
Determination of elastic properties of a MnO2 coating by surface acoustic wave
velocity dispersion analysis
J. Sermeus, R. Sinha, K. Vanstreels, P. M. Vereecken, and C. Glorieux 

 
Citation: Journal of Applied Physics 116, 023503 (2014); doi: 10.1063/1.4885427 
View online: http://dx.doi.org/10.1063/1.4885427 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/116/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Brillouin scattering determination of the surface acoustic wave velocity in In x Ga1 x N: A probe into the elastic
constants 
Appl. Phys. Lett. 101, 062103 (2012); 10.1063/1.4744961 
 
X-ray diffraction and surface acoustic wave analysis of BST/Pt/TiO2/SiO2/Si thin films 
J. Appl. Phys. 110, 104506 (2011); 10.1063/1.3662188 
 
Determination of the high pressure elasticity of cobalt from measured interfacial acoustic wave velocities 
Appl. Phys. Lett. 89, 111920 (2006); 10.1063/1.2220537 
 
Surface acoustic wave investigations of the metal-to-insulator transition of V 2 O 3 thin films on lithium niobate 
J. Appl. Phys. 98, 084111 (2005); 10.1063/1.2103410 
 
Temperature stable LiNb O 3 surface acoustic wave device with diode sputtered amorphous Te O 2 over-layer 
Appl. Phys. Lett. 86, 223508 (2005); 10.1063/1.1944231 

 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

134.58.253.57 On: Thu, 10 Jul 2014 09:53:48

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1691523420/x01/AIP/JAP_HA_JAPCovAd_1640banner_07_01_2014/AIP-2161_JAP_Editor_1640x440r2.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=J.+Sermeus&option1=author
http://scitation.aip.org/search?value1=R.+Sinha&option1=author
http://scitation.aip.org/search?value1=K.+Vanstreels&option1=author
http://scitation.aip.org/search?value1=P.+M.+Vereecken&option1=author
http://scitation.aip.org/search?value1=C.+Glorieux&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4885427
http://scitation.aip.org/content/aip/journal/jap/116/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/6/10.1063/1.4744961?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/6/10.1063/1.4744961?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/110/10/10.1063/1.3662188?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/11/10.1063/1.2220537?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/98/8/10.1063/1.2103410?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/86/22/10.1063/1.1944231?ver=pdfcov


Determination of elastic properties of a MnO2 coating by surface acoustic
wave velocity dispersion analysis

J. Sermeus,1 R. Sinha,2,3 K. Vanstreels,2 P. M. Vereecken,2,3 and C. Glorieux1,a)

1Laboratory for Acoustics and Thermal Physics, KU Leuven, University of Leuven, Celestijnenlaan 200D,
B-3001 Heverlee, Belgium
2IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
3Center for Surface Chemistry and Catalysis, KU Leuven, University of Leuven, Kasteelpark Arenberg 23,
B-3001 Leuven, Belgium

(Received 23 April 2014; accepted 14 June 2014; published online 9 July 2014)

MnO2 is a material of interest in the development of high energy-density batteries, specifically as a

coating material for internal 3D structures, thus ensuring rapid energy deployment. Its

electrochemical properties have been mapped extensively, but there are, to the best of the authors’

knowledge, no records of the elastic properties of thin film MnO2. Impulsive stimulated thermal

scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used

to determine the Young’s modulus (E) and porosity (w) of a 500 nm thick MnO2 coating on a

Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic

waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young’s

modulus and porosity were determined to be E¼ 25 6 1 GPa and w ¼ 4261%, respectively.

These values were confirmed by independent techniques and determined by a most-squares

analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability

of the presented technique to determine the elastic parameters of a thin, porous film on an ani-

sotropic substrate. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4885427]

I. INTRODUCTION

Today, battery development is shifted to both larger and

smaller sizes. In the case of the former, one can think of

uses in hybrid cars, while the latter is steered by the push

towards biocompatible nano-technology that can operate

inside the human body.1 This requires compact and reliable

energy storage. One step towards this is through the devel-

opment of batteries with 3D internal structures. A

micrometer-scale 3D structure coated with Manganese

Oxide (MnO2) acting as a cathode has a large surface to vol-

ume ratio, which is vital for energy deployment. MnO2 is a

known cathode but has mainly been used in its powdered

form.2 The electrochemical properties of MnO2 have been

mapped carefully,3–5 but to the best knowledge of the

authors, there are no records of the mechanical properties of

a thin MnO2 coating. These properties are necessary in the

development of practical batteries, and they are of particular

interest to solve the adhesion problems MnO2 has when it is

deposited on a platinum substrate, which is a known bio-

compatible material. The quality of adhesion can be probed

by surface acoustic waves (SAWs) if the elastic properties

are known.6,7 The aim of this paper is, therefore, to estimate

a value for the Young’s modulus and porosity of a MnO2

coating.

