and acting as a regularizer in the
objective function. It tries to estimate the optimal subset of PVs leading to sparse
solutions. For our formulation, the objective function is to minimize the error
estimations of these prototype vectors regulated by L0-norm of w̃. We modify the
procedure described in [13], [14] and consider the following generalized primal
problem:

min
α̃,b̃,ẽ

J(α̃, ẽ) =
1

2

∑

j

λj α̃
2
j +

γ

2

∑

i

ẽ2i

s.t.
∑

j

α̃jK̃ij + b̃ = yi − ẽi, i = 1, . . . ,M
(1)

where w̃ ∈ R
M and can be written as w̃ =

∑
j

α̃j φ̃(xj). The regularization term

is now not on ‖ w̃ ‖2 but on ‖ α̃ ‖2. The regularization weights are given by the
prefix λj coefficients. This formulation is similar to [14] with the difference that
it is made applicable here to large scale datasets. These α̃j are coefficients of
linear combination of the features which result in w̃ vector. The set of PVs is
represented as SPV . The ẽi are error estimates and are determined only for the
vectors belonging to the set SPV . Thus, the training set comprises of the vectors
belonging to the set SPV .

Introducing the coefficient β for Lagrangian L one obtains: ∂L/∂α̃j = 0 ⇒
α̃j =

∑
j

βiKij/λj , ∂L/∂b̃ = 0 ⇒ ∑
i

βi = 0, ∂L/∂ẽi = 0 ⇒ βi = γẽi, ∂L/∂βi = 0

⇒ ∑
j

α̃jKij + b̃ = yi− ẽi, ∀i.Combining the conditions ∂L/∂α̃i = 0, ∂L/∂ẽi = 0

and ∂L/∂βi = 0 and after little algebraic manipulation yields
∑
k

βkHik + b̃ = yi,

with H = K̃diag(λ)−1K̃ + IM/γ and K̃ is a kernel matrix. The kernel matrix
K̃ is defined as K̃ij = φ̃(xi)

ᵀφ̃(xj) where xi ∈ SPV , xj ∈ SPV , φ̃(xi) ∈ R
M and

H ∈ R
M×M .

Algorithm 1. Fixed-Size LSSVM method

Data: Dn = {(xi, yi) : xi ∈ R
d, yi ∈ {+1,−1} for classification & yi ∈ R for

regression, i = 1, . . . , N}.
Determine the kernel bandwidth using the multivariate rule-of-thumb [17].
Given the number of PVs, perform prototype vector selection using quadratic
Rènyi entropy criterion.
Determine the tuning parameters σ and γ performing fast v-fold cross
validation as described in [10].
Given the optimal tuning parameters, get FS-LSSVM parameters w̃ & b̃.
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This, together with ∂L/∂b̃ = 0, results in the linear system

[
0 1ᵀk
1k H

] [
b̃
β

]
=

[
0
y

]
(2)

The procedure to obtain sparseness involves iteratively solving the system (2)
for different values of λ and is described in Algorithm 2. Considering the tth

iteration, we can build the matrix Ht = K̃diag(λt)−1K̃ + IM/γ and solve the
system of linear equations to obtain the value of βt and b̃t. From this solution
we get α̃t+1 and most of its element tend to zero, the diag(λt+1)−1 will end up
having many zeros along the diagonal due to the values allocated to λt+1. It was
shown in [13] that as t → ∞, α̃t converges to a stationary point α̃∗ and this
model is guaranteed to be sparse and result in set SV. This iterative sparsifying
procedure converges to a local minimum as the L0-norm problem is NP-hard.
Since this α̃∗ depends on the initial choice of weights, we set them to the FS-
LSSVM solution w̃, so as to avoid ending up in different local minimal solutions.

