
A Combinatorial Benders’ decomposition for the lock

scheduling problem

J. Verstichela,, J. Kinablea,c, P. De Causmaeckerb, G. Vanden Berghea

aKU Leuven Department of Computer Science, CODeS, Gebroeders De Smetstraat 1,
9000 Gent, Belgium

bKU Leuven Department of Computer Science, iMinds-ITEC, Etienne Sabbelaan 53,
8500 Kortrijk, Belgium

cKU Leuven Faculty of Economics and Business, ORSTAT, Naamsestraat 69, 3000
Leuven, Belgium

Abstract

The Lock Scheduling Problem (LSP) is a combinatorial optimization problem
that represents a real challenge for many harbours and waterway operators.
The LSP consists of three strongly interconnected sub problems: scheduling
lockages, assigning ships to chambers, and positioning the ships inside the
chambers. These should be interpreted respectively as a scheduling, an as-
signment, and a packing problem. By combining the first two problems into a
master problem and using the packing problem as a sub problem, a decompo-
sition is achieved that can be solved efficiently by a Combinatorial Benders’
approach. The master problem is solved first, thereby sequencing the ships
into a number of lockages. Next, for each lockage, a packing sub problem is
checked for feasibility, possibly returning a number of combinatorial inequal-
ities (cuts) to the master problem. The result is an exact approach to the
LSP. Experiments are conducted on a set of instances that were generated in
correspondence with real world data. The results indicate that the decompo-
sition approach significantly outperforms other exact approaches presented
in the literature, in terms of solution quality and computation time.

Keywords: Lock Scheduling Problem, Combinatorial Benders’
Decomposition

Email address: jannes.verstichel@cs.kuleuven.be (J. Verstichel)

Preprint submitted to Computers and Operations Research September 25, 2014

1. Introduction

The Port of Antwerp (Belgium), one of the largest harbours in Europe,
processed more than 180 MTE (Million Tonnes Equivalent) of cargo and
70000 ships in 2012, with an average of almost 200 ships a day (Port of
Antwerp, 2012). It is a major hub for both inland and intercontinental cargo
traffic. The harbour is situated at the river Scheldt with tidal differences
averaging five meters. In order to ensure a persistent water level within the
harbour, locks separate the docks from the main water way. These locks
entail a complex optimization problem: the vast number of ships entering
and leaving the harbour every day have to be assigned to lock chambers,
their exact position inside the locks need to be determined, and the lockages
have to be scheduled. Improving the efficiency of the lock operations could
reduce the expensive waiting time of ships, and make the port more attractive
for business and economy.

The Albertkanaal is an important inland waterway connecting the Port of
Antwerp with the Port of Liège. Over the years, numerous industrial activ-
ities have emerged on its banks, leading to over 37 MTE of cargo processed
in 2012 (nv De Scheepvaart, 2012). Six locks are used to overcome the height
difference of 56 meters between Antwerp and Liège. The increase of barge
traffic and recent periods of drought make it of paramount importance to
reduce the number of lockage operations (i.e. water usage) and the waiting
times of ships.

The present contribution is a new, fast exact approach to the lock schedul-
ing problem (LSP) based on a combinatorial Benders’ decomposition ap-
proach. The LSP is decomposed into a master and a sub problem. The
master problem (MP) first assigns the ships to lock chambers, after which it
attempts to schedule lockages. The sub problem (SP) takes care of position-
ing the ships inside the lock chambers. Whenever the sub problem identifies
an infeasible lockage, i.e. a set of ships that cannot be transferred simulta-
neously due to the chamber’s capacity or safety constraints, combinatorial
inequalities (cuts) are generated and added to the master problem. The mas-
ter problem and sub problem are solved iteratively, until a provable optimal
schedule is obtained.

The main focus of this paper is on the decomposition approach and its
application to LSP, thereby omitting detailed discussions on the sub problems
as they exhibit a large number of application specific constraints. Section 2
describes the LSP. Section 3 provides a literature review. Section 4 presents

2

the Benders’ decomposition approach, defining the master problem and the
sub problem in detail, as well as their interaction. Particular attention goes
to the generation of feasibility cuts for the master problem, as they largely
determine the efficiency of the algorithm. Experiments are conducted on
a large number of instances based on data obtained from different Belgian
locks. The results are presented in Section 5. Section 6 offers the conclusions.

2. Problem Outline

The Lock Scheduling Problem consists of three interconnected sub prob-
lems: an assignment, a packing and a scheduling problem. Each problem
comes with a large number of constraints, mainly resulting from safety and
nautical regulations. The problem has been described in detail by Verstichel
et al. (2014a); here we only sketch the general outline. The main lock schedul-
ing specific terms used throughout this paper are elucidated in Figure 1,
which shows a lock with two identical parallel chambers.

High levelLow level

Ship 4

Ship 1

Ship 2
Chamber 1

Ship 3
x

y

Chamber 2

Width

Length

Ship 1 @ (75,100)

Lockage 1

Ship 2 @ (0,50)
Ship 3 @ (x3,y3)

Lockage 2 Lockage operation 1

Lockage 1 @ 9h00
on Chamber 2

Lockage operation 2

Lockage 2 @ 9h35
on Chamber 1

Figure 1: An example of a lock with two parallel chambers (|T | = 1, |U1| = 2), four ships
travelling through the lock (|N1| = 3, |N2| = 1) and important lock scheduling specific
terms.

3

2.1. Scheduling, Assignment and Packing
A lock consists of one or more chambers, which can perform lockage

operations independently of each other. Each chamber is of a specific type
t ∈ T , defining the chamber’s dimensions, transfer speed, etc. The set of
chambers of the same type is denoted by Ut.
A number of ships N need to traverse the lock, either in the upstream, or in
the downstream direction. Upstream (resp. downstream) ships are denoted
as N1 (resp. N2), N1 ∩ N2 = ∅, N1 ∪ N2 = N . For each ship i ∈ N , an
arrival time ri is known, as well as the dimensions of the ship. The ships
must be grouped into a number of batches (i.e. lockages), where each batch
contains the ships that are transferred in a single lockage operation. The set
of all lockage operations is denoted by M , thereby distinguishing upstream
M1 and M2 downstream lockages (M = M1 ∪M2). Each lockage operation
k ∈ M needs to be assigned to a physical chamber u ∈ Ut that will execute
the lockage. We therefore distinguish between lockages Mt ⊆M of a specific
type t ∈ T , i.e. lockage operations that can be performed on a chamber of
type t ∈ T .

All lockages Mt, t ∈ T need to be distributed over the available chambers
Ut, while adhering to a strict schedule. A lockage k ∈ M cannot commence
before the last ship assigned to the lockage has arrived. The duration of the
lockage depends both on the processing times psi of the ships i ∈ N assigned
to the lockage, plus a constant time pct depending on the type t ∈ T of
chamber that performs the lockage.

A chamber is always in one of it’s two possible states, which handle either
downstream or upstream transfer. Each transfer switches the lock’s state.
Consequently, two consecutive upstream (or downstream) lockage operations
on the same chamber require an empty lockage to be scheduled in between
to switch the chamber’s state. Formally, given two consecutive lockages,
k, l ∈ Mt, scheduled on a chamber of type t ∈ T , a transition time slk is
needed to put the chamber in the correct state, i.e. slk = pct if k, l are both
upstream (or downstream) lockages, slk = 0 otherwise. A first-come-first-
served (FCFS) policy is often enforced by the lock authorities. Therefore
ship i must depart from the lock no later than ship j should ship i arrive at
the lock before ship j. It is assumed that no two ships ever arrive at the lock
at exactly the same time.

