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This paper deals with generating cutting paths for laser cutting machines by representing a tool path in
a novel way. Using the new representation, the tool path problem can be viewed as finding a partitioning
of contours which minimizes the sum of the costs of a rooted directed minimum spanning tree to connect
the partitions and the costs of a generalized traveling salesman problem (GTSP) solutions within each
partition. Using Edmond-Liu’s algorithm to solve the arborescence problem, an improved Lin-Kernighan
heuristic to solve the GTSP and a heuristic repartitioning approach, tool paths can be generated that
are 4.2% faster than those generated by an existing tool path construction heuristic.
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1. Introduction

Many manufacturing processes start with cutting parts from a stock sheet with laser cutting being
one of the more flexible cutting methods. Automated CAM software can create efficient part nests
to minimize waste material and provides tool paths to guide the laser head in cutting all the
nested parts. The generation of tool paths for laser cutting machines is the focus of this paper as
optimizing the tool path quality may lead to substantial savings in terms of money and resources.
A typical cutting process can take anywhere from several minutes to several hours, depending
on the number of parts on the plate, the material type, the process parameters, and the plate
thickness. The repositioning of the cutter head between cuts, called the airtime motion, depends
on the chosen tool path and is to be minimized as it is non-productive time.
Hoeft and Palekar (1997) classify tool path problems into three problem classes:

e Continuous Cutting Problem (CCP): the cutter head visits each contour to be cut once.
The tool can engage the contour at any point on its perimeter, but must cut the entire
contour before it travels to the next contour. Accordingly, the same point must be used for
entry and departure from the contour.

e Endpoint Cutting Problem (ECP): the tool can enter and exit contours only at some
predefined points on the boundary. However, it may cut the contour in sections, or stated
otherwise: a contour can be pre-empted.

o Intermittent Cutting Problem (ICP): this is the most general version of the problem in
which contours can be pre-empted and there is no restriction on the points that can be used
for entry or exit.

These three problem classes cover a wide range of tool path problems. However, the following
important case is not considered: the tool path visits each contour to be cut once and the tool can
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engage the contour only at some predefined points on the boundary. This problem corresponds to
the Generalized Traveling Salesman Problem (GTSP) introduced by Srivastava et al. (1969).
The GTSP consists of a set of cities grouped in districts and the objective is to find the shortest
route visiting exactly one city of each district. The four problem classes are shown in figure 1.

" .
Degree of generalization

Figure 1. Different versions of the cutting path problem

Previous research on tool path problems has mainly dealt with either the GTSP or the CCP
versions of the cutting path problem. This is most likely the result from the fact that many cutting
processes don’t allow pre-emptions because of quality reasons i.e. when a contour is pre-empted it
is hard for some cutting processes to restart the cutting process later on at exactly the location
where the cutting tool exited the contour. In laser cutting, however, this is possible. Moreover, as
will be explained in the next section, because of the existence of common cuts, contour pre-emption
is unavoidable.

The GTSP version is considered by Raggenbass and Reissner (1989, 1991), Han and Na (1999a,b),
Xie et al. (2001), Castelino et al. (2003), Kim et al. (2004), Wang and Xie (2005), Vaupotic et al.
(2006), Xie et al. (2009), Yang et al. (2010), and Jing and Zhige (2013).

The CCP version is considered by Hoeft and Palekar (1997), Veeramani and Kumar (1998), and Lee
and Kwon (2006). The above approaches iteratively switch between a part sequence determination
(PSD) problem and a pierce point determination (PPD) problem. The major differences between
the above approaches lie in the selection of the heuristics tackling each sub problem.

In the cutting path problem, parts can have holes in them. Efficient nesting algorithms can in
turn nest other parts in these holes in order to minimize waste material. In general, one can state
that contours can have inner contours. These inner contours need to be cut before the outer is
completely cut because when a contour is cut completely, it detaches from the rest of the plate.
If there is a supporting grid, it can possible shift its position, or if there is no supporting grid,
it simply falls through. In both cases, it will be impossible to continue cutting in this area. In
the above approaches, this precedence constraint is handled by forcing inner contours to be cut
immediately before its outer contour and as such it does not introduce much extra complexity.

Both the ECP and ICP have received far less attention in the literature than the GTSP or CCP.
With the exception of a problem description of the Crossing Postman Problem by Garfinkel and
Webb (1999), which can be viewed as a kind of ICP, no previous solution approaches for the ICP
have been identified.

A special version of the ECP has been considered for wire electric discharge machining (EDM) by
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Moreira et al. (2007) and Imahori et al. (2008). In wire EDM, the cutting tool never stops cutting,
and as such, a different set of precedence constraints applies for wire EDM than for laser cutting.

Dewil et al. (2011, 2014) showed that the endpoint cutting problem can be modeled as a prece-
dence constrained GTSP (PCGTSP). The precedence constrained version of the GTSP contains
precedence constraints between cities, between districts and between cities and districts. Dewil et al.
(2011) showed that high quality solutions for the laser cutting tool path problem for thin plates
can be reached. These solutions are obtained through a modified insertion construction heuristic
followed by a tabu search meta heuristic (Glover and Laguna (1999)) using generic 3-opt moves
modified to take the relevant precedence constraints into account(Gambardella and Dorigo (2000)).
However, in thicker plates additional costs and precedence constraints have to be considered such
as piercings, pre-cuts and sharp angle macros. Dewil et al. (2012, 2014) showed that the generic
heuristics of Dewil et al. (2011) become prohibitively computationally expensive as these additional
costs and constraints are included. Dewil et al. (2014) present a set of construction heuristics that
takes advantage of the problem structure in order to generate tool paths that require a consid-
erably shorter process time than those currently generated by CAM software packages in similar
computation times. In a similar approach, this paper presents a heuristic framework that utilizes
the problem structure in order to improve existing tool paths.

