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- Inter- and intra-hemispheric connectivity patterns characterize bimanual tasks.

- Connectivity patterns reveal modulations of inter-hemispheric inhibition. 

- EEG/MEG measures as correlates of task demands, laterality, and instability. 

Abstract (max 170 words)

Bimanual movement involves a variety of coordinated functions, ranging from elementary patterns

that are performed automatically to complex patterns that require practice to be performed skillfully. 

The neural dynamics accompanying these coordination patterns are complex and rapid. By means of 

electro- and magneto-encephalographic approaches, it has been possible to examine these dynamics 

during bimanual coordination with excellent temporal resolution, which complements other 

neuroimaging modalities with superb spatial resolution. This review focuses on EEG/MEG studies

that unravel the processes involved in movement planning and execution, motor learning, and 

executive functions involved in task switching and dual tasking. Evidence is presented for a spatio-

temporal reorganization of the neural networks within and between hemispheres to meet increased task 

difficulty demands, induced or spontaneous switches in coordination mode, or training-induced 

neuroplastic modulation in coordination dynamics. Future theoretical developments will benefit from 

the integration of research techniques unraveling neural activity at different time scales. Ultimately 

this work will contribute to a better understanding of how the human brain orchestrates complex 

behavior via the implementation of inter- and intra-hemispheric coordination networks. 

Keywords (max 12)
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Electroencephalography (EEG), magnetoencephalography (MEG), bimanual coordination, functional 

connectivity, polyrhythms, motor learning, event-related potentials (ERPs), event-related 

(de)synchronization (ERD/ERS), coherence, phase synchronization.

Highlights (3-5 bulletpoints)

- Comprehensive review of studies on bimanual coordination using EEG/MEG.

- Inter- and intra-hemispheric connectivity patterns characterize bimanual tasks.

- Connectivity patterns reveal modulations of inter-hemispheric inhibition. 

- EEG/MEG measures as correlates of task demands, laterality, and instability. 
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Introduction

When typing a text, the fingers of both our hands are placed over the keyboard. Without 

looking at them, we move the fingers sequentially over small distances.  Then letters, words, and 

eventually sentences appear on the screen. Next to semantic and syntactic processes, and the 

generation of coherent thoughts, a well-learnt coordination pattern between both hands is in full 

operation in the brain. This goal-directed behavior requires the swift integration of perception, action,

and cognition. 

This is just an everyday example of the diversity of accurate upper limb movements performed 

with seemingly little to no effort. Prior to movement, spatial and temporal requirements need to be 

encoded in the central nervous system. Feedback from the senses allows for updating the codes to 

correct movement. What mechanisms are supporting this encoding for coordination of the upper 

limbs? A broad network of brain regions is linked to the coordination of both hands, including (but not 

limited to) the primary motor cortex (M1), pre-motor cortex (PMC), supplementary motor area 

(SMA), cingulate motor area, basal ganglia, and cerebellum (e.g. Jantzen et al., 2008; Swinnen and 

Wenderoth, 2004). More demanding tasks are associated with activations extending towards 

prefrontal, parietal, and temporal areas (e.g., Gross et al., 2002; Hardwick et al., 2012; Swinnen, 2002; 

Swinnen and Wenderoth, 2004)- . However, our knowledge on how these brain areas modulate their 

activity as a function of task demands and task features is still fragmentary. Degree and extent of brain 

activation is also determined by the skill level of the performer, as functional magnetic resonance 

imaging (fMRI) studies on training-induced plasticity have shown (Debaere et al., 2004b; Puttemans 

et al., 2005; Rémy et al., 2010; Ronsse et al., 2011). However, even though fMRI studies have 

generated considerable insights into the spatial distribution of brain activity, information about the 

temporal organization of brain activity (particularly at small time scales) can be obtained with 

electroencephalography (EEG) and magnetoencephalography (MEG). 

The synchronized firing of neurons and neuronal populations is believed to add to the 

transmission of information at a short-range, i.e. within a single brain region, but also supports long-

range communication between distant regions (Engel et al., 2001; van Wijk et al., 2012a). 
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Synchronization is typically described by common parameters of oscillations, like amplitude (spectral 

power), frequency, and phase, as well as by their bivariate counterparts, like cross-amplitude 

correlation (coherence) and relative phase, and more recently, the phase-amplitude coupling. The time 

scale of synchronization is often prescribed by the (frequency of) oscillation underlying it, which can 

be in the order of tens or hundreds of milliseconds. These time scales demand recording techniques 

with high temporal resolution. When studying whole brain activity, this calls for EEG/MEG. Other 

imaging methods which assess metabolic changes, such as fMRI and near-infrared spectroscopy 

(NIRS), are much less sensitive to these quick modulations.

EEG/MEG studies have addressed the planning and execution of bimanual movements, using 

different methodological approaches. There are various analysis strategies to extract information from 

EEG/MEG signals but, unfortunately, there is no consensus about their implementation. This might

complicate the understanding for the naïve experimenter. The purpose of the current review is two-

fold. First, we will provide a concise overview of behavioral studies on bimanual coordination and 

magneto- and electroencephalographic studies to better understand this area of research. This includes 

a sketch of the essentials of encephalographic recordings and the corresponding signal analyses that 

have been applied to bimanual protocols. Second, we discuss selected EEG/MEG literature on 

bimanual coordination, executive functions examined with bimanual paradigms, and motor learning. 

We clarify the terminology and offer a critical view at commonalities and disagreements across 

studies.

Both temporal and spatial parameters of movement constrain the movement repertoire of an 

individual limb and the range and coordinative stability in bimanual movements. Most EEG/MEG

research on bimanual coordination has focused on the timing between the effectors (e.g. fingers or 

wrists), be that through relative phase (coordinative accuracy and stability) or other temporal 

measures. Therefore, we start with describing seminal temporal features of bimanual coordination 

from a behavioral perspective - for a more in depth review, see, e.g., Beek et al. (2002).
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1. Temporal features in bimanual coordination

When looking at the temporal characteristics of movements, one often discriminates between 

discrete and rhythmic ones. Unfortunately, the border between discrete and rhythmic movements is 

not as well defined in motor control research as one may wish, because many researchers use these 

terms without proper formality. Reaching a target is considered a discrete movement, but reaching a 

key in the piano while performing a series of rhythmic tapping movements might not be that easy to 

label. Traditionally, three possibilities have been proposed (Howard et al., 2011; Huys et al., 2008; van 

Mourik and Beek, 2004): First, discrete movements are considered fundamental units of behavior, 

with rhythmic movements being strings of discrete movements; Second, rhythmic movements are 

fundamental units, with discrete movements being truncated rhythmic movements; and third, rhythmic 

and discrete movements are mutually exclusive classes. The distinction between these movement 

classes might be more important than appears at first sight as the neural generators may differ (Schaal 

et al., 2004). 

In an attempt to introduce more mathematical formality to motor control research, Hogan and 

Sternad (2007) defined discrete movement as a movement preceded and succeeded by postures, in 

which posture refers to a bodily configuration defined by a period of no movement. By contrast, they 

considered rhythmic movements as a generic class of behaviors with several sub-types, ranging from 

strictly periodic to repetitive, corresponding to the degree of periodicity (Hogan and Sternad, 2007). 

For instance, finger tapping at low frequencies comprises a series of discrete movements whereas 

finger wiggling and circle drawing are rhythmic movements. A discrete movement becomes quasi-

oscillatory (and therefore, rhythmic) with increasing frequency, which is the case for finger tapping at 

high frequencies (Huys et al., 2008; Repp, 2011).

Accordingly, and for the sake of simplicity, the trajectory of a rhythmic uni-dimensional 

movement in steady state (e.g. flexion/extension of a finger, a wrist, or forearm) can be approximated 

as a merely sinusoidal oscillation:
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Where  is the amplitude of movement, is its frequency (i.e. how fast the limb moves), and is the 

(Fourier) phase of movement that may be identified via the point at the trajectory at which the 

movement starts. In the simplest case these parameters are considered constant. In the study of 

coordinative stability, however, amplitude and phase are modified to depend on time . Assessing 

bimanual coordination then requires the study of two traces:  for the left hand and  for the 

right hand.

Seminal for studying stability of bimanual coordination are rhythmic isofrequency movements

with both hands moving at the same frequency, i.e. . Then, the relative phase between the 

motions of the limbs, , is a temporal parameter often used to characterize default 

coordination modes. Humans show a tendency towards the so-called in-phase coordination (i.e. 

) that often concurs with a simultaneous activation of homologous muscles, or anti-phase (i.e. 

or 180 ), which concurs with alternated activation of homologous muscles (Beek et al., 2002; 

Kelso, 1984, 1995). In-phase and anti-phase coordination modes are relatively stable compared to 

intermediate phase patterns that are more difficult to perform and require extensive practice to learn

(Kelso, 1984; Swinnen et al., 1997b; Treffner and Turvey, 1995; Zanone and Kelso, 1992). However, 

anti-phase coordination becomes unstable with increasing movement frequency, which may lead to

spontaneous (unintended) transitions to in-phase coordination (Byblow et al., 1994; Carson et al., 

2000; Carson et al., 1997; Haken et al., 1985; Kelso, 1984; Summers, 2002; Swinnen, 2002; Swinnen 

et al., 1997a; Temprado et al., 2003).

More complicated are non-isofrequency movements and/or coordination modes where the 

relative phase diverges from the preferred in- and anti-phase patterns, as it is the case when playing the 

drums. These movements often require some practice to be performed skillfully (Debaere et al., 

2004b; deGuzman and Kelso, 1991; Kovacs and Shea, 2011; Lee et al., 1995; Puttemans et al., 2005; 

Remy et al., 2008; Ronsse et al., 2011; Serrien and Brown, 2003; Sisti et al., 2012; Swinnen et al., 

1997a; Zanone and Kelso, 1992). Here we focus on polyrhythmic movements, with both hands 

moving at different frequency, , which obey a certain rational ratio with integer numbers
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1. There are different levels of difficulty for different frequency ratios. For instance, the 

ratios 2:3 or 3:5 are more difficult to perform than 1:2 or 1:3 (Deutsch, 1983; Peper et al., 1995a; 

Peper et al., 1995b; Summers et al., 1993). Similar to anti-phase to in-phase transitions in isofrequency 

movements, increasing the tempo of movement while trying to keep the same frequency ratio induces 

shifts to simpler finger tapping ratios in polyrhythmic movements (Haken et al., 1996; Peper et al., 

1995a). 

Special interest has been devoted to non-isofrequency patterns requiring continuous 

movements besides finger or wrist flexion/extension (Kovacs et al., 2010; Mechsner et al., 2001; Sisti 

et al., 2011; Walter et al., 1997). In a task where subjects learned to overcome temporal and spatial 

constraints by rotation of two dials with the hands, higher frequency ratios (3:1) required more training 

than lower relative frequencies (1:1, 2:1, 2:3) (Sisti et al., 2011). To explain their findings, Sisti et al. 

(2011) stressed the specific nature of the task: a circular and continuous movement without a salient 

event, and the use of a continuous cue defining speed. In particular, the associated timing of this 

movement is suspected to emerge from the intrinsic properties of the movement (i.e. emergent timing) 

rather than being cued by a discrete signal like in most polyrhythmic tapping studies (i.e. event 

timing). 

