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ABSTRACT

The quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE of ten Mycoplasma 
hyopneumoniae field isolates that were either sensitive (5) or resistant (5) to the fluoroquinolones flumequine
and enrofloxacin were characterized. In all five resistant isolates, one point mutation (C � A) in parC was
found, resulting in an amino acid change from serine to tyrosine at position 80 (Escherichia coli numbering).
For four of these isolates, this was the only mutation found. These isolates had a minimum inhibitory con-
centration (MIC) of enrofloxacin of 0.5 �g/ml, whereas for sensitive isolates the MIC of enrofloxacin was
�0.06 �g/ml. One resistant isolate (Mh 20) had an extra mutation (C � T) in gyrA resulting in an amino acid
change from alanine to valine at position 83 (E. coli numbering), leading to a further increase in the MIC of
enrofloxacin (�1 �g/ml). No mutations resulting in an amino acid change were detected in the QRDR of the
gyrB and parE genes of the selected isolates. This is the first description of the mechanism of stepwise resis-
tance against fluoroquinolones in M. hyopneumoniae.

INTRODUCTION

MYCOPLASMA HYOPNEUMONIAE is a major swine pathogen
causing enzootic pneumonia, a chronic respiratory dis-

ease in pigs resulting in considerable economic losses. In a pre-
vious study,36 conducted to determine the in vitro susceptibil-
ity of M. hyopneumoniae field isolates to frequently used
antimicrobials in swine, 5 out of 21 isolates were found to be
less susceptible or to be resistant to flumequine and en-
rofloxacin. This rather high frequency was unexpected because
fluoroquinolone resistance does not often occur in swine respi-
ratory pathogens.14,23,37

Fluoroquinolones are broad-spectrum antibiotics. Their use
depends on the country regulations; fluoroquinolones are not
allowed for use in pigs in the United States but are allowed in
the European Union.38 In Belgian pig herds, fluoroquinolones
are frequently used as a prophylactic antibiotic during the suck-
ling period,35 mainly to prevent neonatal diarrhea. In older pigs,
these antimicrobials are mainly used to treat individual animals
with diarrhea, arthritis, meningitis, or respiratory symptoms.

The most frequently used fluoroquinolones in large animal vet-
erinary medicine are flumequine and enrofloxacin.

Fluoroquinolones are known to have two enzyme targets in
the bacterial cell belonging to the topoisomerases type 2,
namely DNA gyrase and topoisomerase IV. The first enzyme
catalyzes adenosine triphosphate (ATP)-dependent negative su-
percoiling of DNA; the latter enzyme is essential for chromo-
some segregation.12,18 DNA gyrase is a tetramer composed of
two GyrA and two GyrB subunits. Topoisomerase IV is simi-
larly structured and is composed of two ParC and two ParE sub-
units. ParC is homologous to GyrA and ParE is homologous to
GyrB. The primary target for fluoroquinolones in Gram-nega-
tive bacteria is the DNA gyrase, whereas in Gram-positive bac-
teria, including mycoplasmas, it seems to be topoisomerase
IV.2,4,7,9,12,13,18,21 However, some exceptions to this rule were
found in Streptococcus pneumoniae and Mycoplasma hominis
isolates for newer fluoroquinolones, such as sparfloxacin and
gatifloxacin.3,11 For Mycoplasma gallisepticum, the preferen-
tial target of enrofloxacin is DNA gyrase.33 In several bacteria,
mutations responsible for an increase in minimum inhibitory
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concentration (MIC)-value were found in the subunits of these
target genes.4,6,38,40,41

In the present study, the mechanism responsible for fluoro-
quinolone resistance in M. hyopneumoniae field isolates37 was
determined. Therefore, the quinolone resistance-determining re-
gions (QRDR) of gyrA, gyrB, parC, and parE were sequenced.

MATERIALS AND METHODS

M. hyopneumoniae isolates

The 10 M. hyopneumoniae field isolates selected for this
study were obtained between 2000 and 2002 from slaughter
pigs from 10 different Belgian farrow-to-finish pig herds and
were previously used for MIC determination.36 Isolate selec-
tion for this study was based on the MIC value: five isolates
with the highest and five isolates with the lowest MIC values
for flumequine and enrofloxacin were retained. The MIC val-
ues of flumequine and enrofloxacin for four isolates (Mh 4, 8,
14, and 17) were �16 �g/ml and 0.5 �g/ml, respectively. For
isolate Mh 20, the MIC of flumequine was �16 �g/ml and that
of enrofloxacin �1 �g/ml. The other five isolates (Mh 7, 10,
11, 15, and 19) were susceptible to flumequine (MIC �2 �g/ml)
and enrofloxacin (MIC �0.06 �g/ml).37

DNA extraction and PCR amplification

The M. hyopneumoniae isolates were grown in nonselective
Friis medium and subsequently centrifuged at 5,000 � g for 10
min. DNA was extracted using the DNeasy Tissue kit (Qiagen,
Westburg, Leusden, The Netherlands) according to the manu-
facturers’ instructions. Without further purification, an aliquot
of the supernatant containing DNA was used as a template for
PCR amplification.