In this work, the Young’s modulus (E) and the

porosity (w) of a 500 nm thick MnO2 coating on a tita-

nium nitride (TiN) coated Si(001) substrate were deter-

mined through careful analysis of the SAW behaviour.

Narrowband SAWs were excited and detected by an ex-

perimental technique known as impulsive stimulated ther-

mal scattering (ISTS), which is also known as heterodyne

diffraction (HD) or transient grating (TG). In 1968, Lee

and White8 were the first to excite SAW using transient

surface heating by spatially periodic illumination. It was

not, however, until 1981 that Nelson et al.9 introduced

the ISTS method as it is known today. The specific setup

that is used in this work will be described in more detail

in Sec. IV. ISTS has successfully been used to study

SAW behavior and to probe material characteristics for a

number of different configurations, in both solid and liq-

uid materials. Characterization of bulk solids and

liquids,10–13 the study of acoustic waves at interfaces14,15

and the investigation of thin (un)supported films16,17 are

just a few examples.

The SAW velocity of a coated substrate is disper-

sive. In the low frequency limit (or equivalently the

long wavelength limit), the velocity tends towards the

Rayleigh velocity for the substrate. In the high fre-

quency (or small wavelength) limit, it tends towards the

Rayleigh velocity of the coating. As the penetration

depth is approximately the same as the wavelength,

SAWs mainly propagate in the substrate while high fre-

quency SAWs mainly propagate in the coating. It is

possible to measure this dispersion and, through fitting,

find an estimate of the elastic properties of the coating

and/or the substrate. This approach has been used fre-

quently in literature by non-contact techniques, like the

one presented here, and by contact methods (see, e.g.,

Ref. 18).a)Electronic mail: christ.glorieux@fys.kuleuven.be
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The used Si(001) substrate is a single cubic crystal

and thus is anisotropic. The anisotropy of the substrate

makes the SAW velocity dispersion depend both on the

wavelength and on the direction of the SAW on the

sample surface. In Sec. III, the theory of acoustic waves

on anisotropic semi-infinite, media is briefly discussed

and applied for SAW on coated substrates. Section III C

discusses the simulation of the angular dispersion. The

difficulties, and their solutions, of these simulations are

presented. Section IV presents the experimental results of

the SAW measurements, as well as the analysis of the

data. The obtained elastic properties of the MnO2 coating

were checked by two independent techniques, of which

the results are reported in Sec. IV C. Finally, a conclu-

sion is presented.

II. SAMPLE PREPARATION

In Figure 1, a cross section of the sample is shown. The

sample was comprised of a Si(001) substrate coated by

80 6 10 nm of TiN. On top of this, a 35 6 5 nm graphite car-

bon layer and a 460 6 55 nm MnO2 layer were deposited.

The MnO2 coating was porous (see Figure 1) and was

assumed elastically isotropic in the analysis.

The TiN layer was sputtered from a Ti target in a

N2 atmosphere onto the Si(001) substrate. The graphitic

carbon layer was grown via plasma enhanced chemical

vapor deposition.19 The MnO2 film was deposited by

galvanostatic electrodeposition from an aqueous solution

of 0.3M MnSO4�H20 (Alfa Aesar) and 0.3M H2SO4

(OM Group) at room temperature (20–22 �C). The cur-

rent density was 0.5 mA�cm�2 for 600 s, and the charge

density was 300 mC�cm�2 (targeting a theoretical thick-

ness of 270 nm for a dense, non-porous film).

Electrochemical deposition of the MnO2 film was exe-

cuted in a three electrode setup with a Pt mesh counter

electrode and a Ag/AgCl (3M NaCl) reference electrode

(0.22 V vs. SHE). The TiN/carbon layer was used as the

working electrode. After deposition, the samples were

annealed at 350 �C in a N2 atmosphere (200 millibar) for

3 h, with a 20 min ramp up. Next, they were allowed

to cool down to room temperature.

The intermediate TiN layer was thin compared to the

MnO2 coating but has to be accounted for in the calcula-

tion of the SAW velocity dispersion used during the fitting

process. The calculated SAW velocity of a Si coated

MnO2 system (i.e., without the TiN layer) was roughly

100 m�s�1 lower than the SAW velocity of the sample

under investigation, based on the values of the elastic

properties listed in Table I. The second intermediate layer

(i.e., the graphite carbon) was combined, during the fitting

procedure, with the MnO2 layer to form a 500 6 60 nm top

coating, of which the elastic properties are determined.

