
Scalar: A distributed scalability analysis
framework

Thomas Heyman, Davy Preuveneers, and Wouter Joosen

iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium

first.last@cs.kuleuven.be

Abstract. Analyzing the scalability and quality of service of large scale
distributed systems, such as cloud based services, requires a systematic
benchmarking framework that is at least as scalable to sufficiently stress
the system under test. This paper summarizes Scalar, our distributed,
extensible load testing tool that can generate high request volumes us-
ing multiple coordinated nodes. It has support for communication and
synchronization between user threads, and built-in node monitoring to
detect resource bottlenecks in the benchmark framework deployment it-
self. Furthermore, it offers highly scalable results analysis that exploits
data locality and characterizes the overall system scalability in terms of
the Universal Scalability Law.

1 Introduction and problem statement

Over the last decade, both the scale of online systems and the degree to which
we depend on them has increased tremendously. This makes software qualities
such as availability, scalability and performance essential. However, as the scale
of a system increases in number of users and complexity, assessing its actual
capacity and future scalability potential becomes even harder. The problem is
twofold: We need to simulate ever more complex work flows while generating
large enough loads to sufficiently stress the system under test.

Workflows become more complex due to the user fulfilling more actions or
following more involved business processes. They often also depend on the collab-
oration of multiple users, which requires inter-user communication and synchro-
nisation in the load generation and benchmarking platform. Similarly, complex
workflows might require out of band data processing and a high volume data stor-
age capacity. As the computational overhead increases, care must be taken that
the load generator itself does not become the bottleneck. This makes increasing
workflow complexity and generating sufficient loads a compound problem.

To solve the problem, the ideal scalability analysis tool would realise the
following requirements. First, it needs to explicitly support multiple concurrent
usage scenarios, and provide statistical breakdowns per scenario. Some distinct
usage scenarios are not independent, and users that execute one scenario depend
on the actions performed by users in another scenario. Therefore, second, the tool
should explicitly support inter user communication and data exchange. Third, as



the complexity of interdependent usage scenarios and the number of simulated
users increase, the tools should also support synchronisation.

Scalability and performance are two crucial qualities for our ideal scalability
analysis tool. Clearly, in order to analyze large scale systems, scalability anal-
ysis tools should be highly scalable themselves. This includes both horizontal
scalability (i.e., deploying more instances in parallel), as well as vertical scala-
bility (i.e., extensibility by means of plug-ins). As load tests of the envisioned
distributed setups easily involve hundreds of thousands of requests per minute,
tools should support intelligent results processing that takes data locality into
account. When scaling up, care must be taken that the load generation itself is
performant enough to not become the bottleneck. To facilitate this, we would
need at least a warning mechanism when the tool cannot handle the required
load, a way to offload computationally intensive tasks, and a way to find how
far the tool can scale on the underlying hardware.

Many load testing tools exist, ranging from load tests embedded in integrated
development environments (such as Microsoft Visual Studio) to web testing
frameworks with support for distribution (such as The Grinder [1] and Apache
JMeter [2]). However, many are lacking inter-user communication and synchro-
nisation facilities, built-in analytics and bottleneck detection, or both. For in-
stance, JMeter has no inter machine communication facility, except for passing
static data in configuration files. And although it is fully extensible by means
of plug-ins, there is no default support for scalability analysis (e.g., by means
of applying the Universal Scalability Law [3]). Similarly, while The Grinder has
distributed agents that collate the data and send it back to the coordinator,
it does not offer default built-in support for scalability analysis. In the next
section, we document Scalar, a highly scalable distributed load generation and
benchmarking platform that is developed specifically to support these features.

2 Scalar architecture

Scalar (https://distrinet.cs.kuleuven.be/software/scalar/) is a fully dis-
tributed system implemented in Java, and consists of multiple individual, col-
laborating Scalar instances. Scalar instances automatically discover others, and
perform master election. The master coordinates the start of an experiment (i.e.,
a scalability analysis), which consists of a number of individual runs (i.e., single
load tests). A run consists of a lower load warm-up phase, followed by a gradual
ramp up to full load, the peak load phase during which statistics are collected, a
ramp down phase, and finally another lower load cool down phase. The master
collates the results and publishes a scalability report consisting of a quantifica-
tion of the relative throughput of the system under test in function of user load,
as characterized by the Universal Scalability Law, and a statistical breakdown
of request residence times and their results.

Representative user behaviour against which the system is to be tested, is
encoded in one or more specific user and request types. The abstract User class
represents individual simulated users that follow a business flow which encodes



the anticipated way in which the system will be used. All scalability analysis
results are relative towards that behaviour. Inter-user communication is imple-
mented by means of the blackboard architectural pattern: There is one central
data repository, implemented by the DataProvider abstraction, which allows
user objects to store and retrieve arbitrary objects. The interface of a Dat-
aProvider is similar to that of a map. This abstraction allows for many flexible
data provider implementations to be used interchangeably. The default data
provider, HazelCastProvider, leverages the underlying HazelCast distributed in-
memory database [4], which allows inter-machine communication.

