
1

Predicting Vulnerable Software Components
via Text Mining

Riccardo Scandariato, James Walden, Aram Hovsepyan and Wouter Joosen

F

Abstract—This paper presents an approach based on machine learn-
ing to predict which components of a software application contain
security vulnerabilities. The approach is based on text mining the source
code of the components. Namely, each component is characterized as
a series of terms contained in its source code, with the associated fre-
quencies. These features are used to forecast whether each component
is likely to contain vulnerabilities. In an exploratory validation with 20
Android applications, we discovered that a dependable prediction model
can be built. Such model could be useful to prioritize the validation
activities, e.g., to identify the components needing special scrutiny.

Index Terms—Vulnerabilities, prediction model, machine learning

1 INTRODUCTION

Verification and validation (V&V) techniques like se-
curity testing, code review and formal verification are
becoming effective means to reduce the number of post-
release vulnerabilities in software products [1]. This is an
important achievement, as fixing a bug after the software
has been released can cost much more than resolving
the issue at development time [2]. However, V&V is
not inexpensive. An early estimation assessed that V&V
adds up to 30% to development costs [3]. Indeed, it has
been noted that “it is possible to spend too much on
software quality” [4]. In this respect, being able to predict
where the vulnerabilities are likely to show up in a code
base provides the opportunity to point V&V activities in
the right direction and to manage and optimize cost.

Machine learning techniques have been used as means
to build such prediction models [5], [6]. Prior research
has primarily focused on finding relationships between
vulnerabilities and properties of the source code–like
cyclomatic complexity–or aspects of the code develop-
ment process–like developer activity [5]. In these cases,
a model is built based on the intuition that, for instance,
a more complex software component (or one that is
modified very often) is more likely to contain security
issues. Less obvious intuitions like vulnerable software
being related to the use of certain libraries also turned

• R. Scandariato, A. Hovsepyan and W. Joosen are with IBBT-DistriNet,
KU Leuven, 3001 Leuven, Belgium.

• J Walden is with the Department of Computer Science, Northern Kentucky
University, Highland Heights, KY, 41099.

out to be correct [6]. In the above examples, the choice
of the features that are used as predictors is determined
by the expectations of a knowledgeable individual.

In our work, we investigated a technique that relies
less on a particular underlying axiom. Starting from the
observation that a programming language is a language
after all (like English) and that syntax tokens equate to
words, we set out to analyze the source code by means
of text mining techniques, which are commonplace in
information retrieval. Text mining applied to source code
was introduced by Hata et al. [7] for the prediction
of software defects and is here applied to the domain
of software vulnerabilities. We use the bag-of-words
representation, in which a software component (a Java
source file in this paper) is seen as a series of terms
with associated frequencies. The terms are the features
we use as predictors. Hence, the set of features used
for modeling is not fixed or predetermined but rather
depends on the vocabulary used by the developers. In
this sense, this technique is less constrained or biased
by an underlying theory of what is a-priori expected to
happen.

As its main contribution, this paper explores the value
of a technique backed by text mining and machine
learning and applies the technique to a relevant class of
applications, thus ensuring a potentially high impact in
case of success. The approach presented here is applied
to the problem of predicting software vulnerabilities.
In particular, we analyzed 20 “apps” for the Android
OS platform and followed their evolution over time. In
total, we analyzed 182 releases, spanning a period of two
years.

We applied the above-mentioned text mining tech-
nique in a series of three experiments of increasing
complexity. In the first experiment, we focus on the first
release of each application. We show that it is possible to
build a classifier of good quality that predicts whether
a file is vulnerable using term frequencies. In particular,
we show that the model has good performance in terms
of precision and recall. Informally, precision represents
the probability that the classification of a file as vulnera-
ble is correct, while recall represents the probability that
the model finds a file which is known to be vulnerable.
Therefore, high precision implies that the classification

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

results do not contain noise, while high recall means that
the results are complete, which is often more important
in the field of security. In the second experiment, we
show that such a model is a good predictor of vulner-
abilities for the subsequent versions of the applications.
Clearly, this is the reason for analyzing 182 releases.
In the third experiment, we explore whether prediction
models are specific to one application only or can rather
be applied across projects. The set-up of the first two
experiments is quite common in the related work. The
third set-up is used here for the first time in the domain
of vulnerability prediction. We have used both Naı̈ve
Bayes and Random Forest machine learning techniques
in all three experiments.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of the related work.
In Section 3, we describe the research methodology. In
Section 4, we present the working set of applications.
In Sections 5, 6 and 7, we give the results of the three
experiments. Finally, in Section 8, we discuss the threats
to validity and we conclude in Section 9.

2 RELATED WORK

In this section, we focus primarily on the prediction of
vulnerabilities. Clearly, the work on software defect pre-
diction is also relevant, but is also very broad. Therefore,
it is not exhaustively covered here. For an extensive
survey we refer the interested reader to the work of
Catal et al. [8]. A recent study by Shin and Williams [9]
provides some evidence that certain types of defect pre-
diction models can be used for vulnerability prediction.
Nonetheless, in general, defect prediction models do not
directly transfer to the task of vulnerability prediction.

2.1 Vulnerability prediction models

This category of works focuses on classifying software
entities (components, classes, modules, etc.) as “vulner-
able” or “clean”. In order to compare the results of these
studies with each other and with our paper, we defined
five dimensions along which each related work has been
characterized: the type of prediction features used, the
source of the vulnerability data, the type of prediction
technique, the applications used for the validation, and
the available performance indicators. Table 1 presents
a summary of the findings, while the rest of this sub-
section discusses each approach individually.

Shin and Williams [10], [11] investigated whether com-
plexity metrics may be used to predict the location of
security issues. The authors’ initial results demonstrated
that there is a correlation (albeit weak) between com-
plexity metrics and security problems in the Mozilla
JavaScript Engine. Shin et al. [5] further explored the
relationship of complexity, code churn and developer
activity metrics with vulnerabilities. They used logistic
regression and achieved an average recall of 80% with a
fall-out of 25% (precision was not reported).

Chowdhury and Zulkernine [12] investigated whether
complexity, coupling and cohesion metrics could be
used to predict vulnerabilities. The authors empirically
validated the proposed approach on fifty-two releases
of Mozilla Firefox that were developed over the period
of four years. Their approach is based on decision trees
and achieves a mean accuracy of 72.85%, mean recall of
74.22%, mean fall-out of 28.51%, and mean F1 score of
73.00%.

Neuhaus et al. [6] focused on investigating the corre-
lation between vulnerabilities and include statements
in C. They successfully leveraged machine learning
techniques to predict vulnerabilities in the context of
one snapshot the Mozilla project (including Firefox and
Thunderbird). The authors reported an average precision
of 70% and recall of 45%.

Zimmermann et al. [13] found a weak correlation
between vulnerabilities and various metrics, including
code churn, code complexity, dependencies, and orga-
nizational measures. In the context of Windows Vista,
they built two different predictors. The first was based
on conventional metrics (i.e., code churn measures, code
complexity metrics, dependency measures, code cover-
age measures and organizational measures) and resulted
in a median precision of 66.7% and median recall of 20%.
The second prediction model was based on dependen-
cies between binaries and has resulted in slightly lower
precision (60%), but higher recall (40%).

Gegick et al. [14] investigated whether non-security
failure reports could be used to predict whether a given
component is vulnerable. In the context of a Cisco soft-
ware system, the authors found a 0.4 correlation between
security faults and non-security failures. Using CART
(Classification And Regression Trees), the authors ranked
all components in descending order of their probabilities
of being vulnerable. They demonstrated that 57% of all
vulnerable components are in top 9% of the ranking, but
with a 48% fall-out.

Nguyen and Tran [15] proposed an approach based on
dependency graphs to predict vulnerable components.
The authors validated their approach on two versions of
the Firefox JavaScript Engine (JSE). For JSE version 1.5
the average precision is 68.01%, recall is 59.53%, fall-out
is 8.70% and accuracy is 84.61%. For JSE version 2.0 the
average precision is 60.60%, recall is 60.00%, fall-out is
10.12%, and accuracy is 84.08%.