Event and emergent timing are considered qualitatively different control processes. They have 

been proposed to maintain a consistent rate for the timing of both discrete and rhythmic movements

(Ivry et al., 2002; Zelaznik et al., 2005). Event timing control involves a temporal representation of the 

target interval or posture between two events in discrete movements marked by salient events, such as 

finger tapping (Ivry et al., 2002). On the other hand, emergent timing does not require an explicit 

representation of the interval duration, but rather arises from the dynamics of trajectory control in 

rhythmic movements, such as circle drawing (Spencer et al., 2003; Turvey, 1977). Converging 

literature has reported the neural correlates underlying these two timing processes. Event timing was

shown to rely on the cerebellum, as patients with cerebellar lesions failed to maintain temporal 

accuracy during discrete tasks, such as unimanual tapping, while performing equally to healthy 

subjects during circle drawing (Spencer et al., 2003). Alternatively, emergent timing may rely on inter-
                                                            
1 Note that the corresponding (generalized) relative phase in that case is given by .
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hemispheric interactions through the corpus callosum. During bimanual finger tapping, callosotomy 

patients respected the temporal cue, but failed to do so when drawing circles (Kennerley et al., 2002; 

Ridderikhoff et al., 2005). 

2. The use of EEG/MEG techniques in movement coordination

From behavioral research, we shift now towards encephalographic methods used to investigate 

the neural correlates of upper limb movement. Using electrodes placed on the scalp, EEG measures 

non-invasively the postsynaptic activity of thousands of pyramidal neurons. EEG detects coherent 

signals elicited by patches of cortical surface of a few square centimeters (Cooper et al., 1965). Due to 

the spatial alignment of these cortical neurons, their electrical potentials add up, which accounts for 

the measured voltages over the scalp (Nunez and Silberstein, 2000). The resulting mean electrical 

activity is attenuated and spreads across the head tissue, being detected by more than one electrode, a 

phenomenon referred to as volume conduction – see Michel and Murray (2012) for a recent review.

Hence, not only the spatial alignment of neurons limits what can be measured by EEG, but also 

confounding activity from other populations that may contaminate the signal-of-interest. Put 

differently, activity generated by small neuronal populations cannot be discriminated, as it has lower 

amplitude than noise. 

Changes in (pre- or post-) synaptic potentials typically come with dendritic currents that 

induce magnetic fields perpendicular to the current flow. By placing magnetometers outside the head, 

it is possible to measure fields oriented radially from the center of the head, i.e. MEG technology. 

Electric currents tangential to the scalp are the main source of these magnetic fields (Lau et al., 2008)

– pyramidal cells generating these currents are primarily located in the sulci. Compared to EEG, 

magnetic fields are less attenuated by the variation in conductivity of the surrounding tissue; therefore, 

estimations of the biophysical parameters of the surrounding tissues can be less stringent (Cheyne, 

2013). By the same token, however, the magnetic field is less damped than the electric potential 

rendering the aforementioned volume conduction a challenge for subsequent analyses (e.g., Nolte et 

al., 2004; Stam et al., 2007).
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The following section presents several EEG/MEG methods and summarizes some major 

findings of neural markers for upper limb coordination. Traditionally, event-related potentials (ERPs) 2

have been investigated, which provide information on voltage changes at a millisecond scale. From 

this sole time domain description, we switch to the time-frequency domain to study the event-related 

(de)synchronization (ERD/S) in characteristic frequency bands of EEG/MEG, which reveals the 

involvement of neural oscillations in bimanual coordination and other tasks. In order to enhance the 

spatial resolution from EEG/MEG data, advanced mathematical models of source localization have 

been proposed, which are also briefly sketched. Finally, we present some methods to address one of 

the critical challenges in neuroscience referring to brain connectivity which has attracted increasing

interest due to its potential to reveal basic insights into the mechanisms underlying various 

pathologies. 

2.1 Event-Related Potentials

ERPs are voltage changes in response to a specific stimulus or event (Brandeis and Lehmann, 

1986). They are time- and phase-locked to a certain event, i.e. the response has the same phase for 

every repetition of the stimulus. ERPs are considered EEG markers of cortical information processing 

generated by a stimulus (Kotchoubey, 2005). The event-related signal is extracted from ongoing brain 

activity by averaging the EEG across epochs which are time-locked to the stimulus onset. This 

requires the repetition of the same experiment several times to improve the signal-to-noise ratio, as it 

is assumed that the noise is randomly distributed across trials and that the response is stationary in a 

statistical sense, i.e. the statistical parameters of the signal do not change over time. Latencies and 

amplitudes of ERPs correlate with function and are modulated by the type of event, level of arousal, 

age, and pathologies (Gazzaniga et al., 2013; Leiser et al., 2011; Polich, 2007). 

Movement-related cortical potentials (MRCPs) are elicited during preparation and execution 

of movement. The self-initiated MRCP consists of a series of potentials starting a couple of seconds 

before movement onset and lasting up to a few hundred milliseconds after movement onset (Cui and 

                                                            
2 In the case of MEG one speaks of event-related fields (ERFs) instead of ERPs but for the sake of legibility we 
here restrict ourselves to the latter.
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Deecke, 1999; Kornhuber and Deecke, 1965; Shibasaki et al., 1980). Approximately two seconds 

before movement onset, a bilateral negative potential is found over centro-parietal areas, called early 

Bereitschaftspotential (BP) (Deecke et al., 1976; Kornhuber and Deecke, 1990). This component is 

assumed to be generated in the pre-SMA, SMA, and lateral PMC. The early BP is followed by a 

steeper negativity, approximately 400 ms closer to movement onset, namely late BP or negative slope 

(NS). Late BP during hand movements is found over the contralateral central area to the moving limb, 

being generated in contralateral M1. At the movement onset, the negative wave (see Figure 1.A), 

called motor potential (MP), reaches a minimum over the contralateral-central area, presumably 

generated in M1. The response finalizes with a positive potential, named re-afferent potential (RAP) 

300 ms after movement onset and is supposedly generated in the primary somatosensory cortex

(Bötzel et al., 1997; Shibasaki and Hallett, 2006).

Insert Figure 1 about here

The MRCP generated by cued unimanual and bimanual movements is different from the self-

initiated MRCP described above, as reported in a number of studies (Gerloff et al., 1998; Jankelowitz 

and Colebatch, 2002; Smith and Staines, 2006; Smith and Staines, 2010; Smith and Staines, 2012). 

Cued MRCP shows the same temporal pattern as spontaneous MRCP with a slow negativity of a 

couple of seconds before movement onset, a sharp negativity close to movement and positive 

deflection after movement. However, the neural sources differ. At the sensor level, additional

activation over the fronto-central area (presumably over the SMA) in preparation of self-initiated 

movements compared to cued movements was reported (Gerloff et al., 1998). Similarly, EEG source 

localization showed that the early cued MRCP is generated in the contralateral premotor area, unlike 

the early BP in self-initiated movements which is generated in the SMA (Smith and Staines, 2012). 

Accordingly, an fMRI study reported involvement of the SMA in self-initiated movements and 

involvement of the dorsal and ventral premotor cortex in cued movements (Debaere et al., 2003), 

consistent with the distinction between internally- and externally-generated movements (Goldberg, 
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1985). Smith and Staines (2012) reported that late MRCP and RAP in cued movements are generated 

in the same areas as late BP and RAP in self-paced movements. 

Next to the MRCP, the contingent negative variation (CNV) is another component of interest that is 

associated with the anticipation of movement in cued movements. CNV is also called the ‘expectancy’ 

wave as it is related to anticipation, attention, motor preparation, and task requirements (Jahanshahi 

and Hallet, 2003; Nagai et al., 2004). This component is elicited by a stimulus that contains

information on the type of movement to be performed (pre-cue), followed by a waiting period, and 

finally, a second stimulus indicating the start of movement (response stimulus or go-cue). This cue is 

used as a temporal reference, and the waiting period between the pre-cue and the go-cue is the interval 

where CNV is elicited. This potential is centered on the scalp and broadly distributed (Cui et al., 

2000). Unlike the cued MRCP, which is time-locked to movement onset, CNV is time-locked to the 

response stimulus and hence reflects higher-order processes related to anticipation in addition to motor 

preparation. Invasive recordings showed that the prefrontal cortex and the pre-motor dorsal (PMd) 

area generate CNV (Hamano et al., 1997; Ikeda et al., 1999). In particular, PMd is linked to action 

selection during motor preparation, as shown in studies on monkeys (Halsband and Passingham, 1985)

and humans (Grafton et al., 1998). Furthermore, in a repetitive transcranial magnetic stimulation 

(rTMS) study, perturbation to PMd induced changes in CNV, confirming its link to motor preparation 

(Lu et al., 2012). The duration of the underlying process of CNV is still undefined, given that every 

study uses different time intervals between the pre-cue and response signal (Deiber et al., 2005). 

2.2 Event-Related (De-) Synchronization

ERPs rely on the hypothesis that an electrical response follows a spatio-temporal pattern

across the scalp that is phase-locked to the stimulus. In the absence of a stimulus or task, neural 

oscillations at different frequencies occur spontaneously. At the moment of the event, the phase of 

these oscillations may be reset, resulting in a spatio-temporal pattern that can be non-phase-locked to 

the stimulus. This information is lost in the averaging process of ERPs. Both phase-locked and non-

phase-locked oscillations to the stimulus are visible with time-frequency analysis of individual trials

(e.g., Bastiaansen et al., 2012) (see Figure 1.B). Event-related local increases in synchronization of 
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neuronal populations are seen by EEG/MEG as increases in power for a specific frequency band with 

respect to a baseline, and are named event-related synchronization (ERS); local decreases are called 

event-related desynchronization (ERD) and are associated to increases of neural activity (Pfurtscheller 

and Lopes da Silva, 1999). It has been proposed that ERS at lower frequencies (<40 Hz) is generated 

by a larger neuronal population than ERS at higher frequencies (Pfurtscheller, 2001). Synchronized 

activity generated by a larger neuronal population would indicate no differentiation of tasks and 

therefore no information processing within the neural population (Pfurtscheller and Lopes da Silva, 

1999; van Wijk et al., 2012a). 

Characteristic frequency bands or rhythms commonly involved in motor tasks in EEG studies 

are alpha or mu (8-12 Hz) and beta (12-30 Hz) over the central area, and gamma (>30 Hz) over the

post-central and pre-frontal area. Alpha and beta ERD are most prominent for signals over the 

sensorimotor areas for imaginary movements (Neuper et al., 2005; Pfurtscheller et al., 2006), real hand 

movements (Pfurtscheller and Neuper, 1994; Stančák Jr. and Pfurtscheller, 1995) and observed 

movements (Rizzolatti et al., 2001). Mu ERD/S is thought to be generated by the interaction of 

thalamo-cortical relay neurons and reticular nucleus neurons (Lopes da Silva, 2006). On the other 

hand, beta oscillations are modulated by performance as demonstrated by its correlation to

electromyogram (EMG) signals of the limbs (Kristeva et al., 2007; Salenius et al., 1997). 