The remainder of this paper is organized as follows. In the next section, the laser cutting problem
is introduced in more detail. Section 3 shows how a tool path can be represented as a tree with
cycles and section 4 presents a hybrid heuristic that takes advantage of this structure. Section 5
discusses our experimental results, while section 6 presents our conclusions.

2. Laser Cutting Tool Path Problem

The objective of the tool path problem, as defined by Dewil et al. (2014), is to minimize the
total time required to cut a number of nested parts from a metal sheet. A part consists of an
outer contour and possibly a set of inner contours. Each contour itself is composed of a number of
elements: lines or arcs which can be cut in both directions. Additionally, a pierce group is defined
as a single contour or a set of contours that are connected to one another through common cuts.
Important characteristics of our problem setup are the following:

e The actual cutting time is considered to be independent of the chosen tool path and as such
will not be considered further in this paper.

e The airtime is the sum of all non cutting movements of the laser head.

e Every time the laser head moves to a new section of the plate, the laser first needs to pierce
through the plate before the laser head can start cutting. This is called a piercing and the
time required to execute the piercing is called the piercing cost.

e In order to allow contour pre-emptions, so-called pre-cuts are used. A pre-cut is a short cut
that is made in an element when cutting an adjacent element. It allows the laser head to
start cutting the element later on from within the pre-cut without requiring a piercing.

e In thicker plates an extra cost is added when cutting a sharp angle. This cost equals the extra
time required to execute a special sharp angle macro which is use to avoid corner burn-off or
quality deterioration due to excessive pre-heating.

The total time required to cut a set of nested parts from a metal sheet consists of the time
required to execute all cut moves, air moves, piercings, pre-cuts and sharp angle macros. The
laser cutting tool path problem is further complicated by the presence of precedence constraints,
explained in detail in Dewil et al. (2014).

As mentioned in the introduction, once a contour is completely cut, it detaches from the rest
of the plate. This detached area can possibly shift position which then becomes inaccessible for
further cuts. In this research, it is not necessary that an inner contour is cut immediately before
its outer contour is cut. In addition, since in the laser cutting ECP a part can be pre-empted and
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a contour is not cut until all of its elements are cut; it is allowed to cut some elements of a contour
before cutting the inner contours. In other words, the first set of precedence constraints requires
that a contour needs to be cut before the last element of its outer contour is cut.

The inner-outer contour relations, as depicted in figure 2 can come from holes in parts (a), parts
nested in holes (b), or parts nested in islands (c). Islands are areas that have become completely
enclosed through efficient nesting algorithms. Such algorithms position parts so close to one another
that they share a cutting line which are called common cuts. Each common cut is, in turn, enclosed
by a contour composed of the two contours it is part of. If this composite contour is cut, it can
also shift and cause the common cut enclosed within to become inaccessible to cut. Therefore, a
common cut needs to be cut before its composite contour is cut.

composite contour of

plate part nested in hole cwnd contour2
part 0
contour contour
1 2
hole \
\\common
contour contour | cuts
3 4
(a) (b) contour 5: ( ) \ contour 6: part

island contour nested in island

Figure 2. Parts, holes and common cuts that lead to precedence constraints (Dewil et al. (2014))

Common cuts furthermore require extra pre-cuts because when a contour is completely cut, it
can shift into the cut kerf. As a consequence, adjacent elements cannot be cut up to the cut contour
since this might damage the shifted contour. Dewil et al. (2014) explain this constraint in detail
and propose two heuristics to generate sub tool paths for pierce groups containing common cuts.
One of these heuristics (the element insertion heuristic) will be used in this research to generate
the sub tool paths for common cut pierce groups.

Dewil et al. (2011, 2014) modeled the tool path as a GTSP with special precedence constraints.
Each element is represented as a district of two cities where each city represents a cutting direction
of the element. Generic local improvement heuristics for the GTSP were adapted to include the
special precedence constraints and embedded in a tabu search framework. Because elements are
considered individually, much of the optimization process is spent examining solutions that do not
resemble an optimal tool path. In an optimal tool path, when the laser head enters a contour for
the first time at a certain location, the laser head will eventually exit the contour from that same
location, regardless if pre-emption occurs or not. As such, the first entry actually fixes the relative
order and directions of elements! in that contour. This information is not considered in the above
mentioned precedence constrained GTSP approach.

In Dewil et al. (2014), several construction heuristics were presented that take advantage of this
observation, with the PFr heuristic being the best on average. The PFr heuristic starts with a
list of all outermost pierce groups. It then iteratively selects the pierce group that is closest to
the current partial path i.e. an insertion location, an entry point and an exit point are selected.
Given these entry and exit points, a sub tool path for the pierce group is determined which is

n fact two directions are possible, but from an optimization point of view, the direction actually does not matter with regard
to minimizing total time. From a technical point of view, there is a benefit in preferring one direction over the other because a
laser head is not perfectly symmetrical, resulting in better quality cuts on a certain side of the laser head.
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trivial for a normal contour, but is more complicated for a pierce group containing common cuts.
The sub tool path is inserted in the partial path at the chosen insertion location and the process
continues until all pierce groups of this top level are inserted. Following this step, the heuristic
then iterates backwards over the partial path and if it encounters an element that closes a contour,
all of the contour’s inner contours (if any) are inserted analogously to the insertion of the top
level contours. When the iterator reaches the start of the path, a complete tool path has been
constructed, represented by an array of cuts.