To sequence parts of the DNA gyrase subunits, gyrA and
gyrB, and the topoisomerase subunits, parC and parE, con-
taining the QRDR, primers were designed based on the M. hy-
opneumoniae genome sequence of reference strain 232.25

Oligonucleotides MhgyrAfor (5�-CTKCCRGATGTCCGW-
GATGG-3�) and MhgyrArev (5�-GTSGGRAARTCYGGCYC-
CGG-3�) were used to amplify a 557-bp gyrA fragment be-
tween positions 487 and 1,043 (Escherichia coli coordinates).
A 937-bp gyrB fragment between positions 1,994 and 3,437 (E.
coli coordinates) was amplified with primers MhgyrBfor (5�-
ACATTCATAACCCTGAAGGC-3�) and MhgyrBrev (5�-
GTCTCTCAAAGTTGTTCCGG-3�). To amplify the QRDR 
of parC, primers MhparCfor (5�-ATTCAGTAATTAATTCC-
CGG-3�) and MhparCrev (5�-TCTTCAAGGTAAATTT-
GCTG-3�) were selected to amplify a 1,309-bp fragment be-
tween positions 19 and 1,313 (E. coli coordinates) and a 735-bp
parE fragment between positions 1,046 and 1,765 (E. coli co-
ordinates) was amplified using the primers MhparEfor (5�-
ATTCTTGAATTTGTTGGGC-3�) and MhparErev (5�-CC-
CAAGTCCTTTATAGCGC-3�). DNA amplification was
performed with a DNA thermal cycler (model 9600 GeneAmp
PCR system, Perkin-Elmer, Zaventem, Belgium). Each 50-�l
PCR mixture contained 25 �l of Mastermix (Invitrogen, Bel-
gium), 2 �M for both primers, and a 2.5-�l DNA sample. Wa-
ter was added to a total volume of 50 �l. For all amplification
reactions, the same PCR running conditions were used, con-

sisting of an initial cycle of 5 min denaturation at 94°C, fol-
lowed by 35 cycles of 1 min of denaturation at 94°C, 1 min of
annealing at 55°C, and 1 min of elongation at 72°C. After am-
plification, 5 �l of amplicon was mixed with 3 �l of sample
buffer (50% glycerol, 1 mM Cresol Red). This mixture was
electrophoresed in a 1.5% agarose gel for 75 min at 175 V in
0.5� TBE (0.45 M Tris-HCl, 0.45 M boric acid, 0.01 M
EDTA).

Sequencing

After purification of the PCR product with the Qiaquick PCR
purification kit (Qiagen, Westburg, Leusden, The Netherlands),
both strands of the PCR product were sequenced using the Big
Dye Terminator v3-1 cycle sequencing kit (Applied Biosys-
tems, Lennik, Belgium) on a ABI Prism™ 310 Genetic
Analyser. The electropherograms were exported and converted
to the sequence analysis software, Kodon® (Applied Maths,
Sint-Martens-Latem, Belgium). The nucleic acid sequences of
the QRDR of gyrA, gyrB, parC, and parE of the susceptible M.
hyopneumoniae isolates were compared with those of the iso-
lates with a MIC of �16 �g/ml and �0.5 �g/ml for flume-
quine and enrofloxacin, respectively. The deduced amino acid
sequences of susceptible isolate Mh 7 and resistant isolate Mh
20 were compared with the sequences of Staphylococcus au-
reus, Streptococcus pneumoniae, E. coli, and, to date, fully se-
quenced human and veterinary Mycoplasma species. The per-
centage of identity between the susceptible Mh 7 isolate, the
other organisms and the GenBank accession numbers are listed
in Table 1.

