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Abstract. The 20-moment two-fluid-Maxwell model resolves diago-
nal pressure tensor components near the X-point when compared with
Vlasov simulations of fast magnetic reconnection, in contrast to the 10-
moment model. This occurs because, unlike the hyperbolic 10-moment
model, the 20-moment model admits heat flux, which is a modeling re-
quirement to admit steady-state 2D symmetric (driven) magnetic recon-
nection.
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@ Hyperbolic plasma models
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Standard of truth: 2-species kinetic-Maxwell (classical)

BGK collision operator

o Maxwell’s equations:

OB+ V xE=0, C Ty £
OE — PV x B = —J/e, y Te

V:-B=0, V-E=o/e.

where
@ Charge moments:

o= % [fav =" _exp —lef
o SV (270)° 20 )
J = Zs%fvfsdv. 5
0= (le|*/2).

@ Kinetic equations:

a[fi +v- fo/ —+a; - val = Ci
Otfe+V - Vxfotae - Vyfo= Ce

@ Lorentz acceleration:
a; = % (E4+vxB),
a = ;—Z(E+vx B).
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Fluid approximation requires a numerical collision operator

How to choose Cs?

Fluid models are kinetic equation solvers.

@ Characteristic speeds correspond to discrete
velocities.

@ Fluid models evolve moments.

@ Moments define a representation F; selected
from a finite-dimensional space F.

@ convergence Fs — f; requires an infinite
number of moments.

@ F is a good representation space when C is
large but bad when C is small.

How can we justify fluid models when physically
Cs =0?

@ by a multiscale framework:

@ fluid models are a coarse-scale model used to
accelerate convergence of the lowest moments
of the kinetic equation.

@ C can be physically defined to incorporate all
microscale effects not resolved by the
coarse-scale model.

@ in code, Cs # 0is a numerical mechanism to
regularize f;.

@ collision period 7 selects the largest time scale

for resolution of velocity-space detail.

use a simple choice based on what you want to
resolve.

BGK damps all components and moments
representing perturbation from Maxwellian at
the same rate 7.

Damping individual moments at tunable rates
allows smooth transition to a model with more
moments.

Faster damping for higher moments
corresponds to faster damping for finer-scale
components of f;.
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Conserved Moment Evolution

Convention: Products and powers of Substituting into equation (1) gives:

vectors are defined by tensor products. .
General conserved moment evolution

Conserved moments are moments of
monomials in v. Let x = x(v). Take the OFN L V.FrHt X gn(Ef:n—1 +F" x B) + cn
xth moment of the kinetic equation: m

This is a hierarchy of moment evolution equations:
/x(é),f + Vx:(vf) + Vy-(af) = C)
v

OF° + V' =,
Integrate by parts to get OF' + VB2 = % EF° 4 F' x B) ¢,
O f xf+ Ve[ uxf= [,fa-Vyx+ [\(xC &F2+V-F < 92(EF' + F2 x B) + C2,
(1 9+ v.F* L 93(EF? + F° x B) + C°,
Choose x = v". Define 8F* + V-F° < 94(EF® + F* x B) + C*.
F" .= /v v'f, €= /v viC. Tensor notation:

) q @ AB = A ® B = tensor product,
Since a = 1;(E+v x B), @ Sym A = symmetrization of tensor A,
a-vy(v) <L &n(Ev'+v'xB).  ° AYB = Sym(A® B), and

o AXB < SymA=SymB.
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Primitive moments

@ Fluid closures should be Galilean invariant.
The kinetic equation is Galilean-invariant, so we require fluid closures to be Galilean-invariant.

@ Primitive moments are Galilean-invariant

Definitions:

p=|f

v

Specifying closure in terms of primitive moments F” ensures that closures are
Galilean-invariant.
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Mapping from conserved to primitive variables

To express primitive moments in terms of conserved
moments we observe that

n

s n . .

c” ;(v _ u)" ¥ Z(—1)’ ( ,)u’v"f’.
=0 !
Multiplying by C and integrating over velocity,

c’=c’,
c'=c' —uc’,
c? =c2-2uC' +u’C’,
c® £ ¢® —3uc?i3u’c' — u’c’,
c* X ¢* — 4uC® + 6u?C?—4u’C' + u'c’,

where in the absence of production C° = 0andinthe
further absence of interspecies friction C' = 0.
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Multiplying by f and integrating over velocity,

Fo =0,

F'=o,

F2 =P — o,

F® X F° — 3uf? +2p0°,

F* X F — 4uP® + 6u”F? — 3pu*,

F* < F° — 5uF* + 10u°F® — 10u°F® + 4pu®,

where we have used that F' = pu.