Experimental work suggests that the beta rhythm is primarily visible in the sensorimotor cortex, 

though modeling work suggests its origin in cortico-thalamic loops (Aburn et al., 2012; Lopes da 

Silva, 2010; Moran et al., 2007; Salmelin and Hari, 1994). The relevance of the beta band during 

movements has been repeatedly emphasized across studies (Gross et al., 2005; Mima et al., 2000; 

Serrien and Brown, 2002; Serrien et al., 2003). Increasing frequency of movements reduces 

modulation of beta band over the centro-lateral area (Boonstra et al., 2006) and more specifically in

M1 (Houweling et al., 2010a). The behavior of alpha/mu and beta rhythms differs at movement 

cessation, when muscles relax: beta ERS or beta ‘rebound’ appears over the central electrodes, 

whereas the mu rhythm remains attenuated (Neuper and Pfurtscheller, 2001). In a rhythmic movement 

at high frequency, cycles of beta ERD followed by ERS start to overlap, hindering performance 

(Houweling et al., 2010a). 
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Unlike alpha/mu and beta bands, ERS in the gamma band has been associated with an increase 

of cortical activity (Pfurtscheller et al., 1994; Steriade et al., 1996). Gamma ERS occurs 1 to 1.5 s 

before movement and lasts for the duration of the movement (Salenius et al., 1996). Similar to the 

relation between beta power and EMG, the gamma band over the post-central area, specifically at 

around 40 Hz, shows high coherence with muscle activity (Salenius et al., 1996). In a study using 

invasive recordings, the wide gamma band was divided into two parts: low gamma (35-50 Hz) and 

high gamma (75-100 Hz) (Crone et al., 1998). Low gamma ERS was elicited after movement onset 

and remained synchronized during movement. High gamma ERS began before movement and it 

regained baseline values before completion of movement. Compared to alpha and beta responses, 

gamma responses are more somatotopically specific. The gamma band has been linked to

sensorimotor integration (Sanes and Donoghue, 1993) and has been proposed as the means by which 

the brain integrates diverse features of percepts (Senkowski et al., 2008). 

2.3 Source estimation

Temporal and spectral features of electric or magnetic signals measured outside the head

provide vast information about the activity of brain areas. However, the neural sources generating 

these signals are not directly available from EEG/MEG measurements and advanced methods are 

required to estimate the location of sources and the strength of their activity. Several configurations of 

neural sources could generate a similar distribution of electrical potentials over the scalp. That is, there 

is no unique solution to the problem of source localization, referred to as the “inverse problem” (see 

Figure 1.C). Assumptions about the physiology and the biophysics of the brain can help constraining 

estimates. First of all, a head model that defines the geometry and accounts for the conductivities of 

the different tissues (i.e. brain tissue, skull and scalp) is required. This allows for defining a so-called 

lead field that provides the possible transfer function from sources in the brain to sensors outside the 

brain. However, even with a properly defined lead field, source localization remains a challenge. A

variety of methods have been proposed (for reviews, see Hillebrand and Barnes, 2005; Lopes da Silva, 

2004; Michel et al., 2004; Wendel et al., 2009).
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It is difficult to localize activity of deep brain structures by EEG/MEG given that the electrical 

signal is attenuated when being transmitted through the tissues, and that the magnetic field is reduced 

by the inverse of the squared distance. Computational and clinical studies state that EEG is more

sensitive to deep brain structures than MEG (Ahlfors et al., 2010; Malmivuo, 2012; Wendel et al., 

2009). However, there are MEG reports claiming activity to be originating in subcortical structures 

(Attal et al., 2012; Gross et al., 2002; Martin et al., 2006). 

2.4 Connectivity

ERPs and ERD/S provide information about the electrical/magnetic activity occurring at a 

local spatial scale, within a brain region. More recently, the interaction between brain regions during a 

task or during rest has become a major focus of research. Synchronization of regions, i.e. long-range 

synchronization, might be the core of a dynamic organization in the nervous system (Fries, 2005). This 

long-range (or global) synchronization, often identified as functional coupling, can be obtained at the 

sensor level and the source level. The latter is primarily realized using MEG for studies on bimanual 

coordination (see Tables 1- 3). 

Widely used measures in EEG/MEG studies are coherence and phase coherence (phase 

locking or phase synchronization) between signals at the sensor level. Coherence represents the 

correlation between two signals as a function of frequency (and time). Traditional approaches build on 

spectral analysis (coherence is the normalized modulus of the cross-spectrum between two signals) 

while phase coherence often employs the analytic form of the (band-pass filtered) signals, which 

yields a unique definition of the relative (Hilbert) phase as a function of time. This relative phase is 

then assessed through circular statistics (Mardia, 1972).

Most EEG studies on bimanual coordination opt for a region of interest (ROI) approach at the 

sensor level to estimate the coherence. The ROIs consist of pairs of electrodes in the left and right 

hemisphere (intra-hemispheric), pairs between left and right hemispheres (inter-hemispheric), and 

pairs in the central region (midline).

Theoretically, the coherence between two signals is not statistically independent from the 

spectral power of each signal, possibly inflating coherence values (Porges et al., 1980). However, 
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experimental findings have reported non-significant contributions of spectral modulations to changes 

in coherence, which suggests that this connectivity measure reflects synchronization at a large scale

(Ford et al., 1986; Gross et al., 2005; Serrien and Brown, 2002; Serrien, 2008, 2009a, b, d).

Furthermore, there is no intrinsic relationship between global synchronization and ERD/S, as opposite 

responses due to a stimulus are possible at a large scale, although these synchronization measures

cannot be distinguished on a small scale (up to one centimeter) (Fell and Axmacher, 2011). Caution

should be taken as there is no standardized approach to the terminology used in neurophysiological 

studies with a tendency to equate neural activity (e.g. ERD/S) to functional connectivity (e.g. long-

range synchronization or coherence) (Cohen and Gulbinaite, 2013). 

Intra- and inter-hemispheric coherence is increased during movement compared to rest (Ford 

et al., 1986). Increases in beta coherence (and decreases in alpha power) were related to task difficulty 

in internally versus externally paced tasks (Gerloff et al., 1998), and in complex versus simple finger 

sequences (Manganotti et al., 1998). Note that decreases of alpha power indicate increased activity 

over the sensorimotor areas, whereas increases of beta coherence point to a rising flow of information 

between the hemispheres to execute a difficult task (Andres and Gerloff, 1999; Gerloff et al., 1998).

As stated above, connectivity analyses of estimated sources are more common in MEG 

studies. Relevant to bimanual coordination, two methods have been predominantly used. One method 

resembles the strategy of fMRI analysis, whereby connectivity measures can be calculated as 

interactions between regions with high task-related activity. Phase synchronization between the 

estimated sources is then defined by the variability between the phase time course of sources 

(Houweling et al., 2010a; Houweling et al., 2008b) – see, e.g., Boonstra et al. (2006) for estimates at 

the sensor level. The second method does not rely on sources with high activity levels to estimate the 

coupling, but on coherent sources to an external signal, usually the EMG signal of the effector of 

interest (Gross et al., 2001; Pollok et al., 2007).

Hand movements are accompanied by coherent activity at the alpha frequency in a broad 

network encompassing bilateral primary sensorimotor cortices (S1-M1) and PMC, contralateral PPC

and thalamus, and ipsilateral cerebellum (Gross et al., 2005; Pollok et al., 2005a). Enhancement of 

phase synchronization in the beta band between bilateral M1s was observed during unimanual tasks
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compared to rest but no significant differences were found (van Wijk et al., 2012a). Here we focus on 

cortico-cortical interactions. Studies on cortico-muscular interactions can be found elsewhere (e. g., 

Kristeva et al., 2007; Muthuraman et al., 2012; Salenius and Hari, 2003; van Wijk et al., 2012b). 

The methods described in this section reflect the evolution of EEG/MEG analysis which goes 

hand in hand with better computational resources. From scalp to sources, and from neural activity to 

connectivity, these measures reflect the neural dynamics underlying bimanual coordination. 

3. Dynamics of bimanual coordination measured with EEG/MEG

By combining behavioral and electrophysiological approaches, important insights into the 

neural control of bimanual movements have been obtained over the past decades. Among the studies 

on bimanual coordination, the stage of movement under study is closely related to the method applied. 

ERPs are mostly used to study preparatory and initial stages of movement, whereas ERD/S and 

connectivity analysis are mostly applied during movement execution. In the preparatory stage, an 

abstract intention is first defined, followed by a more detailed plan of what movement is executed,

when and whether it should be executed, i.e. the ‘what, when, and whether’ components of intentional 

action (Brass and Haggard, 2008). This is followed by the initiation of movement that is often 

disregarded in the literature. During execution of movement, a continuous mechanism for control and 

error correction is involved to stabilize performance, according to the skill level of the performer

(Ridderikhoff et al., 2008), which is of utmost importance for rhythmic movements. 

Given the different mechanisms underlying behavior and the applied methods, EEG/MEG

studies on planning and initiation of bimanual movements are discussed first, subsequently followed 

by studies of the execution phase of (ongoing) bimanual movements. An important consideration is 

that many EEG studies generally assume that the electrodes overlying a brain region measure activity 

directly below it, without estimating the sources, as seen in column “S”, which is absent in Table 1 

and mostly empty in Tables 2 and 3. In order to differentiate results from sensor and source level 

analysis, the former will be referred to by the scalp areas and their corresponding brain regions, as 

described by the respective authors. 
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3.1 Movement planning and initiation

Several EEG/MEG studies have focused on motor preparation and initiation of unimanual 

movements from several seconds before movement onset to a couple of seconds after (Bötzel et al., 

1997; De Vico Fallani et al., 2012; Jankelowitz and Colebatch, 2002; Shibasaki et al., 1980; Stancák Jr 

and Pfurtscheller, 1996; van Wijk et al., 2009). The same stages prior to movement onset have been 

largely overlooked for bimanual movements, and therefore the following summary of studies remains 

necessarily brief (see Table 1).

Insert Table 1 about here

Self-initiated bimanual movements are accompanied by larger BP and MP components than 

unimanual movements indicating the use of more neural resources to link both limbs (Kristeva et al., 

1990; Urbano et al., 1998). BP in bimanual movements is not modulated by increasing the physical 

load exerted over the limbs, unlike unilateral movements in which load conditions elicit a larger BP 

than no-load (Kristeva et al., 1990). This difference might arguably illustrate bimanual modes to be of 

a ‘higher order’ than coding of unimanual or loading information. Moreover, larger amplitudes over 

the central region, especially over the midline might be misleading. Increased MP was found over the 

central area (presumably covering SMA) during bilateral movements (Urbano et al., 1998). Yet, the 

authors proposed that this could be due to the limitations of EEG to disentangle the signals coming 

from adjacent regions, such as the left and right SMA, especially if the analysis is restricted to the 

sensor space. 

Similarities between bilateral and unilateral movements have also been reported. In self-

initiated movements, there was an increase of negative potential over central (SMA) and centro-lateral 

(M1-S1) areas after movement onset compared to preparation, presumably denoting the feedback loop 

between the central nervous system and the sensory afferents for both bilateral and unilateral 

movements (Urbano et al., 1998). Additionally, onset times of MRCPs did not significantly differ 

between bilateral and unilateral self-initiated movements (Urbano et al., 1998).
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Cued movements have been studied in the preparatory stage as well, but instead of 

concentrating on the MRCP, the early and late CNV are the indexes of interest in this case. The early 

CNV has been found over the fronto-central area and appears to be influenced by the amount of 

information given in the pre-cue interval (Deiber et al., 2005; Gómez et al., 2003). This indicates its 

relation to orienting attention, task-specific motor processing and the selection of motor action. In 

another study, however, early CNV was not modulated by the pre-cue (Cui et al., 2000). Elicited 

closer to the response stimulus, late CNV showed a centro-parietal distribution indicating its relation 

to central motor programming and sensory-related anticipatory attention for the second cue (Deiber et 

al., 2005), also found for unimanual movements (Gómez et al., 2003), as shown by its absence in a 

non-motor task (Cui et al., 2000). Discrepancies in the findings of early CNV might be due to the 

different choice of intervals to divide the subcomponents of CNV: the late CNV’s interval in the study 

of Cui et al. (2000) is approximately one second before the onset of the second stimulus, whereas the 

same interval is used for both early and late CNV in the study of Deiber et al. (2005). 