Synchronization is also built on top of the data provider abstraction. A data
provider offers both lock(key) and unlock(key) operations, which allows syn-
chronisation of both Scalar instances and user objects on specific key values; the
HazelcastProvider leverages the underlying distributed Hazelcast locking mech-
anisms. As the overall Scalar functionality (including master election, instance
discovery, experimental synchronization and results exchange) is built on top
of this abstraction, fine tuning the Scalar cluster behavior can be achieved by
selecting a correct underlying data provider implementation.

The overall functionality of the Scalar platform can be modified and extended
by means of plug-ins. A plug-in is notified of different system events via callback
methods: When it is loaded and destroyed, and when the different load testing
phases (i.e., warm-up, ramp up, peak load, ramp down, and cool down) take
place. This allows plug-ins to perform platform wide initialisation tasks, such as
populating the data provider with certain transactions to be executed, configur-
ing the server under test, etc. Similarly, plug-ins can clean up the platform state
in between different runs. Plug-ins can also be used to inspect requests—every
plug-in receives a call-back for every request that has been executed. This allows
plug-ins to perform real-time request analysis and reporting. Plug-ins can use
the underlying data providers to store results.

Scalar comes with a number of domain independent plug-ins, such as moni-
toring the underlying platform resources and visualising results in real time on a
web-based dashboard. The most important plug-in for large scale analyses is the
ExperimentalResultsPublisher, which handles distributed processing of request
data and quantifies the scalability of the system under test in two dimensions.
First, it calculates statistics per request type, and provides an overview of the
distribution of request type residence times. That allows experimenters to cal-
culate the residence time density function, which provides answers to questions
such as “How many requests were handled within 10ms?”. Second, the plug-in
computes the relative capacity of the system under test for various user loads,
and fits the relative capacity data to the Universal Scalability Law. That allows
experimenters to extrapolate how many users the system under test would be
able to handle under different circumstances. It additionally allows pinpointing of
the optimal load point, and provides a precise characterisation of the coherency
and serial fraction parameters of that system, as per [3]. Scalar exploits data
locality by making every node responsible for calculating aggregate statistics on
raw data, and only exchanging these aggregate values with the master node.



3 Discussion and conclusion

We have presented Scalar, a distributed platform for scalability analysis of large
distributed systems. The platform is developed specifically to support complex
workflows that involve both intra- and inter-machine communication and syn-
chronisation, and is fully extensible by means of plug-ins. Built-in functionality
includes monitoring of the underlying load generating platform, support for data
aggregation and analysis by means of the Universal Scalability Law, real-time
visualisation via a web based dashboard, and time synchronisation over NTP.

Scalar inherits the scalability of the underlying DataProvider system. In the
case of the HazelcastProvider, the underlying system is explicitly designed to
scale up to clusters of hundreds of nodes. However, in specialized contexts (e.g.,
a real-time or embedded domain), it is fairly straightforward to plug in a different
communication and synchronisation layer, as the dependency on Hazelcast is not
hard coded. Similarly, the distributed statistics aggregation enables longer, high
volume experiments involving many Scalar instances.

Scalability analysis is rife with pitfalls. The most common one is that the
bottleneck is not the system under test, but the load generation process itself.
In order to avoid this, Scalar comes with a number of built-in protection features.
First, the tool contains various domain independent test user implementations
that can be used to perform a scalability analysis of a Scalar deployment itself, to
detect problems early. Second, Scalar will automatically generate warnings when
scheduled requests exceed the inter-request waiting time (i.e., the ‘think time’)
by more than 5%. Experience shows that that is a good indicator for detecting
bottlenecks internal to the load generation process. Third, the tool comes with
built-in resource monitoring of the underlying platform.

Scalar has already been applied successfully to a number of in-house projects,
as well as commercial systems. We conclude that it is capable of characterizing
both the scalability and quality of service of complex, distributed services. Future
work involves automating the instantiation of Scalar for very large cloud-based
deployments. That would allow us to achieve scalability analysis as a service.

Acknowledgment

This research is partially funded by the Research Fund KU Leuven.

References

1. Philip Aston: The Grinder. http://htmlunit.sourceforge.net/ Online; accessed
6-March-2014.

2. The Apache Software Foundation: Apache JMeter. http://jmeter.apache.org/

Online; accessed 17-February-2014.
3. Gunther, N.J.: Guerrilla capacity planning - a tactical approach to planning for

highly scalable applications and services. Springer (2007)
4. Hazelcast, Inc.: The Hazelcast Open Source In-Memory Data Grid. http://www.

hazelcast.org/ Online; accessed 6-March-2014.