Assigning ships to a specific lockage operation requires evaluation of a
number of constraints. Obviously, the ships assigned to a single lockage
k ∈ Mt, may not surpass the capacity of a chamber of type t ∈ T . In

4

addition, the exact location of a ship inside the chamber u ∈ Ut has to
be determined, while complying with a number of safety restrictions. In
short, verifying whether a set of ships can be assigned to the same lockage
operation, amounts to solving a complex rectangle packing problem, where
each rectangle represents a ship (Verstichel et al., 2014b).

LSP corresponds to a traditional machine scheduling problem with se-
quence dependent setup times: a set of tasks (ships) are grouped into jobs
(lockages) which need to be assigned to machines (lock chambers).

An overview of the parameters of the LSP is provided in Table 1.

Parameters:
N,N1, N2 N = N1∪N2 is the set of ships, subdivided in upstream

ships N1 and downstream ships N2.
T Set of different chamber types.
M M = M1∪M2 is the set of lockages, thereby distinguish-

ing between upstream M1 and downstream M2 lockages.
Mt Mt = M1

t ∪M2
t is the set of lockages suitable for cham-

bers of type t ∈ T , again distinguishing between resp.
upstream and downstream lockages. Note that Mt is an
ordered set, i.e.Mt = {1, 2, . . . ,m1

t ,m
1
t+1, . . . ,m1

t+m
2
t},

where mi
t, i = 1, 2, are bounds on the number of

upstream resp. downstream lockages for chamber type
t ∈ T .

Ut Set of chambers of type t ∈ T .
pct, psi The minimal processing time of a chamber of type t ∈ T ,

and the processing time of ship i ∈ N .
ri Time at which ship i ∈ N arrives at the lock.
slk Transition time required between two consecutive lock-

ages k, l ∈ Mt, t ∈ T performed on the same chamber.
slk = pct if k, l are both upstream (or downstream) lock-
ages, slk = 0 otherwise.

Wt, Lt: Width and length of a chamber of type t ∈ T (integer)
wi, li: Width and length of ship i ∈ N (integer)
Cmax: Sufficiently large big-m parameter

Table 1: Parameters used throughout the paper.

5

3. Literature review

LSP was first introduced in an inland setting by Verstichel and Van-
den Berghe (2009), who presented a heuristic approach. Although it is ca-
pable of efficiently solving large instances, the heuristic does not provide any
insights as to the quality of the solutions. An in depth analysis of the ship
placement sub problem of the LSP was made by Verstichel et al. (2014b),
who presented several exact and heuristic solution approaches and a decom-
position method for this variant of two dimensional rectangular bin packing.
These methods were tested extensively on both generated and real-life data,
showing the practical applicability of the presented algorithms. Later, Ver-
stichel et al. (2014a) presented a mathematical model for the generalized LSP
applicable to both inland and port settings, along with an exact monolithic
branch-and-bound procedure. Due to the complex nature of LSP, only rel-
atively small instances were solved to optimality. Verstichel et al. (2014b)
present a detailed literature review on the lock scheduling problem and its
variations. The discussion in the remainder of this section will therefore be
limited to an introduction to Benders’ decomposition, and a number of its
applications to related problems.

Benders’ decomposition is a mathematical approach that exploits the
fact that fixing a number of difficult variables in a mathematical model may
simplify the problem considerably. The decomposition approach divides a
problem into a master problem (MP) and a sub problem (SP), which are
solved iteratively. The MP, considering a subset of the variables, is solved
first. Next, the sub problem is solved for the remaining variables, while
temporarily fixing the variables’ values of the MP. Finally, based on the
outcome of the SP, one or more cuts are generated and added to the MP,
thereby effectively preventing the MP from revisiting similar areas of the
search space.

Traditional (classical) Benders’ decomposition (Benders, 1962), considers
the SP as a linear programming problem, where cuts are derived from its
dual solution. In more recent work, e.g. Geoffrion (1972) and Hooker and
Ottoson (2003), the Benders’ decomposition approach has been generalized
to a broader class of problems, no longer requiring the sub problem to be
linear. Hooker and Ottoson (2003) introduced the concept of Logic Based
Benders’ decomposition. In contrast to traditional Benders’ decomposition,
cuts are not necessarily obtained from the dual formulation of a linear sub
problem, but through the so-called inference dual. Whenever the sub prob-

6

lem is a feasibility problem, the inference dual is a condition which, when
satisfied, implies that the master problem is infeasible (Rasmussen and Trick,
2007). This condition can then be used to obtain Benders’ cuts to cut off in-
feasible solutions. A particular case of Logic Based Benders’ decomposition,
frequently referred to as Combinatorial Benders’ decomposition, is discussed
by Codato and Fischetti (2006), where it is applied to mixed-integer pro-
gramming (MIP) problems involving large numbers of logical implications
(big-M constraints). Whenever a particular assignment of variable values in
the MP renders the SP infeasible, a Combinatorial Benders’ cut is generated
and added to the master problem. This cut, stating that at least one of the
variables in the master problem must change its value, distils a logical impli-
cation from the original model and adds it to the master problem. Note that
this approach is ineffective for continuous variables. Stronger Combinatorial
cuts may be obtained by identifying small subsets of variables responsible
for the infeasibility of the sub problem, and expressing cuts in terms of these
variables. The smallest of these subsets are referred to as Minimum Infeasi-
ble Subsets (MIS). The latter approach is well suited for the LSP, as will be
explained in detail in Section 4.

A number of successful applications of Logic-Based Benders’ decomposi-
tions to related packing, scheduling and assignment problems illustrate its
potential. Bai and Rubin (2009) investigate the allocation of tollbooths to
roads, thereby minimizing the number of tollbooths required to cover the en-
tire road network. Similar to the LSP, the tollbooth problem suffers from a
large number of conditional (big-M) constraints. By decomposing the prob-
lem, many of these conditional constraints can be omitted. A master prob-
lem assigns the tollbooths to roads. Subsequently, the sub problem verifies
whether the proposed assignment is feasible. Whenever an infeasible so-
lution is encountered, cover cuts are generated, stating that at least one
tollbooth must be placed on a specific subset of roads. Côté et al. (2013)
apply Combinatorial Benders’ decomposition to the Strip Packing Problem
(SPP). A relaxed version of the SPP is solved first, thereby treating the
SPP as a Parallel Processor Scheduling Problem. Next, the sub problem
attempts to reconstruct a feasible solution to the SPP based upon the re-
laxed solution. Whenever this is not possible, a combinatorial cut is added
to the master problem, requiring that at least one rectangle must change its
position. Strong cuts are obtained by identifying small subsets of rectangles
responsible for the infeasibility of the sub problem.

Tran and Beck (2012) solve a Parallel Machine Scheduling Problem (PMSP)

7

with machine and sequence dependent setup times through Logic Based Ben-
ders’ decomposition. The master problem assigns jobs to machines, while the
sub problem minimizes the makespan for each individual machine by deter-
mining the job sequence. This is efficiently realized by a dedicated TSP
solver. Note that, due to the fact that the machines are independent, these
sequencing sub problems may be solved in parallel. To strengthen the mas-
ter problem, a relaxed version of each sub problem is added. Based on a
comparative study, Tran and Beck (2012) claim a six orders of magnitude
speedup compared to a traditional Branch-and-Bound approach.