RESULTS

PCR amplification and sequences of PCR products

Each of the selected forward and reverse primer pairs am-
plified one PCR product. An acquired C264A transition (E. coli
numbering) was found in the parC gene of all five isolates with
MIC values �16 �g/ml and �0.5 �g/ml for flumequine and
enrofloxacin, respectively. This corresponds to an amino acid
change from serine to tyrosine at position 80 (E. coli number-
ing). An additional transition was found in isolate Mh 20. The
MIC of enrofloxacin for this isolate was �1 �g/ml, whereas it
was 0.5 �g/ml for the other resistant isolates. This additional
transition, C635T, was found in gyrA, resulting in an amino
acid change from alanine to valine at position 83 (E. coli num-
bering) (Table 2). In the same isolate, another substitution,
T630A, was found in gyrA. However, this substitution did not
result in an amino acid change. Other silent substitutions in the
QRDR of gyrA were found in isolate Mh 7 (G651A) and in iso-
lates Mh 15, 19, and 20 (G759A). In the QRDR of gyrB, silent
substitutions were found in isolates Mh 4, 8, 11, 14, 17, and 20
(T2529A) and isolates Mh 10 and 19 (G2577A). No silent sub-
stitutions were found in the QRDR of parC. In the QRDR of
parE, two silent substitutions were found: C315T in isolates
Mh 7 and 15, and G345A in isolates Mh 7, 11, and 15. The
identity for the QRDR of the four fluoroquinolone target genes
at DNA level was very high for all M. hyopneumoniae isolates;
96.30%, 98.80%, 98.78%, and 97.53% for the QRDR of gyrA,
gyrB, parC, and parE, respectively.
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DISCUSSION

Resistance in M. hyopneumoniae field isolates was first de-
scribed in a previous study where 5 of 21 isolates were found
to be resistant to flumequine and less susceptible or resistant to
enrofloxacin.36 This prevalence of fluoroquinolone resistance
is higher than the resistance rate found in other bacterial swine
pathogens like Streptococcus suis,1,23 Arcanobacterium pyo-
genes,42 Pasteurella multocida, and Mannheimia haemolyt-
ica.37 Several mechanisms for fluoroquinolone resistance have
been described in different bacterial species. These include al-
terations in the two drug target enzymes, namely DNA gyrase
and topoisomerase IV, changes in drug permeation through
modifications in the outer membrane proteins, induction of ac-
tive efflux systems, modifications in the peptidoglycan layer or
the outer membrane proteins,19,28,29 and plasmid-correlated

quinolone resistance.15,24 Although the existence of energy-de-
pendent efflux systems has recently been described for M. ho-
minis,31 acquired resistance in Mycoplasma species is usually
due to alterations in the target enzymes. In the present study,
the QRDRs of the four target genes gyrA, gyrB, parC, and parE
were sequenced in fluoroquinolone-susceptible and -resistant
M. hyopneumoniae isolates. The amino acid change at position
80 (E. coli numbering) in parC, observed in all five resistant
isolates, is the most common mutation related to fluoro-
quinolone resistance in Gram-positive bacteria,10,20,27,39 in-
cluding M. hominis.5 For four of the M. hyopneumoniae iso-
lates, this was the only mutation found and it resulted in at least
an eight-fold increase in the MIC of flumequine and en-
rofloxacin. Such isolates are considered to be resistant to flume-
quine (MIC �16 �g/ml),14 whereas they are still considered to
be susceptible to enrofloxacin (MIC � 0.5 �g/ml).26
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TABLE 1. PERCENTAGE OF IDENTITY AND GENBANK ACCESSION NUMBERS OF THE QUINOLONE

RESISTANCE-DETERMINING REGION OF GYRA, GYRB, PARC, AND PARE AMINO ACID SEQUENCES

OF TO DATE FULLY SEQUENCED MYCOPLASMA SPECIES, S. AUREUS, S. PNEUMONIAE, AND E. COLI

Percent identify with
M. hyopneumoniae

(Mh 7, susceptible isolate) GenBank accession number

GyrA GyrB ParC ParE GyrA GyrB ParC ParE

M. hominis 83.95 69.87 82.92 68.67 U59880 X77529 AF036961 AF036961
M. genitalium 65.43 59.04 68.29 61.44 U09251 U09251 U25549 U25549
M. gallisepticum 66.67 71.08 68.29 72.29 U18306 U18306 AF372652 AF372652
M. mobile 82.72 74.70 80.49 69.88 NC 006908 NC 006908 NC 006908 NC 06908
M. mycoides subsp. 79.01 66.26 75.61 67.47 NC 005364 NC 005364 NC 005364 NC 005364

mycoides SC
M. penetrans 72.84 68.67 71.95 66.26 AP004170 AP004170 AP004172 AP004172
M. pneumoniae 65.43 60.24 67.07 55.42 X53555 X53555 AE000004 AE000004
M. pulmonis 82.72 74.70 79.27 71.08 AL445563 AL445565 NC 002771 NC 002771
S. aureus 79.01 62.65 69.51 60.24 D10489 D10489 L25288 L25288
S. pneumoniae 74.07 6506 65.85 60.24 AF065152 X83917 AF065151 AF065153
E. coli 75.31 55.42 58.54 52.01 X06373 X04341 M58408 M58409