This was done because the graphite carbon is porous and,

thus, will also contain some MnO2. As the elastic proper-

ties of this intermediate layer are unknown, but expected

to be comparable to the ones of the top layer, it was

decided to fit the data as if the sample consisted of a

500 nm MnO2 top coating.

III. THEORETICAL MODEL

The theory for acoustic waves in anisotropic media is

well understood22 and only the most relevant parts are sum-

marized here, starting with a semi-infinite substrate. In the

second part, the approach will be extended to an isotropic-

coating/anisotropic-substrate system.

A. General approach for semi-infinite substrate
configuration

An anisotropic substrate was modeled as a semi-

infinite half-space covering the positive part of the z-axis

and with an interface in the x–y plane at z¼ 0. Since the

experimentally excited waves are independent of the

y-direction and travel in both the positive and the negative

x-directions, one can model the displacement vector u at

the surface as

u ¼ Ueiðkxþnz�xtÞ; (1)

where k and n are the wavenumbers for the x and z direction,

respectively, and x is the frequency. Note that, while no

waves are excited in the y direction, it is possible to have

particle displacements in the y direction.

The wave equation that follows from the combination of

Newton’s second law, q @2ui

@t2 ¼
@rij

@xj
, and Hooke’s law,

rij ¼ cijklekl, can be worked out, using the proposed solution

in Eq. (1), as

FIG. 1. SEM image of a cross-section of the sample under investigation.

TABLE I. Values of the physical properties of the Si substrate and TiN in-

termediate layer, used in the fitting procedure. For TiN E values ranging

from 200 GPa to 500 GPa21 can be found, here an intermediate value was

used.

TiN Si(001)20

E (GPa) 350 c11 (GPa) 165.35

� 0.2 c12 (GPa) 63.5

q (kg�m�3) 5400 c44 (GPa) 79.6

L (nm) 80 q (kg�m�3) 2300

023503-2 Sermeus et al. J. Appl. Phys. 116, 023503 (2014)
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k2c11 þ 2knc15 þ n2c55 � qx2 k2c16 þ knc14 þ knc56 þ n2c54 k2c15 þ knc13 þ knc55 þ n2c53

k2c61 þ knc65 þ knc41 þ n2c45 k2c66 þ 2knc46 þ n2c44 � qx2 k2c65 þ knc63 þ knc45 þ n2c43

k2c51 þ knc55 þ knc31 þ n2c35 k2c56 þ knc54 þ knc36 þ n2c34 k2c55 þ 2knc35 þ n2c33 � qx2

0
BB@

1
CCA

u1

u2

u3

0
B@

1
CA ¼ 0; (2)

where cIJ is the Voigt notation for the elements of the stiff-

ness tensor cijkl and q is the density.

The matrix is called the Christoffel matrix, C, and its de-

terminant, DC, must be equal to zero to allow for non-trivial

solutions. Given the stiffness-matrix cijkl, density q, fre-

quency x, and wavenumber k in the x-direction, the demand

that DC¼ 0 can be used to find six wavenumbers nj¼1:6 in

the z-direction. Substituting these nj’s in Eq. (2), a vector

Um;j, describing the null space of C, can be found that solves

Eq. (2) for that particular nj. The displacement u ¼ ðux uy uzÞ
is a linear combination of the six solutions Um;j in combina-

tion with their respective nj

um¼x;y;z ¼
X6

j¼1

ajUm;je
iðkxþnjz�xtÞ; (3)

with amplitudes aj¼1:6 to be determined by boundary condi-

tions (BCs)—see Sec. III B. From these displacements, the

stresses can be calculated using Hooke’s law. The stresses

on the z-plane are given by

rkz ¼
X6

j¼1

iDmjaje
iðkxþnjz�xtÞ; (4)

with

Dmj ¼ ðkcxxmz þ njcmzxzÞUx;j þ ðkcmzxy þ njcyzmzÞUy;j

þ ðkcmzxz þ njczzmzÞUz;j: (5)

In the experiments, the sample was rotated in the x–y plane.

To account for this rotation, the stiffness matrix cijkl was

turned using the Bond method.22,23

B. Boundary conditions in an isotropic coating-
anisotropic substrate configuration

The BCs for SAWs on a multilayered system require the

continuity of displacements and stresses at the interfaces, no

displacement for z!1 (SAW are surface bound, so no

displacement can exist at infinite depth), and a stress-free

surface. As there are three displacement components and

three stress components, a total of 6N (with N the number of

layers) BCs can be constructed. This allows the determina-

tion of the 6N unknown amplitudes aj¼1:6,n¼1:N for all N
anisotropic layers. It can be shown that from the BC

uzðz!1Þ ¼ 0, it follows that aj¼4:6;substrate ¼ 0, where

aj¼4:6;substrate are the amplitudes that correspond to n’s with a

negative imaginary part. This reduces the number of

unknowns to 6N� 3.