Algorithm 2. L0 reduced FS-LSSVM method

Data: Solve FS-LSSVM to obtain initial w̃ & b̃
α̃ = w̃(1 : M)
λi ← α̃i, i = 1, . . . ,M
while convergence do

H ← K̃diag(λ)−1K̃ + IM/γ
Solve system (2) to give β and b̃
α̃← diag(λ)−1K̃β
λi ← 1/α̃2

i , i = 1, . . . ,M ′

Result: indices = find(|α̃i| > 0)

The convergence of Algorithm 2 is assumed when the ‖ α̃t − α̃t+1 ‖ /M ′ is
lower than 10−4 or when the number of iterations t exceeds 50. The result of
the approach is the indices of those PVs for which |α̃i| > 10−6. These indices
provide the set of most appropriate prototype vectors (SV). The FS-LSSVM
method (Algorithm 1) is re-perfomed using only this set SV. We are training
only on the set CPV and not on the entire training data because the H matrix
becomes N ×N matrix which cannot in memory for large scale datasets.

The time complexity of the proposed methods is bounded by solving the
linear system of equations (2). An interesting observation is that the H matrix
becomes sparser after each iteration. This is due to the fact that diag(λ)−1 =
diag(α̃2

1, . . . , α̃
2
M ) and most of these α̃i → 0. Thus the H matrix becomes sparser

in each iteration such that after some iterations inverting H matrix is equivalent
to inverting each element of the H matrix. The computation time is dominated
by matrix multiplication to construct the H matrix. The H matrix construction
can be formulated as multiplications of two matrices i.e. P = K̃diag(λ)−1 and
H = PK̃. The P matrix will become sparser as it multiplies the K̃ matrix with
diag(λ)−1. Let M̃ be the number of columns in P matrix with elements 	= 0.
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This number i.e. M̃ can be much less than M . Thus, for the L0 reduced FS-
LSSVM the time required for the sparsifying procedure is given by O(M2M̃)
and the average memory requirement is O(M2).

3 Window Reduced FS-LSSVM

In [5], it was proposed to remove the support vectors with smaller |αi| for the
LSSVMmethod. But this approach doesn’t greatly reduce the number of support
vectors. In [6], the authors proposed to remove support vectors with the larger
yif(xi) as they are farther from decision boundary and easiest to classify. But
these support vectors are important as they determine the true extent of a class.

We propose window based SV selection method for both classification and
regression. For classification, we select the vectors which are correctly classified
and closer and farther from the decision boundary. An initial FS-LSSVM method
determines the ỹ for the PVs. To find the reduced set SV, we first remove the
prototype vectors which were misclassified (ỹ 	= y) as shown in [2]. Then, we sort
the estimated f(xj), ∀j ∈ CorrectPV where CorrectPV is the set of correctly
classified PVs to obtain a sorted vector S. This sorted vector is divided into
two halves one containing the sorted positive estimations (ỹ) corresponding to
positive class and the other containing sorted negative values (ỹ) correspond-
ing to negative class. The points closer to the decision boundary have smaller
positive and smaller negative estimations (|ỹ|) and the points farther from the
decision boundary have the larger positive and larger negative estimations (|ỹ|)
as depicted in Figure 1. So these vectors corresponding to these estimations are
selected. Selecting correctly classified vectors closer to decision boundary pre-
vents over-fitting and selecting vectors farther from the decision boundary helps
to identify the extent of the classes.

For regression, we select the prototype vectors which have least mse after
one iteration of FS-LSSVM. We estimate the squared errors for the PVs and
out of these prototype vectors select those vectors which have the least mse to
form the set SV. They are the most appropriately estimated vectors as they
have the least error and so are most helpful in estimating a generalization of
the regression function. By selection of prototype vectors which have least mse
we prevent selection of outliers as depicted in Figure 2. Finally, a FS-LSSVM
regression is re-performed on this set SV.

The percentage of vectors selected from the initial set of prototype vectors
is determined by the window. We experimented with various window size i.e.
(30, 40, 50) percent of the initial prototype vectors (PVs). For classification, we
selected half of the window from the positive class and the other half from
the negative class. In case the classes are not balanced and number of PVs
in one class is less than half the window size then all the correctly classified
vectors from those PVs are selected. In this case, we observe that the number of
selected prototype vectors (SV) can be less than window size. The methodology
to perform this Window reduced FS-LSSVM is presented in Algorithm 3.