Additionally, CNV and MRCPs have been studied jointly for uni- and bimanual movements. 

For both modes, the amplitude of late CNV is similar, whereas MP over centro-lateral areas seems to 

be reduced in bilateral compared to unilateral tasks (Taniguchi et al., 2001). The authors propose that 

MP’s reduction causes the delay of bilateral responses in reaction time tasks by concomitant excitatory 

and inhibitory processes occurring between both hemispheres through callosal connections. A mutual 

inhibition of the wrong response between the sensorimotor cortices could explain the reduction of the 

potential.

3.2 Movement execution

To address the dynamics during continuous movement execution we now dwell on the 

following aspects. First, modulations of oscillatory patterns with increasing task demands are 

described for uni- and bimanual movements. Second, arguments defending the absence of symmetric 

control and the importance of the dominant hemisphere during bimanual movements are presented. 
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Third, insights into the spatio-temporal reorganization of unilateral networks linked to bimanual 

movements are provided via the study of patterns of behavioral instability. 

3.2.1 Effect of task demands via coordination mode

The neural dynamics related to different coordination modes have been addressed with 

protocols manipulating the task demands whereby conditions are arranged from the easiest to the most 

difficult in the following order: unimanual right, unimanual left, bimanual in-phase, and bimanual 

anti-phase (see Table 2). Task difficulty can also be altered via acceleration of tempo, which has been 

studied in polyrhythmic movements. A linear ERD in the primary motor cortices is observed up to a 

tempo threshold, after which this linear relationship disappears (Houweling et al., 2010a). The 

acceleration of tempo allows for investigating neurophysiological correlates of stable and unstable 

behavior, and will be discussed later.

Insert Table 2 about here

Although a gradual increase of neural resources involvement is generally expected with 

increasing demand as found in several fMRI studies (Aramaki et al., 2006b; Debaere et al., 2004a; 

Jäncke et al., 1998; Mayville et al., 2002; Tracy et al., 2001; Wenderoth et al., 2005), similar neural 

dynamics in different levels of task difficulty have also been found in EEG/MEG studies. Several 

EEG/MEG studies described bimanual movements as requiring more effort and energy than 

unimanual movements (a so-called coordination effort). It has been suggested that this difference may 

stem from increases of inter-hemispheric coherence in the beta band (Serrien, 2009b, d; Serrien et al., 

2003), increases of coherence between cerebellum and contralateral PMC (Pollok et al., 2005b), or 

stronger suppression of average spectral power across alpha, beta, and gamma bands (Gross et al., 

2005). Interestingly, unilateral left and bimanual movements showed a similar decrease in alpha 

power, which was higher than for unilateral right movements, contrary to the expected gradual 

increase with task demands or the similarity between unilateral left and right limb movements (Deiber 

et al., 2001). 
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By contrast, it has been argued that the natural tendency to move the upper limbs 

simultaneously overtakes unimanual movements (Daffertshofer et al., 2005; Holper et al., 2009; 

Serrien, 2008). In-phase movements (following the notation from Section 1, ) presented the 

lowest inter-hemispheric coherence in beta band compared to anti-phase ( ) and unilateral 

movements, suggesting that bimanual in-phase coordination is the default mode associated with low

effort, even lower than for unimanual tasks (Serrien, 2008). This line of thought is supported by TMS 

studies (Duque et al., 2005; Ferbert et al., 1992; Meyer-Lindenberg et al., 2002; Stinear and Byblow, 

2002) and metabolic studies (Cuadrado et al., 1999; Holper et al., 2009)3.

Anti-phase movements are accompanied by an increased inter-hemispheric coherence in the 

beta band compared to in-phase movements suggesting an increase of neural communication for the

former coordination mode (Serrien and Brown, 2002; Serrien et al., 2003). Decreases in this 

information exchange result in a deterioration of performance, as shown by reduction of inter-

hemispheric connectivity with increasing movement frequency (Serrien and Brown, 2002). 

Additionally, increases in intra-hemispheric and midline connectivity in the beta band were found 

during the anti-phase mode (Serrien, 2008). In particular, midline connectivity was increased in the 

anti-phase coordination mode whereas in-phase and unilateral modes had similar values. Alternatively, 

the increasing frequency of movement was accompanied by higher lateral-midline connectivity during 

in-phase and anti-phase movements (Serrien and Brown, 2002). 

This evidence shows that communication between the midline (presumably over the SMA) 

and the sensorimotor cortices is an expression of task demands, namely the type of coordination 

pattern and the speed at which it is performed. The importance of SMA involvement as a function of 

task complexity has been widely reported (Debaere et al., 2004a; Gross et al., 2005; Halsband et al., 

1993; Lang et al., 1990; Pollok et al., 2007; Sadato et al., 1997; Serrien et al., 2002; Steyvers et al., 

2003). Power analysis of beta at the source level has shown a higher decrease, which was associated 

with increased activity in SMA and left PMC during anti-phase movements in MEG studies (Gross et 

al., 2005; Pollok et al., 2007). Power decreases in the anti-phase coordination mode might be 

                                                            
3 References to studies using TMS, fMRI and other modalities are presented as a broad guide to the reader. A 
deeper analysis of these techniques is beyond the scope of this review. 
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explained by the same mechanism subserving syncopation in unimanual tasks. Syncopation consists of

executing a movement in out-of-phase or off-beat to an external stimulus. Beta suppression was

reported for unimanual tasks in syncopation (off-beat) to an external stimulus compared to 

synchronization (on-beat) (Chen et al., 2003; Mayville et al., 2001).

Contrary to the expected differentiation between in- and anti-phase movements, an MEG study 

reported similar average levels of overall power of the dominant M1 (i.e. left M1 for right-handed

subjects) for both coordination modes (Gross et al., 2005), supporting fMRI findings (Aramaki et al., 

2006b). On the contrary, the non-dominant (right) M1 was modulated by the task, with higher power

during unimanual tasks and gradually decreasing with in-phase and anti-phase movements, indicating 

increased activity. In addition, differences in the left hemisphere for anti-phase movements were 

reported, specifically at narrow frequency bands: Decreased power (i.e. increased activation) during 

anti-phase movements compared to in-phase was found in the left PMC and SMA at 20 Hz, and in the 

left S1-M1 at 10Hz (Pollok et al., 2007). This lends support to the dominance of the left hemisphere 

during bimanual movements, as discussed in the next section. 

Functional coupling in the alpha band between cerebellum, thalamus, PPC, PMC, S1-M1 and 

SMA has been reported during bimanual movements in MEG studies (Pollok et al., 2007; Pollok et al., 

2005a; Pollok et al., 2005b), partially corroborating fMRI studies (Debaere et al., 2004a). 

Interestingly, the anterior cingulate cortex (ACC) has been considered part of the network involved in 

anti-phase movements but not in in-phase movements (Pollok et al., 2007). ACC has been extensively 

linked to attentional control (Carson and Kelso, 2004), error monitoring/detection (Bush et al., 2000),

and particularly, to the execution of movements that deviate from the preferred mirror or in-phase 

patterns along the longitudinal axis (Wenderoth et al., 2005). Therefore anti-phase movements require 

involvement of higher-order processes in addition to basic motor control. 

At subcortical level, Pollok et al. (2007) found decreased activity in the alpha band (increased 

power) of the left cerebellum during anti-phase finger tapping using MEG, contrary to fMRI studies 

that reported activity increases in the cerebellum during anti-phase compared to in-phase movements 

(Debaere et al., 2004a; Nair et al., 2003; Tracy et al., 2001). All the employed fMRI protocols 

consisted of continuous wrist cycling, which might involve different neural mechanisms (as discussed 
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in Section 1) and might require more trajectory control than finger tapping, necessitating larger 

involvement of the cerebellum. The activity decrease in the left cerebellum of the study by Pollok et 

al. (2007) in addition to an increase of right cerebellar activation during finger tapping in an fMRI

study (Ullén et al., 2003) provides evidence for the dominance of the right cerebellum during 

bimanual movements, which is expected as the spino-cerebellar tracts do not decussate as compared to 

the spino-cortical tract. Stronger inter-cerebellar coherence was found during in-phase movements 

(Pollok et al., 2007), supporting the controversial proposition that subcortical structures are more 

relevant than cortical structures during in-phase movements (Ullén et al., 2003). 

Some authors have taken task manipulations a step further by challenging visuomotor 

congruence. A study  of Serrien (2009a) involved coordination of spatial features by simultaneously 

drawing different shapes with each hand and using a mirror to reverse visual cues with respect to the 

limb. As described above for difficult compared to simple tasks (bi- vs. unimanual, or anti- vs. in-

phase), intra- and inter-hemispheric coherence values were higher for more complex task (reverse 

visual cues) than for easy task conditions (normal visual cues). This shows that connectivity patterns 

of higher coherence are not restricted to coding of limbs or to spatial and temporal control of online 

motor coordination performance, but encompass ‘higher-order’ processes of visuomotor integration as 

already expected from behavioral studies (Mechsner et al., 2001). Interestingly, in the study of Serrien 

(2009a) only intra-hemispheric connectivity in the beta band of the dominant hemisphere was 

gradually increased as a function of task complexity. This hints at an asymmetric hemispheric 

contribution to bimanual movement control, as discussed in more detail next.

3.2.2 Hemispheric asymmetry for bimanual coordination 

Movement control is not symmetric across hemispheres (Wyke, 1971). Various studies have 

indicated the supremacy of the dominant (left) hemisphere during performance of bimanual 

movements in right-handed individuals (Table 2). Power suppressions (higher activity) in the alpha 

band were stronger in the dominant (left) S1-M1 than in the complementary non-dominant brain areas 

during bimanual movements (Pollok et al., 2005b). Also, higher activation in the beta and alpha bands 

in the left PMC and left S1-M1, respectively, was found during anti-phase movements (Pollok et al., 
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2007). This supports previous findings of the left hemisphere’s contribution in the production of 

bilateral movements in fMRI (Jäncke et al., 1998) and PET studies (Viviani et al., 1998).

Cortical patterns of connectivity are not symmetric either. Intra-hemispheric coherence of the 

dominant hemisphere in the beta band appears higher in bimanual and right hand movements 

compared to left hand movements in an EEG study (Serrien, 2008). Additionally, MEG studies have 

reported higher coherence between dominant (left) S1-M1 and PMC (Pollok et al., 2005b), and 

between dominant M1 and SMA (Gross et al., 2005) than the homologous pairs in the non-dominant 

hemisphere. We would like to note, however, that one EEG study (Deiber et al., 2001) and one TMS 

study (Foltys et al., 2001) failed to provide evidence for hemispheric asymmetry during bimanual 

movements. 