In practice, when computing with conserved variables,
we compute the primitive variables that we need for
the closing moment and then use one of the relations

<

B YL E 4 suf? - 200,
B
’|E5

<

F* + 4uF® — 6U°F? + 3pu®,

<

F° + 5uF* — 10u°F° + 10u°F? — 4pu®

to solve for the closing conserved moment.
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Mapping from primitive to conserved variables

To express conserved moments in terms of primitive Multiplying by f and integrating over velocity,
moments we observe that

B
n n =P
R Y i
o B _p2 w2

Multiplying by C and integrating over velocity, =F +pu”,

o ¢° Fe 2 F® + 3uF? + pu®,

c'=c' +uc’, F* X F* + 4uF® + 6u°F? + pu’,

€2 = c®+2uc’ +u?c’, F® X FS 4 5uF* + 10u?F° + 10u°F? + pu®,

c® ¥ ¢® 4 3uc?3u’c! + u’c’, where we have used that F!' = 0.

Cc* £ c* + 4uc® + 6utc? 1auv’c’ +u'c?,

where in the absence of production C° = 0 and in the
absence of interspecies friction C' = 0.
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Collisional closures

and where when computing

Conventional names for primitive moments:
R:= F47 S:= F5,

6tR = ct.

Q:=F,
5Q = C°,

P:= F27
6{PZ= C27

Collisional moments for BGK collision operator:

o
oP=——,
T
- Q
Q@ =-—,
73
3PP/p — R
MRV /p ’
T4

where P° := P — pl is deviatoric pressure and for BGK
T = T3 = T4.

Model coarsening:

@ dial 74 N\, 0 to smoothly transition from
35-moment to 20-moment model.

@ dial 73 N\, 0 to smoothly transition from
20-moment to 10-moment model.

@ dial 7 N\ 0 to smoothly transition to the 5-moment
model.
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F

cn

we have used that

/fe:/%

c

/cf9:0,
c

/ccf9=IP>
c

/cccfg =0, and
c

/CCCCfg < 3PP/p.

c
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moment flux closure

20-moment Maxwellian-based closure [Grad49] Assumed distributions
@ Entropy-maximizing closure:

R < 3(PP — P°P°)/p.

20-moment Gaussian-based closure [GrothGRB03]

3PP/p |

Comparison of closures:

@ The Maxwellian-based closure assumes that the
velocity distribution is a Maxwellian times a
polynomial.

@ The Gaussian-based closure assumes that the
velocity distribution is a Gaussian times a
polynomial.

@ Gaussian-based closure is a consistent
generalization of the 10-moment model.

@ Gaussian-based closure is hyperbolic if heat flux is
small enough.

@ Maxwellian-based closure is hyperbolic if heat flux
and deviatoric stress are small enough.

@ BGK would relax R to the Gaussian-based closure
for R.

f(c) = exp(a-m),

where m = (1, cc, ccc) is the tuple of evolved moments
and a is a tuple of coefficients.

Maxwellian-based closure
f=Wy(1+c -m),
where
Wiy := exp(co - mp),
mg = (1, [e[?),
and ¢’ - mis a polynomial orthogonal to 1 and \c|2 in the
weight W),.
Gaussian-based closure
f=Wg(1+¢ -m),
where
Wg := exp(cq - M),
mg = (1, cc),

and ¢’ - m is a polynomial orthogonal to 1 and cc in the
weight Wg.

Johnson 20-moment two-fluid reconnection Feb. 25, 2013



35-moment flux closure (aside)

35-moment Gaussian-based closure [GrothGRB94]

1000Q |,

where © :=P/p.
Remarks:

@ Thoroughly studied in [GrothGRB94] and
[Brown96].

@ Large hyperbolicity region containing a Gaussian.

@ Simple eigenstructure.

Johnson

Assumed distributions
@ Entropy-maximizing closure:
f(c) = exp(a - m),

where m = (1, cc, ccc, ceece) is the tuple of evolved
moments and a is a tuple of coefficients.