Smith and Williams [16] investigated the predictive
power of the so-called SQL hotspots, i.e., places con-
taining a large number of SQL statements. The authors
determined that the more SQL hotspots a file contains
per lines of code, the higher the probability that the file
will contain any type of vulnerability. This vulnerability
prediction model scores between 2% and 50% for preci-
sion and 10% and 40% for recall for the WordPress blog
engine, and between 4% and 100% for precision and 9%
and 100% for recall for the WikkaWiki application.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

TABLE 1
Vulnerability prediction models in the related work.

Study Predictors used Vulnerability sources Prediction technique Applications Performance

Shin et al. [5] software metrics, code
churn, developer activity
metrics

MFSA, Red Hat
Bugzilla, Read Hat
package management
system (RPM)

Logistic regression Firefox, Red Hat
Linux Kernel

Firefox — precision: 3%, recall:
79-86%, fall-out: 22-25%; Red Hat
Linux Kernel — precision: 5%, re-
call 80-90%, fall-out: 22-25%

Shin et al. [9] software metrics, code
churn, developer activity
metrics

MFSA Logistic regression Firefox precision: 12%, recall: 83%

Shin et al.
[10], [11]

code complexity metrics MFSA / CVE /
Bugzilla

Logistic regression Firefox JS Engine recall: 3-93%, accuracy: 43-98%,
fall-out: 0-58%

Chowdhury
et al. [12]

complexity, coupling and
cohesion metrics

MFSA / Bugzilla Naı̈ve bayes, C4.5
Decision Tree, Random
Forest, Logistic regression

Firefox C4.5 decision tree — mean preci-
sion: 72%, mean recall: 74%, mean
accuracy: 73%, mean fall-out: 29%

Neuhaus et
al. [6]

imports, function calls MFSA SVM Mozilla precision: 70%, recall: 45%

Zimmermann
et al. [13]

code churn, code
complexity, dependency
measures, code coverage,
organizational metrics,
actual dependencies

NVD Logistic regression, SVM Windows Vista median precision: 60-67%, me-
dian recall: 20-40%

Gegick et al.
[14]

non-security failure
reports

Cisco security reports CART Cisco software
system

recall: 57%, fall-out: 48%

Nguyen et
al. [15]

component dependency
graphs

MFSA / CVE /
Bugzilla

Bayesian network, Naı̈ve
Bayes, Neural networks,
Random forest, SVM

Firefox JS Engine precision: 61-68%, recall: 60-61%,
accuracy: 84-85%, fall-out: 9-10%

Smith et al.
[16]

SQL hotspots Trac issue reports Logistic regression WordPress,
WikkaWiki

Wordpress — average precision:
28%, average recall: 24%;
WikkaWiki — average precision:
62%, average recall: 39%

2.2 Static code analysis and vulnerabilities

In our investigation, we used the Fortify Source Code
Analyzer (SCA) security-oriented static analysis tool to
identify potential vulnerabilities in source code rather
than using the reported issues contained in vulnerability
databases, like the NVD (nvd.nist.gov). Often, the above-
mentioned databases are believed to be reliable sources,
which are unlikely to contain false positives. In fact, the
research community is still debating about what are the
reliable sources to be used as “ground truth” for predic-
tion models. Massacci and Nguyen [17] have empirically
demonstrated for Mozilla Firefox that using different
vulnerability databases can lead to completely different
results. Further, Martin and Christey [18], members of
the CVE (Common Vulnerabilities and Exposures) Edi-
torial Board, have outlined how vulnerability databases
contain several types of bias and are easily misused.

A common criticism to static analysis tools is that
they can produce many false positives [19]. However,
recent studies have shown that vulnerability warnings
from static analysis tools are not so unreliable after all.
Walden and Doyle [20] demonstrated that the warnings
generated by the Fortify SCA tool are strongly correlated
to (and a good proxy of) NVD vulnerabilities. Gegick
et al. [21], [22] also demonstrated a statistically signif-
icant correlation between static analysis warnings and
vulnerabilities. Nagappan and Ball [23] reported similar
correlations in the area of software defect prediction, i.e.,
defect density discovered via static analysis is related
to pre-release defects determined by testing. Edwards
and Chen [24] found a statistically significant correlation
between the change in number and density of static
analysis warnings reported by Fortify SCA with the
change in the rate of publication of NVD vulnerability

entries. Finally, Zheng et al. [25] determined, based on
three large-scale industrial systems, that static analysis
is an effective technique at identifying assignment and
checking faults that have the potential to cause security
vulnerabilities.

2.3 Text mining and vulnerabilities
A few approaches are related to our work as they
leverage text mining techniques and treat all or parts
of the source code as text. However, most work focusses
on defect prediction and not on vulnerability prediction,
which is the topic of our work.

Hata, Mizuno et al. [7], [26] used text features and
spam filtering algorithms to predict defects in software.
In their earlier work [26], the approach was used to
predict defects on the ArgoUML and Eclipse BIRT appli-
cations with precision values of 72%-75% and recall val-
ues of 70%-72%. In later work, they experimented with
five open source Eclipse projects, achieving maximum
precision and recall values of 40% and 80% respectively.

Aversano et al. [27] analyzed the source code of the
changes as text in order to build a predictor to determine
whether the introduced changes are buggy. The authors
determined that the use of K nearest neighbors (kNN)
technique results in a significant trade-off in terms of
precision and recall. The approach was validated using
two open source Java applications, yielding precision
and recall values of 59%-69% and 59%-23% respectively.

Kim et al. [28] have gone even further by using certain
change metadata, complexity metrics, change log metrics
and filenames in addition to the change source code
to build a prediction model. They validated this ap-
proach on 12 open source projects and achieved average
accuracy and average recall values of 78% and 65%
respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

nvd.nist.gov


4

Gruska et al. [29] performed a large scale study by
mining more than 6000 open source Linux projects to ob-
tain sixteen million properties reflecting normal interface
usage. New projects can be checked against these prop-
erties to detect anomalies. The authors validated their
approach based on a sample of 20 projects, where 25%
of the top-ranked anomalies uncovered actual defects.

All the above-mentioned approaches belong to the
domain of defect prediction. In the area of security,
Bosu and Carver [30] have presented some preliminary
work showing how the comments added to the code
by code reviewers can hint to the presence of software
vulnerabilities.

Yamaguchi et al. [31] have mined the source code of
the Linux kernel and of the FFmpeg library. For each C
method, they have extracted so-called API symbols, i.e.,
the identifiers of function calls and the data types used
in the method. Thise info is used to cluster methods by
similarity, so that recurring flaws can be identified. This
work can be seen as a specialization of our approach.

There are also more simple approaches to text mining
than do not leverage on machine learning but, rather,
look for predefined patterns in code. Several static code
analysis employ this technique. For instance, the ITS4
Security Scanner (http://www.cigital.com/its4) searches
the code for simple patterns, most of them being about
APIs in UNIX or Windows-based systems.

A couple of approaches leverage the analysis of bug
reports in order to predict vulnerable software com-
ponents. Unlike our work, these approaches do not
mine the source code but rather the natural language
contained in the bug reports. Gegick et al. [32] designed
an approach that uses text-mining techniques to train
a model to identify which bug reports are security-
relevant. The approach was applied on a large Cisco soft-
ware system and identified 78% of the security-relevant
bug fixes. Bozorgi et al. [33] have proposed a slightly dif-
ferent approach where vulnerability disclosure reports
are mined in order to rank the vulnerabilities in terms
of their exploitability.

3 RESEARCH METHODOLOGY

In order to enable replication of this study, all of the
experimental material is available online, including the
data we used and additional details about the proce-
dures we followed [34].