Other studies have applied alternative methods to elucidate the direction of information flow 

between hemispheres, thereby attempting to resolve the question regarding hemispheric supremacy 

during bimanual movements. According to Serrien et al. (2003) directed coherence is increased in the 

beta band from the dominant to the non-dominant hemisphere in bimanual tasks, whereas the opposite 

direction appears suppressed compared to rest. Interestingly, when only the left hand was loaded with 

a weight, this suppression of non-dominant to dominant drive was more pronounced. This reduction

was accompanied by performance deteriorations along with larger decreases of drive from the 

dominant to non-dominant hemisphere. The authors proposed that the performance might have been 

reduced in the load condition on the left hand due to changes in the sensorimotor system or due to the 

incapability of the non-dominant hemisphere to drive bimanual movements even when the weight 

properties were altered on the non-dominant limb. However, inconsistencies in the direction of 

information flow between dominant and non-dominant hemispheres were also reported by Pollok et al. 

(2005b) using MEG.

3.2.3 Temporal modulation or spatial reorganization of neural networks: hints from 

instability

There is a current discussion in the literature on the functioning of neural networks during 

unimanual movements and how they change during bimanual movements. At least two different views
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on the neural networks involved in bimanual coordination prevail in the current literature that may be 

summarized as follows. The recruitment hypothesis (or spatial reorganization of the networks) 

accounts for bimanual coordination by the enrolment of additional brain areas beyond the ones

supporting unimanual action (Heitger et al., 2012; Theorin and Johansson, 2007). Put differently, the 

spatial distribution of the neural activity is expanded during bimanual tasks. Alternatively, the 

temporal modulation hypothesis considers that the regions involved in unimanual coordination are 

temporally modulated (or follow a different temporal pattern) to perform bimanual tasks without 

spatial reorganization (Daffertshofer et al., 2005; Koeneke et al., 2004; Walsh et al., 2008).

Whereas fMRI studies have provided evidence for the recruitment hypothesis (Aramaki et al., 

2006a; Aramaki et al., 2006b; Debaere et al., 2001; Debaere et al., 2004a; Ullén et al., 2003), several

EEG/MEG studies do indeed support the temporal modulation hypothesis. To elucidate the 

spatiotemporal reorganization characterizing bimanual tasks, Banerjee et al. (2012) designed a method 

to reconstruct EEG scalp distributions in bimanual tasks from unimanual responses. Brain activity 

during stable bimanual coordination, as measured with MRCPs, could be understood as temporal 

modulation of unimanual networks (Banerjee et al., 2012). Several MEG studies support this 

argument. Cortical oscillations at the movement frequency in a polyrhythmic task indicated that the 

bimanual network is indistinguishable from a mere superposition of left and right unimanual networks

during stable performance (Daffertshofer et al., 2000). In that case estimated sources from unimanual 

movements served as a template for sources of polyrhythmic bimanual movements. Additionally, the 

network involved in in-phase bimanual movements (Pollok et al., 2005b) was similar to the network 

involved in unimanual movements in the alpha band (although from different subjects) (Pollok et al., 

2005a). However, the skill level of the performer is a confounding factor in this type of analysis. At 

initial stages of coordinating both limbs, a wider cortical area is recruited for executing the task; 

whereas at later stages after sufficient practice, the spatial pattern of neural activity can be reduced due 

to neuronal reorganization, entailing a combination of both hypotheses. 

Temporal modulation of unimanual networks might be key to understanding bimanual 

coordination. As such, recent MEG studies solely rely on the identity between superimposed 

unimanual networks and bimanual networks to explain instability of bimanual movements 
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(Daffertshofer et al., 2005; Daffertshofer et al., 2000; Houweling et al., 2010a; Houweling et al., 

2010b). In fact, behavioral instability due to increments of frequency has been reported for 

polyrhythmic movements (Daffertshofer et al., 2005; Houweling et al., 2010a). At the moment of 

instability, bilateral M1s showed a decrease of power at the movement frequency of the contralateral

hand, as well as in the beta band, which was followed by an increase of power in M1 ipsilateral to the 

hand leading the instability. Notably, an increase in the power of the M1 ipsilateral to the unstable 

hand was predominant. Additionally, beta ERD was higher during unstable performance than during 

stable performance. These results confirmed a model proposed by Daffertshofer et al. (2005) where 

bilateral M1 and PMC are modeled as oscillators and their inter- and intra-hemispheric interactions as 

coupling levels. During stable performance of polyrhythmic movements, oscillations in bilateral M1s 

and PMCs are phase-locked supporting inhibition of inter-hemispheric crosstalk. That is, in this state

the interference between dissimilar movement frequencies is reduced. Instability occurs when inter-

hemispheric crosstalk is not properly inhibited, phase locking is lost, and interference between 

bilateral motor cortices is large enough to destabilize performance. In fact, this model explains not 

only (the loss of) stability of polyrhythmic performance but also that of isofrequency anti-phase modes

as well as unimanual movements when synchronized to an external beat.

Evidence for a combination of both hypotheses, i.e. spatial and temporal reorganization,

during behavioral instability has been reported as well in an EEG study on bimanual tasks (Banerjee et 

al., 2012) and an MEG study on unimanual tasks (Mayville et al., 2001). In the first study, spatial 

reorganization was found at critical frequencies which caused instability and induced spontaneous 

switching from anti-phase to in-phase coordination modes (Banerjee et al., 2012). Likewise, 

spontaneous switching from syncopation to synchronization with increasing frequency during 

execution of unimanual movements in the presence of an auditory signal was accompanied by both 

spatial and temporal reorganization over the scalp in an MEG study (Mayville et al., 2001). In 

summary, whether spatial or temporal reorganization is found appears largely dependent on the 

method of aquisition. However, the skill level of the performer and the associated stability of the 

performed coordination modes might also play a role and this has not been directly addressed in these 

studies. 
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In summary, the present section on the neural dynamics of bimanual coordination has 

demonstrated how divergent the applied methods are as well as the obtained results. Nevertheless, 

converging evidence appears to suggest that bimanual movements often require more neural resources 

than unimanual movements, as shown by increased amplitudes of MRCPs during motor planning and 

stronger suppression of spectral power during motor execution. However, the level of practice might 

alter this pattern if the task is more demanding (e.g., during faster execution). Similarly, support has 

been provided for higher neural activity in SMA, left PMC, left S1-M1, ACC and right cerebellum in 

anti-phase compared to in-phase coordination patterns. 

Bimanual coordination relies on communication between brain regions, for which the most 

critical white matter structure is the corpus callosum. Recent studies on the microstructural integrity of 

white matter pathways support this assumption (Gooijers et al., 2013; Gooijers and Swinnen, 2014). 

From a functional perspective, inter-hemispheric connectivity at both sensor and source level reflects 

the communication between hemispheres through the callosal pathways and a common control set by 

subcortical structures (e.g., the thalamus). Increases in inter-hemispheric connectivity (by means of 

coherence and phase synchronization) have been reported for bimanual compared to unimanual 

movements and for anti-phase compared to in-phase patterns. The relevance of this measure and the 

mechanism supporting it is of particular interest, as its reduction reflects performance deficits and its 

increment reflects variation in task demands.

As compared to inter-hemispheric connectivity, the interpretation of intra-hemispheric and 

midline connectivity may be less straightforward. For example, intra-hemispheric connectivity in the 

dominant hemisphere increases with task complexity, which possibly reflects the left hemispheric 

dominance that also holds for bimanual movements. However the ROI analysis typically includes 

electrodes placed over fronto-central, centro-lateral and centro-parietal areas in one hemisphere, 

precluding specificity. Connectivity analysis between specific lateral sites and the midline can provide 

more support for intra-hemispheric measures. In particular, the hemispheric dominance during 

bimanual movements is supported by connectivity increases between the left S1-M1 and PMC, and 

between the left M1 and SMA.  
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Regarding the networks supporting bimanual action, EEG/MEG studies provide primary 

evidence for the temporal modulation of unimanual networks, whereas fMRI approaches primarily 

report about the spatial distribution of brain activity and activity modulations including additional 

recruitment of areas as a function of task conditions. This conceptual difference between EEG/MEG 

and fMRI studies is due to the time resolution inherent to each acquisition method but also to 

differences in experimental conditions (such as the skill level of the performer, task difficulty, etc). 

Even though fMRI has a superb spatial resolution, temporal resolution is in the order of seconds. This

might hinder the registration of the quick temporal modulations of unilateral networks, whereas 

EEG/MEG data allows for inspection at a millisecond scale. However, advanced methods for data 

analysis which improve spatial resolution of EEG/MEG recordings have elucidated patterns of spatio-

temporal reorganization within the temporal occurrence of behavioral instability at fast tempos for 

polyrhythms and anti-phase movements, which is presumable caused by failure of inter-hemispheric 

inhibition. The best approach would be to use both EEG/MEG and fMRI in order to disentangle the 

involvement of regions at different time scales. 

4. Executive functions examined with bimanual coordination paradigms

The study of bimanual movements is not only meaningful to reveal a better understanding of 

the principles underlying interlimb coordination but can also be instrumental to examine executive 

functions, such as task switching, inhibition, and multiple task integration, as discussed next.

4. 1 Intended task switching

Unlike the previous studies that looked into spontaneous switching between coordination 

modes at increasing cycling frequencies, changes between coordination modes can also be voluntarily 

produced in cued switching paradigms to study higher-order processes related to response switching,

as part of executive functioning (see Table 3). 



Page 31 of 59

Acc
ep

te
d 

M
an

us
cr

ip
t

31

Insert Table 3 about here

Intended switching between coordination modes has shown a decrease in alpha power in the 

centro-parietal regions (Deiber et al., 2001; Tallet et al., 2009; Tallet et al., 2010). This is also present 

in unimanual paradigms with intended switching between hands (Serrien and Sovijärvi-Spapé, 2013). 

This indicates that alpha power is more related to attentional processes associated with switching 

rather than the specific encoding of a new coordination mode. Additionally, an overall increase of 

inter- and intra-hemispheric coherence in the beta band has been observed in a sequence of alternating 

coordination modes compared to a condition where a single coordination mode is maintained (Serrien, 

2009b). Similar results in centro-parietal areas were reported by Lorist et al. (2009) and Sohn et al. 

(2000) in cognitive dual tasks. Two reasons for this increase were proposed by Serrien (2009b). First, 

a process encompassing an increment in neural communication might be in action in order to overrule

interference from past neural activity into current activity. Second, the coherence increases might be

related to an increase in the attentional demand (Serrien, 2009b).

Besides the changes in power and coherence that are common to the switching of coordination 

modes, there are changes that are particular to each type of movement. In the literature, the primary 

focus has been on switching from bi- to unimanual movements (and vice versa) and switching from 

anti- to in-phase bimanual movements (and vice versa). The former leads to increases in beta inter-

hemispheric coherence, reflecting the effect of past on present activity, as inhibiting a bimanual

pattern would require more neural effort in order to update and switch to a unimanual task (Serrien, 

2009b). The opposite switch, i.e. from uni- to bimanual movements, is not accompanied by significant 

changes in coherence levels (Serrien, 2009b). Tallet et al. (2009) also reported asymmetric coherence 

patterns during switching from bimanual to unilateral right movements. Coherence between the 

dominant hemisphere and the midline (presumably over SMA) was increased during the switching 

maneuver, whereas a decrease was found between the non-dominant hemisphere and the midline. 