@ Maxwellian-based closure
f=Wy(1+c -m),
where
Wiy := exp(co - mp),
mg = (1, [e[?),
and ¢’ - mis a polynomial orthogonal to 1 and \c|2 in the
weight Wy,.
@ Gaussian-based closure
f=Wg(1+¢ -m),
where
Wg := exp(cq - M),
mg = (1, cc),

and ¢’ - m is a polynomial orthogonal to 1 and cc in the
weight Wg.
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Primitive moment evolution equations (aside)

Take primitive moments of the kinetic equation. Multiply the kinetic equation putting it together,
Relations for primitive moments: Dif = C Dix = (a —dfu—c- qu) “Vex (3)
et x,v) =v—u(t,x) by x to get But solving momentum evolution
Jo =Je — dYu + V-F2 = p(a) + C!
x(t, x,v) = x(c) = ¢” Di(xf) = Dyx + xC- i P
for d}‘u, substituting in (3), and defining
Vvx = Vex @ .
df =9+ V- Vx But observe that for x(c): ai=a-(a)=pexB
v gives
pla)y = [, Dy =df +a-Vy,
— ’
Di(a) = Bt + Vx+(Va) + Vy-(aa) dyx = (df¢)- Vex Dix = (a’ — ¢ Vxu) - Vex
_ 4)
D =0 +V-Vxta-Vy=D = —(d}u)- Vex, v-F - ¢! (
D % +V:Vx-+a-Vy =Dy ) u(r) ¢ + T2 Ve
Di(eB) = (Di)B + aDiB di =di +¢-Vx; i

Substituting (4) into the kinetic equation (2) and integrating over velocity space yields:

A(p(x) + V+(pu(x)) + V+(p(ex)) = (V-F* = C') - (Vex) + p( (8’ — ¢+ Vu) - Vox) + [,xC.  (5)
Now impose that x(c) = ¢". For a generic o, o - V¢ (¢") = nSym (gc"“) . So

p{@ —c-Vu)-Vee") = npSym((@ —c-vu)e" ) = nSym (2F" x B — F"- Vu) (6)
Substituting identity (6) into equation (5) gives an evolution equation for primitive moments:

pdF" + nSym (l?”*‘(c‘ —V-F)+F. Vu) + VP! = nSym (4F" x B) + C", @
where F" := (¢") = F"/p.and d; := 8 + u- V.
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Primitive quasilinear form (aside)

Equation (7) can also be written:

pdiF" — nF"'V.-F2 4 nF" . Vu+ V-F"T X nZF" x B— nF"'C! 4 C”

g

which is an evolution equation for the generalized temperature F".

The 35-moment system in quasilinear form is thus

dip+ pV-u=C" =0,
pdiu+ V-F* = )(E+uxB)+C',
pdiF? +2F% . Vu+ V-FP £ 29F x B+ C?,
pdF® — 3FPV-F? + 3F° . vu + V.F* £ 39F° x B — 3F°C" + C°,
paiF* — 4FPV.F? + 4F' . Vu + V.F° L 49F x B - 4F°C' + C*,

which generalizes equations (4.15) through (4.19) in [GrothGRBO03] and agrees if C° = 0 (as implicitly assumed
on the previous slide).
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@ Magnetic reconnection: Vlasov vs. fluid simulations
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Magnetic Reconnection

e Magnetic field lines are convected with plasma except near reconnection
point.

o Adjacent oppositely directed magnetic field lines field lines come together
and cancel and reconnect.

e Oppositely directed jets form along outflow axis.

2D separator steady reconnection
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Magnetic Reconnection
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Magnetic Reconnection

e Magnetic field lines are convected with plasma except near reconnection
point.

o Adjacent oppositely directed magnetic field lines field lines come together
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Dynamic reconnection: GEM challenge problem [GEMO1]

The GEM problem initiates reconnection by pinching adjacent oppositely directed field lines.
Two-fluid simulations suggest qualitative agreement with kinetic simulations:

@ Vlasov-Darwin simulations: [SchmitzGrauer06]

@ 5-moment two-fluid-Maxwell simulations: [HaLoSh06], [LoHaSh11].

@ 10-moment two-fluid-Maxwell simulations: [Hakim06], [JoRo10], [Jo11].

@ 20-moment two-fluid-Maxwell simulations: [see the following slides]

BIRN ET AL.: GEM RECONNECTION CHALLENGE

X 4F —— Full Particle 3
T : ' im §
9 3_ ————— Hybrid T E
5 [ —— Haoll MHD 7 ~
e 2F s E
S "F —-— MHD / ;
- . VZ 3
(O] o P E
[0 E . - ]
O = L T 1 . E

O 10 20 30 40

t

Figure 1. The reconnected magnetic flux versus time from a variety of simulation models: full
particle, hybrid, Hall MHD, and MHD (for resistivity » = 0.005).
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Simulation parameters

Symmetry is enforced and system is solved on a quarter-domain for all simulations.

All fluid simulations use a 32x64 computational mesh.

3rd-order Runge-Kutta discontinuous Galerkin

time scale is ion gyroperiod.