In the following section, a different tool path representation is proposed that can be exploited
efficiently by improvement heuristics.

3. Tool Path Representation

Without loss of generality and for the ease of understanding, only pierce groups consisting of a
single contour are considered in the following description.

Consider the tool path in 3(a), which is devoid of any pre-cuts, or put otherwise, not a single
contour has been pre-empted. This is basically a GTSP solution.

By contrast, the tool path in 3(b) pre-empts all but one contour. The tool path consists of an
air move (1) to the first contour where section (2) is cut, followed by air move (3), section (4) is
cut and so on. Such a tool path can be seen as an arborescence (Tarjan (1977)) if every contour
would be represented by a single vertex.

Finding a least cost arborescence is also known as a rooted directed minimum spanning tree
problem (MST - Kruskal (1956)). Whereas the MST consists of finding a spanning tree of minimum
weight between the vertices in a connected undirected graph, the arborescence problem consists
of finding a subgraph of minimum weight between the vertices in a connected, directed graph.
The root vertex is the start location of the laser head on the laser cutting machine and a vertex
(contour) has children if it is pre-empted to cut other contours.
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Figure 3. Two extreme types of tool paths

Most optimal tool paths do not correspond to an arborescence between pierce groups. For in-
stance, consider the case in figure 3(a) where inter contour distances? (air moves) are large com-
pared to the contour sizes®. In this case, if an arborescence would be constructed between the

2The inter contour distance between two contours 4 and j is the minimum of all distances between all nodes of contour i and
all nodes of contour j.

3The contour size is an approximation to the additional length the laser head has to travel going from the preceding contour
i-1 to the succeeding contour i+1 since in doing so, the laser head has to ”cross” (at least partly) the contour 4.
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pierce groups, the double execution of air movements (once going to a contour and once returning
from this contour) would result in high air movement costs coming from the many air moves on
top of the many pre-cut costs.

Similarly, most optimal tool paths also won’t be GTSP solutions. For instance, consider the
case in figure 3(b) where inter contour distances are small compared to the contour sizes. In this
case, traveling from one contour to the next contour in a GTSP like manner, would result in laser
head air moves that are (much) longer than the smallest distance between the two contours, thus
increasing air movement costs.

Most likely however, an optimal tool path for a problem that contains both large and small
contours will have both sub tool paths that resemble a tree and sub tool paths that resemble
GTSP tours as depicted in figure 4(a). In figure 4(b), the contours are represented by a single
vertex, which more clearly shows this tree-like structure. Figure 4(c) shows that by dividing the
contours into seven groups, the tree-like structure can be modelled by an arborescence between
the groups and by GTSP solutions within the groups. For the remainder of the text, we define a
specific division of contours in groups as a partitioning and the resulting groups as partitions. The
tool path problem can then be redefined as:

Finding a partitioning of contours, where a rooted directed minimum spanning tree
ts determined between the partitions and GTSPs are solved within the partitions in
order to minimize the total path travel time.

Since any tool path can be represented by an array of elements, any tool path can alternatively
be represented by a series of sub sequences of elements. And since the partitioning representation is
basically a way of ordering these sub sequences, any tool path can be represented by the proposed
representation.
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Figure 4. Tree-like structure in good tool paths and Arborescence-GTSP partitioning view

Representing the problem in this way allows efficient algorithms to solve the arborescence and
GTSP subproblems. More specifically, the following data structure is utilized. The tree consists of
one root partition that contains at least two contours (the laser head’s starting location and the
first contour to cut). Every contour can have multiple child partitions, but at any given node of the
contour only a single partition can be attached. The node to which the child partition is attached is
referred to as the parent node of the child partition. This structure allows improvement heuristics
to more easily identify potential good local moves.



September 17, 2014 International Journal of Production Research An*improvement*heuristic*framework*for*the*laser*cutting*tool*path*problem

4. Improvement heuristic framework

We propose an improvement heuristic framework as follows:

(1) Determine & improve initial partitions”®

(a) Determine initial partitions”®
(b) Solve GTSPs within the partitions”®
(¢) Repartition”®
) Determine arborescence between the partitions
Resolve arborescence
)
) Solve GTSPs within the partitions
) Repartition
) If stopping criterion is not reached, go to step 2. Else, go to step 7
estore feasibili
) Restore feasibility”
) Improve partitions”¢
) Extract path

PC designates that this step takes precedence constraints into account.

An initial partitioning of contours is determined first (1a) using a tool path construction heuristic.
If the initial partitioning is the result of a construction heuristic that generates feasible paths, two
improvement procedures are executed. The first improvement procedure involves solving the GTSP
for every partition in the initial partitioning that does not contain precedence constraints (1b). The
second improvement procedure is a set of repartition moves that takes precedence constraints into
account (1c).

Then, while the stopping criterion is not reached, the algorithm determines an arborescence be-
tween the partitions (2,3), solves the GTSPs within the partitions (4), and executes a repartitioning
phase (5). Steps 2, 3, 4, and 5 do not take precedence constraints into account.

If the stopping criterion is reached, a repair heuristic is executed to remove any infeasibilities
that might have been introduced in steps 2-5 (7).

Given this feasible path, a set of repartition moves is executed that takes precedence constraints
into account(8).

Additionally, every time entry/exit points are altered in contours, a new sub tool path is deter-
mined.

In the following subsections, each of these steps is discussed in more detail.