4. A Combinatorial Benders’ Decomposition

Verstichel et al. (2014a) attempted to solve the LSP via a single, large,
Mixed Integer Linear Programming problem. The present paper introduces
a Benders’ decomposition which splits the LSP in a master problem and
a sub problem. The advantage of this decomposition is that part of the
complexity of the problem is shifted to a separate sub problem, thereby
obtaining two simpler problems. In addition, efficient dedicated algorithms
can be employed to solve the master and sub problem, whereas there may not
exist an algorithm capable of tackling the entire problem at once. Finally, a
number of logical implications modeled through inefficient big-M constraints
by Verstichel et al. (2014a) are no longer required, as they will be enforced
through addition of cuts to the master problem. The presented method
is based on Codato and Fischetti (2006)’s original algorithm. The main
differences are 1) an integer programming sub problem (LSP) in contrast to
a linear one (Codato and Fischetti, 2006), and 2) a constructive algorithm for
determining minimal infeasible subsets (MIS), whereas Codato and Fischetti
(2006) determined MIS through an LP.

The master problem is provided with a list of ships that need to traverse
the lock, the direction in which the ships need to traverse the lock, and their
arrival times at the lock. The master problem first partitions the list of ships
in an arbitrary number of non-overlapping subsets. Each set represents a
group of ships that will be transferred in a single lockage operation. Ob-
viously, each subset contains only ships that traverse the lock in the same
direction. Next, the master problem proposes a schedule for the generated
subsets, thereby determining the exact starting times of the lockage opera-
tions. Subsequently, the sub problem verifies, for each subset, whether the
ships in this set can be transferred simultaneously, i.e. whether they fit to-

8

gether inside the lock chamber. The latter appears to be a decision version
of the ship placement problem (Verstichel et al., 2014b). The LSP is solved
whenever an optimal MP schedule is determined in which each subset satis-
fies the packing constraints of the sub problem. Whenever the sub problem
identifies an infeasible combination of ships, a feasibility cut is generated and
added to the master problem, thereby preventing the master problem from
assigning these ships to a single lockage operation.

The following two sections discuss the master problem and sub problem
in detail. An overview of the entire algorithm is given in Procedure 1.

4.1. Master problem

The following Mixed Integer Linear Programming problem defines the
master problem. In order to keep the model concise, some problem specific
constraints were omitted, e.g. constraints that manage tidal windows, ship
dependent pre- and post-processing times, ship draft, etc. Similarly, some
redundant constraints that enable to speed up the model are not included
in the problem description below. The complete model is available from
(Verstichel et al., 2014a). The parameters are defined in Table 1; the variables
(marked in bold) are discussed below the model.

min λ1
∑
k

zk + λ2
∑
i∈N

ci + λ3Tmax (1)

9

s.t. ∑
k∈Mj

fik = 1, ∀i ∈ N j, j = 1, 2 (2)

fik ≤ zk, ∀i ∈ N, k ∈M (3)

zk+1 ≤ zk, ∀k ∈Mt, t ∈ T (4)

ci ≥ Cmax(fik − 1) + Ck, ∀i ∈ N, k ∈M (5)

Pk ≥ pctzk +
∑
i∈N

psifik, ∀k ∈Mt, t ∈ T (6)∑
u∈Ut

procku = zk, ∀k ∈Mt, t ∈ T (7)

procku +
∑

v∈Ut,v 6=u

proclv + seqkl ≤ 2 (8)

∀k, l ∈Mt, l > k, ∀u ∈ Ut, t ∈ T
Cl −Ck + 2Cmax(3− seqkl − procku − proclu) ≥ Pl + skl (9)

∀k, l ∈Mt, l > k,∀u ∈ Ut, t ∈ T
Ck −Cl + 2Cmax(2 + seqkl − procku − proclu) ≥ Pk + slk (10)

∀k, l ∈Mt, l > k,∀u ∈ Ut, t ∈ T
Ck ≥ rifik + Pk, ∀i ∈ N, k ∈M (11)

Tmax ≥ ci − ri, ∀i ∈ N (12)

The master problem uses several sets of variables. The main variables
are binary variables zk, k ∈ M , denoting whether lockage k ∈ M is used,
binary variables fik, i ∈ N, k ∈ M denoting whether ship i ∈ N is assigned
to lockage k ∈ M , integer variables Pk, k ∈ M denoting the processing time
of lockage k ∈M , integer variables Ck, k ∈M denoting the completion time
of lockage k ∈ M and finally Tmax denoting the maximal transfer time over
all ships passing the lock. The auxiliary integer variables ci, i ∈ N denote
the departure time of each ship at the lock, the binary variables procku, k ∈
M,u ∈ Ut, t ∈ T denote whether lockage k ∈M is executed by chamber u ∈
Ut, t ∈ T or not, while seqkl, k, l ∈M denote whether lockage k ∈M precedes
lockage l ∈M in the same chamber or not. The objective function, equation
(1), minimizes (a) the number of lockages, (b) the sum of all ship’s departure
times from the lock and (c) the maximum waiting time of a ship at the lock,
where λ1, λ2, λ3 are independent weight factors. In this work, λ1 = 0.1, and
λ2 = λ3 = 1.0. This represents a common lock operator policy prioritizing

10

total waiting time minimization (λ2) over maximum waiting time (λ3) and
the total number of lockages (λ1) required to transfer all ships. Other values
would favor, for example, the number of lockages, maximum waiting time,
etc. Constraints (2)-(4) assign ships to lockage operations. Constraints (2)
ensure that each ship is assigned to a lockage. Obviously, downstream ships
cannot be assigned to upstream lockages and vice versa. Constraints (3)
are linking constraints; a lockage k ∈ M is used, i.e. zk = 1, if at least a
single ship is assigned to it. Note that the lockage operations are ordered
(Constraint (4)): lockage zk+1 cannot be active if zk is not used, k ∈Mt, t ∈
T . The remaining constraints determine the scheduling part of the problem.
A ship cannot leave the lock before the lockage operation for that ship is
completed (Constraints (5)). The duration of a single lockage operation
depends on a fixed value plus an additional amount per ship (Constraints
(6)). Each lockage operation must be mapped to a physical lock chamber
(Constraints (7)). When two lockage operations are executed by the same
physical chamber, they must be sequenced (Constraints (8)). Constraints (9),
(10) describe the actual scheduling restrictions on the lockages per chamber.
Verstichel et al. (2014a) provide a detailed discussion on these scheduling
constraints. A lockage cannot commence before all ships have arrived at
the lock (Constraints (11)). Finally, Constraint (12) records the maximum
waiting time of a ship at the lock.

4.2. Sub problem

Once the master problem has assigned the ships to a number of lockages,
the feasibility of these lockages needs to be verified. i.e for all k ∈Mt : zk = 1,
t ∈ T , a small sub problem is solved to test whether the given configuration
of ships fits inside a chamber of type t. Whenever a configuration is con-
sidered infeasible, a combinatorial cut will be generated and added to the
master problem. The latter will be elaborated in the next section.
Let Nk = {i ∈ N : fik = 1} be the set of ships assigned to lockage k ∈ M .
For a given lockage k ∈ M , we obtain the following rectangle packing prob-
lem. Note that this version of the problem is a satisfiability problem; it has
no objective. The parameters of the model are summarized in Table 1 (page
5).

