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Abstract

To measure the willingness-to-pay (WTP ) accurately, Vermeulen et al. [2008] apply the

c-optimality criterion to generate designs for conjoint choice experiments. This criterion is

based on minimizing the sum of the variances of theWTP estimators approximated by the

delta method. Designs generated based on this criterion lead to more accurateWTP estimates

than the ones obtained by standard designs and reduce considerably the occurence of extreme

WTP estimates, although they do not exclude them. In this paper, other optimality criteria are

considered to tackle this problem. We distinguish between criteria in preference space on the

one hand and criteria inWTP -space on the other hand. In a simulation study and a numerical

example, we compare the accuracy of theWTP and the utility coefficient estimates yielded

by the designs based on these new criteria.
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The absence of a market for commodities such as environmental goods (e.g. air and water qual-

ity) and health services (e.g. risk reduction programs in the context of disease prevention, treat-

ments,...) makes their valuation difficult. As government interventions often deal with the al-

location of these goods, the determination of their monetary value is important to decide on the

appropriate level of supply. To assess the economic desirability of these policies and to align the

commodities more closely with the preferences of the public, analysts must estimate the value of

these nonmarket commodities and their characteristics. In these cost-benefit analyses, the concept

of willingness-to-pay (WTP ) has become an essential component.

Until recently, the contingent valuation method, which asks the respondents whether they are

prepared to pay a certain amount for a hypothetical change in a nonmarket good, was the most

frequently used method to elicit individuals’WTP . However, stated choice modelling, which

originally found its use in market research, has become increasingly popular in nonmarket valu-

ation. This technique involves presenting individuals with a number of scenarios or profiles each

representing a commodity described in terms of its underlying characteristics or attributes. For

each choice set, the respondents are asked to evaluate the presented alternatives and to choose their

preferred one. Through the use of discrete choice models, these choice data inform the researcher

which attributes are important for the individuals. Compared to the contingent valuation method,

stated choice modelling allows the estimation of the value of single characteristics of a commod-

ity and avoids ’yes-saying’ of the respondents during the survey (Carlsson and Martinsson [2001]).

As the number of combinations of the attribute levels, and so the number of possible profiles,

might be huge, guidance on profile selection and their bundling in choice sets is vital to obtain

a maximum amount of information from the experiment. In this respect, a central role in stated

choice studies is reserved to experimental design theory which uses various criteria to evaluate

the quality of the assignment of attributes and their levels on the basis of the objectives set by the

analyst. The selection of the correct criterion conditional on these objectives will lead to the most

appropriate experimental design. As stated choice modelling found its origin in market research,

the recent change of focus to nonmarket valuation implies some important challenges in the use of

experimental design theory. This paper contributes to tackling one of those challenges, namely the
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accurate estimation of theWTP .

The organization of the remainder of this paper is as follows. Section 1 briefly reviews the con-

ditional logit model and theWTP concept. Section 2 reviews the existing criteria to develop

experiments to measure theWTP . Section 3 addresses the different efficiency criteria. Their per-

formance is compared in a simulation study in Section 4. Finally, Section 5 provides an application

in health economics in which the designs generated based on the proposed criteria are evaluated.

1 The conditional logit model and the willingness-to-pay

Consider the situation where a respondentn has to choose the most preferred alternative in choice

setk of sizeJ . The utility of alternativej experienced by this decision maker can be written as

Unjk = β1x1jk + . . . + βMxMjk + εnjk (1)

or in vector notationUnjk = x
′
jkβ + εnjk. As can be seen, the utility is assumed to be composed

of two parts: a deterministic and a random component. The deterministic component consists

of the vectorβ of utility coefficients expressing the importance of the attributes of alternativej

in determining its utility and the vectorxjk containing the levels of these attributes. The utility

coefficients are assumed to be equal for all respondents. The random componentsεnjk capture the

unobserved influences on the respondents’ utility and are assumed to be i.i.d. Gumbel distributed.

The probability that respondentn chooses alternativej can therefore be written in the following

form

pnjk =
exp(x

′
jkβ)

∑J
i=1 exp(x′

ikβ)
(2)

(Train [2003]).