Alfvén speed is nondimensionalized to 1.

so spatial scale is ion skin depth.

light speed is 20.

relaxation period is chosen to be 7; = 50+/det O/ ps.

simulations were run until they crashed on negative pressure (positivity limiting not yet implemented).
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Reconnecting flux for 10-moment model

Reconnecting flux versus time

1 flux exiting fight side
§< —flux across y-axis
> -
o° —decreased y-axis flux
8 ====jncreased x-axis flux
E 2[|___Aintegral)} E (0) '
0 -

1 O-moiment pléasma
0 5 10 15 20 25
time per gyroperiod
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Reconnecting flux for 10-moment model (again)

Reconnecting flux versus time

6 B e o | s | | . | 1.1 | P L | P 1 L
1 flux exiting right side

§< —flux across y-axis
> -
o° —decreased y-axis flux
8 ====jncreased x-axis flux
§ 2[|___.integral); E_(0)

0

10-moment plasma

0 5 10 15 20
time per gvroperiod
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Reconnecting flux for 20-moment model

Reconnecting flux versus time

) R S Y S Y

1 flux exiting right side
§< —flux across y-axis
> -
o° —decreased y-axis flux
8 ====jncreased x-axis flux
§ 2[|___.integral); E_(0)

20-moment plasma

0 5 10 15 20
time per gvroperiod
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(magnetic field) att=0/ Q i

-10 -5 0 5 10
20-moment two-fluid Maxwell
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{magnetic field) att=1/ Qi

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att=2/ Q i

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att=3/ Q i

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att=4/ Q i
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20-moment two-fluid Maxwell
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(magnetic field) att=5/ Q i
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20-moment two-fluid Maxwell
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(magnetic field) att=6/ Q i
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20-moment two-fluid Maxwell

Johnson (KU-Leuven) 20-moment two-fluid reconnection Feb. 25, 2013 35/56



(magnetic field) att=7/ Q i
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20-moment two-fluid Maxwell
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(magnetic field) att=8/ Q i
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20-moment two-fluid Maxwell
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(magnetic field) att=9/ Q i
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20-moment two-fluid Maxwell
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(magnetic field) att =10/ Q :

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att =11/ Q :
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(magnetic field) att =12/ Q :
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20-moment two-fluid Maxwell
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(magnetic field) att =13/ Q :

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att =14/ Q i
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20-moment two-fluid Maxwell

Johnson (KU-Leuven) 20-moment two-fluid reconnection Feb. 25, 2013 43 /56



(magnetic field) att =15/ Q :

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att =16/ Q :
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20-moment two-fluid Maxwell
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(magnetic field) att =17/ Q :

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att =18/ Q :
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20-moment two-fluid Maxwell
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(magnetic field) att =19/ Q :

-10 -5 0 5 10
20-moment two-fluid Maxwell
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(magnetic field) att =20/ Q :

4\/
W

>
of > ))))?m-(((( | o

20-moment two-fluid Maxwell
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Off-diagonal components of electron pressure tensor

The 10-moment model resolves off-diagonal pressure tensor components well, because it admits viscous stress.

10-moment: P att=18/Q.
exy i

2|
0 - el
B —
-2
-10 -5 ] 5 10
10-moment: -P_ _att=18/Q
exz i
2
0 -_— T -
-2
-10 -5 o 5 10
10-moment: -P_att=18/Q,
eyz i
2|
— —
0 o
-2
-10 -5 [ 5 10

spatial unit = ion inertial length

Py 0.013989
0.02 0008995
. 0.00000¢

’ |
000899

-0.02 I
128 x 123 M 00
" 0.01977¢
l 0.01 0.009389
0 I 0.000000
I 0.01 ™ .ocoess
s x 128 I “octe77
Py 0.008647

32 .
0.01 0.004323
o y B oo
.0.01 -000432

-3.2

128 x 128 -0.00864

Off-diagonal components of the electron pressure ten-
sor for Vlasov simulation at Q;t = 17.7 [Schmitz-

Off-diagonal components of the electron pressure ten-  Grauer06]

sor for 10-moment simulation at Q;t = 18
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Off-diagonal components of electron pressure tensor

The 20-moment model better resolves the off-diagonal components of the pressure tensor.