11

xi + wi ≤ Wt ∀i ∈ Nk (13)

yi + li ≤ Lt ∀i ∈ Nk (14)

leftij + leftji + bij + bji ≥ 1 ∀i < j, i, j ∈ Nk (15)

xi + wi ≤ xj +Wt(1− leftij) ∀i 6= j, i, j ∈ Nk (16)

yi + li ≤ yj + Lt(1− bij) ∀i 6= j, i, j ∈ Nk (17)

safety constraints ∀i 6= j, i, j ∈ Nk (18)

mooring constraints ∀i 6= j, i, j ∈ Nk (19)

The integer variables xi, yi model resp. the x and y coordinates of a ship
i ∈ Nk inside the chamber. In addition, auxiliary (binary) variables leftij, bij,
i, j ∈ Nk, record resp. whether ship i is located left of ship j, and whether
ship i is located behind ship j.
Constraints (13)-(14) ensure that the x and y coordinates of a ship i ∈ Nk are
located within the chamber’s dimensions. The remaining constraints ensure
that the ships do not overlap. Finally, as stated before, some problem specific
constraints have been omitted here for clarity. The full problem is described
by Verstichel et al. (2014b).

12

Algorithm 1: Combinatorial Benders’ Decomposition of the lock
scheduling problem

Input: Set of ships N , arrival times and ship properties, lock parameters
1: add initial cut(s) to MP
2: repeat ← true
3: while repeat do
4: Solve MP
5: get solution (zk,fik,Ck), ∀i ∈ N, k ∈M
6: repeat ← false
7: for k ∈M : zk = 1 do
8: Solve SP for Nk = {i ∈ N : zik = 1}
9: if SP is infeasible then

10: repeat ← true
11: add feasibility cut(s) to MP
12: else
13: get solution (xi,yi), ∀i ∈ Nk

14: end if
15: end for
16: end while
17: return Optimal schedule (fik,Ck,xi,yi), ∀i ∈ N, k ∈M

4.3. Combinatorial Benders’ cuts

When an infeasible sub problem is encountered, one or more combinato-
rial Benders’ cuts are generated and added to the master problem, effectively
preventing the master problem from assigning specific ships to the same lock-
age.

The general form of cuts considered is:∑
i∈S⊆N

fik ≤ |S| − 1 ∀k ∈ K ′ ⊆M (20)

Stated informally, this cut prevents the ships in S ⊆ N from being assigned
to the same lockage k.

A straightforward ‘no-good’ cut arises from an infeasible sub problem,
i.e. an infeasible lockage of type t ∈ T with Nk ships, by setting S = Nk and
K ′ = Mt. These no-good cuts can be very weak, especially if |S| is large.
Stronger cuts may be obtained by considering smaller infeasible subsets of
ships. The strongest cuts are based on minimum infeasible subsets (MIS).

13

In this context, a MIS is a subset of ships that cannot be transferred in a
single lockage of type t ∈ T ; removing any of the ships from the set would
however result in a feasible lockage. Computing all MIS for a given set of
ships N ′ ⊆ N would be notoriously hard. It would require solving the sub
problem from Section 4.2 for every possible subset of N ′. Section 4.4 presents
approaches to computing strong cuts requiring far less computational effort.

Combinatorial Benders’ cuts can be generated at different times in the
process: Initial cuts are added to strengthen the MP before the first MP-
SP iteration. Applying initial cuts reduces the number of infeasible MP
lockages generated. Feasibility cuts are generated on-the-fly every time the
MP generates a solution. These cuts are applied so as to cut away infeasible
parts of the search space and guide the MP towards a feasible lock scheduling
solution.

4.4. Cut separation

The different cut separation methods are clarified using the example from
Figure 2, where the MP proposes a solution in which ships 1 through 7 are
assigned to a single lockage. The feasible lockages for this example (under a
first-come-first-served policy) are displayed on the right side of this figure.

Ship 1
Ship 2
...
Ship 7

Lockage 1 2

1

3

43
6

5
7

7

Figure 2: An example where the MP result puts ships 1 through 7 in a single lockage, and
the feasible (after removing the red ships) first-come-first-served based lockages.

No-good cuts can easily be computed by solving one single lockage ship
placement problem for each MP lockage. For the example from Figure 2, the

14

following weak cut is generated:

7∑
i=1

fik ≤ 6, ∀k (21)

Minimal infeasible subsets (MIS) can be found by applying the following
constructive procedure. First, for a given set of ships, all subsets of size n
are calculated, where n is initially set to 2. The sub problem (Section 4.2)
is solved for each of these subsets, and a feasibility cut is generated when
necessary. Next, all subsets of size n+1 are generated and compared against
the infeasible subsets generated in the previous iterations. Every subset of
size n + 1 that is a superset of a MIS generated in a previous iteration is
discarded. The sub problems of the remaining sets N ′ of size n + 1 are
solved and cuts are generated where applicable. The constructive procedure
terminates whenever no new cuts can be identified (i.e. all generated subsets
of size n are infeasible). Note that the larger the number of ships that can
be transferred in a single lockage, the more computationally expensive this
procedure becomes. Cuts produced by this procedure will be referred to
as ‘subset cuts’. The thirteen subset cuts that are generated for the given
example are presented in Figure 3.

1
3

4

1
3

5

2

1

3

1
3

6

1
3

7

1

7

4

7

43

2

1

5

7

1

5

7

6

2

5

7

3

5

6

3

7
5

6

2

1
4

56

2
43

Figure 3: Visualization of the thirteen subset cuts for the example in Figure 2.

An alternative means to generating minimal infeasible subsets of ships
utilizes a strict ordering on the ships. Let N ′ = {1, 2, . . . , n} be an ordered

15

set of ships, based on their arrival time. Start by setting S = {1}. Iter-
atively add ships from the head of N ′ to S until S becomes an infeasible
subset of ships. This is an ‘order cut’. When generating feasibility cuts, all
ships in S are removed from N ′, except the last ship added to S, and the
procedure is repeated until N ′ is exhausted. When generating initial cuts,
only the first ship in S is removed from N ′ before the procedure is repeated.
Note that these cuts are particularly effective under a FCFS lockage policy.
When considering the example in Figure 2, two feasibility order cuts can be
generated:

3∑
i=1

fik ≤ 2, ∀k (22)

7∑
i=3

fik ≤ 4, ∀k (23)

An efficient approach to identifying small infeasible subsets of ships is
based on surface calculations: any set of ships having a combined surface
that exceeds the total surface of the lock chamber is infeasible. Whenever
surface calculations are used to identify infeasible subsets, it will be denoted
as follows: ‘subsurf’ (subset based) and ‘surf’ (order based). Surface calcu-
lations provide a non-tight upper bound on the number of ships that can be
placed, and therefore they can be applied as initial cuts only. Indeed, ap-
plying them as feasibility cuts does not guarantee that the MP will converge
towards a feasible solution, as surface based cuts may be unable to cut away
some infeasible parts of the search space.

5. Experiments

To assess the quality of the combinatorial Bender’s approach, a number
of experiments have been conducted on instances based on real-world data
originating from the Albertkanaal in Belgium (Verstichel, 2013). A problem
instance consists of two parts:

1. traffic data:

• exact arrival times of the ships

• the directions of the ships

• the dimensions of the ships; safety distances have been accounted
for in the reported dimensions.