This method result in better generalization error with smaller variance achiev-
ing sparsity. The trade-off with estimated error is not significant and in several
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cases it leads to better results as will be shown in the experimental results. As
we increase the window size the variation in estimated error decreases and es-
timated error also decreases until the median of the estimated error becomes
nearly constant as is depicted in Figure 3.

Fig. 3. Trends in error & SV with increasing window size for Diabetes dataset compared
with the FS-LSSVM method represented here as ‘O’

Algorithm 3. Window reduced FS-LSSVM

Data: Dn = {(xi, yi) : xi ∈ R
d, yi ∈ {+1,−1} for Classification & yi ∈ R for

Regression, i = 1, . . . , N}.
Perform FS-LSSVM using the initial set of PVs of size M on training data.
if Classification then

CorrectPV = Remove misclassified prototype vectors
S = sort(f(xi)) ∀i ∈ CorrectPV ;
A = S(:) > 0; B = S(:) < 0;
begin = windowsize/4;
endA = size(A)− windowsize/4;
endB = size(B)−windowsize/4;
SV = [A[begin endA];B[begin endB]];

if Regression then
Estimate the squared error for the initially selected PVs
SV = Select the PVs with least mean squared error

Re-perform the FS-LSSVM method using the reduced set SV of size M ′ on
training data

4 Computational Complexity and Experimental Results

4.1 Computational Complexity

The computation time of FS-LSSVM method involves:
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– Solving a linear system of size M + 1 where M is the number of prototype
vectors selected initially (PV).

– Calculating the Nyström approximation and eigenvalue decomposition of the
kernel matrix of size M once.

– Forming the matrix product [φ̃(x1), φ̃(x2), . . . , φ̃(xn)]
ᵀ[φ̃(x1), φ̃(x2), . . . ,

φ̃(xn)].

The computation time is O(NM2) where N is dataset size as shown in [10]. We
already presented the computation time for the iterative sparsifying procedure
for L0 reduced FS-LSSVM. For this approach, the computation time O(M3).
So, it doesn’t have an impact on the overall computational complexity as we
will observe from the experimental results. In our experiments, we selected M =

k × √

N� where k ∈ N, the complexity of L0 reduced FS-LSSVM can be re-
written asO(k2N2). We experimented with various values of k and observed that
after certain values of k, the change in estimated error becomes nearly irrelevant.
In our experiments, we choose the value of k corresponding to the first instance
after which the change in error estimations becomes negligible.

For the window based method, we have to run the FS-LSSVM once and
based on window size obtain the set SV which is always less than PVs i.e.
M ′ ≤ M . The time-complexity for re-performing the FS-LSSVM on the set SV
is O(M ′2N) where N is the size of the dataset. The overall time complexity of
the approach is O(M2N) required for Nyström approximation and the average
memory requirement is O(NM).

4.2 Dataset Description

All the datasets on which the experiments were conducted are from UCI bench-
mark repository [15]. For classification, we experimented with Ripley (RIP),
Breast-Cancer (BC), Diabetes (DIB), Spambase (SPAM), Magic Gamma (MGT)
and Adult (ADU). The corresponding dataset size are 250,682,768,4061,19020,
48842 respectively. The corresponding k values for determining the initial num-
ber of prototype vector are 2,6,4,3,3 and 3 respectively. The datasets Motorcycle,
Boston Housing, Concrete and Slice Localization are used for regression whose
size is 111, 506, 1030, 53500 and their k values are 6,5,6 and 3 respectively.