20-moment: P_ _att=16/Q
exy i

o — —-—
- - —

-10 -5 o 5 10
20-moment:-P__att=16/Q.
exz i

0 =D =

-10 -5 o 5 10
20-moment: -P_att=16/Q.
eyz i

- — -
0 - -

Off-diagonal components of the electron pressure ten-

sor for 20-moment simulation at Q;t = 16

Johnson

3 Pry 0.01398¢
x10
5 0.00896
. 0.000000
’ |
-0.00899!
5 2 I
128 x 128 -0.01398;
" 0019778
0.01 0.00933¢
0.000000
0
| -0coess
-0.01 I
“ 128 % 12.8 -0.019771
3 Py 0.008547
x 10 32 .
5 0.004323
y I 0.000000
0
-0.00432
-5 -3.2
128 x 128 000864

Off-diagonal components of the electron pressure ten-

sor for Vlasov simulation at Q;t = 17.7 [Schmitz-
Grauer06]
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Diagonal components of electron pressure tensor

The 10-moment model resolves the diagonal components of the pressure tensor near the X-point
poorly, because it does not admit heat flux.

10-moment: P__att=18/ Q. Prx
b ! 0.175265

32
0.15
0.135331
0.1
Y ———— —— 0005398
0.0 I 0.055464
0 22128 x 128 .o.msm
0.125427
0.1 0.101354
. 0.077280
0.05
=5 0053207
0 3.
2128 x 128 0.029133
0.137501
0.15
0.110658
0.1
0.083812
0.05 I
E 0.056967
-10 5 [} 5 10 32 s - 128 0030122
spatial unit = ion inertial length .
Diagonal components of the electron pressure
Diagonal components of the electron pressure tensor _for Viasov simulation at ;f = 17.7
[SchmitzGrauer06]

tensor for 10-moment simulation at Q;t = 18

Johnson (KU-Leuven) 20-moment two-fluid reconnection Feb. 25, 2013 52 /56



Diagonal components of electron pressure tensor

The 20-moment model resolves the diagonal components of the pressure tensor near the X-point
better, because it admits heat flux.

20-moment:P__att=16/9Q.
exx i

-10 -5 [} 5 10
20-moment: P__att=16/Q.
eyy i

-10 -5 [] 5 10

20-moment: P att=16/Q, Pz 0.137501

0.110658

l 0083812
£ 0.056967

0 32 s x 128 0030122
Diagonal components of the electron pressure
tensor for Vlasov simulation at Q;t = 17.7

Diagonal components of the electron pressure .
tensor for 20-moment simulation at Q;t = 16 [SchmitzGrauer06]
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Requirements for steady 2D symmetric magnetic reconnection

Consider the simplest reconnection scenario: steady 2D reconnection symmetric under 180-degree
rotation about the X-point.

Reconnection is impossible without viscosity or resistivity.

Argument:
@ Rate of reconnection is the electric field strength at the X-point.
@ Electric field strength at the X-point is resistive electric field plus viscous electric field.

Theorem (Jo11)

Reconnection is impossible for any conservative model for which heat flux is zero.

Argument:
@ Steady reconnection requires entropy production near the X-point (via resistivity or viscosity).
@ The X-point is a stagnation point.
@ Without heat flux, heat accumulates at the X-point without bound.

Observation: in kinetic simulations, fast reconnection is supported by viscosity, not resistivity.

Conclusion: we need heat flux and viscosity in a fluid model of fast magnetic reconnection.
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Performance summary of fluid models

Performance of hyperbolic fluid models relative to kinetic simulations:
@ 5-moment

@ Success: rate of reconnection is qualitatively correct.
@ Reason for success: reconnection wants to happen, and the inertial term provides a mechanism.
@ Failure: reconnection is supported by inertial term rather than pressure term.
o Reason for failure: lack of viscosity forces current to ramp at the X-point until mitigated by numerical
resistivity. [Jo11]
@ 10-moment [Jo11]:
@ Success: pressure tensor supports reconnection
@ model shows reasonable resolution of off-diagonal components of electron pressure tensor. [JoRo10].
@ reconnection is insensitive to collision period ¢
@ reconnection is robust and reliable if 75 # oo is used to damp oscillations in deviatoric stress [Jo11]
@ Reason for success: the model admits viscosity.
@ Failure: diagonal components of pressure tensor are poorly resolved near X-point
@ Reason for failure: lack of heat flux forces entropy and pressure anisotropy to ramp at the X-point.
Instability eventually kicks in. [Jo11]

@ 20-moment:

Success: diagonal components of electron pressure tensor are resolved near X-point.
Reason for success: the model admits heat flux to relieve temperature pile-up.
Issue: need for positivity limiting and instability are seen at late times.
What to do about it:
@ A generic framework for positivity limiting is developed in [JoRo13].

@ The GEM problem is unstable to secondary plasmoid formation, so convergence becomes unfeasible for any
accurate model at late times.

@ For stable steady reconnection an implicit method is called for.
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