16

2. lock data: the characteristics of the locks.

This setup enables experimenting with variations of lock configurations and
traffic data.
Table 2 presents a summary of the ship data used in the instances. The
dimensions of the ships and locks are extracted from traffic reports on the
Albertkanaal in 2008; the actual arrival times of the ships, however, were
not recorded. Hence, these arrival times were simulated using a random
generator. The ship inter arrival times have been selected from a uniform
distribution between 0 and 2σ (Table 2). Finally, the fraction of ships arriving
upstream or downstream is either symmetric (50% upstream traffic, 50%
downstream), or asymmetric (70% upstream traffic, 30% downstream).

Inter arrival time distribution Uniform (R)
Average inter arrival time σ 1,2,3,4,5,10,15,30 minutes
Number of ships 10, 20, 30, 40, 50, 60, 70, 80, 90
Upstream/Downstream fraction 50/50, 30/70
Ship sizes from 4.25m x 16.27m to 10.50m x 110m

Table 2: Traffic data.

Table 3 presents the lock data. We consider five possible lock configura-
tions: a lock with a single small chamber (SSC), a single large chamber (SLC),
two parallel small chambers (PSC), two parallel large chambers (PLC), and
a multi chamber type lock (MCT) consisting of two small chambers and a
single large chamber. Note that the latter lock configuration is identical to
the real locks on the Albertkanaal. All ship and lock data are available online
(Verstichel, 2013).

The experiments have been performed on a Dell Optiplex 790 with an
Intel(R) Core(TM) i7-2600 (3.40GHz) and 8GB of memory running a 64-bit
Linux Mint. The mathematical models were solved using Gurobi 5.1 under
an academic license, with a time limit of 12 hours.

Width (m) Length (m) Lockage duration p (min)
Small chamber 16.0 136.0 16
Large chamber 24.0 200.0 16

Table 3: Attributes of the chambers.

17

The complexity of each instance largely depends on the lock configuration.
Therefore, the discussion of the computational results is structured with
respect to the different lock configurations. The performance of the different
feasibility cuts and initial cuts is evaluated for each group of instances. A
comparison of the Benders’ procedure and the monolithic approach from
Verstichel et al. (2014a) is presented.

5.1. FCFS single chamber lock

The first series of experiments is performed on a single chamber lock with
a first-come-first served policy for the ships. Both a single small chamber
(SSC) and a single large chamber (SLC) are considered. The experiments
assess the performance of the feasibility cuts and the effect of adding initial
cuts to the MP. The results are depicted in Figure 4 and 5. The x-axis of
each figure displays the different instances, which are ordered, from left to
right, based on (1) increasing number of ships (2) increasing inter arrival
time and (3) traffic ratio (first 70/30, then 50/50). The numbers underneath
the axis are formatted as I S, with I denoting the inter arrival time, and S
the number of ships. Computation times in seconds are shown on the y-axis
of each figure (logarithmic scale). Note that these computation times include
generation of both the feasibility and initial cuts, unless stated otherwise.

The most basic version of the Benders’ procedure relies on no-good cuts
only and is referred to as ‘no-good’ in the graphs. A stronger version is ob-
tained by replacing the no-good cuts by order cuts (Figure 4 (a)). Especially
for the larger instances, order cuts contribute to a significant decrease in
computation time. Another approach is to generate a number of initial cuts
and add them to the initial MP. Figure 4 (b) reveals a drastic reduction of
computation times under the presence of such initial cuts. Here, applying
no-good feasibility cuts without initial cuts (no init) is compared with com-
bining no-good cuts with initial surface cuts (surf init) or order cuts (order
init). Interesting results are found when considering the number of MP-SP
iterations and the total number of cuts added to the MP in Figure 4 (c)
and (d). The number of iterations for the simple no-good feasibility cuts
increases strongly with instance size, while more advanced cut generation
methods (e.g. order) scale much better with instance size. Note that when
applying the initial order cuts, no MP-SP iterations are required, as all nec-
essary cuts are added to the MP beforehand. When considering the number
of cuts added, the performance difference between the cut generation meth-
ods is even larger. The number of cuts generated when applying no-good

18

cuts (with and without initial surface cuts) varies between 0 and 2.5 times
the instance size, while the initial order cut method (order init) consistently
generates slightly less cuts than the number of ships in the instance. The
order feasibility cuts generally require less cuts to be added to the MP than
the initial order cuts. Therefore, the large number of required iterations
negatively influences the overall computation time.

The computation time difference between the cut generation methods
becomes much smaller when considering the SLC setting (Figures 5 (a) and
(b)). Contrary to the SSC results, the average inter arrival time also seems
to influence the computation time: for the small instances (< 30 ships) the
computation time decreases when the average inter arrival time increases,
while the opposite trend shows for the large instances (≥ 40 ships). Figure
5 (c), (d) considers the number of MP-SP iterations and cuts added. A
slightly larger variation in the number of required iterations and cuts for
equal instance size can be observed compared to the small chamber settings.
The difference between generated cuts for the initial order cuts and the order
feasibility cuts is also more significant. Nevertheless, the initial order cuts
maintain the lead with respect to total computation time.

Figure 4 (e) plots the results obtained using the Benders’ approach in
combination with initial order cuts against the monolithic procedure pre-
sented in Verstichel et al. (2014a) for a large number of instances. Clearly,
the former method outperforms the latter. Especially for several of the larger
instances, computation times are reduced by 95%. The graph also shows that
the total time spent in the sub problem (in this case generating the initial
cuts) is very small compared to the total computation time, especially for
the larger instances (order init SP). This is largely due to the limited size
of the ship placement instances that have to be solved in the sub problem
given this small chamber setting. The remaining approaches shown in Figure
4 (a,b) could not outperform the monolithic procedure and were therefore
omitted from the graph.

The differences between the monolithic procedure and the Benders’ de-
composition approach become more profound in the SLC setting (Figure 5
(e)). The largest difference in computation time is observed for the instance
with 20 ships, σ = 2 and symmetric traffic: the monolithic approach timed
out after 12 hours, whereas the Benders’ procedure with initial order cuts
attested optimality in only 1.3 seconds. The maximum computation time of
the Benders’ approach for instances with up to 40 ships is 12 minutes, while
the monolithic procedure fails to solve 16 out of 64 instances within 12 hours.

19

For the instances with 50 and 60 ships, the monolithic approach could only
solve a single instance to optimality and failed to produce a feasible solution
for 7 out of 32 instances. The decomposition approach on the other hand gen-
erates feasible solutions for all instances, and attests optimality in 24 cases.
Finally, for the 48 instances consisting of 70 to 90 ships, the decomposition
method solves 21 instances to optimality while for the remaining instances,
feasible solutions were found. When considering the time spent in the sub
problem (order init SP) for the instances with up to 40 ships, we find that
the initial order cuts method spends on average 33.35% of its time in the
sub problem. The minimum and maximum time spent int he SP are 2.15%
and 95.85%. This decreases to 2.29%, 0.01% and 37.84% respectively for the
larger instances.

An analysis of the convergence speed of the master problem showed that
optimality is attested shortly after the optimal solution is found in all but a
few cases for both the single small and single large chamber setting.