Here, we consider an isotropic layer on an anisotropic

substrate. Displacements in isotropic media are classically

separated in a longitudinal and a shear component by the

Helmholtz decomposition into two potentials24

u ¼ rwþr� /. It can be shown that there are, for an N
layered isotropic system, 4N amplitudes that have to be

determined by solving 4N BCs.24 This means that there is a

mismatch in needed BCs between the anisotropic substrate

(6N) and the isotropic coating (4N). The solution to circum-

vent this mismatch is to treat the isotropic coating as if it

were anisotropic, with the n’s given by

nj¼1:2;c ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
T

s
;

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2q 1þ �ð Þx2

E

r
; (6)

nj¼3:4;c ¼ nj¼1:2;c; (7)

nj¼5:6;c ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
L

s
;

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q 1þ �ð Þ 1� 2�ð Þx2

E 1� �ð Þ

s
; (8)

where cL,T are the longitudinal and transversal bulk wave

velocities, E is the Young’s modulus, � is the Poisson’s ratio,

and q is the density. Note that there are two pairs of n’s asso-

ciated with the shear wave in the isotropic coating, Eqs. (6)

and (7), and only one pair with the longitudinal wave,

Eq. (8).

One can write the equations representing the BCs as

RA¼ 0 with A ¼ ðaj¼1:6;c aj¼1:3;sÞ and R the homogenous

(6N� 3)� (6N� 3) BC matrix. In order to find a non-trivial

solution, the determinant of R (DR) must be zero. The solu-

tion of DR¼ 0 results in a relation between k and x, called

the dispersion relation. It expresses the SAW velocity as a

function of the frequency or equivalently as a function of the

wavelength. This relation can not be described analytically,

and thus, numerical simulations are needed (see Sec. III C).

For the (k,x) pairs that render a solution, the amplitudes aj in

Eq. (3) can be found as the null-space of the BC matrix R.

Finally, it should be noted that in this particular situa-

tion, an anisotropic substrate is coated with two isotropic

layers, i.e., the TiN intermediate layer and the MnO2 coating.

All materials were treated as if they were anisotropic, result-

ing in a 15� 15 R matrix.

C. Simulations of SAW velocity dispersion

The simulated SAW velocity dispersion was used in the

fitting of the experimental data to obtain the results below. In

the simulation, the SAW velocity dispersion curves were cal-

culated for a chosen wavelength k. The simulation requires

the thickness of the coating Lc and intermediate layer Lin, the

023503-3 Sermeus et al. J. Appl. Phys. 116, 023503 (2014)
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densities qs=in=c, the stiffness matrix cIJ,s, the elastic con-

stants describing the coating and intermediate layer Ein=c and

�in=c, and the orientation of the substrate crystal as inputs. As

the SAW velocity dispersion was calculated for different

angular positions of the sample, the stiffness matrix of the

substrate was adapted using the Bond method to account for

the angle h.

For a series of velocities v (which correspond to fre-

quencies x¼ vk where k ¼ 2p=k), the following steps were

taken. The roots of DC—see Eq. (2)—were calculated to

find the wavenumbers in the z-direction, nj;s=in=c.

Subsequently, the vectors Umj,s=in=c—see Eq. (3)—were

determined by applying singular value decomposition to C.

It was then possible to calculate all components of R, the BC

matrix, and retain DR for every velocity and angle. To

extract the SAW velocity dispersion from this matrix

DRðv; hÞ, the local minima were examined, because it is

impossible for DR to be exactly 0 in a numerical approach.

The selection of the local minima was done for every angle

(hi) separately. This was accomplished as follows: the veloc-

ity corresponding to the deepest minimum (i.e., the local

minimum with the smallest value for DRðv; hiÞ) and the

velocity corresponding to the minimum resulting in the high-

est normal displacement were retained. The first criterion

corresponded to the best solution of DR¼ 0, while the

second criterion was employed in Ref. 25 and was relevant

for the analysis of ISTS data, where the signal amplitude

depended on the normal displacement of the sample surface.

If both selected velocities were the same, then this velocity

was retained as a part of the SAW velocity dispersion. If

these velocities were different, the velocity corresponding to

the local minimum with the smallest in plane parallel dis-

placement—i.e., uy(z¼ 0)—was selected.

Finally, a SAW velocity dispersion curve, cSAWðhÞ, was

obtained for the chosen wavelength k. Repeating this proce-

dure for all k’s used in the experiments, a 2D map of the

SAW velocity, cSAWðk; hÞ, could be calculated.

IV. EXPERIMENTAL RESULTS

In Sec. IV A, a brief explanation of the ISTS technique

is presented. The experimental results and analysis are

presented in Sec. IV B. The obtained values for E and w are

confirmed by two control measurements (Sec. IV C).