4.1 Determining initial partitions

Any tool path construction heuristic can be used to create an initial tool path from which the initial
partitions can be determined. The heuristic used here is the PFr heuristic described in Dewil et al.
(2014). Alternatively, our algorithm can also start from a single partition i.e. a GTSP solution; or
with every contour in a separate partition i.e. a pure arborescence solution. These alternatives are
used to evaluate how much the algorithm depends on the starting solution.

4.2 Solving the GTSP within partitions

Given a group of partitions, a GTSP can be solved within each partition. If a minimum spanning
tree between partitions has already been determined, then the partition’s parent node can be
included in the GTSP sub problem to speed-up convergence. Noon and Bean (1991) proposed a
method of transforming a GTSP into an asymmetric traveling salesman problem (ATSP) without
introducing additional nodes. The resulting ATSP can be efficiently solved to near-optimality in
a limited time span using a newer version of the Lin Kernighan heuristic (LKH) proposed by
Helsgaun (2000, 2009). In our current implementation, precedence constraints are not taken into
account in the GTSP solution, since initial observations showed that the tool paths obtained could
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easily be restored to feasibility without significant changes in the objective function. During the
improvement phase of the initial partitions, precedence constraints are indirectly taken into account
by applying the LKH only on those partitions that do not contain any precedence constraints.

4.3 Determining an arborescence between partitions

Given a set of partitions, this step determines a rooted directed minimum spanning tree between the
partitions. The partitions consist of contours which themselves consist of several nodes. However,
there is no requirement that all arcs in the arborescence solution that are connected to a given
partition have to be connected to the same node. In fact, connecting different partitions to the
same node actually implies that one or more of these partitions must be merged.

A simple preprocessing phase identifying the cheapest connection between two partitions can
transform the problem into a regular arborescence problem which can then be solved using the
algorithm of Chu and Liu (1965) in O(E log V) with V being the number of vertices and E,
the number of edges. To the best of our knowledge, no algorithm has been proposed that solves
a precedence constrained rooted directed minimum spanning tree problem efficiently. Instead of
developing such a procedure, we chose to ignore the precedence constraints and let the repair
heuristic deal with restoring feasibility.

4.4 Resolving arborescence

Chu-Liu’s algorithm results in a set of selected edges which connect all partitions. As can be seen
in the top row of figure 5 there are four different ways that two partitions can be connected to one
another which have to be resolved in such a way that the algorithm’s structure of "GTSP’s within
partitions and a RDMST between partitions” is maintained. Both partitions originally consist of
four contours and GTSP tours are defined for both partitions (blue arrows). The red arrows in the
top row designate which nodes are selected to connect the two partitions in each scenario. These
nodes are referred to as ”connection nodes” in the following paragraphs.

In case (a) the selected connection node in the parent partition is not the current entry/exit node
of its contour. The chosen connection node of the child partition is the entry/exit node its contour.
This is the only case where no extra action needs to be undertaken to maintain the partition-tree
structure. This case resolves to the following tool path. The first contour of the parent partition
is cut completely after which the second contour is cut partly until the sub tool path reaches the
selected pre-empt node where a pre-cut is placed and an air move is executed to the chosen entry
node of the child partition. Then all contours of the child partition are cut according to the child
partition’s GTSP tour. Lastly, an air move is executed returning the laser head from the child
partition to the parent partition where the rest of the second contour is cut followed by cutting
the remaining contours in the parent partition.

In case (b) both the chosen connection node of the parent partition and the chosen connection
node of the child partition are not entry/exit nodes of their respective contours. In this case, the
contour of the chosen connection node in the child partition is placed in its own separate partition.
This new partition becomes a child of the original parent partition and becomes the parent of
the original child partition. This case resolves to the following tool path. The first contour of the
parent partition is cut completely after which the second contour is cut until the sub tool path
reaches the chosen connection node where a pre-cut is placed and an air move is executed to the
chosen connection node of the child partition. This connection node is now the entry/exit node of
its contour and is situated in its own partition. This contour is then cut until the sub tool path
reaches the contour’s original entry/exit node where a pre-cut is placed and an air move is executed
to the next contour in the old GTSP path of the child partition (which has now effectively become
the grand child partition). This GTSP tour is then executed after which the cutting head returns
to the new child partition to finish cutting the contour. And then lastly, an air move is executed
returning the laser head from the new child partition to the parent partition where the rest of the
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Figure 5. Minimum spanning tree based repartition moves

second contour is now cut followed by cutting the remaining contours in the parent partition.

In case (c¢) the chosen connection node of the parent partition is the entry/exit node of its contour
and the chosen connection node of the child partition is not the entry/exit node of its contour. In
this case, the chosen contour of the child partition is inserted in the parent partition. The child
partition is attached to this contour and its original entry/exit node now becomes a pre-empt node.

In case (d) both the chosen connection node of the parent partition and the chosen connection
node of the child partition are entry/exit nodes of their contours in their respective GTSP solutions.
This configuration leads to a merging of both partitions into a single partition.

Similarly, if the solution of the arborescence would result in attaching multiple partitions to the
same partition at the same node, a merger of the candidate child partitions is executed.

4.5 Repartition

The decision of which contours to repartition and where to place them is an important part of the
algorithm. While the GTSP and arborescence solutions improve parts of the overall tool path and
can be seen as intensification steps, the repartitioning moves change the overall structure of the
tool path and thus can be seen as diversification steps. Several straightforward repartitioning moves
have been implemented which are based on executing local moves on the tree-like structure. If a
regular array-based path representation is used, these moves are basically 3-opt moves without sub
path inversion (Croes (1958)). The advantage of using the tree-like structure is that only relevant
moves are considered i.e. no moves are evaluated that would add expensive piercings.