5.2. No FCFS single chamber lock

The second series of experiments is conducted on the same instances, but
without the FCFS policy. The results for instances with 10 and 30 ships or
more were omitted, as all 10 ship instances were solved in less than 2 seconds
and only a few of the large instances were solved in less than 12 hours.

Dropping the FCFS policy has several implications for the decomposi-
tion method. A number of constraints of the MP no longer apply in the
absence of the FCFS policy. Consequently, the MP becomes substantially
harder to solve. Furthermore, the absence of an explicit ordering of the ships
permits a significantly larger number of ship-to-lockage assignments in the
unrestricted MP. Consequently, adding no-good and order cuts becomes in-
effective. The resulting performance decrease is reflected by the number of
MP-SP iterations: the instances from Section 5.1 are solved within a few it-
erations, whereas the same instances in the absence of the FCFS rule require
up to 3200 iterations. In the subsequent experiment, the no-good and order
cuts have been replaced by the computationally more expensive subset cuts.
Figures 6 (c) and (d) compare the performance of various methods. For the
small chamber lock, initial subset cuts appear to be the best approach. For
the large chamber, a combination of initial order cuts and feasibility sub-
set cuts works best. In either case, the Benders’ approaches outperform the
monolithic approach to a large extent. As expected, the number of generated
cuts increased after removing the FCFS restrictions on the master problem

20

(a) (b)

(c) (d)

(e)

1_10 4_10 15_10
2_10 5_10 30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

0.01

0.1

1

10

100

Feasibility Cut comparison (SSC)

FCFS, 12h time limit
no-good
order

Instance

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

1_10 4_10 15_10
2_10 5_10 30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

0.01

0.1

1

10

100

Initial Cut comparison (SSC)

no-good cuts, FCFS, 12h time limit

no init
surf init
order init

Instance

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

1_10 4_10 15_10
2_10 5_10 30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

2_50
3_50

5_50
10_50

30_50
1_60

3_60
4_60

10_60
15_60

1_70
2_70

4_70
5_70

15_70
30_70

2_80
3_80

5_80
10_80

30_80
1_90

3_90
4_90

10_90
15_90

0.01

0.1

1

10

100

1000

10000

100000

Computation time comparison (SSC)

FCFS, 12h time limit

monolithic

order init

order init SP time

Instance

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

1_10 4_10 15_10
2_10 5_10 30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

0

10

20

30

40

50

60

70

80

90

Number of cuts generated (SSC)

FCFS, 12h time limit

no-good
no-good+surf
order
order init

Instance

#
C

u
ts

1_10 4_10 15_10
2_10 5_10 30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

0

5

10

15

20

25

30

35

40

45

Number of MP-SP iterations (SSC)

FCFS, 12h time limit

no-good
no-good+surf
order

Instance

#
It

e
ra

ti
o

n
s

Figure 4: Comparison of the computation time of the different cut generation methods for
a single small chamber lock, under a FCFS policy.

(Figure 6 (a) and (b)). When excluding one outlying instance (σ = 2 and
unbalanced traffic), the initial subset cuts (init subship) generated on av-
erage 3.2 cuts per ship for the small chamber setting, while the feasibility
subset cuts combined with initial order cuts (subship+order) generated 5.0
cuts per ship. For the outlying instance, these values are 8.2 and 20.5 re-
spectively. Both methods spent no more than one second in the sub problem
on all but the outlying instance, where the subship+order method spent 200
seconds (or 21% of the total computation time) in the sub problem. The
optimal solution (init subship no proof) was on average reached after 33%

21

(a) (b)

(c) (d)

(c)

(e)

1_10
2_10

4_10
5_10
15_10

30_10
2_20

3_20
5_20
10_20

30_20
1_30

3_30
4_30
10_30

15_30
1_40

2_40
4_40

5_40
15_40

30_40
2_50

3_50
5_50
10_50

30_50
1_60

3_60
4_60
10_60

15_60
0.01

0.1

1

10

100

1000

10000

100000

Feasibility Cut comparison (SLC)

FCFS, 12h time limit
no-good
order

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_10
2_10

4_10
5_10
15_10

30_10
2_20

3_20
5_20
10_20

30_20
1_30

3_30
4_30
10_30

15_30
1_40

2_40
4_40

5_40
15_40

30_40
2_50

3_50
5_50
10_50

30_50
1_60

3_60
4_60
10_60

15_60
0.01

0.1

1

10

100

1000

10000

100000

Initial Cut comparison (SLC)

no-good cuts, FCFS, 12h time limit

no init
surf init
order init

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_10 4_10
2_10 5_10

15_10
30_10

2_20
3_20

5_20
10_20

30_20
1_30

3_30
4_30

10_30
15_30

1_40
2_40

4_40
5_40

15_40
30_40

2_50
3_50

5_50
10_50

30_50
1_60

3_60
4_60

10_60
15_60

1_70
2_70

4_70
5_70

15_70
30_70

2_80
3_80

5_80
10_80

30_80
1_90

3_90
4_90

10_90
15_90

0.001

0.01

0.1

1

10

100

1000

10000

100000

Computation time comparison (SLC)

FCFS, 12h time limit

monolithic
no-good
order init
order init SP

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_10
2_10

4_10
5_10
15_10

30_10
2_20

3_20
5_20
10_20

30_20
1_30

3_30
4_30
10_30

15_30
1_40

2_40
4_40

5_40
15_40

30_40
2_50

3_50
5_50
10_50

30_50
1_60

3_60
4_60
10_60

15_60
0

10

20

30

40

50

60

70

80

Number of MP-SP iterations (SLC)

FCFS, 12h time limit

no-good
no-good+surf
order

Instance

#
It
e
ra
ti
o
n
s

1_10
2_10

4_10
5_10
15_10

30_10
2_20

3_20
5_20
10_20

30_20
1_30

3_30
4_30
10_30

15_30
1_40

2_40
4_40

5_40
15_40

30_40
2_50

3_50
5_50
10_50

30_50
1_60

3_60
4_60
10_60

15_60
0

20

40

60

80

100

120

Number of cuts generated (SLC)

FCFS, 12h time limit

no-good
no-good+surf
order
order init

Instance

#
C
u
ts

Figure 5: Comparison of the computation time of the different cut generation methods for
a single large chamber lock, under a FCFS policy.

of the total computation time with a minimum of 0.5% and a maximum of
77.6%. The difference with the FCFS case is significant. FCFS required very
little time to attest optimality once the optimal solution was found. On the
single large chamber setting, there is a large variation in the number of cuts
generated by the initial subset cuts method (init subship on Figure 6 (b)).
For the instance with σ = 30 and unbalanced traffic, for example, over 2200
cuts were generated, taking up 53% of the total computation time of 257
seconds. The subship+order cut method on the other hand needed 27 cuts
for the same instance, while computing only 12 seconds. The subship+order
and init subship methods spent respectively 40 minutes and 65 minutes in

22

the sub problem for the σ = 2 (unbalanced traffic) instance, with more than
10 times the maximum over the other instances. Attesting optimality after
the optimal solution was found (subship+order no proof) took between 5%
and 97% of the total computation time, with an average of 42%.

From the above results, it is apparent that the absence of the FCFS rule
has a significant impact on the computation times. We therefore adopt the
FCFS policy for the remaining experiments.