Tallet et al. (2009) proposed this asymmetry to reflect a reinstatement of communication in the 

dominant hemisphere to continue movement of the right hand, and disruption of communication, or 

inhibition, in the non-dominant hemisphere to stop movement of the left hand.
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Intended switching from the anti- to in-phase coordination mode was accompanied by an 

increase in beta power over the fronto-central region, whereas no significant changes were found at the 

coherence level (Tallet et al., 2010). ERD/S studies have reported increases of beta power after 

termination of movement, indicating a decrease in neural activity (Pfurtscheller and Lopes da Silva, 

1999). If this is extrapolated to a switch from difficult (anti-phase) to easy (in-phase) movements, an 

increase of beta power would be related to the reduction of neural effort to perform the new task. The 

opposite switch, i.e. from in- to anti-phase movements, is linked to an increase in alpha and beta 

coherence between sensorimotor cortices and the midline, which implies more engagement of relevant 

neural regions for a more complex movement (Tallet et al., 2009; Tallet et al., 2010). This is supported 

by behavioral findings, where switching from in- to anti-phase is considered more difficult than the 

opposite (Serrien and Swinnen, 1999). The lack of significant changes in the anti- to in-phase switch 

compared to the in- to anti-phase switch might reside in the bidirectional inter-hemispheric inhibition

taking place alternatively in anti-phase movements. This mode entails the division by two of the 

movement cycle’s period set by the metronome, which is not necessary in in-phase movements (Repp, 

2008; Tallet et al., 2009; Tallet et al., 2010). 

4.2 Task integration during multitasking

Daily activities often require different tasks to be performed simultaneously, such as walking 

and talking, counting, or listening to others. Stabilizing a bimanual pattern, while there is interference 

from another task, involves a multitasking cost in the central nervous system with a potential decline 

in performance of the bimanual movement. An important factor that mediates resource distribution for 

simultaneous tasks  that can be selectively directed is attention (Monno et al., 2002). In order to 

measure the capacity for resource allocation and automatic attentional switching, an ERP elicited at 

around 300 ms after stimulus onset named P3b has been used. Specifically, a reduction of P3b was 

shown in a dual task which encompassed identification of a novel visual stimulus in a sequence of 

common stimuli while performing anti-phase movements with the forearms (Matthews et al., 2006). 

The coordination pattern was kept stable during the single motor and the dual-task conditions with 
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motor priority. However, the dual task induced a P3b reduction over the centro-parietal area, which 

confirms the relation of P3b to attentional priority and provides an argument to consider P3b as an 

index of attentional cost (Matthews et al., 2006; Monno et al., 2002). P3b is presumably generated by 

temporo-parietal regions and the ACC (Kok, 2001). The latter has been reported to be part of the 

neural network for anti-phase movements but not for in-phase movements (Pollok et al., 2007), as 

discussed previously in Section 3.2.1.

In another study evaluating the effects of dual tasking in uni- and bimanual tasks (task 1) 

during verbal counting (task 2), coherence was examined (Serrien, 2009d). Inter-hemispheric and 

midline connectivity increased in the dual- compared to single-task condition during unimanual 

movements. In contrast, coherence did not significantly change for the dual- compared to single-task

condition during bimanual movements, and the values were similar to the dual-task unimanual 

condition. In this regard, the lack of strengthening of functional connectivity in the dual- compared to 

single-task condition was associated with detriments in motor performance. It is likely that these 

similar connectivity levels are due to competition for resources, as the dual task employed (verbal 

counting), seems to recruit a distributed neural network (Dehaene et al., 2003; Stanescu-Cosson et al., 

2000) including motor-related areas (Andres et al., 2007; Brown et al., 2005; Franz et al., 1992). 

Hence, the sensorimotor processes involved in the dual task may have interfered with the primary 

motor task. 

In summary, protocols examining executive functions via bimanual movements, including task 

switching and dual tasking, have been used in association with EEG/MEG recordings. Regarding the 

former, decreases in the alpha power have been linked to the switching maneuver, regardless of the 

direction of the switch (e.g., in- to anti-phase, or vice versa), suggesting elevated attention demands. 

To date, there is no conclusive evidence that characterizes the neural dynamics during switches 

towards specific coordination modes. Regarding the integration of dual tasks, only two studies are 

relevant and provide an initial view of the cost in the central nervous system associated with

simultaneously performing a bimanual task and another type of task, suggesting a limited capacity of 
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attentional resources. However, further research is required in order to confirm the reliability of 

measures that may reflect the dual-task cost. 

5. Bimanual learning and neural plasticity

Coordination patterns that deviate from the intrinsic in-phase and anti-phase coordination

modes, such as multifrequency patterns and/or modes with less intrinsic relative phase relations 

require practice to be performed with high accuracy and consistency. Various feedback techniques are 

available to support the acquisition of such coordination skills and to promote integration of the 

subtasks into a gestalt (Swinnen and Wenderoth, 2004). Training-induced bimanual skill improvement 

is associated with changes in neural activation as demonstrated by fMRI studies (Beets et al., 2014; 

Debaere et al., 2004b; Puttemans et al., 2005; Remy et al., 2008; Ronsse et al., 2011). Accordingly, 

studies using EEG/MEG techniques have identified a bimanual learning network that is modulated by 

practice-induced changes, including the bilateral SM1, SMA, PMd, PPC and cingulate motor area 

(Gerloff and Andres, 2002). These practice-induced changes in neural representations are 

characterized by specific patterns of brain oscillations (Hikosaka et al., 2002), as EEG/MEG studies 

show (see Table 4).  

Insert Table 4 about here

ERPs and connectivity measures have been used to investigate cortical modulations and 

functional coupling between brain regions, respectively, in response to bimanual movement training. 

Most EEG/MEG studies focused on short-term motor learning (30 minutes of practice). However, 

such protocols only reflect the effects of short-term repetitive practice, rather than long-term learning 

and retention - for an exception, see Wright et al. (2012). It is well established that short-term motor 

learning can modulate cortical excitability (Classen et al., 1998; Kleim et al., 2004), whereas motor 

map reorganization and synapse formation presumably occur at later stages, following motor skill 

acquisition and performance gains (Kleim et al., 2004). Accordingly, fundamentally different neural 

processes may underlie short- versus long-term training-induced neuroplasticity. 
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MRCPs have been used to investigate cortical changes in response to short-term movement 

training (Hill, 2009; Staines et al., 2002). Smith and Staines (2006) showed that the training of a novel 

visuomotor task during 30 minutes, which involved wrist flexion/extension and subsequent transfer to 

unimanual movements, was associated with enhancements of motor preparatory activity, in 

accordance with previous ERP and metabolic studies (Petersen et al., 1998; Staines et al., 2002). 

Especially, improvements in unimanual performance following bimanual training were associated 

with amplitude increases of the early MRCP associated with motor preparation, but not the CNV, 

associated with anticipation of the cue. Additionally, performance improvement during the latter 

portion of bimanual training was associated with amplitude increases of the early MRCP and 

amplitude decreases of the RAP. The authors concluded that the negative relationship between 

training-induced improvements in motor performance and the amplitude of cortical markers for motor 

performance was associated with transfer effects to a unimanual task, indicating that short-term 

training can change the level of motor preparation and sensory feedback processing in healthy 

subjects. In a subsequent study, Smith and Staines (2010) investigated in- versus anti-phase bimanual 

movement training. To this end, they developed three types of cued movement training with a total 

duration of 30 minutes: in-phase bimanual, anti-phase bimanual and repetitive unimanual. Again, 

these were assessed for transfer to unimanual movements. Results showed that a significant training-

related increase in preparatory activation correlated with a behavioral enhancement following in-phase 

bimanual training, but not after anti-phase bimanual or unimanual training. 

To overcome the limitations associated with short-term training, Wright et al. (2012)

developed a more ecologically valid paradigm that included a five-week training program about 

learning to play the guitar. After training, the amplitude of NS and MP components of the MRCP were 

reduced and were correlated with motor improvements, whereas the early BP did not show significant 

changes. These findings appear contradictory to those from Smith and Staines (2006; 2010), and 

highlight the importance of long-term learning. They suggest that, as an individual becomes more 

competent in a motor skill, less neural resources are required during motor planning, resulting in the 

observed MRCP changes.
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Regarding inter-regional functional coupling, lesion studies provide strong evidence for the 

importance of inter-hemispheric connections between premotor and sensorimotor regions in bimanual 

activities (Geffen et al., 1994; Leonard et al., 1988; Sperry, 1968). Alpha, beta, and gamma bands have 

been shown to be most sensitive to motor modulations induced by training, reflecting different 

underlying systems (Pfurtscheller et al., 1996; Salmelin and Hari, 1994). Along this line, Andres and 

co-workers (1999) investigated the functional coupling and regional activation of human sensorimotor 

regions during short-term bimanual skill learning. Coherence and spectral power were estimated in 

alpha and low beta bands during the fusion of two overlearned unimanual finger tapping sequences 

into one bimanual sequence before and after a 30-minute training period. They reported inter-

hemispheric coherence increases during the early bimanual learning phase that returned, to values 

similar to the unimanual control conditions following bimanual training. In general, spectral power 

appeared to be less affected by training, supporting the differential physiological meaning of the two 

measures. These results are supported by extensive evidence reporting that initial coherence increases 

might reflect a greater initial need for active integration when bimanual sequences are not yet 

established as motor routines, with subsequent evolution of connectivity values towards baseline 

levels reflecting a more efficient system after training (Debaere et al., 2004b; Puttemans et al., 2005; 

Serrien and Brown, 2003).

Additionally, Andres and coworkers suggested that modulations of inter-hemispheric coupling 

as a result of  bimanual learning might be relayed through the corpus callosum, since partial 

callosotomy leads to a decrease in inter-hemispheric coherence (Brazdil et al., 1997; Gerloff and 

Andres, 2002). More specifically, patients with lesions of the corpus callosum show deficits in the 

acquisition of novel bimanual sequences, but not in the execution of previously learned bimanual 

sequences. Serrien and Brown (2003) argued that the inter-hemispheric modulations observed by 

Andres et al. (1999) reflected the optimization of task performance rather than learning a new 

bimanual task, since participants were able to perform the bimanual sequence correctly from the 

beginning of the recording. 

Serrien and Brown (2003) conducted a study to investigate cortico-cortical coupling during the 

acquisition of a completely new task by means of coherence between cortical areas. Participants 
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performed bimanual cyclical wrist flexion/extension movements at a 2:1 ratio over a 30-min 

acquisition period. Coherence was evaluated in the alpha, beta and gamma frequency bands. Results 

showed both an initial increase and subsequent decrease in coherence between the primary 

sensorimotor regions and over the midline area in the alpha and beta bands, in accordance with Andres 

and collaborators (1999). However, a novel finding was an early increase in inter-hemispheric 

coupling in the gamma band between prefrontal regions. Altogether, this suggests that the strength of 

cortico-cortical connectivity is adaptively modified across regions and frequencies while learning a 

complex bimanual pattern. Additionally, the authors observed that learning a highly demanding 

bimanual task involves the suppression of pre-existing preferred isofrequency coordination modes, 

particularly the in-phase and anti-phase modes (Serrien and Swinnen, 1997; Swinnen et al., 1997b; 

Swinnen et al., 1993). These pre-existing preferred coordination modes not only influence, but are also 

influenced by the to-be-learned bimanual task (Serrien, 2009c) with two main factors showing the 

highest impact on this reciprocal influence, i.e., the number of tasks or task variations practiced and 

the order in which the tasks are trained. Interactions between new and intrinsic dynamics were 

evaluated by Serrien (2009c) in a bimanual finger tapping task with a 2:1 ratio according to two 

training schedules over 10 minutes: continuous (consecutive trials), and interrupted (non-consecutive 

trials with intermediate 1:1 in-phase performance). In-phase and anti-phase modes were probed before 

and after training. Results showed that both continuous and interrupted practice improved motor 

performance, but to a smaller extent in the latter case. Inter-hemispheric, intra-hemispheric and 

midline connectivity decreased during continuous practice, whereas inter-hemispheric connectivity 

increased with interrupted practice. It was concluded that the particular practice schedule affects motor 

learning, with a stronger impact from pre-existing preferred coordination modes to the to-be-learned 

bimanual task than vice versa. 