The WTP expresses the willingness of individuals to obtain a change in an attribute of a com-

modity in monetary terms. From this perspective, theWTP corresponds to the marginal rate of

substitution between an attributem and the pricep. In this way, theWTP measures the change in
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the pricep to compensate for a change in attributem while all other attributes are held constant.

In order to compute theWTP , one of theM attributes inxjk in utility expression (1) has to be the

price. Mathematically, this trade-off between attributem and the pricep is given by

dU = βmdxm + βpdp = 0, (3)

which leads to the following definition of theWTP :

WTPm ≡ dp

dxm

= −βm

βp

. (4)

The use of conjoint choice experiments to estimate theWTP has conquered an established role in

valuation issues. Proof of this can be found in numerous studies which use this technique for that

purpose. The applications are not any longer limited to marketing, in which the technique has been

most frequently applied (e.g. Sammer and Wüstenhagen [2006]), but can also be retrieved in many

other fields such as transport economics (e.g. Hensher and Sullivan [2003]), health economics

(e.g. Ryan [2004] and Hole [2008]), environmental economics (e.g. Banfi et al. [2008]) and

energy economics (e.g. Boxall and Adamowicz [2002]).

2 Measuring theWTP through conjoint choice experiments

The first approach to estimate theWTP accurately is described in Kanninen [1993] who focused

on optimal designs for double-bounded dichotomous contingent valuation experiments. In single-

bounded dichotomous contingent valuation experiments, the respondents are asked whether they

are prepared to pay a certain amount for a hypothetical change in one or more product attributes.

In order to analyze the data coming from this type of experiments, the conditional logit model

considers the probability of answering affirmatively to the offered change in product attributes. In

double-bounded experiments, the initial bid is followed by a higher bid if the answer to the first one

was affirmative and lower otherwise. In this case, the probability of the occurence of the sequence

of responses is maximized in the estimation procedure. Kanninen [1993] compares theD-optimal

design strategy, thec-optimal design strategy and a design strategy based on the so-called Fieller

method to construct confidence intervals for a ratio of parameters. WhileD-optimal designs mini-

5



mize the confidence region of the estimated utility coefficients in the double-bounded logit model,

c-optimal designs minimize the variance of a function of the estimated utility coefficients. The

function of interest here was the sum of the variances of theWTP estimates approximated by the

delta method. The third design was based on minimizing the length of the confidence interval of

theWTP constructed by the Fieller method. As these criteria depend on the unknown utility co-

efficients that have to be estimated, their values are important for the design efficiency itself. This

problem was circumvented by assuming a zero point estimate to determine the optimal design.

The three design strategies were examined in terms of the variance of theWTP estimates and it

turned out thatc-optimal designs and the designs based on the Fieller method performed better

thanD-optimal designs. However, the difference between the three design strategies was small for

the double-bounded logit model.

Also Alberini [1995] looked at the performance of several design strategies to precisely estimate

the WTP by means of a contingent valuation survey. She considered the single-bounded, the

double-bounded and the bivariate case. In contrast with the double-bounded case, the follow-up

bid in the bivariate one does not have to be higher (lower) if the respondents answer affirmatively

(negatively) to the first bid. When performing a bivariate contingent valuation survey, it is impor-

tant that the follow-up bid does not come immediately after the initial bid to avoid confusion of

the respondents because of a counter-intuitive follow-up bid. This bivariate concept reflects the

idea that the respondents may revise theirWTP during the survey. Assuming zero prior utility co-

efficients, Alberini considered three types of locally optimal designs:D-optimal designs, designs

based on the Fieller method and variance-minimizing designs which are also known asA-optimal

designs and minimize the variance of theWTP estimates. The results revealed a small difference

in WTP estimation accuracy between these three designs, although not sufficiently large to rule

out one of them.