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
1

10

100

1000

10000

100000

Cut comparison (SSC)

No FCFS, 12h time limit

monolithic
subship+order
init subship
init subship no proof

Instance

C
o

m
p

u
ta

tio
n

 ti
m

e
 (

s)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
0

50

100

150

200

250

300

350

400

450

Number of cuts generated (SSC)

No FCFS, 12h time limit
subship+order

init subship

Instance

Ite
ra

tio
n

s

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
1

10

100

1000

10000

100000

Cut comparison (SLC)

No FCFS, 12h time limit

monolithic
subship+order
init subship
subship+order no proof

Instance

C
o

m
p

u
ta

tio
n

 ti
m

e
 (

s)

(a) (b)

(c) (d)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
0

500

1000

1500

2000

2500

Number of cuts generated (SLC)

No FCFS, 12h time limit
subship+order

init subship

Instance

Ite
ra

tio
n

s

Figure 6: Comparison of the computation time of different approaches for single chamber
locks without FCFS.

5.3. FCFS parallel identical chamber lock

For the identical parallel chamber instances, the results for instances with
10 and ≥ 30 ships were omitted. The difference between the initial cuts is
limited for a lock with two small parallel chambers (Figure 7 (a)). Applying
no initial cuts (subship) results in the best overall performance. Figure 7 (b)
shows that the feasibility subset cuts is slower than the monolithic approach

23

when inter arrival times are large. The decomposition method is almost
always faster for the other instances, with a total computation time of 6.5
for the monolithic approach and only 2 hours for the feasibility subset cuts.
The difference in computation time between finding and attesting the optimal
solution seems to decrease with increasing inter arrival time. No significant
differences were found with respect to the time spent in the sub problem
(always less than 1.4 seconds) or the number of cuts/iterations.

For a large parallel chamber lock, the initial order cuts show the best
overall performance with a total computation time over all instances of 40
minutes, closely followed by the initial surface cuts (55 minutes) (Figure 8
(a)). All other initial cuts are significantly slower than the aforementioned
initial cuts. Some interesting results can be observed when considering the
number of cuts generated for each method. The subship+order and sub-
ship+surf methods clearly have the upper hand with an average of 74 (sub-
ship+order) and 50 (subship+surf) cuts generated per instance. Applying
one of the other methods (no initial cuts, subset based surface initial cuts or
subset based ship placement initial cuts) results in an average of 570− 1007
cuts per instace. The subship+order method spends on average 14.4% of the
total computation time in the sub problem, with the instance with σ = 2
and unbalanced traffic again providing an outlyer where 91% of the time was
spent in the sub problem. When comparing with the monolithic approach
(Figure 8 (b)), we find that the decomposition method is much faster when
the ship inter arrival time is short. For instances with medium inter arrival
time (∼ 10 minutes) no clear winner can be determined, while the monolithic
approach is the best choice when facing large inter arrival times. Finally, all
cut generation methods were able to attest optimality on one instance more
than the monolithic approach.

5.4. FCFS multi chamber type lock

The results for the multi chamber type lock are summarized in Figure
9. Here only the ≥ 30 ship instances were omitted. Similar to the SSC re-
sults it appears that, aside from the number of ships, the ship inter arrival
time has the largest influence on the required computation time. Apply-
ing feasibility subset cuts combined with initial subset based surface cuts
(subship+subsurf) appears to be the best way of solving LSP for this multi
chamber type setting. It is the fastest approach on all but a few instances
and it is able to attest optimality for 31 out of 32 instances, while the mono-
lithic approach fails to do so for 10 instances. This result is noteworthy, as

24

(a) (b)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
1

10

100

1000

10000

100000

Initial Cut Comparison (PSC)

subship cuts, FCFS, 12h time limit

no init
surf init
order init
subsurf init
subship init

Instance

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
1

10

100

1000

10000

100000

Computation Time Comparison (PSC)

subship cuts, FCFS, 12h time limit
monolithic
no init
no init no proof

Instance

C
o

m
p

u
ta

ti
o

n
ti

m
e

(s
)

Figure 7: Comparison of the computation time of different cut generation methods for a
small parallel chamber lock under a FCFS policy.

(a) (b)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
1

10

100

1000

10000

Initial Cut Comparison (PLC)

subship cuts, FCFS, 12h time limit

no init
surf init
order init
subsurf init
subship init

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
0.1

1

10

100

1000

10000

100000

Computation time Comparison (PLC)

subship cuts, FCFS, 12h time limit

monolithic
order init
order init SP

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

Figure 8: Comparison of the computation time of different cut generation methods for a
large parallel chamber lock under a FCFS policy.

the subship+subsurf method produces significantly more cuts than the other
approaches (Figure 9 (c)).

5.5. Heuristic sub problem approach

The last experiment considers the effects of applying the multi-order best-
fit heuristic for the ship placement problem (Verstichel et al., 2014b) to the
SP. This enables an investigation of the quality of the packing heuristic from
a scheduling point of view. As no more than a few (milli)seconds will be
spent in the sub problem, this might be especially interesting for some of
the large chamber instances where a lot of time was spent in the exact sub
problem algorithm. The results of this heuristic approach under a time limit
of 12 hours are summarized in Table 4. All heuristic results are compared

25

(a) (b)

(c)

1_10
2_10

3_10
4_10

5_10
10_10

15_10
30_10

1_20
2_20

3_20
4_20

5_20
10_20

15_20
30_20

0.1

1

10

100

1000

10000

100000

Initial Cut comparison (MCT)

FCFS, 12h time limit
subship
subship+subsurf
subship init

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_10
2_10

3_10
4_10

5_10
10_10

15_10
30_10

1_20
2_20

3_20
4_20

5_20
10_20

15_20
30_20

0.1

1

10

100

1000

10000

100000

Computation time comparison (MCT)

FCFS, 12h time limit monolithic

subship+subsurf

Instance

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

1_20 2_20 3_20 4_20 5_20 10_20 15_20 30_20
0

1000

2000

3000

4000

5000

6000

Number of cuts generated (MCT)

FCFS, 12h time limit

subship

subship+surf

subship+order

subship+subsurf

subship init

Instance

#
C
u
ts

Figure 9: Comparison of the computation time and number of cuts generated for different
cut separation methods for the multi-chamber type lock under a FCFS policy.

to those of the initial order cuts decomposition approach from Section 5.1,
which are referred to as the exact results. The gap is computed as follows:
Gap% = (heuristic− exact)/exact.

When applying initial order cuts to the single small chamber lock, all
instances with less than 70 ships were solved to optimality in less than 5
minutes. For the larger cases the heuristic approach matched the exact re-
sults on all but one instance, where a gap of 0.03% remained after 12 hours of
computation time. The gap was however closed after increasing the compu-
tation time for this instance. For the single large chamber lock, the average
gap for the heuristic approach on the instances with less than 60 ships was
0.10%, with a maximum of 1.19%. As all these istances were solved within
the time limit, this gap can be fully attributed to the application of the
multi-order best-fit heuristic. When considering the large instances, an av-
erage gap of 0.35% is observed, with a maximum of 2.93% and a minimum
of −0.35%. Indeed, the heuristic approach improved on the exact results in

26

15 cases, denoted by a negative gap. Closer analysis of the results showed
that the exact approach had reached the time limit on these instances, and
that increasing the maximum computation time enabled the exact method
to match or improve the heuristic results. The heuristic method failed to
match the exact results on 34 instances, reaching the time limit in 12 cases.
By increasing the computation time limit for these 12 instances, we were able
to determine that in 3 cases the exact results could be matched by the heuris-
tic approach. The gap remained for the other 9 instances, showing that the
multi-order best-fit heuristic was unable to produce the needed exact ship
placement solutions. One interesting result is observed when analysing the
total time spent in the SP. While the exact method spent up to 527 seconds
computing solutions for the sub problem, the heuristic always produced the
results in less than 0.5 seconds.