The MEG literature has primarily focused on cortical modulations of event-related activity 

during the short-term acquisition of new bimanual polyrhythm tasks involving force production while 

recording both MEG and EMG signals. Boonstra et al. (2007) used a bimanual 3:5 polyrhythm task 

with a duration of 37 minutes, approximately, and investigated the motor-related power in order to 

identify learning-specific spectral changes in cortical activity of bilateral M1. The authors observed 
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improved performance of the polyrhythm with practice and the accompanying event-related beta 

modulation was enhanced, particularly, in the contralateral motor cortex of the more-difficult-to-adjust 

end-effector, here, the slow finger. The authors concluded that (1) motor learning is associated with a 

change in neural activity in cortical motor areas that differs across hemispheres, and (2) initial stages 

of motor learning require additional mental effort since the motor skill is not yet automated, 

supporting previous research (Halsband and Lange, 2006). Along the same lines, Houweling and co-

workers (2010a; 2008a; 2008b; 2010b) transferred a bimanual polyrhythm task training paradigm 

developed by Mechsner et al. (2001) to the MEG environment to investigate the functional coupling of 

oscillatory activities during motor learning of about 30 minutes. They looked at cortico-cortical and 

cortico-spinal synchronization in the alpha, beta and gamma bands based on pre/post learning 

differences (Houweling et al., 2008b). Results revealed event-related (de-) synchronization of beta 

activity in bilateral cortical motor areas and alpha modulations in the cerebellum. The latter increased 

after learning and, simultaneously, the bilateral M1 coupling increased around the movement 

frequency reflecting improved motor timing. Furthermore, the inter-hemispheric gamma 

synchronization between primary motor areas decreased, reflecting reduced attentional demands after 

learning. These findings pointed to a functional role for inter-hemispheric synchronization in the 

establishment of motor coordination patterns. 

In summary, the EEG/MEG literature on motor learning has primarily focused on ERPs and 

functional connectivity of inter-hemispheric sensorimotor regions during short-term motor learning. 

Regarding ERP studies, MRCP components have been classically investigated during bimanual 

movement training, showing both amplitude increases and decreases in the early and late components 

of the MRCP, respectively, that were associated with improvements in motor performance. Only one 

study to date has shown decreases in the early components of MRCP that were associated with long-

term motor learning, which is not in line with the abovementioned findings. Inter-regional functional 

connectivity studies on alpha, beta and gamma bands have shown an early increase followed by a 

decrease in connectivity, across several motor areas. Taken together, these findings reflect that motor 

learning is associated with a change in neural activity and connectivity. Specifically, initial increases 
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in both ERP amplitudes and functional coupling may indicate the necessity of greater neural resources 

when bimanual sequences are not yet established as motor routines, with subsequent regress towards 

baseline levels, reflecting a more economic neural system after training. Importantly, further research 

is required to solve discrepancies between short- and long-term practice results, and to investigate the 

neural reorganization that only occurs at later stages of motor skill acquisition.

6. Future research

Despite the considerable insights into the neural mechanisms supporting motor control in 

general and bimanual coordination in particular, as gained by the different imaging modalities, many 

questions still await to be answered. Here we discuss different methodological and scientific avenues

that are yet to be explored to enhance our understanding of bimanual coordination.  

Regarding the techniques for data acquisition, the use of multimodal approaches might provide 

insights from different physiological perspectives: magnetic/electric and metabolic. The characteristic 

low spatial resolution of EEG/MEG recordings can be complemented by the simultaneous use of 

fMRI. In particular, this strategy has not been fully exploited in the area of motor research. Some 

studies have started to implement this strategy with motor imagery tasks (Burianová et al., 2013; 

Formaggio et al., 2010). Given the particular strengths of each method, multimodal approaches might 

also help to interconnect different levels that have been studied separately or only by pairwise 

combinations so far: structure (brain grey and white matter), function (brain activity), and 

connectivity. Only a few studies have investigated the correlations between EEG measures and 

structural measures from diffusion MRI for visual and sensory stimuli, resting state and cognitive 

tasks – for a review, see Sui et al. (2013). However, no study so far has examined the relationship 

between both structural and functional measures from EEG/MEG in relation to bimanual coordination. 

Bimanual movements heavily rely on the integrity of the corpus callosum, as shown in callosotomy 

patients (Kennerley et al., 2002; Preilowski, 1972; Ridderikhoff et al., 2005). Therefore, future 

research linking structural measures of the corpus callosum to the functional connectivity during 

movement is greatly relevant to understand bimanual coordination in a comprehensive manner. 
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Regarding the experimental tasks, most studies have made use of movements that are 

presumably related to event timing (see section 1), such as finger tapping or flexion/extension of 

fingers or wrists. Little is known about the underlying neural dynamics of continuous movements 

without a salient event. Furthermore, isofrequency movements dominate current EEG/MEG literature. 

Phase deviations from the preferred in- and anti-phase coordination modes have been a focus of study 

in fMRI work. Also, the few available polyrhythmic studies have not challenged task allocation 

assignments for each limb in relation to hand dominance so far, as the fast rhythm is always performed 

by the dominant hand. More recently, polyrhythmic movements whereby the non-dominant hand 

performs the faster of the 2 rhythms, have been explored in an fMRI study (Beets et al., 2014).

With respect to learning-related questions, an important issue to clarify is the difference 

between learning and performance. Most EEG/MEG studies have focused on initial stages of motor 

learning, or short-term learning, of simple tasks dependent on online feedback with either visual or 

auditory cues. Further research is required to resolve discrepancies between short- and long-term 

practice results, and to investigate the processes of neural reorganization that occur at later stages of 

motor skill acquisition. The next step is to distinguish true learning characterized by more permanent 

changes from temporary performance effects that are assisted with cues or augmented feedback 

sources which have been repeatedly reported in motor-related research (Kantak and Winstein, 2012; 

Salmoni et al., 1984; Swinnen, 1996). Additionally, cross sectional approaches comparing novices 

with experts during production of bimanual tasks will be helpful to obtain a deeper understanding of 

skilled performance. 

Another consideration is the statistical power of studies. As seen in column “n” of Tables 1-4, 

most EEG/MEG studies have studied ten or less participants, and in some cases the sample size has 

been reduced during the processing stage due to high noise levels or outliers. The statistical power of 

studies has become an important matter of concern not only in EEG/MEG experiments, but in the 

whole field of neuroscience (Button et al., 2013; Guo et al., 2013). Sample size calculations prior to 

the start of the study and bigger sample sizes are necessary to lend stronger credibility to the obtained 

results. 
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Finally, an exciting avenue for data analysis is investigating other connectivity measures, such 

as the band-limited power (e.g., Betti et al., 2013), or cross-frequency couplings (de Lange et al., 

2008; Sakowitz et al., 2005). The oscillatory nature of neurons allows information flow through neural 

entrainment (or synchronization) either at a local or a global level. A step further into the complex 

network of neural interactions is to examine the amplitude and phase couplings between frequency 

bands. Long-range interactions through beta-gamma coupling between left M1 and occipito-parietal 

cortex during motor imagery have been reported, challenging the line of thought explaining mental 

processes as being of a sequential and hierarchical nature (de Lange et al., 2008). Furthermore, 

synchronized activity across frequency bands has been shown to be involved in multisensory 

integration (Sakowitz et al., 2005), which is key for motor planning and execution.

Summary

This review presented a brief description of the vast knowledge on behavioral principles of 

bimanual coordination, and how these are reflected in neural dynamics with a high temporal 

resolution. Generally, bimanual movements require more neural resources (stronger spectral 

suppression and inter-hemispheric connectivity) than unimanual movements, similarly to anti-

compared to in-phase modes. Behavioral instability during bimanual movements due to increased 

tempos is accompanied by spatio-temporal reorganization of the neural networks. There is strong 

evidence that the dominant hemisphere is more active than the non-dominant one during bimanual 

movements, reflected by stronger alpha and beta suppressions and higher intra-hemispheric 

connectivity. The dominant hemisphere probably exerts control over the non-dominant limb via

ipsilateral projections and/or transcallosal communication. Additionally, bimanual movements have 

been used as a window to look into cognitive control functions via task-switching and dual-task 

protocols, using coherence measures and the P3b component. Importantly, EEG/MEG literature shows 

that motor learning is associated with a change in cortical modulations and functional coupling. 

Finally, scientists interested in this field should be aware of both the history of behavioral research on 
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motor skills and the advances in the field of neuroscience to design meaningful studies. This paper 

represents an attempt to contribute to that awareness. 
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Table 1. Summary of studies on planning of bimanual tasks. N: Sample size; E: ERP; Sp: Spectral 

analysis.

Table 2. Summary of studies on execution of uni- and bimanual tasks. N: Sample size; Tech: 

Technique; E: ERP; Sp: Spectral analysis; C: Connectivity analysis; S: Source estimation.

Table 3. Summary of studies on cognitive functions using bimanual paradigms. N:Sample size; Tech: 

Technique; E: ERP; Sp: Spectral analysis; C: Connectivity analysis; S: Source estimation.

Table 4. Summary of learning studies using unimanual and bimanual paradigms. N: Sample size; 

Tech: Technique; E: ERP; Sp: Spectral analysis; C: Connectivity analysis; S: Source estimation; RT: 

reaction time.

Figure 1. Methods of analysis of EEG signals. A. MRCP associated with right finger movements on 

electrodes C1, Cz and C2 (over the central line of the scalp). Modified from Shibasaki and Hallett 
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(2006). B. Comparative illustration of the ERP showing phase-locked activity with respect to a 

reference time point t = 0, and both phase and non-phase locked activity on the right side visible with 

time-frequency analysis. From Bastiaansen et al. (2012). C. Measured signals on the scalp can be used 

to estimate the underlying sources of activity via the solution of the inverse problem which is 

undetermined. For this, a model of how signals are spread across the tissue is required, i.e. the forward 

problem. 
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Tables 

Table 1. Summary of studies on planning of bimanual tasks. N: Sample size; E: ERP; Sp: Spectral analysis. 