A first approach to estimate theWTP by means of conjoint choice experiments is described in

Ferrini and Scarpa [2007], who compared the precision of theWTP estimates yielded by shifted

designs, locallyD-optimal designs and BayesianD-optimal designs. In shifted designs, the pro-

files of a choice set are generated by repeatedly increasing all attribute levels of a profile of a
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K-point fractional factorial orthogonal starting design with one unit (if an attribute already is at its

highest level, this level is changed to the lowest level admissible for that attribute). The number of

times the attribute levels are increased in this fashion equalsJ−1. Every profile of the starting de-

sign is used in this way to create a choice design withK choice sets.D-optimal designs minimize

the generalized variance of the utility coefficients of the conditional logit model by minimizing

the determinant of the variance-covariance matrix of their estimates. Again, the efficiency of a

design depends on the utility coefficients which have to be estimated. LocallyD-optimal designs

circumvent this problem by using a point estimate for the utility coefficients as prior knowledge

to determine the optimal design. BayesianD-optimal designs assume a prior distribution on the

utility coefficients to formally account for the uncertainty about their values. The results in Fer-

rini and Scarpa [2007] suggested that important improvements in the accuracy ofWTP estimates

can be achieved by using BayesianD-optimal designs developed assuming an informative prior

distribution. These improvements are positively correlated with the coefficients’ magnitude. How-

ever, when assuming an uninformative prior, the most accurateWTP estimates are obtained using

shifted designs.

In Rose and Scarpa [2008], a number of design criteria to generate designs for choice experi-

ments, among others theD- andc-optimality criterion, were compared in terms of their relative

efficiency. Like in Kanninen [1993], thec-optimality criterion consists of the sum of the variances

of theWTP approximated by the delta method. This comparison revealed thatc-optimal designs

perform surprisingly well with respect to the different efficiency criteria. Remarkably, it appeared

that D-optimal designs are also a valuable design option in terms of thec- and other optimality

criterion considered in their study.

Finally, Vermeulen et al. [2008] provided a comparison between different design strategies in terms

of the precision of theWTP and utility coefficient estimates. By means of a simulation study,

three standard designs were compared with BayesianD-optimal and Bayesianc-optimal designs.

The three standard designs discussed in the study were random designs, orthogonal designs and

designs exhibiting a limited attribute level overlap within a choice set. The study unveiled that

Bayesianc-optimal designs outperform the other designs in terms ofWTP estimation accuracy
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if an informative prior is used. Bayesianc-optimal designs also yield the most accurateWTP

estimates if the prior information is incorrect. Moreover, the results revealed that this type of de-

sign is an important step in reducing the frequently encountered problem of unrealistically large

WTP estimates caused by a poorly estimated price coefficient. Finally, Bayesianc-optimal de-

signs show the desirable characteristic of allowing the utility coefficients to be estimated almost

as precisely as BayesianD-optimal designs. Although this contribution answers several questions

regarding Bayesianc-optimal designs, it does not completely rule out the occurence of extreme

WTP estimates. That is why further research is needed to develop a design criterion which re-

sults in accurately estimatedWTP values and which avoids the occurence of extreme estimates as

much as possible.

3 Design criteria to estimate theWTP accurately

This section describes the different design criteria we consider to generate conjoint choice designs

for estimating theWTP precisely. We distinguish between two categories of criteria: (i) criteria

in preference space, which specifies the utility in terms of the utility coefficients of the attributes,

and (ii) criteria inWTP -space which defines the utility of a commodity in terms of theWTPs

and the price coefficient. The criteria inWTP -space are based on a reparameterization of the

random utility model, which is obtained by multiplying and dividing every term of the utility

expression in preference space by the price coefficient (Train and Weeks [2005] and Scarpa et al.

[Forthcoming]). Henceforth, we indicate a design criterion in preference space by the superscript

’pref’ and a design criterion inWTP -space by the superscript ’WTP’.

3.1 Design criteria in preference space

To estimate theWTP accurately, Rose and Scarpa [2008] and Vermeulen et al. [2008] applied

the cpref -optimality criterion which minimizes the sum of the variances of theWTP estimates

approximated by the delta method. The approximate variance of theWTP estimate for attribute

m can be obtained as follows:
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ṽar
(
ŴTPm

)
= ṽar

(
− β̂m

β̂p

)

≈ 1

β̂2
p


var(β̂m)− 2

(
β̂m

β̂p

)
cov(β̂m, β̂p) +

(
β̂m

β̂p

)2

var(β̂p)


 .

(5)

The efficiency of a design in terms of thecpref -optimality criterion is then given by

cpref -error=
M−1∑
m=1

ṽar(ŴTPm) = ṽar(Ŵ ) (6)

with Ŵ is a(M−1)-dimensional vector consisting of theWTP estimates. The design minimizing

the Bayesian version of thecpref -error

cpref
b -error= Eβ

[
M−1∑
m=1

ṽar
(
ŴTPm

)]
=

∫

<M

ṽar
(
Ŵ

)
π(β)dβ, (7)

whereπ(β) denotes the prior distribution ofβ, is referred to as the Bayesiancpref -optimal design.