4.3 Experiments

All the experiments are performed on a PC machine with Intel Core i7 CPU
and 8 GB RAM under Matlab 2008a. We use the RBF-kernel for kernel matrix
construction in all cases. As a pre-processing step, all records containing un-
known values are removed from consideration. Input values have been normal-
ized. We compare the performance of our proposed approaches with the normal
FS-LSSVM classifier/regressor, L0 LSSVM [14], SVM and ν-SVM. The last two
methods are implemented in the LIBSVM software with default parameters. All
methods use a cache size of 8 GB. Shrinking is applied in the SVM case. All
comparisons are made on 10 randomizations of the methods.
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The comparison is performed on an out-of-sample test set consisting of 1/3 of
the data. The first 2/3 of the data is reserved for training and cross-validation.
The tuning parameters σ and γ for the proposed FS-LSSVM methods and SVM
methods are obtained by first determining good initial starting values using the
method of coupled simulated annealing (CSA) in [18]. After that a derivative-free
simplex search is performed. This extra step is a fine tuning procedure resulting
in more optimal tuning parameters and better performance.

Table 2 provides a comparison of the mean estimated error ± its deviation,
mean number of selected prototype vectors SV and a comparison of the mean
computation time ± its deviation for 10 randomizations of the proposed ap-
proaches with FS-LSSVM and SVM methods for various classification and re-
gression data sets. Figure 4 represents the estimated error, run time and varia-
tions in number of selected prototype vectors for Adult (ADU) and Slice Local-
ization (SL) datasets respectively.

4.4 Performance Analysis

The proposed approaches i.e L0 reduced FS-LSSVM and Window reduced FS-
LSSVM method introduce more sparsity in comparison to FS-LSSVM and SVM
methods without significant trade-off for classification. For smaller datasets L0

LSSVM produces extremely few support vectors but for datasets like SPAM,
Boston Housing and Concrete it produces more support vectors. For some
datasets like breast-cancer and diabetes, it can be seen from Table 2 that pro-
posed approaches results in better error estimations than other methods with
much smaller set SV. For datasets like SPAM and MGT, the trade-off in error
is not significant considering the reduction in number of PVs (only 78 prototype
vectors required by L0 reduced FS-LSSVM for classifying nearly 20,000 points).
From Figure 4, we observe the performance for Adult dataset. The window
based methods result in lower error estimate using fewer but more appropriate
SV. Thus the idea of selecting correctly classified points closer and farther from
the decision boundary results in better determining the extent of the classes.
These sparse solutions typically lead to better generalization of the classes. The
mean time complexity for different randomizations is nearly the same.

For regression, as we are trying to estimate a continuous function, if we greatly
reduce the PVs to estimate that function, then the estimated error would be
higher. For datasets like boston housing and concrete, the estimated error by
the proposed methods is more than FS-LSSVM method but the amount of spar-
sity introduced is quite significant. These methods result in reduced but more
generalized regressor functions and the variation in the estimated error of win-
dow based approach is lesser as in comparison to L0-norm based method. This is
because in each randomization, the L0-norm reduces to different number of pro-
totype vectors whereas the reduced number of prototype vectors (SV) for window
based method is fixed and is uninfluenced by variations caused by outliers as the
SV have least mse. This can be observed for the Slice Localization dataset in
Figure 4. For this dataset, L0 reduced FS-LSSVM estimates lower error than
window approach. This is because for this dense dataset, the L0-norm based
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Fig. 4. Comparison of performance of proposed approaches with FS-LSSVM method
for Adult & Slice Localization datasets

FS-LSSVM requires more SV (495) than window based method (208, 278, 347)
which signifies more vectors are required for better error estimation. The pro-
posed models are of magnitude (2 − 10)x sparser than the FS-LSSVM method.

5 Conclusion

In this paper, we proposed two sparse reductions to FS-LSSVM namely L0 re-
duced and Window reduced FS-LSSVM. These methods are highly suitable for
mining large scale datasets overcoming the problems faced by L0 LSSVM [14]
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and FS-LSSVM. We developed the L0 reduced FS-LSSVM based on iteratively
sparsifying L0-norm training on the initial set of PVs. We also introduced a Win-
dow reduced FS-LSSVM trying to better determine the underlying structure of
model by selection of more appropriate prototype vectors (SV). The resulting
approaches are compared with normal FS-LSSVM, L0 LSSVM and two kinds of
SVM (C-SVM and ν-SVM from LIBSVM software) with promising performances
and timing results using smaller and sparser models.
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