The first set of repartitioning moves consists of two possible moves. The first move is simply the
reattachment of a partition as a child of another partition. It is of course disallowed to attach a
partition to any of its own descendants as this would result in two separate sub tours. The second
move is more elaborate and is depicted in figure 6. This move is only considered when a partition
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consists of single contour and contains at least one child that also consist of a single contour. In
this case, a merger of the partition with its child partition is evaluated together with the evaluation
of a re-attachment of the newly merged partition to another partition (or the same partition but
to another node as in figure 6). If the child itself has single contour children, the merger and
reattachment of the parent, child and grandchild is evaluated.

Figure 6. Combined re-attachment and merger of single pierce group partitions

The second set of repartitioning moves (as depicted in figure 7) consists of identifying sub se-
quences of pierce groups (pierce group jpeszt up to and including pierce group k) in a partition and
also evaluating two possible moves.
The first move evaluates placing the chosen sequence in a separate partition and attaching this
new partition to any other partition, including its original partition. For example, in figure 7(a), the
sub sequence from pierce group jner+ up to and including pierce group k is removed from partition
1. A new partition is created for this sub sequence and the new partition is added as a child to
partition 1. In particular, it is added as a child to pierce group j.

The second move evaluates the insertion of the sub sequence in another partition, including its
original partition (shown in figure 7(b)). For example, in figure 7(b), the sub sequence going from
pierce group jnest up to and including pierce group k is removed from partition 1. This sub sequence
is inserted in partition 2 in between pierce groups ¢ and tyeq.
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Figure 7. Moving sub sequences of pierce groups
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We have implemented two versions for each set of repartitioning moves, one that accounts for
precedence constraints and one that does not. The version that enforces precedence constraints,
however, only functions on a feasible solution. As such, this version can only be applied as an
improvement phase after the construction heuristic has determined an initial partitioning and once
more at the end after the repair heuristic has restored feasibility.

4.6 Restoring Feasibility

Since precedence constraints are not enforced both in either the arborescence construction or the
Lin-Kernighan heuristic, a repair heuristic was implemented to restore feasibility. The reparation
phase consists of iterating over the generated tool path. If a contour is closed before all of its
inner contours have been cut, then the entire contour is shifted towards the end of the path to a
position just past the point where the last of its inner contours is cut. If this contour is part of a
pierce group containing common cuts, the entire pierce group is shifted backwards. Following these
repairs, a minor improvement phase is executed to determine new entry/exit nodes of the moved
pierce groups and executes a repartitioning phase which takes precedence constraints into account.

4.7 Building the sub tool path

At several positions during the execution of the above procedures, new entry or exit points are
determined for a pierce group. As such, a new sub tool path needs to be determined. This is trivial
in the case of regular contours if precedence constraints are not taken into account?®. It is however,
more complicated in the case of common cut pierce groups. In the case of common cut pierce
groups, the element insertion heuristic of Dewil et al. (2014) is used. This heuristic does not take
other partitions into account to determine its inner air moves. Consider for example figure 8 where
one common cut sub path needs to be determined in the vicinity of two partitions. If adjacent
partitions would not be taken into account (figure 8a), the optimal sub path would select the two
short air moves d-c¢ and b-a. However this would entail that the adjacent partitions would have
to be attached in a way that includes one short air move and one long air move (figure 8c). On
the other hand, if adjacent partitions would be taken into account (figure 8b) air moves a-d and
b-c would be selected which are two long air moves but which could be bridged by the adjacent
partitions between these two nodes (figure 8d).

Several adaptations of the insertion based heuristic that attempted to take adjacent partition
information into account were tested, but no positive difference in solution quality was noticed.
Nonetheless, the idea of taking adjacent partition information into account when determining sub
tool paths for common cut pierce groups remains valid and might be of interest for future research.

5. Computational results

The algorithm has been tested on the set of real-life benchmark instances of Dewil et al. (2014)
and compared to tool paths generated by the PFr heuristic. The computational experiments were
executed on an Intel Core i7-2630QM processor (2.00 GHz) with 6 GB of RAM. Table 1 shows the
results for the 27 instances grouped in three sets according to the characteristics of the instances.
Set 1 contains instances without common cuts with small parts and relatively large inter part
distances, or parts with many inner contours that are evenly spread across the surface of the part.
A good tool path in this set is expected to contain few pre-emptions, and GTSP solutions would
yield high quality solutions. Set 2 contains instances with large parts and relatively small inter

4If precedence constraints would be actively included, care should be taken in choosing the cutting direction of the contours
since this fixes the relative order of all nodes. If precedence relations exist between several child partitions of this pierce group,
the relative order of the nodes does matter and could theoretically even cause a gridlock.
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Figure 8. Selection of air moves based on adjacent partitions

part distances. It can be expected that good tool paths here would contain more pre-emptions.
Lastly, set 3 contains common cuts with both large and small parts and large and small inter part
distances.