An undesirable feature of this design criterion is that its application may lead to the unsatisfactory

outcome that a design is created by reducing the variances unevenly across theWTP estimates

considered in the study: theWTP for one attribute can be estimated precisely while theWTP for

an other attribute is not. Two criteria which might offer a solution to this drawback involve min-

imizing the maximum value of the variances of theWTP estimates and minimizing the variance

of the variances of theWTP estimates. We refer to these criteria as theminimaxpref optimality

criterion and thevarminpref optimality criterion, respectively. The variance of theWTP in these

two criteria is again approximated by the delta method.

The performance of a design in terms of theminimaxpref optimality criterion is given by

minimaxpref -error= max{ṽar(ŴTP 1), ṽar(ŴTP 2), . . . , ṽar(ŴTPM−1)}. (8)

To find the Bayesianminimaxpref optimal design, theminimaxpref -error has to be minimized
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over the prior distribution. The Bayesian version of theminimaxpref -error can be found in Table

1. Although this criterion implies that it will estimate theWTP with the largest variance in the

most accurate way, it disregards the variance of the otherWTPs possibly yielding relatively less

accurate estimates.

An alternative criterion to overcome the shortcomings of the two previous ones might be the

varminpref optimality criterion, which minimizes the variance of the variances of theWTP es-

timates. This might avoid large values of the variance of theWTP estimates and so, prevents

extreme values of theWTP itself. The corresponding error measuring the efficiency of a design

in terms of this criterion is given by

varminpref -error= var{ṽar(ŴTP 1), ṽar(ŴTP 2), . . . , ṽar(ŴTPM−1)}. (9)

The performance of a design in terms of the Bayesian version of this criterion is then measured by

varminpref
b -error which is given in Table 1.

A fourth design criterion considered in preference space is based on the Fieller method to construct

confidence intervals for a ratio of parameters. The confidence interval for theWTP constructed

by this method is the set ofWTP values which could have given rise to the observed choices of

individuals with a specified probability(1− α) (Wang [2000]). The Fieller confidence interval or

fiducial interval for theWTPm is then given by

β̂m − z2
α/2covar(β̂m, β̂p)/β̂m ± Φ

1/2
m

−β̂m + z2
α/2var(β̂m)/β̂m

, (10)

with

Φm = (β̂m− z2
α/2covar(β̂m, β̂p)/β̂p)

2− (1/β̂p)
2(β̂2

m− z2
α/2var(β̂m))(β̂2

p − z2
α/2var(β̂p)) (11)

andz being the value of the standard normal variate that cumulates 95% probability mass. The

design criterion derived from the Fieller method minimizes the sum of the absolute values of

Φm associated with the attributes under investigation, and so of the width of the intervals for the

relatedWTP estimates. We consider the absolute value ofΦm because it is possibly negative if
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the variance for the estimated coefficientsβm andβp is larger than 0.3 (Hole [2007]). If there are

M attributes including the price, the error in terms of this criterion is defined as the sum of the

width for the intervals forM − 1 WTP estimates

FIDpref -error=
M−1∑
m=1

|Φm|. (12)

The performance of a design in terms of the Bayesianfiducialpref optimality criterion is then

given by theFIDpref
b -error shown in Table 1.

A last design criterion in preference space follows the approach of Toubia and Hauser [2007]. They

argued that managerial decisions are not always taken based on the utility coefficients themselves,

but often on quantities which are functions of the utility coefficients. Standard design criteria, such

as theDpref -optimality criterion, do not necessarily yield accurate estimates of these quantities.

That is why Toubia and Hauser [2007] developed the so-calledMpref -optimality criterion to acco-

modate this phenomenon. Following their approach, the asymptotic variance-covariance matrix of

theWTP estimates is approximated by

ΩWTP (X,β) = M (X
′
(P − pp

′
)X)−1M

′
(13)

where theijth element ofM is ∂WTPi

∂βj
. Based on this approximate variance-covariance matrix, the

volume of the confidence region of theWTP estimates can be minimized. The error corresponding

to this approach is defined as

Mpref -error= det(M (X
′
(P − pp

′
)X)−1M

′
) = det(ΩWTP (X,β)). (14)

To develop BayesianMpref -optimal designs, theMpref
b -error given in Table 1 has to be minimized.