All PSC instances were solved to optimality by the heuristic decompo-
sition method when applying initial subset cuts. For the PLC setting, the
multi-order best-fit heuristic prevented the decomposition method from con-
structing the optimal solution, resulting in a small optimality gap of 0.04%
and 0.12%. Similar results are obtained for the multi chamber type lock,
where optimality could not be obtained in four cases, leading to a maximum
gap of 0.45%.

These results show that applying a high-performance heuristic for solving
the sub problem has little or no impact on solution quality, but drastically
reduces the computational effort.

5.6. Summary of the experiments

The experimental results show that the proposed Combinatorial Benders’
decomposition is very effective for the lock scheduling problem. This is espe-
cially the case for instances with a complex packing aspect, i.e. where several
ships can be transferred in a single lockage operation, and (very) large in-
stances. Indeed, for the single large chamber experiments, we find the largest
decrease in computation time for the instances with short inter arrival times,
with computation time differences of several orders of magnitude on several
instances. Furthermore, the decomposition approach was able to produce
feasible solutions, and often attest optimality, on a large number of instances
that could not be tackled by the existing ‘monolithic’ approach. The same
advantages are seen when applying a heuristic method to the sub problem.
The majority of the instances are still solved to optimality, while the heuris-
tic never induced a gap of more than 2.93% on the other instances. The

27

time spent in the sub problem is strongly reduced on all instances, leaving
more time for the master problem, whose convergence speed appears to be
the limiting factor of the presented decomposition approach.

6. Conclusion

An exact Combinatorial Benders’ decomposition to the lock scheduling
problem was proposed. The LSP, encompassing a scheduling, assignment and
packing problem, is decomposed into a master problem and a sub problem.
The master problem handles resp. the scheduling and assignment problems,
whereas the packing problem is dealt with in the sub problem. When com-
pared to Verstichel et al. (2014a), where LSP is solved as single integrated
‘monolithic’ MIP problem, the Benders’ decomposition has two fundamental
advantages. The monolithic model links the variables involving the assign-
ment, packing and scheduling constraints through a number of inefficient
big-M constraints. Due to the decomposition, many of these constraints are
no longer required, as they are enforced through the addition of cuts to the
master problem. Another key advantage is that each packing sub problem
can be solved in parallel by efficient dedicated algorithms, such as the ones
presented by Verstichel et al. (2014b).
The effectiveness of the proposed Combinatorial Benders’ approach is illus-
trated on a large number of problem instances. Optimal solutions are discov-
ered for instances with up to 90 ships at a single large chamber lock, whereas
the monolithic approach failed to find feasible solutions on instances with
50 ships within a time limit of 12 hours. Furthermore, for most instances,
a significant decrease in computation time is observed. Especially instances
having ships that can be transferred simultaneously in a single lockage oper-
ation benefit from the new approach, as is shown in the experiments where
the ship inter arrival times are short. Finally, applying a heuristic to the sub
problem instead of an exact algorithm results in high quality solutions on all
instances, with a maximal optimality gap of 2.93%, while the maximal time
spent in the sub problem is reduced from 527 to 0.5 seconds.

Future work may be aimed at improving the MP’s procedure, which is
currently the main bottleneck of the decomposition approach. For example,
the convergence rate of the MP could be improved by adding a number of
valid inequalities. Alternatively, one could extend this work by also taking a
heuristic method for the MP into consideration.

28

Acknowledgement

Research funded by Ph.D. grants SB091152 and SB093152 of the Institute
for the Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen).

We would like to thank the Scheepvaartmanagement of the Port of Antwerp
for sharing their experience and real-life data on the ship placement prob-
lem. The real-life data provided by IT-Bizz and nv De Scheepvaart was also
greatly appreciated.

References

Bai, L., Rubin, P.A., 2009. Combinatorial Benders Cuts for the Minimum
Tollbooth Problem. Operations Research 57, 1510–1522.

Benders, J., 1962. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik 4, 238 – 252.

Codato, G., Fischetti, M., 2006. Combinatorial benders’ cuts for mixed-
integer linear programming. Operations Research 54, 756–766.

Côté, J.F., Dell’Amico, M., Iori, M., 2013. Combinatorial Benders’ Cuts for
the Strip Packing Problem. Technical Report CIRRELT-2013-27. Interuni-
versity Research Centre on Enterprise Networks, Logistics and Transporta-
tion and Department of Computer Science and Operations Research, Uni-
versité de Mon (CIRELT).

Geoffrion, A., 1972. Generalized benders decomposition. Journal of Opti-
mization Theory and Applications 10, 237 – 260.

Hooker, J., Ottoson, G., 2003. Logic-based benders decomposition. Mathe-
matical Programming 96, 33 – 60.

nv De Scheepvaart, 2012. Annual report 2012 (in Dutch).
http://www.descheepvaart.be/uploads/scheepvaart/FILE_

1DAC7D33-98D9-4971-978F-12C499037150.PDF.

Port of Antwerp, 2012. Annual report 2012. http://www.portofantwerp.

com/en/annual-report-2012.

29

Rasmussen, R., Trick, M., 2007. A benders approach for the constrained
minimum break problem. European Journal of Operational Research 177,
198–213.

Tran, T.T., Beck, J.C., 2012. Logic-based benders decomposition for alterna-
tive resource scheduling with sequence dependent setups., in: ECAI, IOS
Press. pp. 774–779.

Verstichel, J., 2013. Project web page of lock scheduling with parallel cham-
bers. http://allserv.kahosl.be/~jannes/lockplanning.

Verstichel, J., De Causmaecker, P., Spieksma, F.C., Vanden Berghe, G., 2014.
The generalized lock scheduling problem: An exact approach. Transporta-
tion Research Part E: Logistics and Transportation Review 65, 16–34.

Verstichel, J., De Causmaecker, P., Spieksma, F.C., Vanden Berghe, G., 2014.
Exact and heuristic methods for placing ships in locks. European Journal
of Operational Research 235, 387–398.

Verstichel, J., Vanden Berghe, G., 2009. A late acceptance algorithm for the
lock scheduling problem. Logistik Management , 457 – 478.

30

Lock # ships Total Feasible Exact Gap

SSC
10-60 96 96 96 0.000%
70-90 48 48 47 0.001%

SLC
10-50 80 80 62 0.105%
60-90 64 64 30∗ 0.354%

PSC 10-20 32 32 32 0.000%

PLC 10-20 32 32 30 0.005%

MCT 10-20 32 32 28 0.029%

Table 4: Summary of the heuristic experiments. ‘# ships’ denotes the instance size range
for the row and ‘Total’ the total number of instances in this range. The number of feasible
solutions generated by the heuristic decomposition approach is added under ‘Feasible’.
‘Exact’ shows the number of instances for which the exact solution was matched by the
heuristic approach, while ‘Gap’ shows the average gap between the exact and heuristic
solutions. ∗The heuristic decomposition outperformed the exact approach for 15 instances.

31