A. Experimental setup

The experimental setup used in the ISTS technique is

depicted in Figure 2 and will be briefly described here. For a

more detailed description, the reader is referred to Ref. 26. A

10 ps pulsed laser beam (1047 nm) was focused, by a cylin-

drical lens, into a horizontal line onto a surface relief square

wave grating. The grating was optimized for diffraction of

light with a 532 nm optical wavelength, hence roughly 80%

of the incident light was sent to the þ1 and �1 diffraction

order. All beams, i.e., the zeroth order, first orders and higher

orders (which carry only a small percentage of the light

intensity), recombine at the sample surface to create an inter-

ference pattern with a specific fringe distance that depends

on the diffraction grating and the optical magnification factor

of the two-lens telescope. At the sample surface, a part of the

incident light was absorbed, resulting in impulsive heating.

The accompanying sudden thermal expansion launches

counter-propagating SAWs with a wavelength corresponding

to the interference fringe distance. This results in a standing

wave pattern that oscillates at a central frequency, corre-

sponding to the ratio of the dispersive phase velocity and the

excited wavelength.

The standing acoustic waves and the thermal diffusion

driven washing-out of the induced thermal pattern were

monitored by a cw probe laser. The probe laser beam fol-

lowed the same optical path as the pump laser beam and thus

was also focussed into an interference pattern at the excita-

tion location. At the sample surface, the standing SAW

pattern acted as a temporally modulated diffraction grating

for the two probe beams, which are thus partially diffracted

and partially reflected. Recombining the two pairs of

reflected and diffracted beams resulted in heterodyne detec-

tion27 of the standing wave pattern. The intensity modula-

tions were recorded by two Si pin-photodiodes (Hamamatsu

S5973) and a high speed GHz amplifier (Femto series HSA).

The two signals were 180� out of phase due to the introduc-

tion of a phase retarder (PR) in the path of one of the probe

beams. Subtracting the two heterodyne signals resulted in a

doubling of the signal amplitude.

The sample was mounted on a rotation stage, which

allowed for the creation and detection of SAWs in any direc-

tion on the sample surface. By recording the time signal on

an oscilloscope, the central frequency could be obtained after

a fast Fourier transform (FFT) analysis. Combined with the

experimentally known wavelength of the SAW, the phase

velocity could be determined for all excited wavelengths and

for any direction.

In Figure 2, a time signal is shown. Note that there are

two frequency components present. The high frequency os-

cillation is the SAW of interest here, while the low frequency

oscillation is the Scholte wave (a wave that travels at the

interface of the solid sample and the air, at the speed of

sound in air28). The high frequency oscillation results in the

peak around 50 MHz in the FFT spectrum, and the low

frequency oscillation results in a peak around 3.4 MHz. As

the imposed grating wavelength was 100 lm, this results in a

SAW velocity of roughly 5000 m�s�1 and a Scholte wave

FIG. 2. ISTS setup. The incoming beams are diffracted into a 0th order, þ1,

and �1 diffraction orders and higher orders. For the sake of clarity, only the

þ1 and �1 diffraction orders are presented here because both pump and

probe laser beams are diffracted most efficiently to these orders. The signal

on the right was obtained from SAWs with a grating wavelength of 100 lm.

023503-4 Sermeus et al. J. Appl. Phys. 116, 023503 (2014)
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velocity of roughly 340 m�s�1. This value is the speed of

sound in air at room temperature, thus confirming the value

of the imposed grating wavelength.

B. SAW velocity dispersion results and analysis

The obtained experimental data are shown in Figure 3,

where the SAW velocity dependence on both the direction

and k of the imposed grating is visible. The 90� symmetry of

the Si(001) substrate is visible in all imposed wavelengths.

This is because at wavelengths much smaller than the coat-

ing thickness, the angular dispersion would disappear as the

SAW velocity becomes the same for all directions. This

velocity would be equal to the Rayleigh velocity of the

isotropically assumed MnO2.

The SAW velocity depends on the Young’s modulus E,

Poisson’s ratio �, the density q, and the thickness L of the

coating, as well as on other parameters (e.g., the properties

of the substrate and the intermediate layer). In order to obtain

a reliable fit for all four parameters, the SAW velocity

dispersion was calculated based on sets of these parameters

ðE; �; q; LÞ. These calculated SAW velocity dispersion

curves were compared to the experimental data to obtain a

least squares error (LSE)

v2
mnop ¼

1

N

XN

i¼1

ccalc
SAW ki; hi;Em; �n; qo; Lpð Þ � c exp

SAW ki; hið Þ
� �2

;

(9)

where ki are the wavelengths and hi are the angles with

Si[100] that were probed in the experiment, c exp
SAWðki; hiÞ is

the experimentally obtained SAW velocity dispersion,

Em; �n; qo; Lp are the values used to calculate the SAW

velocity dispersion curves, and N is the number of points

used in the fit. The v2
mnop value was calculated for all combi-

nations of ðEm; �n; qo; LpÞ, where Em was varied from 10 GPa

to 40 GPa in 13 steps, �n was varied from 0.1 to 0.3 in 13

steps, qo was varied from 2200 kg�m�3 to 3500 kg�m�3 in 13

steps and Lp was varied from 400 nm to 600 nm in 13 steps.