To generate Bayesian optimal designs, the Bayesian version of the expressions (6), (8), (9), (12)

and (14), which can be found in Table 1, has to be minimized. It has to be pointed out that

no analytical expressions can be found for these Bayesian criteria. Consequently, the integral in

these expressions has to be approximated using a number of draws from the prior distribution and

averaging the corresponding error over these draws. The coordinate exchange algorithm was the
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procedure applied to search for the optimal design (Meyer and Nachtsheim [1995]).

3.2 Design criteria inWTP -space

Multiplying and dividing every term in utility expression (1) by the price coefficientβp results in

an expression in which the utility is defined in terms of theWTP and the price coefficient

Unjk =
β1

βp

βpx1jk + . . . +
βM−1

βp

βpx(M−1)jk + βp
βp

βp

pjk + εnjk

= βpWTP1x1jk + . . . + βpWTPM−1x(M−1)jk + βppjk + εnjk.

(15)

Analyzing choice data by a conditional logit model defined inWTP -space avoids unrealistic

WTP estimates but comes at a cost of a reduced fit (Train and Weeks [2005] and Scarpa et al.

[Forthcoming]). The information matrixIWTP on theWTP and the price coefficient estimates

for a choice setk can then be written as

IWTP =


 κ φ

φ
′

τ


 (16)

with

κ = βpX
′
min(P − pp

′
)Xminβp, (17)

φ = βpX
′
min

(
P − pp

′
)

X ·WTP , (18)

and

τ = WTP
′ ·X ′

(P − pp
′
)X ·WTP (19)

where the(J × (M − 1))-dimensional matrixXmin denotes the design matrix containing the at-

tributes of the alternatives in choice setk except for the price,X is the (J × M)-dimensional

design matrix including the price attribute and theM -dimensional vectorWTP contains the util-

ity coefficients divided by the price coefficient. Consequently, the matrixκ stands for the variance

and the covariance of theWTP estimates,φ for the covariance of theWTP and price coefficient

estimates and finally,τ represents the variance of the estimated price coefficient.
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Given that the Fisher information matrixIWTP is inversely proportional to the variance-covariance

matrix V WTP on theWTP and the price coefficient estimates,DWTP -optimal designs minimize

the generalized variance of theWTP and price coefficient estimates measured by the determinant

of V WTP . The performance of a design in terms of theDWTP -optimality criterion is expressed by

DWTP -error= (det(V WTP (X, β)))
1
M . (20)

Minimizing the Bayesian version of theDWTP -error, which is given in Table 1, leads to the

BayesianDWTP -optimal design.

Besides minimizing the determinant ofV WTP , one can also minimize its trace which leads to

AWTP -optimal designs. The trace is then used as a measure for the performance of a design and is

given by

AWTP -error= tr(V WTP (X,β)). (21)

The Bayesian version of theAWTP -error given in Table 1 allows us to obtain the BayesianAWTP -

optimal design.

The expression for the Fisher information matrixIWTP allows to formulate a criterion minimizing

the variance of the variances of theWTP estimates, henceforth called thevarminWTP optimality

criterion. The performance of a design is then measured by

varminWTP -error= var{var(ŴTP 1), var(ŴTP 2), . . . , var(ŴTPM−1)}. (22)

Minimizing this error over the prior distribution gives the BayesianvarminWTP optimal design.

The difference with thevarminpref optimality criterion in preference space is in the way the

variance of theWTP estimate is calculated. The elements on the main diagonal of the variance-

covariance matrixV WTP are the variances of theWTP estimates, and so, need not be approxi-

mated by the delta method. Minimizing the Bayesian version of the expressions (20), (21) and (22)

leads to Bayesian optimal designs inWTP -space. For that purpose, we use the same procedure as

in preference space.