 

 

 

 

 

 

 

 

 

 

 

Author N Technique Task Pattern Analysis Main Findings 

  
    

E Sp   

Kristeva 
et al. 
(1990) 

8 EEG 
Flexion/extension 

index finger 
In-phase x - 

No effect of inertial loading in BP amplitude in bimanual, unlike unimanual 
Larger BP amplitudes in bimanual compared to unimanual 
BP and N(0-100ms with respect to movement onset) amplitudes were larger in non-dominant hemisphere 

Urbano 
et al. 
(1998) 

4 EEG 
flexion/extension 

middle finger 
in-phase x - 

Negativity over contralateral-central and mid frontocentral during motor preparation, initiation and execution 
showed no difference in latency for bi- and unimanual movements 

Amplitude over contralateral-central area was not statistically different between bilateral and unilateral 

Amplitude over mid frontocentral area showed higher activation during execution in bilateral 

Cui et al. 
(2000) 

16 EEG 
sequence of index 

and little finger 
pressing thumb 

in-phase x - 

Later CNV topography varied with motor complexity, indicating that exact preparation for a motor process was 
performed 

Maximum amplitude of NP (negativity of performance, during execution)over central area, supposedly 
supplementary and cingulate areas, bilateral M1s 

Early CNV over frontal areas; late CNV over central areas 

Taniguchi 
et al. 
(2001) 

12 EEG button pressing in-phase x - Decreased motor potential (over C3 and C4) in bilateral compared to unilateral 

Deiber et 
al. (2005)  

12 EEG 
flexion/extension 
of index and/or 

little finger 

in & anti-
phase 

x x 
Initial 500ms of CNV accompanied by alpha and beta ERD  

Initial CNV was influenced by precue given in S1 

Table(s)

http://ees.elsevier.com/neubiorev/download.aspx?id=77952&guid=b44d4cab-8791-4ddd-96c6-7a884a1a3a43&scheme=1
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Table 2. Summary of studies on execution of uni- and bimanual tasks. N: Sample size; Tech: Technique; E: ERP; Sp: Spectral analysis; C: Connectivity 

analysis; S: Source estimation.  

 

Study N Tech Task Pattern Analysis Main Findings 

     E Sp C S  

Banerjee et al. 
(2012) 

12 EEG 
Flexion-

extension 
index finger 

In & anti-
phase 

x - - - 

Bimanual coordination is generated by temporal modulation of unimanual tasks, similarly for in-phase and anti-phase  

Instability at high frequency of anti-phase movement is explained by recruitment of additional networks 

Stable bimanual in- and anti-phase performance rely on similar recruited networks 

Daffertshofer 
et al. (2000) 

3 MEG 
Finger 

tapping 
Polyrhyth

m 
- x x - 

Bimanual cortical patterns can be explained by superposition of unimanual cortical patterns 
Areas of phase-locking do not necessarily coincide with areas of higher spectral power 
Model of polyrhythm movement based of two non-linearly coupled self-sustained oscillators 

Daffertshofer 
et al. (2005) 

1 MEG 
Finger 

tapping 
Polyrhyth

m 
- x x - 

Contralateral motor cortices showed activity at movement frequencies of each hand during stable performance 
Increase of power in ipsilateral areas to the unstable hand during unstable behavior 

Ford et al. 
(1986) 

14 EEG Fist clenching In-phase - - x - Higher inter and intra-hemispheric coherence in alpha band during uni- and bimanual movements 

Gross et al. 
(2005) 

10 MEG 
Wrist 

flexion/exten
sion 

In & anti-
phase 

- - x x 
Bimanual movements showed higher activity than unimanual for alpha, beta and gamma across the whole brain 
Anti-phase movements showed higher activity than in-phase for alpha, beta and gamma across the whole brain 
Activity of non-dominant M1 was modulated by task from unimanual to in-phase and anti-phase 

Houweling et 
al. (2010b) 

13 MEG 
Flexion-

extension/fin
ger tapping 

Polyrhyth
m 

- x x x 
Increase of power at movement frequency of fast hand in ipsilateral M1 during instability 
Beta power was reduced with increasing movement frequency 
 

Pollok et al. 
(2005b) 

7 MEG 
Index 

flexion/exten
sion 

In-phase - - x x 
Functional coupling in cortex (thalamus, PPC, PMC, S1-M1, SMA) in alpha band during bimanual execution 
Higher activity in dominant (left) S1-M1 during bimanual movement 

Pollok et al. 
(2007) 

14 MEG 
Finger 

tapping 
In & anti-

phase 
- - x x 

Increased activity in ACC and SMA during anti-phase movement 
Decreased power (increased activation) at 10 and 20Hz in left S1-M1, and in PMC & SMA, respectively 
Increased alpha power (decreased activity) in left cerebellum during anti-phase movement 

Serrien and 
Brown (2002) 

6 EEG 
Wrist 

flextion/exte
nsion 

In & anti-
phase 

- x x - 

Decrease of interhemispheric coherence in beta band along with performance deterioration with increasing tempo 

Performance and interhemispheric coherence were more reduced in anti-phase compared to in-phase movements 

Increased connectivity between sensorimotor cortices and midline with increasing tempo 

Serrien et al. 
(2003) 

6 EEG 
Flexion/exte

nsion of 
wrists 

In & anti-
phase 

- x x - 

Dominant hemisphere controlled communication with non-dominant in bimanual and unilateral right movements 

Increased coherence during anti-phase compared to in-phase movements 

Deterioration of performance with load accompanied by decrease of inter-hemispheric coherence in beta 

Serrien (2008) 10 EEG 
Finger 

tapping 
In & anti-

phase 
- x x - 

Increased intra-hemispheric coherence in beta in left hemisphere for unilateral right and bimanual movements 

Higher intra- and inter-hemispheric and midline coherence in beta band in anti-phase coordination mode 

Lowest inter-hemispheric coherence in beta band in in-phase compared to anti-phase and unilateral movements 

Serrien 
(2009a) 

9 EEG Drawing Other - - x - Intra-hemispheric coherence in beta band was increased as a function of task complexity in dominant hemisphere 

         Inter and intra-hemispheric coherence in beta band was increased in complex tasks in non-dominant hemisphere 
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Table 3. Summary of studies on cognitive functions using bimanual paradigms. N:Sample size; Tech: Technique; E: ERP; Sp: Spectral analysis; C: 

Connectivity analysis; S: Source estimation.  

 Study N Tech Task Pattern Analysis Main findings 

      E Sp C S  

Dual task 

Matthews 
et al. (2006) 

16 EEG 
Pronation-
supination 
of forearm 

anti-phase x - - - Reduction in P3b for dual task motor priority compared to simple motor task 

Serrien 
(2009d) 

9 EEG 
finger 

tapping 
in-phase - - x - 

Similar levels of inter-hemispheric and midline connectivity in beta band for single and dual bimanual task 

Higher level of intra-hemispheric connectivity in beta band during single bimanual task than dual 

 Cued 
switching 

Deiber et 
al. (2001) 

10 EEG 

index and 
middle 

finger press 
button 

in & anti-
phase 

- x - - 

Alpha ERD did not differentiate bimanual in-phase and anti-phase sequences 

Alpha decreased over central and mesial regions during steady state of uni- and bimanual sequences 

Alpha decreased more for left and bimanual sequences than for unilateral right 

Tallet et al. 
(2010) 

7 EEG 
finger 

tapping 
(index) 

in & anti-
phase 

- x x - 

Decrease of alpha for anti- to in-phase and in- to anti-phase switching 

Increase of beta inter-hemispheric coherence and lateral-midline pairs during in- to anti-phase switching 

Increase of beta over fronto-central region during anti- to in-phase switching 

Serrien 
(2009b) 

8 EEG 
finger 

tapping 
(index) 

in-phase - x x - 

Increased beta inter and intra-hemispheric coherence in a series of movement compared to execution of a 
single type of movement 

Higher inter-hemispheric coherence in beta band during switch from bimanual to unimanual movements 

No significant differences during switch from unimanual to bimanual movements 

Tallet et al. 
(2009) 

11 EEG 
finger 

tapping 
(index) 

in & anti-
phase 

- x x - 

Reduction of alpha over sensorimotor and mesio parietal areas in tasks involving motor inhibition and 
switching 

Increment of beta coherence over sensorimotor areas during switching from in-phase to anti-phase 

Right lateral-midline connectivity decreased and left lateral-midline connectivity increased in in-phase to 
unimanual right movement 
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Table 4. Summary of learning studies using unimanual and bimanual paradigms. N: Sample size; Tech: Technique; E: ERP; Sp: Spectral analysis; C: 

Connectivity analysis; S: Source estimation; RT: reaction time. 

Study N Tech Task Pattern Analysis Main Findings 

     E Sp C S  

Andres et al. 
(1999) 

18 EEG 
Finger 

tapping 
In & anti-

phase 
- x x - 

Increased interhemispheric coherence in bimanual movements at early learning stages 
Decreased interhemispheric coherence in bimanual movements after later learning stages, similar to unimanual control 

Boonstra et al. 
(2007) 

9 MEG 
Flexion-

extension 
fingers 

Polyrhyth
m 

- x x x 
Event-related modulation of beta power in the contralateral motor cortex was inversely related to force output.  
The degree of beta modulation for the motor cortex increased during the experiment and was positively correlated with 
motor performance of the slow hand 

Houweling et 
al. (2008a) 

9 MEG 
Flexion-

extension/fin
ger tapping 

Polyrhyth
m 

- x x x 

Improved timing of the slow hand correlated with an increase in power in contralateral M1  
Power spectral densities of bilateral M1s revealed both fast and slow frequency components 
Beta activity was modulated at the frequency of the slow hand and the degree of modulation increased during motor 
learning 

Houweling et 
al. (2008b) 

9 MEG 
Flexion-

extension/fin
ger tapping 

Polyrhyth
m 

- x x x 

Event-related (de-)synchronization of beta-activity in bilateral cortical motor areas and alpha-modulations in the 
cerebellum 
The alpha-modulation increased after learning and the bilateral M1 coupling increased around the movement 
frequency 
Inter-hemispheric gamma-synchronization between primary motor areas decreased 

Houweling et 
al. (2010b) 

9 MEG 
Flexion-

extension/fin
ger tapping 

Polyrhyth
m 

x x x  
Cortico-spinal synchronization in the beta band correlated with learning   
Intermittent phase locking episodes between beta oscillations in contralateral M1s and the corresponding EMG 
The strength of the locking correlated with amplitude modulation and increased with improved performance  

Serrien 
(2009c) 

16 EEG 
Finger 

tapping 

Polyrhyth
m , in & 

anti-
phase 

- x x - 
Continuous practice resulted in improved performance with reduced coherence across the motor network 
Interrupted practice  resulted also in improved performance (less than continuous) with no reductions in 
intrahemispheric and midline connectivity and increases in interhemispheric connectivity 

Serrien and 
Brown (2003) 

6 EEG 
Flexion-

extension 
wrist 

Polyrhyth
m 

- x x - 
Practice associated with a decrease in coherence between primary sensorimotor regions and over the midline area in 
the alpha and beta bands, respectively, along with an increase in functional interhemispheric coupling between the 
prefrontal areas in the gamma band 

Smith and 
Staines (2006) 

10 EEG 
Flexion-

extension 
wrist 

In & anti-
phase 

x - - - 
Late MRP amplitude did not change, but there was a trend of the early MRP amplitude to increase 
Decreased RTs correlated with an increased early MRP amplitude in unimanual movements before and after training 
Accuracy and early MRP amplitude increased and a positive re-afferent  potential decreased in bimanual movements 

Smith and 
Staines (2012) 

10 EEG 
Flexion-

extension 
wrist 

In & anti-
phase 

x - - - 
Increase in preparatory activation correlated with behavioural enhancement after cued in-phase training 
No modulations in response to cued anti-phase training or repetitive unimanual movement 

Wright et al. 
(2012) 

10 EEG 
Play the 
guitar 

Other x - - - Training-related decreases in the amplitude of the later pre-movement components of the MRCP (NS’ and MP) 
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Figure
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