The column instance contains the instance number. n represents the number of elements in the
instance. PFr contains the objective function value of the construction heuristic in seconds. GTSP
contains the result the Lin-Kernighan heuristic (obj - objective function values in seconds, %impr
- percentage improvement over PFr) which does not take precedence constraints into account and
as such does not necessarily contain a feasible tool path. However, since commercial CAD/CAM
software only generates GTSP tool paths and the LKH is able to reach optimal solutions for
instances of similar size than those considered here (Helsgaun (2014)), the GTSP solutions can be
seen as a lower bound of commercial CAD/CAM software, especially for sets 1 and 2°. Column
PPFr-I contains the results (obj - objective function values in seconds, t - computational time in
seconds, %impr - percentage improvement over PFr) of the construction heuristic together with
the repartition/improvement phase that takes precedence constraints into account and the LKH
GTSP heuristic for sub sequences of the initial path where no precedence constraints exist between
the pierce groups. F-NR contains the results of the full algorithm with a stopping criterion of 10
non-improving iterations, not including the repair heuristic. F-R contains the results of the full
algorithm including the repair heuristic. The difference between the F-NR and F-R results measures
the efficacy of the repair heuristic.

From this table one can immediately observe that the repartitioning approach requires consider-
ably more time than the construction heuristic. This is particularly evident in the case of instances
26 and 27 where the algorithm in every iteration resulted in one very large partition and a small
number of small partitions, resulting in very large LKH calculation times. The results show that

5The computational experiments were performed using the default settings of the LKH of Helsgaun (2009). The settings
specifically chosen for the GTSP described in Helsgaun (2014) were also tested. These settings resulted in an average 4.38%
improvement over the PFr heuristic, compared to a 4.2% average improvement using the default settings. However, the required
computation time nearly tripled. With the default settings, 7.7 hours were required to solve all instances while with the GT'SP
settings 22.2 hours were required to solve all instances. The increase is solely due to the longer LKH computation times i.e.
the number of iterations (number of repartitioning calls) remained the same since the stopping criterion is: 10 non improving
iterations and the changes that the new parameters introduced in the GTSP paths were insufficient to force extra iterations.
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the construction plus improvement phase results in an improvement of on average 0.8%, while
limiting the calculation time. Limited calculation times are important when tool paths need to be
determined on the shop floor on the laser cutting machine itself. It is of less importance when work
orders are prepared beforehand while the laser cutter is processing another order. If the calculation
time is not a limiting issue, the full algorithm results on average in an (infeasible) improvement
over the initial result of 5.2%.

This improvement reduces to 4.2% after feasibility is restored. A more detailed investigation
showed that the feasibility restoration by itself reduces the improvement to on average 2.9%. Im-
proving the entry/exit nodes of these solutions results in the 4.2% improvement. The improvement
phase after restoring feasibility also executes a repartitioning taking precedence constraints into
account. However it resulted in one executed move in all instances which increased the objective
function by 0.003 seconds. Thus, one can conclude that after feasibility restoration, it suffices to
only improve the entry/exit nodes of the pierce groups.

Table 1. Computational results for the full partitioning approach

instance n | PFr GTSP PFr-I F-NR F-R
obj. obj. obj. t %impr. | obj. t %impr. | obj. t %impr.
10b 421 | 82.1 | 788 4.0% | 81.8 0.6 0.3% | 79.1 12.8 3.6% | T79.1 13.5 3.6%
12 1793 | 300.9 | 271.1 9.9% | 296.6 2.1 1.4% | 271.1 156.9 9.9% | 279.7 159.0 7.0%
13 289 96.5 84.8  12.0% 93.8 0.2 2.8% 85.3 10.7 11.6% 85.7 11.1 11.1%
18 656 | 146.0 | 140.1 4.0% | 146.0 0.0 0.0% | 140.5 234.3 3.7% | 142.6 234.9 2.3%
- 19 1002 | 121.3 | 106.7 12.0% | 121.0 0.2 0.2% | 106.7 89.8 12.1% | 110.5 90.2 8.9%
- 20 2357 | 662.9 | 621.8 6.2% | 662.0 6.4 0.1% | 621.7 1205.8 6.2% | 625.8 1211.2 5.6%
% 21 529 | 268.0 | 263.6 1.7% | 268.0 0.9 0.0% | 263.6 11.1 1.6% | 263.6 12.0 1.6%
25 1424 | 295.9 | 273.3 7.6% | 294.9 9.5 0.3% | 273.0 238.7 7.7% | 276.6 239.7 6.5%
26 2810 | 394.8 | 367.2 7.0% | 394.2 261.7 0.2% | 367.7 18328.3 6.9% | 370.5 18341.4 6.2%
27 2194 | 308.6 | 288.9 6.4% | 308.6 232.9 0.0% | 289.6 7110.8 6.1% | 291.3 7125.3 5.6%
28 324 | 107.5 | 104.3 3.0% | 107.5 0.0 0.0% | 102.9 24.4 4.2% | 103.1 24.5 4.1%
30 145 76.9 70.2 8.7% 76.4 0.0 0.7% 70.6 0.5 8.2% 70.9 0.5 7.8%
avg. impr. 6.9% 0.5% 6.8% 5.9%
10 421 76.3 | 744 2.5% 75.1 0.1 1.6% 74.1 4.3 2.9% 74.1 4.4 2.9%
17 145 9.7 10.0  -3.2% 9.7 0.0 0.0% 9.7 0.4 0.0% 9.7 0.4 0.0%
~ 29 121 66.2 66.9 -1.1% 66.2 0.0 0.0% 64.6 0.5 2.4% 64.6 0.6 2.4%
- 34 91 50.6 | 49.61 1.9% | 49.5 0.0 2.1% 48.3 1.6 4.4% 48.5 1.7 4.2%
% 35 21 11.5 | 11.90 -3.3% 11.2 0.0 3.1% 11.2 0.0 3.1% 11.2 0.1 3.1%
36 61 33.8 | 33.88 -0.4% 33.0 0.0 2.3% 32.2 0.6 4.8% 32.3 0.7 4.4%
37 31 175 | 1854 -5.8% 16.5 0.0 5.6% 16.3 0.1 7.1% 16.3 0.2 7.1%
38 237 | 74.2 | 74.66 -0.7% 73.8 0.0 0.5% 73.8 0.3 0.5% 73.8 0.4 0.5%
avg. impr. -1.3% | 1.9% | 3.2% | 3.1%
11 745 | 178.1 | 172.2 3.3% | 178.0 0.6 0.1% | 171.8 34.7 3.5% | 172.4 35.0 3.2%
14 230 | 44.6 | 53.1 -19.0% | 44.3 0.0 0.7% 43.7 9.5 2.1% 44.0 9.9 1.3%
) 15 253 | 629 | 68.0 -82% | 629 0.0 0.0% | 59.2 18.6 59% | 61.5 18.7 2.2%
k3] 16 303 67.9 72.1 -6.2% 67.9 0.0 0.0% 62.1 9.5 8.5% 64.4 9.7 5.1%
N 16b 123 524 | 554  -5.7% 52.2 0.0 0.4% 48.2 0.0 8.0% 50.8 0.1 3.1%
22 385 | 191.6 | 196.0 -2.3% | 191.6 0.3 0.0% | 183.9 1.8 4.0% | 187.1 2.0 2.3%
23 841 | 252.7 | 263.0  -4.1% | 252.7 1.2 0.0% | 246.2 15.5 2.6% | 248.5 15.6 1.6%
avg. impr. -6.0% | 0.9% | 4.5% | 2.9%
avg. impr. all instances  1.1% | 0.8% | 5.2% | 4.2%