13



Bayesian optimality criteria to estimate theWTP accurately
Criteria in preference space

cpref : cpref
b =

∫
<M ṽar

(
Ŵ

)
π(β)dβ

minimaxpref : minimaxpref
b =

∫
<M max{ṽar(ŴTP 1), . . . , ṽar(ŴTPM−1)}π(β)dβ

varminpref : varminpref
b =

∫
<M var{ṽar(ŴTP 1), . . . , ṽar(ŴTPM−1)}π(β)dβ

fiducialpref : FIDpref
b =

∫
<M

∑M−1
m=1 |Φm|π(β)dβ

Mpref : Mpref
b =

∫
<M det(ΩWTP (X,β))π(β)dβ

Criteria in WTP - space

DWTP : DWTP
b =

∫
<M (det(V WTP (X,β)))

1
M π(β)dβ

AWTP : AWTP
b =

∫
<M tr(V WTP (X, β))π(β)dβ

varminWTP : varminWTP
b =

∫
<M var{var(ŴTP 1), . . . , var(ŴTPM−1)}π(β)dβ

Benchmark criteria

Dpref Dpref
b =

∫
<M (det(V (X,β)))

1
M π(β)d(β)

Apref Apref
b =

∫
<M trace(V (X,β))π(β)d(β)

Table 1: Overview of the Bayesian design criteria

In the next section, these designs will be evaluated in terms of their ability to estimate theWTP

and the utility coefficients accurately. BayesianD-optimal andA-optimal designs in preference

space, henceforth denoted as BayesianDpref -optimal andApref -optimal designs, are considered

as benchmark designs. We refer the reader to Sándor and Wedel [2001], Sándor and Wedel [2005]

and Kessels et al. [2006a] for further details on how to create these designs.

4 Evaluation of the designs

In this section, we first give more details concerning the development of the designs. Then, after

explaining two evaluation criteria measuring the accuracy of theWTP estimates and the estimates
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of the utility coefficients, we investigate the performance of the designs in terms of these measures

by means of a simulation study assuming correct and incorrect prior information.

4.1 Developing the designs

The experiment considered consists of eight choice sets, each containing three alternatives. Each

alternative is described by means of three attributes which are all effects-type coded: two of the

attributes have three levels and the third one only takes two possible levels. Besides these three

attributes, the price is also included as an attribute. The price has three levels in the study: these

are linearly coded as 1, 2 and 3.

For generating Bayesian designs, assumptions have to be made concerning the uncertainty of the

prior estimate on top of determiningβ0. In this paper, we used a 6-dimensional normally dis-

tributed prior with meanβ0 =[-0.5 0 -0.5 0 -0.5 -1] and variance-covariance matrix

 0.5 · IM−1 0(M−1)×1

01×(M−1) 0.1


 , (23)

whereIM−1 is the(M − 1)-dimensional identity matrix, for expressing the prior belief about the

model parameters and the corresponding uncertainty. The first five elements of the mean vector

correspond to the utility coefficients associated with the three attributes. The last element corre-

sponds to the negative utility coefficient related to the price. Assuming that the two-level attribute

is coded as +1 for the first level and -1 for the second level, the prior implies that the utility of

a commodity increases with the attribute levels, except for the price attribute. As can be seen in

(23), the variance for the price coefficient is smaller than the variance for the other coefficients in

order to ensure that only negative price coefficients are taken into account in the Bayesian optimal

design approach. Furthermore, this prior distribution follows the recommendations formulated in

Kessels et al. [2006b].
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4.2 Evaluation criteria

We evaluate the designs based on two criteria: the ability to estimate theWTP accurately and

the ability to yield accurately estimated utility coefficients. To compute these two measures, we

estimate the utility coefficients of the conditional logit model based on simulated observations.

These estimated coefficients are then used to compute theWTP . Comparing the estimated utility

coefficients with their real counterparts and the estimatedWTP with the realWTP gives us an

idea of the estimation accuracy of the designs.

The two evaluation criteria used to assess the designs are the squared error between the real and

estimated utility coefficients and the squared error between the real and the estimatedWTP values

and take the following form

EMSEβ(β) =

∫

<M

(β̂ − β)
′
(β̂ − β)f(β̂)dβ̂ (24)

and

EMSEWTP (β) =

∫

<M

(Ŵ (β̂)−W (β))
′
(Ŵ (β̂)−W (β))f(β̂)dβ̂ (25)

whereŴ andW are vectors containing theWTP estimates and the realWTP values, respec-

tively, andf(β̂) represents the distribution of the estimated utility coefficients. These evaluation

criteria capture the bias and the variability of the estimates and are therefore frequently used mea-

sures. The expressions are approximated by generating 1 000 data sets for a given value ofβ and

are calculated for 150 values of the parameterβ drawn from a 6-dimensional normal distribution.