TABLE 2. MIC VALUES FOR FLUMEQUINE AND ENROFLOXACIN AND THE AMINO ACID MUTATIONS IN

GYRA AND PARC OF THE FLUOROQUINOLONE-RESISTANT FIELD ISOLATES OF M. HYOPNEUMONIAE

Amino acid change (codon)

gyrA parC
Mh isolate Flumequine Enrofloxacin 83a 80

Mh 7 2 0.06 — —
Mh 10 2 0.06 — —
Mh 11 1 0.03 — —
Mh 15 2 0.06 — —
Mh 19 2 0.06 — —
Mh 4 �16 0.5 — S(TCT) → Y(TAT)
Mh 8 �16 0.5 — S(TCT) → Y(TAT)
Mh 14 �16 0.5 — S(TCT) → Y(TAT)
Mh 17 �16 0.5 — S(TCT) → Y(TAT)
Mh 20 �16 �1 A(GCT) → V(GTT) S(TCT) → Y(TAT)

aAmino acid position according to E. coli numbering.

MIC (�g/ml)



In a recent study, M. hyopneumoniae clones with an eight-
fold increase in MIC values of enrofloxacin were reisolated
from pigs that had been treated with marbofloxacin after ex-
perimental infection with M. hyopneumoniae.22 In these clones
a point mutation in parC was detected, resulting in amino acid
changes at positions 80, 84, or 116. Our study demonstrates that
mutations in parC, resulting in amino acid changes, also occur
under field conditions, warranting further monitoring of fluo-
roquinolone resistance in porcine Mycoplasma species. My-
coplasma hyosynoviae and Mycoplasma hyorhinis, two other
pathogenic mycoplasmas in swine, also appeared to exhibit a
high resistance rate against flumequine (100% and 85% resis-
tance, respectively), although they were found to be fully sus-
ceptible to enrofloxacin.14

The occurrence of low-level resistance against fluoro-
quinolones after a single mutation in parC has been described
earlier for Enterococcus faecalis, S. aureus, and S. pneumo-
niae, whereas high-level resistant isolates had mutations in
both parC and gyrA.8,20,30,34 In M. bovirhinis, however, a sin-
gle mutation in parC (position 80) resulted in different MIC
profiles, including low- and high-level resistant isolates.16

The authors suggested that the differences in MIC might have
been caused by the level of expression of the quinolone ef-
flux transporter.

One isolate, Mh 20, had an extra mutation (C � T) in gyrA
at position 635, resulting in an amino acid change from ala-
nine to valine at position 83 (E. coli numbering), another hot
spot for fluoroquinolone resistance.17 This was associated
with at least a four-fold increase in MIC of enrofloxacin
(MIC �1 �g/ml) compared to isolates with only a mutation
in parC and demonstrates stepwise resistance development
against fluoroquinolones in M. hyopneumoniae for the first
time.

As in fluoroquinolone-resistant M. hominis, Ureaplasma
urealyticum, and Acholeplasma laidlawii isolates, no mutations
were found in the QRDR of gyrB in M. hyopneumoniae. Such
mutations have been described in in vitro-selected resistant M.
gallisepticum isolates.32 Also, no mutations resulting in amino
acid changes were found in the QRDR of parE of the M. hy-
opneumoniae isolates. In clinical isolates of M. hominis, how-
ever, a mutation resulting in an amino acid substitution in parE
was previously observed.6 The absence of amino acid changes
in GyrB and ParE of fluoroquinolone-resistant M. hyopneumo-
niae isolates is in agreement with other studies reporting that
amino acid changes in GyrB or ParE occur less frequently than
in GyrA and ParC.17

In conclusion, topoisomerase IV of M. hyopneumoniae
seems to be the primary target for fluoroquinolones (flumequine
and enrofloxacin), with position 80 in parC as the hot spot. A
single mutation in parC is sufficient to reach resistance to
flumequine, whereas a second mutation in the secondary tar-
get, DNA gyrase (gyrA), is necessary to make M. hyopneumo-
niae resistant to enrofloxacin.
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