These results further show that in the Set 1 instances, the GTSP solutions, which set the lower
bound on commercial CAD/CAM software, yield an average improvement of 6.9% over the PFr
construction heuristic. In comparison, our solution approach guarantees feasible solutions and yields
on average an improvement of 5.9% over the PFr construction heuristic, resulting in a difference
of only 1%. For both the Set 2 and the Set 3 instances, the GTSP approach yields on average
worse results than the construction heuristic. The differences between the GTSP approach and the
proposed solution approach are on average 4.4% and 8.2% for the Set 2 and the Set 3 instances
respectively, in favor of the proposed solution approach.
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Table 2. Using different starting partitions

instance n Constr PFr SP GTSP
obj. %impr obj. %impr obj. %impr
10b 421 82.1 79.1 3.6% 78.8 4.0% 79.4 3.3%
12 1793 300.9 279.7 7.0%  280.2 6.9%  280.1 6.9%
13 289 96.5 85.7 11.1% 84.8 12.1% 85.6 11.3%
18 656 146.0 142.6 2.3% 142.7 2.3% 142.8 2.2%
. 19 1002 121.3 110.5 8.9% 111.9 7.7% 113.0 6.8%
- 20 2357 662.9 625.8 56%  626.6 55% 623.5 5.9%
R 21 529 268.0 263.6 1.6% 263.6 1.7%  263.6 1.7%
25 1424 2959  276.6 6.5% 275.4 6.9% 277.1 6.3%
26 2810 394.8 370.5 6.2% 367.0 71%  372.1 5.7%
27 2194 308.6 291.3 5.6% 290.6 58%  291.1 5.7%
28 324 107.5 103.1 4.1% 103.9 3.3% 104.0 3.2%
30 145 76.9 70.9 7.8% 72.5 5.8% 70.8 7.9%
10 421 76.3 74.1 2.9% 74.3 2.7% 741 2.9%
17 145 9.7 9.7 0.0% 9.7 0.0% 9.7 0.3%
. 29 121 66.2 64.6 2.4% 65.3 1.2% 65.8 0.5%
- 34 91 50.6  48.5 4.2% 49.4 2.2% 50.0 1.0%
R 35 21 11.5 11.2 3.1% 11.3 1.6% 11.7 -1.3%
36 61 33.8 32.3 4.4% 33.3 1.2% 33.9 -0.6%
37 31 17.5 16.3 7.1% 17.3 1.3% 19.7  -12.7%
38 237 74.2 73.8 0.5% 74.2 0.0% 74.8 -0.9%
11 745 1781 172.4 3.2% 173.4 2.6% 176.6 0.8%
14 230 446  44.0 1.3% 44.9 -0.7% 45.5 -2.0%
o 15 253 62.9 61.5 2.2% 62.7 0.2% 63.0 -0.2%
v 16 303 67.9 64.4 5.1% 65.7 3.2% 64.2 5.4%
“n 16b 123 52.4  50.8 3.1% 51.8 1.2% 521 0.6%
22 385 191.6 187.1 2.3% 190.9 0.4% 191.7 -0.1%
23 841 252.7 248.5 1.6%  252.3 0.2%  251.1 0.6%
avg. impr. 4.2% 3.2% 2.3%

Table 2 shows the results for the same 27 instances using different starting partitions. The
Constr. column contains the results of the construction heuristic. The PFr column contains the
results where the algorithm starts from the construction heuristic, which corresponds to the F-R
results in Table 1. SP contains the results where the algorithm starts with each pierce group in its
own partition. Oppositely, the GTSP contains the result where the algorithm starts with all pierce
groups in a single partition.