A small value ofEMSE is preferred as this indicates accurate estimates.

Since the estimated price coefficient enters theWTP computation in a nonlinear way, a poorly

estimated price coefficient can result in unrealisticWTP estimates and consequently in unreason-

ably high values ofEMSEWTP . The problem of unrealisticWTP estimates has already been

described by several authors (among others Sonnier et al. [2007] and Scarpa et al. [Forthcoming]).

To compare the designs, we compute some relevant simulation statistics of the distribution of the

150 EMSEWTP or EMSEβ values: the average, the median, the standard deviation, the min-
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Simulation statistics of the distribution of theEMSEWTP values
Design Average Median St.dev. Min 5% perc. 95% perc. Max

Dpref -opt. 2.94E+02 0.0678 3.21E+03 0.0158 0.0223 12.4971 3.90E+04
Apref -opt. 7.38E+02 0.0925 8.76E+03 0.0150 0.0196 1.5281 1.07E+05
cpref -opt. 2.70E+01 0.0958 3.28E+02 0.0377 0.0472 0.6939 4.02E+03
minimaxpref opt. 4.34E-01 0.1144 1.65E+00 0.0424 0.0551 1.1119 1.77E+01
varminpref opt. 2.22E-01 0.1141 4.70E-01 0.0458 0.0634 0.5913 3.80E+00
fidpref opt. 2.52E-01 0.1060 6.22E-01 0.0521 0.0670 0.6362 5.34E+00
Mpref -opt. 4.44E+05 0.1000 5.44E+06 0.0161 0.0241 17.9287 6.66E+07
DWTP -opt. 4.35E-01 0.1041 1.80E+00 0.0261 0.0394 1.7513 2.14E+01
AWTP -opt. 2.41E-01 0.0971 4.67E-01 0.0272 0.0398 0.8168 3.78E+00
varminWTP opt. 6.18E-01 0.1087 3.61E+00 0.0256 0.0356 1.0957 4.24E+01

Table 2: Simulation statistics of the distribution ofEMSEWTP values yielded by the different designs
assuming correct prior information

imum, the 5% and 95% percentile and the maximum of the distribution are useful statistics to

represent the spread of the estimation errors.

4.3 Performance of the designs assuming correct prior information

In this section, we study the ability of the designs to yield precise utility coefficient andWTP

estimates when the prior information is correct. This means that the 150 true parameter vectors

β are drawn from the prior distribution used to generate the designs. We assume 50 respondents

taking part in the experiment.

TheWTP estimation accuracy of the different designs is represented in Table 2 by means of some

statistics on theEMSEWTP values. It can be seen from this table that thefiducialpref optimal,

thevarminpref optimal and theAWTP -optimal design estimate theWTP most accurately as the

averages and the medians of their distributions of theEMSEWTP values are lowest. This shows

that they are most successful in reducing the size and the number of outlyingWTP estimation

errors. Although the other designs have a median which is more or less comparable in size, they

all result in a higher average of the distribution because of more and larger outlying values. The

Dpref -optimal, theApref -optimal, thecpref -optimal and theMpref -optimal design show the worst

results in this respect: their averageWTP estimation errors are highest and their maximumWTP
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Simulation statistics of the distribution of theEMSEβ values
Designs Average Median St.dev. Min 5% perc. 95% perc. Max

Dpref -opt. 0.1076 0.0843 0.1367 0.0411 0.0482 0.1851 1.4388
Apref -opt. 0.1213 0.0788 0.3087 0.0413 0.0482 0.1674 3.1840
cpref -opt. 0.1175 0.1118 0.0348 0.0565 0.0706 0.1824 0.2157
minimaxpref opt. 0.2283 0.1316 0.5574 0.0644 0.0795 0.5937 6.4238
varminpref opt. 0.1475 0.1326 0.0836 0.0641 0.0829 0.2361 0.9875
fidpref opt. 0.1707 0.1254 0.2617 0.0664 0.0827 0.3447 3.1884
Mpref -opt. 0.1156 0.0979 0.0983 0.0464 0.0542 0.2357 1.1299
DWTP -opt. 0.2596 0.1226 0.5082 0.0452 0.0601 0.9936 3.7817
AWTP -opt. 0.1890 0.1130 0.3133 0.0517 0.0635 0.4783 3.2222
varminWTP opt. 0.1236 0.1059 0.0905 0.0584 0.0685 0.2090 0.8508

Table 3: Simulation statistics of the distribution of theEMSEβ values yielded by the different designs
assuming correct prior information

estimation errors are much larger than those of the other design options.