Figure 4 shows a 2D representation of the 4D (13� 13� 13

� 13) matrix containing the values of v2
mnop. Each pixel was

assigned a color representing the magnitude of the v2 value

(black, red, yellow and white, corresponding to increasingly

larger v2 values). The set of parameters ðE�; ��; q�; L�Þ is the

one that results in the smallest v2 value (i.e., which results in

the best fit of the experimental data).

From this 4D matrix, least squares (LS) and most

squares (MS) curves16 can be constructed for all parameters

(Figure 5). The LS curves were constructed by varying one

parameter (e.g., E) and keeping all other parameters at the

values that resulted in the best fit, ð��; q�; L�Þ. The values of

the v2 matrix that correspond to these points were used to

construct v2
LSðpÞ, where p indicates the parameter that was

varied. This can be done for all parameters and resulted in

parabolas that be described by29

v2
LS pð Þ

v2 p�ð Þ
¼ A p� p�ð Þ2 þ 1; (10)

where A� 0 is a constant related to the fitting uncertainty

and p is the parameter for which the LS curve is constructed.

From Eq. (10), it is obvious that the parabolic function has a

minimum at p*, which is the best fitting value for the param-

eter p.

The MS curves were constructed in a more elaborate

way. Again, one parameter is varied, but for every change in

that parameter, the point ð��p ; q�p; L�pÞ with the smallest v2

value is sought. These v2 values are used to construct

v2
MSðpÞ, which is a parabolic function described by

v2
MS pð Þ
v2 p�ð Þ

¼ B p� p�ð Þ2 þ 1; (11)

FIG. 3. Experimentally obtained SAW data represented by circles, squares,

triangles, and diamonds for a wavelength of k¼ 7.5 lm, k¼ 12 lm,

k¼ 15 lm, and k¼ 25 lm, respectively. The black lines depict the fitted

dispersion.

FIG. 4. 2D representation of a 4D matrix that contains values of v2 between

the experimentally observed SAW velocity dispersion and the simulated dis-

persion curves for different values of ðE; �; q; LÞ. Each pixel in this 13� 13

grid of 13� 13 pixel images was assigned a color. Black, red, yellow, and

white correspond to increasingly larger v2 values. The small figure squares

represent the dependence of the v2 magnitude on L and �, for an E and q
value on the respective grid position.
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where B� 0 is a constant related to combination of the fitting

uncertainty and the interdependence of that parameter with

the other parameters. In other words, if the inverse problem

is uniquely defined, i.e., if there exists only one set of

ðE�; ��; q�; L�Þ that minimizes the v2 cost function, a para-

bolic minimum in the most squares curve exists—i.e.,

B> 0—around the best fitting value for all four parameters.

Inversely, if the effect of changing one parameter (e.g., E)

can be counteracted by changing the other parameters (�, q,

and L), then the most squares curve becomes flat (and thus

B¼ 0), so that no value can be retrieved for that parameter

and the error estimate becomes infinite.

It can be shown29 that the least and most squares uncer-

tainties on the obtained fit values are

rp;LS ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � P
p 1ffiffiffi

A
p ; (12)

rp;MS ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � P
p 1ffiffiffi

B
p ; (13)

where P is the number of parameters used in the fitting pro-

cess. The values of A�
1
2 and B�

1
2 were the respective points

ðp� p�Þ where the LS and MS parabolas have a value of 2.

The curves shown in Figure 5 reveal that the MS curves

for � and L are flat, and that, it is therefore, not possible to

perform a reliable fit for these two parameters.

Consequently, a more detailed v2 LSE map was calculated

where only E and q are varied while the Poisson’s ratio was

ad hoc assumed to be � ¼ 0:2 and the thickness was known

from the SEM image to be L¼ 500 nm. The resulting map is

shown in Figure 6, where an absolute minimum is visible.

On the right and bottom of the map, the extracted LS and

MS curves are shown, from which the values of E and q
and the error estimates on these values were extracted (see

Table II). From the density, the porosity of the film was cal-

culated as w ¼ 1� q
q0

, where q0¼ 5030 kg�m�3 is the density

of bulk MnO2.