From these results, we can conclude that the starting solution still has an effect on the end
result. However, it can be seen that no starting solution can guarantee to find the best result
(shown in bold) in all cases. Furthermore, the quality of the starting solution doesn’t necessarily
mean that the end result will be of higher quality than the ones obtained with other starting
solutions. For instance, starting from a GTSP solution results in only 1 best final solution out of 12
set 1 instances, while the GTSP starting solutions are indeed of higher quality than the PFr and SP
starting solutions for these instances. The average improvements over the construction heuristic
solutions are 4.2%, 3.2% and 2.3% for respectively the PFr, SP, and GTSP starting solutions.
Deeper investigation showed that in all experiments more partition mergers in the arborescence
resolution phase are executed than sub sequence ejection moves in the repartitioning phase. This can
explain the relatively poor performance of using a complete GTSP starting solution. Investigation
of additional ejection moves or a meta-heuristic approach to escape local optima is suggested to
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improve the diversifying nature of the repartitioning phase.

Table 3. Impact of individual components

instance n C-FR C-MP C-MSP C-LKH-FR

Y%impr %impr %impr Yoimpr

10b 421 0.3% 0.0% 0.3% 2.2%

12 1793 1.4% 0.0% 0.0% 1.5%

13 289 2.8% 0.0% 0.0% 3.1%

18 656 0.0% 0.0% 0.0% 0.9%

. 19 1002 0.2% 0.0% 0.2% 2.7%
o 20 2357 0.1% 0.1% 0.0% 2.4%
3 21 529 0.0% 0.0% 0.0% 1.6%
25 1424 0.3% 0.3% 0.0% 2.9%

26 2810 0.2% 0.2% 0.0% 5.0%

27 2194 0.0% 0.0% 0.0% 2.2%

28 324 0.0% 0.0% 0.0% 0.6%

30 145 0.7% 0.9% 0.1% 2.4%

10 421 1.6% 0.0% 0.7% 1.9%

~ 17 145 0.0% 0.0% 0.0% 0.0%
15 29 121 0.0% 0.0% 0.0% 0.0%
N 34 91 2.1% 0.8% 2.1% 2.1%
35 21 3.1% 3.1% 3.1% 3.1%

36 61 2.3% 1.1% 2.3% 2.3%

37 31 5.6% 2.0% 5.6% 5.6%

38 237 0.5% 0.5% 0.5% 0.5%

11 745 0.1% 0.0% 0.0% 1.6%

14 230 0.7% 0.0% 0.7% 1.6%

» 15 253 0.0% 0.0% 0.0% 2.2%
2 16 303 0.0% 0.0% 0.0% 3.5%
2 16b 123 0.4% 0.1% 0.0% 1.0%
292 385 0.0% 0.0% 0.0% 1.9%

23 841 0.0% 0.3% 0.0% 0.9%

0.8% 0.3% 0.6% 2.1%

Table 3 shows the impact of the individual components of the algorithm during the construc-
tion/improvement phase. Column C-FR contains the results for a full repartitioning/improvement
after the PFr construction heuristic. C-MP only allows the first set of repartition moves: the move-
ment of partitions and possible movement and merger of partitions containing a single pierce group
with their single pierce group child partitions. C-MSP only allows the second set of repartition
moves i.e. the movement of sub sequences of pierce groups into a separate partition or the insertion
of sub sequences of pierce groups into another partition. And lastly, C-LKH-FR contains the con-
struction heuristic, the LKH improvement step and the full repartitioning /improvement phase. The
results show that on average the full repartitioning improves the initial solution by 0.8% whereas
only moving/merging partitions and only moving sub paths both result in an improvement of only
0.3% and 0.6%. But the largest improvement is gained by including the optimization of sub se-
quences by the Lin-Kernighan heuristic, which increases the average improvement over the initial
solution to 2.1%.

The final solution structures are heavily dependent on the instance type. The solution approach
results for Set 1 instances in final solutions with a limited number of partitions, typically between
1 and 5 partitions. In the instances where the final solution contains multiple partitions, there typ-
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ically is one large partition containing most pierce groups and several smaller partitions containing
few pierce groups. The final solutions in the Set 2 and Set 3 instances typically contained many
partitions of differing sizes. The number of partitions in the final solutions for all three Sets were
nearly the same regardless of the starting heuristic.

Unfortunately, the inclusion of the Lin-Kernighan heuristic is computationally expensive. As can
be seen from figure 9, the GTSP optimization takes on average 60.22% of the total computation
time. But the LKH execution can reach as high as 97.54% and 83.38% of the time for instances
26 and 27 respectively. The repartitioning step is the second most computationally expensive step
requiring 29.34% of time, followed by the repair heuristic (5.47%), the arborescence construction
and resolution (3.89%), the path build and NC code generation (0.65%) and the construction phase
(0.47%).

Construction 0.47%

Arborescence _ 3.89%

GTSP

Repartitioning — 29.34%

|
Path build ‘| 0.65%

|
Repair h 5.47%
|

Figure 9. Time expenditure algorithm

e ———

60.22%

|

6. Conclusions

In this paper a novel way of representing tool paths for laser cutting machines is presented together
with a hybrid algorithm exploiting this structure. This algorithm consists of consecutively assigning
pierce groups to partitions where generalized traveling salesman problems are solved within the
partitions and a rooted directed minimum spanning tree problem is solved across the partitions.
In the first iteration, the assignment of pierce groups to partitions is executed through a tool path
construction heuristic and in subsequent steps, this assignment occurs through local search moves
on the partition-tree. Computational results are reported for a set of 27 instances with between 21
and 2810 elements. The hybrid partition-tree approach is able to improve upon the construction
heuristic by on average 4.2% with a maximum improvement of 11.1%. Considering the solutions
found from different starting points, the new approach was able to establish new benchmarks for
all problems in this data set (see Table 2).

The repartition moves implemented are based on local moves on the partition-tree representation,
but further research might be useful to add a component to implement a more systematic search
of the solution space.
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