Our overall research goal is to build a prediction
model in the form of a binary classifier that can predict
whether a software component is likely to be vulnerable.
This type of prediction (i.e., with the granularity of a
component) is standard in the related work, as the goal
is to highlight the areas of the code base that deserve
particular attention and not to identify the code line
where a vulnerability is located. As in other studies
[6], software components are Java files in the scope of
this work. Working at the level of files is a convenient
choice that simplifies the labeling of the samples used

by the learners during the training phase, as the static
code analyzer annotates vulnerability warnings with file
location information.

A software component is defined as vulnerable1 if
one or more vulnerability warnings are reported for
that component by a static code analyzer. Hence, the
dependent variable is defined as follows:

vulnerable =

{
1 if number of warnings > 0
0 otherwise

The independent variables (features) are the terms
present in the source code of the software component,
together with their frequencies. Hence the model looks
like: vulnerable = f(term frequencies)

For each file that is classified by the model as either
vulnerable (1) or clean (0), we compare the prediction
with the observed value, i.e., the real value that is based
on the static analysis. Accordingly, the prediction can be
a true positive (TP, the file is both predicted and observed
as vulnerable), a true negative (TN, the file is clean for
both the predictor and the static code analyzer), a false
positive (FP, the file is predicted as vulnerable albeit is
clean), or a false negative (FN, the file is predicted as clean
but in reality is vulnerable).

3.1 Performance Indicators
Our performance indicators of choice, precision (P) and
recall (R), are commonly used in information retrieval
and widely accepted in the literature. They are defined
as follows:

P = TP/(TP + FP)

R = TP/(TP + FN)

Precision represents the probability that a file classified
as vulnerable is indeed so. High precision is desirable
because it means that the results returned by the clas-
sifier do not contain false alarms and, hence, no time
is wasted on scrutinizing files that are actually clean.
Recall (sometimes called probability of detection, true
positive rate, or sensitivity) represents the probability
that a vulnerable file is successfully classified as such. A
high value of recall is desirable because it means that the
results returned by the classifier are very complete and
the risk of not scrutinizing a vulnerable file is minimal.
The two indicators can be combined in a single value,
called the F score (Fβ):

Fβ = (1 + β2)PR/(β2P+ R)

F1 (i.e., Fβ=1) is the harmonic mean weighting recall and
precision evenly. In the context of security, recall is often
considered to be more important because, in general, it is
preferable that positives are not disregarded. Therefore,
F2 is a more useful indicator as it weights recall higher
than precision.

1. In the literature, researchers also use the term “vulnerability-prone
component”.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cigital.com/its4


5

In order to facilitate the comparison of our results with
the results of other studies, we also report the fall-out (O),
which represents the probability that a false positive is
generated by the model. Therefore, lower values for this
indicators are preferable. This quantity is also known as
the false positive rate and is defined as:

O = FP/(FP + TN)

Our benchmark to judge a high quality model is 80
percent for both precision and recall.

As shown in Section 2 (and Table 1), these values
are never simultaneously achieved in the related work.
The highest precision for vulnerability prediction is 72%
and is achieved by Chowdhury et al. [12] (with a cor-
responding recall of 74%). The highest value for recall
is in the range of 80-90% and is achieved by Shin et al.
[5]. However, this value is obtained at the expense of
precision, which is equal to 5% at best. Therefore, the
chosen benchmark, although being somewhat arbitrary,
is a challenging one.

3.2 Selection of Applications
We decided to focus on vulnerabilities of mobile applica-
tions for the Android platform due to the popularity of
mobile devices in general and of the Android platform
in particular. The high popularity of a platform means
that the potential impact of any vulnerability impacts a
huge number of users. We only considered open source
applications, as we needed application source code for
our analysis. We selected our applications from the F-
Droid repository (f-droid.org) of free and open source
Android applications. Since this study commenced in
early 2012, we selected applications for which a sufficient
number of versions were released between the first day
of 2010 and the last day of 2011.

Our selection criteria for applications included the pro-
gramming language, application size, and the number of
versions released. As different languages use different
keywords and naming conventions, we focused our
text mining analysis on applications written in Java,
which is the standard programming language used for
Android application development. In order to develop
reliable models, we needed applications larger than a
certain minimum size, so we restricted our selections to
applications with more than one thousand lines of Java
source code. As we needed multiple versions of each
application for our analysis, we selected applications that
had at least five versions for which we could download
source code.

Out of over 200 applications present in the F-Droid
repository as of the end of 2011, we found ten applica-
tions that met all of our selection criteria.

In order to increase the scope of our investigation,
we also selected ten applications that come pre-installed
with the Android OS. These are basic utilities that, for
instance, support the users in managing their agenda,
contacts, and pictures. We have considered the versions

that have been released with the OS in the same time
window mentioned before, which corresponds to six
versions spanning from Éclair to Ice Cream Sandwich.

3.3 Dependent Variable
To identify vulnerable files, we used HP FortifySCA2, an
automated static code analysis tool that has specific sup-
port for Android applications written in Java. In general,
professional-grade static analysis tools are rather expen-
sive. When these tools are not available to engineers, the
utility of the prediction model presented in this paper
increases. We used version 5.10.2 of SCA in our analysis,
with Fortify Secure Coding Rules version 2012-1. This
tool scans the source code of an application, including
the Android XML manifest file, and generates a report
describing all the vulnerabilities that were discovered.
Each warning is tied to a location, i.e., the line number
of a file where the vulnerability is present. We use this
information to label files as vulnerable. As mentioned,
a file is considered vulnerable if SCA reported at least
one vulnerability warning associated with that file. We
scanned each version of each application in our working
set with SCA and labeled all files as either vulnerable or
clean, accordingly.

The tool also reports the type of vulnerability, such
as Cross-Site Scripting or SQL Injection, as well as the
severity of the discovered vulnerability, rated on a scale
form 1 (low) to 5 (high). We plan on using these addi-
tional data in future work.

From a computational perspective, scanning an appli-
cation is a time consuming task. As a reference, it took
about 51 minutes to scan the initial version of a large
application (K9Mail) on a PC with a 2.8GHz processor
and 8GB of RAM.

Why SCA? We chose to use SCA because too few
vulnerabilities related to Android applications have been
reported in vulnerability databases at this point. For in-
stance, NVD (nvd.nist.gov) contains only 7 vulnerability
reports which are related to Android apps.

This can be explained in terms of the young age of
the Android platform (or Google not submitting NVD
entries). Much as in the early days of PC security,
attackers in the mobile space are focused on attacking
the operating system and developing malware. As these
avenues of attack become more difficult over time, we
expect attackers to focus on applications as they have in
the PC space.

Furthermore, as illustrated in Section 2, empirical
evidence suggests that vulnerability warnings obtained
from static analysis tools are predictors of and correlate
with actual vulnerabilities in software. Therefore, it is
reasonable to use static analysis warning for the con-
struction of the prediction model. However, manually
validating the vulnerability reports produced by SCA
could be useful. We have done this for two applications

2. http://www8.hp.com/us/en/software-solutions/software.html?
compURI=1338812

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

f-droid.org
nvd.nist.gov
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812


6

used in this study (AnkiDroid and Mustard) and re-
moved the false positives we found. These higher quality
data have been used to support our results. An extensive
manual validation of all applications and versions is an
endeavor that would require the collaboration of the
research community. We incentivize this by making our
data publicly available [34].

3.4 Independent Variables
The starting point in our study is the source code (includ-
ing comments) of a software application that consists of
a number of Java files. Each Java file is tokenized into
a vector of terms (a.k.a. monograms in text processing
terminology) and the frequency of each term in the file
is counted. The frequencies are not normalized to the
length of the file. This procedure has been attempted
in our early experimentation and caused a deterioration
of performance. The routine used for tokenization uses
a set of delimiters that includes white spaces, Java
punctuation characters (such as comma and colon) and
both mathematical and logical operators. The routine is
implemented in R and is available at [34].