C. Validation through independent methods

The value of E was independently determined through

nano indentation to be E¼ (26 6 3.5) GPa. The porosity

was independently determined through a comparison of

the measured thickness, using the SEM image of the cross-

section and the quantity of MnO2 obtained by Rutherford

Back Scattering (RBS). The quantity of MnO2, as deter-

mined by RBS, was equivalent to a thickness of (251 6 1)

nm, assuming a 0% porosity film, i.e., with the density

of nonporous bulk MnO2 (q0¼ 5030 kg�m�3). From the

SEM images, a film thickness of (460 6 55) nm was

obtained. Hence the porosity was determined to be

w ¼ ð4566Þ%.

These values agree well with the values extracted from

the SAW velocity dispersion fitting process as presented in

this work.

FIG. 6. v2 landscape between the experimentally observed SAW dispersion

and the simulated dispersion curves as a function of E and q. The contour

lines show that a true minimum is present at E¼ 25 GPa and

q¼ 2900 kg�m�3. The ragged edges are due to the limited number of points

(21� 21 pixels) used in the calculation of this figure. At the bottom and right

of the LSE map, the extracted least and most square curves are presented.

The squares and circles are, respectively, the v2
LS and v2

MS values that are

extracted from the LSE landscape. The solid and dashed lines are the quad-

ratic fits using Eqs. (10) and (11). The solid lines are calculated using more

points than are visible.

TABLE II. Best fitting values of the Young’s modulus and density. These

were obtained under the assumption that L¼ 500 nm and �¼ 0.2. The con-

trol values were obtained by independent techniques as is explained in Sec.

IV C.

Fit value rLS rMS control

E (GPa) 25 60.2 61 26 6 3.5

q (kg�m�3) 2900 620 640 2750 6 300

w (%) 42 60.5 61 45 6 6

FIG. 5. Least and most squares curves (thin and thick lines, respectively) for

all parameters that describe the elastic behavior of the MnO2 coating. The

poor resolution is due to the limited number of points in the 13� 13

� 13� 13 LSE matrix represented in Figure 4. The LS and MS curves of E
and q are calculated in more detail in Figure 6.
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V. CONCLUSION AND DISCUSSION

From the SAW velocity dispersion, obtained by ISTS, a

value for the Young’s modulus (E¼ 25 6 1 GPa) and the po-

rosity ðw ¼ 4261%Þ was extracted for a MnO2 coating. In

the analysis, the wavelength dependence of the SAW veloc-

ity anisotropy, which was a consequence of the wavelength

dependent SAW penetration depth and of the samples con-

sisting of the isotropic coating material of interest on top of

an anisotropic silicon substrate, was exploited to a maximum

extent. The uncertainties on the fitting parameters were

extracted from a rigorous most squares analysis.

Additionally, the values were confirmed by two independent

techniques, namely nano indentation and a comparison

between the thickness obtained from SEM and RBS for the

values of E and w, respectively. This is, to the best of the

authors knowledge, the first reported value of the elastic

properties of a thin, porous MnO2 film. The results demon-

strate that the presented approach is able to, simultaneously

and non-destructively, estimate a value for the Young’s mod-

ulus and the porosity, with uncertainties smaller than the

ones of classical state of the art techniques.

ACKNOWLEDGMENTS

The authors would like to thank M. H. van der Veen,

IMEC, for the SEM images, and Sebastiaan Creten for the

making of Figure 2. This work was possible with the

financial support from the KU Leuven research Project No.

OT/11/064, FWO Project No. KAN2010 1.5.168.10.

1P. H. Notten, F. Roozeboom, R. A. Niessen, and L. Baggetto, Adv. Mater.

19, 4564 (2007).
2M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997).
3W. Wei, X. Cui, W. Chen, and D. G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).
4S. Sarciaux, A. Le Gal La Salle, A. Verbaere, Y. Piffard, and D.

Guyomard, J. Power Sour. 81–82, 656 (1999).
5S. Sarciaux, A. Le Gal La Salle, A. Verbaere, Y. Piffard, and D.

Guyomard, J. Power Sour. 81–82, 661 (1999).

6J. Rogers, A. Maznev, M. Banet, and K. Nelson, Annu. Rev. Mater. Sci.

30, 117 (2000).
7T. Valier-Brasier, T. Dehoux, and B. Audoin, J. Appl. Phys. 112, 024904

(2012).
8R. Lee and R. M. White, Appl. Phys. Lett. 12, 12 (1968).
9K. Nelson, D. Lutz, M. Fayer, and L. Madison, Phys. Rev. B 24, 3261 (1981).

10B. Sun, J. M. Winey, N. Hemmi, Z. A. Dreger, K. A. Zimmerman, Y. M.

Gupta, D. H. Torchinsky, and K. A. Nelson, J. Appl. Phys. 104, 073517 (2008).
11C. Glorieux, K. Nelson, G. Hinze, and M. Fayer, J. Chem. Phys. 116, 3384

(2002).
12Y. Yang, L. J. Muller, and K. A. Nelson, in “Materials Research Society

Symposium Proceedings,” edited by H. Z. Cummins, D. J. Durian, D. L.

Johnson, and H. E. Stanley (Mater. Res. Soc. Symp. Proc., 1996), Vol.

407, pp. 145–154.
13D. Paolucci and K. Nelson, J. Chem. Phys. 112, 6725 (2000).
14J. Sermeus, O. Matsuda, R. Salenbien, B. Verstraeten, J. Fivez, and C.

Glorieux, Int. J. Thermophys. 33, 2145 (2012).
15C. Glorieux, K. V. de Rostyne, J. Goossens, G. Shkerdin, W. Lauriks, and

K. Nelson, J. Appl. Phys. 99, 013511 (2006).
16R. Salenbien, R. Cote, J. Goossens, P. Limaye, R. Labie, and C. Glorieux,

J. Appl. Phys. 109, 093104 (2011).
17J. Rogers and K. Nelson, J. Appl. Phys. 75, 1534 (1994).
18J. Deboucq, M. Duquennoy, M. Ouaftouh, F. Jenot, J. Carlier, and M.

Ourak, Rev. Sci. Instrum. 82, 064905 (2011).
19D. Cott, M. Verheijen, O. Richard, I. Radu, S. De Gendt, S. V. Elshocht,

and P. Vereecken, Carbon 58, 59 (2013).
20M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. Microelectromech. Syst.

19, 229 (2010).
21Z. Peng, H. Miao, L. Qi, J. Gong, S. Yang, and C. Liu, Chin. Sci. Bull. 48,

1316 (2003).
22B. Auld, Acoustic Fields and Waves in Solids (John Wiley & Sons,

1973).
23W. L. Bond, Bell Syst. Tech. J. 22, 1 (1943).
24C. Glorieux, W. Gao, S. Kruger, K. V. de Rostyne, W. Lauriks, and J.

Thoen, J. Appl. Phys. 88, 4394 (2000).
25W. Li, S. Sharples, R. Smith, M. Clark, and M. Somekh, J. Acoust. Soc.

Am. 132, 738 (2012).
26B. Verstraeten, J. Sermeus, R. Salenbien, J. Fivez, G. Shkerdin, and C.

Glorieux, “Determination of thermoelastic material properties by differen-

tial heterodyne detection of impulsive stimulated scattering,” (to be

published).
27A. Maznev, K. Nelson, and J. Rogers, Opt. Lett. 23, 1319 (1998).
28V. Gusev, C. Desmet, W. Lauriks, C. Glorieux, and J. Thoen, J. Acoust.

Soc. Am. 100, 1514 (1996).
29P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis

for the Physical Sciences (McGraw-Hill, New York, 1969), Vol. 336.

023503-7 Sermeus et al. J. Appl. Phys. 116, 023503 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

134.58.253.57 On: Thu, 10 Jul 2014 09:53:48

http://dx.doi.org/10.1002/adma.200702398
http://dx.doi.org/10.1016/S0079-6786(97)81003-5
http://dx.doi.org/10.1039/c0cs00127a
http://dx.doi.org/10.1016/S0378-7753(99)00095-6
http://dx.doi.org/10.1016/S0378-7753(98)00230-4
http://dx.doi.org/10.1146/annurev.matsci.30.1.117
http://dx.doi.org/10.1063/1.4733949
http://dx.doi.org/10.1063/1.1651832
http://dx.doi.org/10.1103/PhysRevB.24.3261
http://dx.doi.org/10.1063/1.2981044
http://dx.doi.org/10.1063/1.1445749
http://dx.doi.org/10.1063/1.481248
http://dx.doi.org/10.1007/s10765-012-1321-y
http://dx.doi.org/10.1063/1.2150257
http://dx.doi.org/10.1063/1.3573389
http://dx.doi.org/10.1063/1.356998
http://dx.doi.org/10.1063/1.3600797
http://dx.doi.org/10.1016/j.carbon.2013.02.030
http://dx.doi.org/10.1109/JMEMS.2009.2039697
http://dx.doi.org/10.1007/BF03184169
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01304.x
http://dx.doi.org/10.1063/1.1290457
http://dx.doi.org/10.1121/1.4731226
http://dx.doi.org/10.1121/1.4731226
http://dx.doi.org/10.1364/OL.23.001319
http://dx.doi.org/10.1121/1.416021
http://dx.doi.org/10.1121/1.416021