Listing 1. Source code in file HelloWorldApp.java
/* The HelloWorldApp class prints "Hello World!" */
class HelloWorldApp {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

For instance, Listing 1 would be tokenized and trans-
formed into the feature vector of Listing 2, where each
monogram is followed by a count.

Listing 2. Feature vector for file HelloWorldApp.java
args: 1, class: 2, Hello: 2, HelloWorldApp: 2,
main: 1, out: 1, println: 1, prints: 1, public: 1,
static: 1, String: 1, System: 1, The: 1, void: 1,
World: 2

From a computational perspective, creating the feature
vectors for one version of a large application (K9Mail)
took an average of 40 seconds (on a PC with a 2.5GHz
processor and 8GB of RAM).

3.5 Machine Learning Techniques
In this paper, we rely on machine learning techniques
for building prediction models. In a classic setup, a set of
feature vectors (from the Java files) and the correspond-
ing labels (either vulnerable or clean) are used as the
training set, i.e., the data set that is used to build the
prediction model. The model is subsequently applied to
a different set of feature vectors called the testing set. The
predicted classifications of the files in the testing set are
then compared with their real labels in order to compute
the performance indicators, as explained earlier.

There are various learning techniques and their per-
formance depends greatly on the characteristics of the
data to be classified. It is normal that some techniques
work better than others. In fact, different techniques

make different assumptions about the data. Therefore,
a technique can be unfit if the data set at hand does
not comply with those assumptions. In machine learn-
ing, this phenomenon is known as the “no free lunch
theorem” [35]. The conditions for which a method is
expected to work are not theoretically understood in the
machine learning community. However, some heuristics
exist. For instance, for small data sets (e.g., under 1000
instances in our case) methods that have strong bias and
small variance tend to work better3.

In this study, we have initially explored five, well-
known learning techniques: Decision Trees, k-Nearest
Neighbor, Naı̈ve Bayes, Random Forest and Support Vec-
tor Machine (SVM). These techniques are rather common
in the context of vulnerability prediction, as illustrated
in Table 1. At the beginning of our experiments, we
discovered that the best results are obtained with Naı̈ve
Bayes and Random Forest. Therefore, we have focused
our efforts on these two techniques and this paper
elaborates on them only. Incidentally, we have chosen
two techniques (and not one) because we do not want
our conclusions to be biased by the choice of a particular
learner. Note that other techniques might also work well,
provided that the necessary tuning of the parameters is
performed. However, we decided to focus on simpler
learners that require fewer configurations, as advised
by Domingos [36]. Yet, we are not promoting some
algorithms over others. Plainly, this paper offers two
defaults that are likely to work out of the box.

The experiments are conducted with the Weka tool
and the machine learning algorithms that are imple-
mented in its default library. We used the default pa-
rameters of the algorithms, with the exception of the
Random Forest algorithm, which is configured to gen-
erate 100 random trees (instead of 10). From a compu-
tational perspective, the Random Forest algorithm is the
most expensive. For reference, we report that it takes
38 seconds to perform the cross-validation on a large
application (K9Mail). These numbers were obtained on
a PC with a 2.4GHz processor and 8GB of RAM.

We found that the discretization of the features sig-
nificantly improves the performance of the prediction
models. Discretization refers to the process of transform-
ing a numeric range into nominal classes. For instance,
instead of using the number of occurrences of the term
‘if’ in each file, the discretization algorithm could map
the feature to two bins: whether or not the term occurs
more than 5 times. The number of bins and the cut-
offs depend on both the discretization algorithm and
the distribution of the values. In our work, we used
the the method proposed by Kononenko [37]. Only a
small fraction of the terms (1.5% on average) survive
the discretization process. Indeed, many features are
mapped to one bin only (‘All values’) and therefore

3. Bias is related to the expressivity of the model. E.g., a linear
model has stronger bias that a polynomial model. Variance refers to
the tendency to generate a completely different model when the data
set is perturbed slightly.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

get effectively eliminated as they lost any discriminative
power.

3.6 Research Questions and Experiments
In this study, we investigated three research questions.

RQ1: Can a prediction model be built? First of all, we
were interested in finding out whether it is feasible at all
to build a vulnerability prediction model of good quality
starting from the features described earlier in Section 3.4.

To answer this question, in the first experiment we
have focused on one version only (the first one in our
data set) of each application. For each application we ran
a stratified 10-fold cross-validation experiment, with the
support provided by the Weka tool. The tool randomly
divides the files in 10 subsets (folds), with the constraint
that the proportion between vulnerable and clean files is
the same in all folds. Iteratively, each fold is retained as
the testing set and the other folds are used as the training
set to build a model, with both Naı̈ve Bayes and Random
Forest. As a way of averaging the 10 models that have
been built, the tool computes the performance indicators
over the collection of the predictions made over the 10
testing folds.

RQ2: Can predictions in the future be made? Moving on,
we were interested in knowing whether a prediction
model built for one version can predict the vulnerable
files in the subsequent versions of the same application,
with good performance according to our benchmark.
If so, we also wanted to understand at what point in
the future the model loses some of its prediction power
(i.e., performance loss of 10% in terms of F2 score) and
training a fresh model might become desirable.

To answer this question, in the second experiment
we analyzed all versions. For each application, we used
all files in the first version to train a prediction model
(with both learners) and we applied the model to predict
the vulnerability of the files of all subsequent versions.
Therefore, each subsequent version represents a testing
set, on which the performance indicators are computed.
We do not look at the relationships between the versions
(e.g., how the structure of the code base has evolved).
These additional features related to the code evolution
might be interesting for future work but are out of scope
in this study.

RQ3: Can cross-project predictions be made? Finally, we
wanted to investigate whether it is possible to apply
with good performance the prediction model of one
application to other applications. This question relates
to the existence of a generalized model that can predict
vulnerable components in multiple applications.

To answer this question, we considered the first ver-
sion of each application. We trained a prediction model
using all the files in (the first version of) one application.
The model has been then tested on (the first version
of) the other 19 applications and for each test we have
computed the performance indicators. This procedure
has been repeated for all applications, leading to 20
models, each tested 19 times.

TABLE 2
Working set of applications.

Application Category Downloads Versions

F-
D

ro
id

AnkiDroid education 100k - 500k 8
BoardGameGeek books 10k - 50k 8
Connectbot communication 1M - 5M 12
CoolReader books 1M - 5M 13
Crosswords brain & puzzle 5k - 10k 17
FBReader books 1M - 5M 14
K9Mail communication 1M - 5M 19
KeePassAndroid tools 100k - 500k 13
MileageTracker finance 100k - 500k 6
Mustard social 10k - 50k 12

O
S Browser, Calendar, Camera, 6

Contacts, DeskClock, Dialer, Email,
Gallery2, Mms, QuickSearchBox

4 DESCRIPTIVE STATISTICS

Table 2 summarizes the 20 applications in our working
set. The apps are organized in two groups and listed
in alphabetical order. The first group contains the apps
we downloaded from F-Droid. The second group refers
to the apps that are included in the Android OS. The
table also reports the type of the applications and their
popularity in terms of number of downloads. Clearly,
this information is not relevant for the OS apps. The
working set contains a variety of application types rang-
ing from utilities to games. All applications are quite
popular, with five applications passing the threshold of
one million downloads. The last column in the table
reports the number of versions used in this study. In
some cases, like K9Mail, the development has been
very active and releases have been pushed out almost
every month in the period of time we considered. Other
applications, however, have slower release cycles and we
had to settle for a smaller number of versions. In the case
of the OS apps, the number of versions is dictated by
the release cycle that Google decided for the operating
system itself. The detailed list of versions used in this
study is available online [34].

In this section, we describe the applications from the
perspective of their number of lines and the positives
ratio. Further information about other characteristics of
the applications, including the number of files and the
total number of vulnerable files, is available online [34].

Figure 1 characterizes the size of the applications (as
lines of text) across the versions. In their initial version,
which we call v0, the applications range from 1,700 lines
(MileageTracker) to 90,500 (Gallery2). All applications in
the F-Droid group (left-hand side of Figure 1) increased
in size throughout the various releases. Over time, Con-
nectbot has grown only marginally (less than 10%),
KeePassAndroid, Mustard and FBReader have grown
moderately (between 20% and 50%), while the size of
the remaining applications have increased substantially
(between 50% and 200%). The steeper growth curve is
represented by CoolReader, K9Mail and AnkiDroid. In
particular, the latter grows almost exponentially. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

Fig. 1. Application size throughout the versions.

Fig. 2. Ratio of vulnerable files throughout the versions.

apps in the OS group (right-hand side of Figure 1) are
rather stable in size, with the exceptions of Browser and
Calendar, which grow, and Gallery2, which gets reduced
significantly.

SCA reported a total of 116,286 vulnerabilities for
all 182 versions. The types of vulnerabilities reported
by SCA (and the counts) are provided online [34]. As
some vulnerabilities remain unchanged from version
to version of a particular application, not all of these
reports are unique. In fact, there are only 22,776 unique
vulnerabilities in the aggregate code base. As shown in
Figure 2, most applications are barely improving over
time, as their ratio of vulnerable files is approximately
constant. Once more, AnkiDroid stands out for its erratic
trend. CoolReader’s ratio of vulnerable files worsens
over time.

K9Mail, the largest application, had the largest num-
ber of vulnerabilities, ranging from 1,011 in version v12 to
2,922 in version v8. No other application contained over

1,000 vulnerabilities. The application with the smallest
number of vulnerabilities was MileageTracker, ranging
from 7 in its initial version to 17 in later versions.

5 EXPERIMENT 1: CROSS-VALIDATION

In the first experiment, we validated the use of text
mining of source code to predict vulnerable software
components. We built models with both Naı̈ve Bayes
and Random Forest machine learning techniques based
on the first version (v0) of each application. In order to
avoid over-fitting effects, we resorted to stratified 10-fold
cross-validation, which is a well-known technique and
has been explained in Section 3.6.

5.1 Results

Table 3 summarizes the results for precision and recall
(our key performance indicators) obtained in Experi-
ment 1 for both Naı̈ve Bayes and Random Forest. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

TABLE 3
Experiment 1: Average performance across 10 folds. In
the majority of the apps at least one model passes the

benchmark.

Application Naı̈ve Bayes Random Forest
P R O P R O

AnkiDroid 0.92 0.92 0.07 0.85 0.92 0.13
BoardGameGeek 1.00 0.86 0.00 1.00 0.86 0.00
ConnectBot 1.00 0.81 0.00 1.00 0.86 0.00
CoolReader 1.00 0.91 0.00 1.00 0.91 0.00
Crosswords 0.87 0.87 0.10 0.87 0.87 0.10
FBReader 0.67 0.66 0.15 0.87 0.58 0.04
K9Mail 0.95 0.75 0.05 0.91 0.81 0.09
KeePassAndroid 0.85 0.77 0.09 0.88 0.80 0.07
MileageTracker 0.75 1.00 0.14 0.75 1.00 0.14
Mustard 0.97 0.86 0.03 0.93 0.86 0.09

Browser 0.92 0.92 0.05 0.92 0.92 0.05
Calendar 1.00 0.82 0.00 1.00 0.82 0.00
Camera 0.92 0.77 0.07 0.92 0.77 0.07
Contacts 0.91 0.77 0.07 0.91 0.77 0.07
DeskClock 0.75 0.75 0.17 0.71 0.63 0.17
Dialer 0.75 0.71 0.10 0.91 0.59 0.03
Email 0.94 0.72 0.06 0.93 0.81 0.08
Gallery2 0.69 0.62 0.13 0.88 0.55 0.04
Mms 0.86 0.70 0.07 0.94 0.59 0.02
QuickSearchBox 0.62 0.84 0.14 0.83 0.48 0.03

fall-out (i.e., false positive rate) is reported as well in the
table. The table contains the average values obtained by
each model across the 10 folds. A pair of cells colored
in gray means that the corresponding model passed
the performance benchmark stated in Section 3, i.e., the
precision and the recall are above or equal to 80 percent.

We report that in 11 out of 20 applications at least
one of the two models achieved excellent results, ac-
cording to our benchmark. In eight cases, both mod-
els demonstrated excellent results. If we consider the
models that achieved at least 75% of recall (which is
often considered a ‘good enough’ value in the litera-
ture), we observe that Naı̈ve Bayes reached that goal
in fifteen applications and Random forest in fourteen.
In summary, concerning RQ1, this exploratory exper-
iment shows that the presented prediction technique
can be used to build high quality prediction models
for Android applications.

5.2 The Role of File Size
A skeptical reader might think that we are confusing
causes and symptoms [38]. In fact, the size of the files
could be the actual characteristic picked up by the learn-
ers, as a larger file will contain more terms with higher
frequency and is also more likely to contain coding bugs
that lead to security vulnerabilities. For instance, let us
consider CoolReader, which is our best performer in
Experiment 1 (Naı̈ve Bayes). Indeed, in v0, the average
size of the vulnerable files is 2.8 times larger than clean
files and the location shift is statistically significant (two-
sided Wilcoxon test, p-value=0.0088).

The term-based features do retain information related
to the size (and complexity) of the source code and

TABLE 4
Experiment 1 was repeated on two applications with a
manually validated vulnerability data set. The numbers

are in line with the previous results.

App Naı̈ve Bayes Random Forest
P R P R

AnkiDroid Fortify SCA 0.92 0.92 0.85 0.92
Validated 1.00 1.00 1.00 1.00

Mustard Fortify SCA 0.97 0.86 0.93 0.86
Validated 1.00 0.86 1.00 0.79

are not independent from the above-mentioned char-
acteristics. Nevertheless, the model evaluated in this
study performs better than one based, for instance, on
size metrics. To illustrate this point, we built a Naı̈ve
Bayes model based on file size of the type vulnerable =
f(lines of text), and found that the performance of this
model is much lower than the performance values for
the bag-of-words model shown in Table 3. Precision is
25 percentage points lower and recall goes down by
37 percentage points. Therefore, our technique is much
more effective at predicting vulnerable components than
file size alone.

5.3 On the False Positives

Although in the related work section we highlighted
how vulnerability databases are far from being perfect
as sources of reliable vulnerability data, a skeptical
reader might be still not entirely convinced by our use
of static analysis to identify vulnerabilities. Therefore,
we manually analyzed the Fortify SCA reports for two
applications: AnkiDroid and Mustard. We analyzed the
initial versions (v0) of the above-mentioned applications.
Both applications performed very well in the cross-
validation experiment, with F2 values above 90%. Size-
wise, AnkiDroid and Mustard are similar (see Figure
1). AnkiDroid, however, has a higher positive rate, as
shown in Figure 2.

For these applications, each vulnerability warning
generated by Fortify SCA has been manually checked
by a security expert (i.e., the code has been inspected for
the presence of a real vulnerability) and false positives
have been removed. The manual checking took two
working days. For AnkiDroid, 10 out of 12 vulnerability
warnings were false positives. For Mustard, 14 out of 43
warnings have been flagged as false positives. Table 4
compares the prediction results we have obtained with
the manually inspected data to the results presented
previously in Section 5.

Removing the false positives and, hence, having more
reliable data does not impact the essence of our results,
at least in the two cases we have analyzed. Actually, the
performance is generally better (in particular for Naı̈ve
Bayes) when the false positives are removed. From these
results, we could hypothesize that the performance in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

Table 3 is to be considered as a lower bound to what
could be possibly achieved.

5.4 An Experiment with Documented Vulnerabilities

To further convince the above-mentioned skeptical
reader, we applied the text mining technique to another
application that does have a record of documented vul-
nerabilities. Therefore, this particular (cross-validation)
experiment is not affected by false positives.

We selected an application that has similar charac-
teristics (e.g., size and positive rate) compared to the
Android apps we have analyzed so far. This way, the
results shown in this sub-section are directly comparable
to those shown earlier. We had to draw from a different
application domain because, as we mentioned, there
are no repositories of vulnerabilities for Android apps.
We selected the Drupal content management system
(drupal.org), which is written in PHP. According to the
latest statistics [39], Drupal is one of the top 3 content
management systems most used by the top 10 million
web sites listed by Alexa (alexa.com). We considered ver-
sion 6.0 of the software, which was released in February
2008. This version is more than five years old and, hence,
the set of discovered vulnerabilities can be considered to
be rather complete, i.e, there is no much influence due
to false negatives.

We have analyzed all PHP files and extracted the
term frequencies as described in Section 3.4. Clearly,
the tokenization routine has been adapted to deal with
the PHP syntax rules. We collected the vulnerabilities
from the Drupal Security Advisories database (drupal.
org/security). Each advisory is identified by a unique
identifier and refers to the versions affected by the
security bug. We retained a total of 17 advisories that
impacted version 6 of Drupal and were part of the server
side PHP code of the application. To identify the files
that contained the vulnerabilities, we examined diffs of
the source code between two versions of the application,
one in which the vulnerability was present and one in
which the vulnerability was fixed.

Drupal version 6.0 contains 157 PHP files in total and
this size is comparable that of some larger apps analyzed
previously, like FBReader, K9Mail or Mms. In total, there
are about 3,100 terms, which is similar to the majority of
the F-Droid apps (Android OS apps are slightly richer in
this respect). The positive rate is 36%, which is similar
to many apps analyzed previously, like KeePassAndroid,
MilageTracker, and Gallery2.

We ran a 10-fold cross-validation experiment using
both the Naı̈ve Bayes technique and the Random For-
est technique (configured with 100 random trees as
previously). Especially in the case of Random Forest,
we obtained good performance indicators. For Naı̈ve
Bayes, recall is 73 percent on average and precision is 55
percent. For Random Forest, recall is 82 percent. Hence,
the most important indicator is above the threshold.
Precision is 59 percent. Although precision is below par,

we remark that the file inspection reduction ratio is 75
percent on average. This means that to achieve an 82
percent recall it is necessary to inspect 75 percent less
files when using the prediction model compared to a
random selection.

In summary, the text mining technique works convinc-
ingly in the case analyzed in this experiment, which is
based on vulnerabilities discovered by both the security
researchers worldwide and the security team of Drupal.

6 EXPERIMENT 2: PREDICTION IN FUTURE
RELEASES

In the previous experiment, we demonstrated that our
approach can deliver a dependable prediction model. In
the second experiment, we investigated our approach
further by attempting to predict vulnerabilities in future
releases. For each application, we built a prediction
model based on the initial version (using all source files
available in v0) and predicted all subsequent versions
of that application (v1 and following). This setup is
similar to the approach taken, for instance, by Shin et
al. [5] and Chowdhury et al. [12]. We were interested
not only in determining if good forward predictions are
possible, but also how far in the future a prediction
model would work. We set the threshold for model
performance deterioration at 10% of the F2 score. Thus,
whenever the performance drops below the threshold
we would ideally need to retrain the prediction model
in order to have a dependable predictor again.

Figure 3 presents the performance obtained with the
Random Forest model for both precision (left) and recall
(right). In the figure, the 80% threshold is marked by a
dashed line. To avoid clutter, the detailed results for the
Naı̈ve Bayes classifier are not depicted here. However,
a summary of the results obtained with Naı̈ve Bayes
is shown in Table 5, as discussed later. Overall, the
Random Forest technique achieves better performance
results compared to Naı̈ve Bayes. In particular, many
more applications stay consistently above the threshold
over time as far as recall is concerned. We remind
the reader that recall is actually more important than
precision in the field of security. Nevertheless, precision
also appears to be better in the case of Random Forest, as
the applications tend to stand higher above the threshold
than in the Naı̈ve Bayes case. Therefore, predictions
in the future from the Random Forest model can be
trusted a bit more (lower probability that a file reported
as vulnerable is actually clean) and are more inclusive
(lower probability that vulnerable files go unnoticed).

Concerning the Random Forest technique, we have
not bounded the depth of the trees during the training
phase. This is the default configuration in Weka. The
average depth of the 1000 trees generated by the learning
algorithm (100 trees per each application) is 7.5, with
standard deviation of 5. The leaves are pure, i.e., all
samples at one leaf belong to the same class. In the
case of a Random Forest, pure leaves are not a sign of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

drupal.org
alexa.com
drupal.org/security
drupal.org/security


11

Fig. 3. Experiment 2: Precision and recall in future predictions with Random Forest. Performance is very satisfactory.

over-fitting, as this phenomenon is mitigated by having
multiple trees and by bootstrapping the samples for each
(random) tree.

For both Naı̈ve Bayes and Random Forest, Table 5
summarizes the average performance indicators scored
by each model (i.e., application) in the predictions over
the future. A pair of cells colored in (dark) gray means
that the corresponding model passed the performance
benchmark stated in Section 3. The performance is very
satisfactory for Random Forest. Not only the majority
of the cases pass the benchmark, but also several other
cases are very close to the threshold, like FBReader,
Calendar, Contacts, DeskClock and QuickSearchBox (see
light gray cells). Three applications, i.e., MileageTracker,
BoardGameGeek and Browser, show very low recall. The
low values for MileageTracker are most likely due to
the extremely small size of the training set (only ten
files). For BoardGameGeek, we noticed that the code on
which the prediction model is built has been completely
re-factored in v2. This is why the precision and recall
values are very high at v1 but drop afterward. The case of

Browser is less clear, although we suspect that a sudden
rise in the vulnerabilities of version v4 might have had
an influence on the performance drop.

Intuition would say that the models perform well due
to over-fitting, as a number of files that are used for
testing were also present during training with the initial
version. Reality, however, is different. First, the applica-
tions grow significantly in size as shown previously in
Figure 1 (at least for the F-Droid group). Sometimes, the
number of files doubles, which means that many files
were unknown at training time. Second, files that were
present (and clean) at training time become vulnerable
in future versions, and vice versa. Therefore, the results
obtained in this experiment are not obvious.

In general, the performance of both classifiers is rather
stable over time, with the exception of the two applica-
tions mentioned earlier. However, performance declines
for some applications over time. This can be observed
in Table 6. For both techniques, the table reports the
number of months that it takes for a model to lose 10%
of its predictive performance, as measured by the F2

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

TABLE 5
Experiment 2: In the majority of the cases, the average

performance in future prediction is above the benchmark
with Random Forest. Instead, the performance of Naı̈ve

Bayes is inferior.

Application Naı̈ve Bayes Random Forest
P R O P R O

AnkiDroid 0.85 0.82 0.23 0.91 0.80 0.13
BoardGameGeek 0.51 0.32 0.08 0.87 0.24 0.01
ConnectBot 0.99 0.92 0.01 0.95 0.98 0.04
CoolReader 1.00 0.77 0.00 0.89 0.85 0.10
Crosswords 0.90 0.76 0.07 0.95 0.84 0.04
FBReader 0.66 0.74 0.16 0.89 0.78 0.04
K9Mail 0.87 0.73 0.10 0.85 0.91 0.15
KeePassAndroid 0.85 0.69 0.08 1.00 0.86 0.00
MileageTracker 0.59 0.43 0.18 0.59 0.43 0.18
Mustard 0.83 0.86 0.15 0.81 0.93 0.19

Browser 0.88 0.57 0.04 0.90 0.59 0.03
Calendar 0.77 0.75 0.17 0.79 0.81 0.16
Camera 0.72 0.49 0.07 0.70 0.59 0.09
Contacts 0.76 0.70 0.11 0.75 0.81 0.13
DeskClock 0.79 0.68 0.16 0.81 0.78 0.16
Dialer 0.72 0.70 0.11 0.98 1.00 0.01
Email 0.83 0.71 0.16 0.83 0.91 0.21
Gallery2 0.70 0.64 0.12 0.92 0.87 0.03
Mms 0.80 0.73 0.11 0.93 0.91 0.04
QuickSearchBox 0.62 0.80 0.14 0.96 0.79 0.01

TABLE 6
Experiment 2: Need for re-training. In most cases, retrain

is never needed over the two years period.

Retrain after (months)
Application Naı̈ve Bayes Random Forest

AnkiDroid 21 * 21 *
BoardGameGeek 9 9
ConnectBot 22 * 22 *
CoolReader 10 10
Crosswords 2 2
FBReader 14 * 3
K9Mail 22 * 22 *
KeePassAndroid 18 * 18 *
MileageTracker 4 4
Mustard 21 * 21 *
Average 14 months 13 months

Browser 13 13
Calendar 23 * 23 *
Camera 21 23 *
Contacts 21 13
DeskClock 23 23
Dialer 23 * 23 *
Email 21 21
Gallery2 23 * 21
Mms 23 * 23 *
QuickSearchBox 23 * 23 *
Average 21 months 21 months

indicator. We remind that F2 weights recall more than
precision. The choice of a 10% threshold is arbitrary but
reasonable. Note that a star sign means that the F2 score
never drops below the threshold until the last available
version in the time window of two years we consider in
this study.

In both techniques, in half of the cases the performance
stays within tolerance in all future versions. In this

TABLE 7
Experiment 3: Applicability of each model across

projects. Some models have a more general applicability.

Model is applicable to (no. of other apps)
Application Naı̈ve Bayes Random Forest

AnkiDroid 1 4
BoardGameGeek 0 0
ConnectBot 0 0
CoolReader 0 1
Crosswords 0 0
FBReader 5 0
K9Mail 3 2
KeePassAndroid 0 0
MileageTracker 0 0
Mustard 4 1

Browser 0 0
Calendar 1 1
Camera 0 1
Contacts 1 0
DeskClock 0 0
Dialer 0 0
Email 0 0
Gallery2 2 0
Mms 0 0
QuickSearchBox 0 0

respect, Naı̈ve Bayes is slightly more stable, as retraining
is not needed in 11 cases, i.e., one case more than
Random Forest. On average, the retrain is not necessary
for at least 13 months for the F-Droid applications
and at least 21 months for the OS applications.
This appears to be an encouraging result. Further
investigation is necessary to understand whether
this horizon is compatible with the expectations
and needs of application development companies.
In summary, concerning RQ2, this exploratory exper-
iment shows that the presented prediction technique
can forecast with excellent performance the vulnerable
files of the future versions of an Android application.
Furthermore, such a model is stable for at least 13
months on average.

7 EXPERIMENT 3: CROSS-PROJECT

In the last experiment, we explored whether a model
is applicable only to one application or rather can ade-
quately predict vulnerable components across applica-
tions. This experiment follows the spirit of the work
done by Zimmermann et al. [40] in the domain of defect
prediction. However, to the best of our knowledge, this
setup has not been used for vulnerability prediction yet.

In this experiment, we first built 20 models using
version v0 of each application. We then tested each
model by predicting vulnerable files in the v0 versions of
the other 19 applications. For each test, we computed the
performance as both precision and recall. We executed
this experiment with both Naı̈ve Bayes and Random
Forest. In this experiment, the pure performance does
not matter. Rather, we value the fact that some models
apply beyond the scope of a single application.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



13

For each application, Table 7 reports the numbers of
other applications to which the corresponding models
can be applied. A model is considered as applicable if
precision and recall are simultaneously above the 80%,
which is the same benchmark used previously. As shown
in the table, there are thirteen models (from nine applica-
tions) that are generic enough in order to be successfully
applicable to at least one other application. Furthermore,
in the case of AnkiDroid, FBReader and Mustard, one
model is applicable to several projects (four or more),
which is a very encouraging result.

On the other hand, there are eleven applications whose
models are totally incapable of predicting other projects.
Among these, BoardGameGeek and MileageTracker are
not surprising as they already exposed a poor perfor-
mance in the “within project” prediction setup.

With reference to the Random Forest case, K9Mail and
Mustard have interesting properties in terms of general
applicability. Indeed, they have a recall above 80% in 8
(K9Mail) and 12 (Mustard) other projects, which yields
also an high average recall. We remind that a high recall
is very desirable in case of security, as a high recall
means that fewer vulnerabilities are overlooked. K9Mail
and Mustard are also the best all-around performers
with F2 scores of 78% (in the Random Forest case).

We remark that K9Mail and Mustard both have a
quite high percentage of vulnerable files. Instead, they
are different in terms of both number of lines of
text and number of text features. Further investiga-
tion is necessary to understand whether the percent-
age of positives is influential in creating a good cross-
project prediction model, as we suspect that the na-
ture of the text features might be of importance too.
Concerning RQ3, this exploratory experiment illus-
trates that some models built on a single application
can predict which software components are vulnerable
in other applications. However, we do not have a
technique to identify which applications have data that
can be used to produce vulnerability prediction models
with the above-mentioned property.

In a more advanced setup, we plan to investigate
a prediction model that is built on the merged code
from two or more applications. Combining the files from
multiple, possibly diverse applications might enlarge the
set of features used by the learner and lead to improved
results.

8 THREATS TO VALIDITY

In this section, we discuss construct, internal, and exter-
nal validity. We could not find any threat to conclusion
validity, which is therefore not discussed here.

Construct validity. We used the Fortify SCA tool to
identify vulnerabilities via static source code analy-
sis rather than using the vulnerabilities reported in a
database such as the NVD. This choice was obligatory, as
there are no public databases with sufficient numbers of
vulnerabilities to analyze for Android applications. As

shown in the related work section, the state of the art
has illustrated that static analysis vulnerability warnings
are a good proxy of actual vulnerabilities. However,
static analysis tools have a tendency to produce many
false positives [19]. Therefore, we manually inspected
and validated the vulnerability warnings for the initial
versions of two of the applications that we studied.
Although this is a limited subset of the data we used in
this study, this effort was useful to demonstrate the ap-
plicability of our approach in the case of more validated
vulnerability data. Nevertheless, we acknowledge that
a more extensive validation should be done, possibly
with the contribution of the research community. We
have published the data used in this study in order to
incentivize this endeavor.

Internal validity. In this study, we considered only
the Java source files of each Android application. We
excluded the XML manifest file that is packaged with
each Android application. The manifest contains impor-
tant information, such as the permissions that need to
be granted to the application. Another threat refers to
vulnerability warnings that affect several versions and,
in particular, both the training set and the testing sets in
the case of prediction in the future. These vulnerabilities
might have inflated the results.

External validity. Our study is exploratory and a larger
scale validation is necessary. Our results might be spe-
cific to the 20 applications we have selected. In an at-
tempt to counter this threat, we evaluated our approach
using a range of applications that vary in terms of
size, revision history, and popularity. However, further
studies using a different set of experimental materials are
necessary in order to generalize the results to the entire
class of Android applications. For instance, this study
did not focus on apps that are smaller than 1 KLOC. The
same reservation about generalizing this study applies to
other types of applications, such as web applications, or
to applications written in programming languages other
than Java.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to predict
whether a software component is vulnerable based on
text mining of its source code. The approach has never
been used before in the context of vulnerability predic-
tion. The approach presented here analyzes the source
code directly instead of indirectly via software or de-
veloper metrics. The results of our exploratory study
demonstrate that the approach has good performance
for both precision and recall when it is used for within-
project prediction. In general, we obtained a prediction
power that is equal or even superior to what is achieved
by state of the art vulnerability prediction models.

In the future, we plan to further investigate the pre-
sented approach by exploring three directions. First, we
are interested in generalizing the results to different
classes of applications and languages. Second, although

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

we used Java files as software components, the technique
may be applied successfully on the level of classes
and methods too. Third, we believe that our approach
is complementary to the existing techniques that use
software metrics for prediction.

ACKNOWLEDGMENTS

This research is partially funded by the EU FP7 project
NESSoS, the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, and by the Research
Fund KU Leuven.

REFERENCES

[1] Microsoft, “The Microsoft Security Development Lifecycle (SDL):
SDL builds more secure software,” http://www.microsoft.com/
security/sdl/about/benefits.aspx, [Accessed 10 June 2013].

[2] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[3] D. Wallace and R. Fuji, “Software verification and validation: Its

role in computer assurance and its relationship with software
product management standards,” NIST Special Publication 500-
165, Tech. Rep., 1989.

[4] S. Slaughter, D. Harter, and M. Krishnan, “Evaluating the cost of
software quality,” Communications of the ACM, vol. 41, no. 8, pp.
67–73, 1998.

[5] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indi-
cators of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, 2011.

[6] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in ACM Conference on Computer
and Communications Security (CCS), 2007.

[7] H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module de-
tection using large-scale text features based on spam filtering,”
Empirical Software Engineering, vol. 15, no. 2, pp. 147–165, 2010.

[8] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Systems with Applications, vol. 36, no. 4,
pp. 7346–7354, 2009.

[9] Y. Shin and L. Williams, “Can traditional fault prediction models
be used for vulnerability prediction?” Empirical Software Engineer-
ing, vol. 18, no. 1, pp. 25–29, 2013.

[10] ——, “Is complexity really the enemy of software security?” in
ACM Workshop on Quality of Protection (QoP), 2008.

[11] ——, “An empirical model to predict security vulnerabilities
using code complexity metrics,” in ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
2008.

[12] I. Chowdhury and M. Zulkernine, “Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities,” Jour-
nal of Systems Architecture, vol. 57, no. 3, pp. 294–313, 2011.

[13] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for
a needle in a haystack: Predicting security vulnerabilities for
windows vista,” in International Conference on Software Testing,
Verification and Validation (ICST), 2010.

[14] M. Gegick, P. Rotella, and L. Williams, “Toward non-security fail-
ures as a predictor of security faults and failures,” in Symposium
on Engineering Secure Software and Systems (ESSoS), 2009.

[15] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software
components with dependency graphs,” in International Workshop
on Security Measurements and Metrics (MetriSec), 2010.

[16] B. Smith and L. Williams, “Using SQL hotspots in a prioritization
heuristic for detecting all types of web application vulnerabili-
ties,” in IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), 2011.

[17] F. Massacci and V. H. Nguyen, “Which is the right source for
vulnerability studies?: an empirical analysis on mozilla firefox,”
in International Workshop on Security Measurements and Metrics
(MetriSec), 2010.

[18] B. Martin and S. Christey, “Buying into the bias: why vulnerability
statistics suck,” BlackHat USA, 2013.

[19] A. Austin and L. Williams, “One technique is not enough: A com-
parison of vulnerability discovery techniques,” in International
Symposium on Empirical Software Engineering and Measurement
(ESEM), 2011.

[20] J. Walden and M. Doyle, “SAVI: Static-analysis vulnerability
indicator,” IEEE Security & Privacy, vol. 10, no. 3, pp. 32–39, 2012.

[21] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing
software security fortification throughcode-level metrics,” in ACM
Workshop on Quality of Protection (QoP), 2008.

[22] M. Gegick, P. Rotella, and L. Williams, “Predicting attack-prone
components,” in International Conference on Software Testing Verifi-
cation and Validation (ICST), 2009.

[23] N. Nagappan and T. Ball, “Static analysis tools as early indica-
tors of pre-release defect density,” in International Conference on
Software Engineering (ICSE), 2005.

[24] N. Edwards and L. Chen, “An historical examination of open
source releases and their vulnerabilities,” in ACM conference on
Computer and Communications security (CCS), 2012.

[25] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,
and M. A. Vouk, “On the value of static analysis for fault detection
in software,” IEEE Transactions on Software Engineering, vol. 32,
no. 4, pp. 240–253, 2006.

[26] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, “Spam filter
based approach for finding fault-prone software modules,” in
International Workshop on Mining Software Repositories (MSR), 2007.

[27] L. Aversano, L. Cerulo, and C. Del Grosso, “Learning from bug-
introducing changes to prevent fault prone code,” in International
Workshop on Principles of software Evolution (IWPSE), 2007.

[28] S. Kim, J. Whitehead, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 181–196, 2008.

[29] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000
projects: lightweight cross-project anomaly detection,” in Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2010.

[30] A. Bosu and J. Carver, “Peer code review to prevent security
vulnerabilities: An empirical evaluation (extended abstract),” in
International Conference on Software Security and Reliability (SERE),
2013.

[31] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapo-
lation: Assisted discovery of vulnerabilities using machine learn-
ing,” in USENIX Workshop on Offensive Technologies (WOOT), 2011.

[32] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in IEEE Working
Conference on Mining Software Repositories (MSR), 2010.

[33] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Be-
yond heuristics: learning to classify vulnerabilities and predict
exploits,” in ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 2010.

[34] R. Scandariato, J. Walden, and A. Hovsepyan, “Experimental
material,” https://sites.google.com/site/textminingandroid/.

[35] D. Wolpert, “The lack of a priori distinctions between learning
algorithms,” Neural Computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[36] P. Domingos, “A few useful things to know about machine
learning,” Communications of the ACM CACM, vol. 55, no. 10, pp.
78–87, 2012.

[37] I. Kononenko, “On biases in estimating multi-valued attributes,”
in International Joint Conference on Articial Intelligence (IJCAI), 1995.

[38] A. Zeller, T. Zimmermann, and C. Bird, “Failure is a four-letter
word: A parody in empirical research,” in International Conference
on Predictive Models in Software Engineering (PROMISE), 2011.

[39] W3Techs, “Usage of content management systems for
websites,” http://w3techs.com/technologies/overview/content
management/all, [Accessed 25 October 2013].

[40] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in Symposium on the Foundations of
Software Engineering (FSE), 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.microsoft.com/security/sdl/about/benefits.aspx
http://www.microsoft.com/security/sdl/about/benefits.aspx
https://sites.google.com/site/textminingandroid/
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all


15

Riccardo Scandariato has a Ph.D. in Com-
puter Science from Politecnico di Torino (Italy).
He leads a team of researchers in the area of
secure software engineering at the KU Leuven
(Belgium). His main research interests are in
the area of software architectures and machine
learning for software security. He has published
over 50 papers in the field of security and soft-
ware engineering. He is also an Associate Editor
of the International Journal of Secure Software
Engineering (IJSSE).

James Walden is an Associate Professor at
NKU (USA). He has a Ph.D. from Carnegie
Mellon, and he worked as a senior software
engineer at Intel. His research focuses on apply-
ing empirical software engineering techniques
to software security problems. He worked with
SANS to develop their GIAC Secure Software
Programmer (GSSP) certification and worked
with MITRE and SANS to develop their Top 25
Most Dangerous Software Errors listings.

Aram Hovsepyan received a Ph.D. in Engineer-
ing from KU Leuven (Belgium). He is a post-
doc researcher at the Department of Computer
Science of KU Leuven. His main research inter-
ests lie in the area of model-driven software de-
velopment and empirical software engineering
with a particular focus on security vulnerability
prediction techniques.

Wouter Joosen is full professor at the De-
partment of Computer Science of KU Leuven
(Belgium), where he teaches courses on soft-
ware architecture, distributed systems and the
engineering of secure service platforms. His re-
search interests are in aspect-oriented software
development, focusing on software architecture
and middleware, and in security aspects of soft-
ware, including security in component frame-
works and security architectures.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2340398

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