Table 3 contains the statistics on theEMSEβ values which give the estimation accuracy of the

utility coefficients obtained by the different designs. As expected, theDpref - andApref -optimal

design estimate the utility coefficients most precisely as these designs yield the lowest median of

the distribution of the estimation errors. It can be seen that theMpref -optimal design estimates the

utility coefficients almost as accurately as theDpref -optimal and theApref -optimal design. These

designs are closely followed by thecpref -optimal and thevarminWTP -optimal design. These four

designs exhibit as well the lowest average estimation error of the utility coefficients. Furthermore,

Table 3 indicates that the enhanced ability to estimate theWTP accurately comes at a small cost

in terms of the estimation precision of the utility coefficients.

4.4 Performance of the designs assuming incorrect prior information

So far, the assumption was made that the prior distribution onβ contains correct information on

the utility coefficients. In this section, we relax this assumption and study the performance of

the designs in case of wrongly specified prior information. The same designs as in Section 4.3

were used to generate the data, but the distribution used to draw the true parameters differs from

the prior distribution used to generate the designs. We assume that 50 respondents participate
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Simulation statistics of the distribution of theEMSEWTP values
Designs Average Median St.dev. Min 5% perc. 95% perc. Max

Dpref -opt. 1.42E+05 2.7000 1.46E+06 0.1872 0.4540 1.07E+04 1.75E+07
Apref -opt. 1.23E+04 3.5200 1.19E+05 0.1955 0.4799 1.46E+04 1.45E+06
cpref -opt. 1.76E+02 1.2292 1.37E+03 0.2029 0.3536 3.75E+01 1.46E+04
minimaxpref opt. 8.27E+00 1.8168 1.41E+01 0.2769 0.4755 4.24E+01 6.45E+01
varminpref opt. 4.99E+00 1.1848 9.15E+00 0.2589 0.4585 2.65E+01 5.41E+01
fidpref opt 4.20E+00 1.1613 7.96E+00 0.2197 0.4280 2.13E+01 5.38E+01
Mpref -opt. 1.78E+02 2.1325 1.37E+03 0.0764 0.3976 1.33E+02 1.59E+04
DWTP -opt. 2.15E+04 2.1800 2.13E+05 0.0615 0.3418 3.31E+03 2.57E+06
AWTP -opt. 7.01E+00 1.5462 1.86E+01 0.2379 0.4475 3.34E+01 1.88E+02
varminWTP opt. 7.84E+05 3.9000 9.60E+06 0.2980 0.7737 2.63E+02 1.18E+08

Table 4: Simulation statistics of the distribution of theEMSEWTP values yielded by the different designs
assuming incorrect prior information

in the experiment. In a first scenario, the true parametersβ come from a 6-dimensional normal

distribution with mean [-1 0 -1 0 -1 -0.5] and variance-covariance matrix

 IM−1 0(M−1)×1

01×(M−1) 0.0025


 . (26)

This implies that the prior underestimated most effects and does not cover all true parameter vec-

tors.

Table 4 shows the statistics on theEMSEWTP values. It indicates that thefiducialpref optimal

design estimates theWTP the most accurately: it exhibits the lowest average, median, standard

deviation and maximum value of theWTP estimation errors. Thevarminpref optimal andAWTP -

optimal design perform only a little worse than thefiducialpref optimal design. Compared to these

three designs, thecpref -optimal design has a higher average and median value. Its standard devi-

ation is larger and the design is less successful in reducing the size of the outlying values. All the

other designs are clearly outperformed by thefiducialpref optimal design, thevarminpref opti-

mal design and theAWTP -optimal design.

Table 5 lists the statistics on theEMSEβ values using the different designs and assuming incorrect

prior information. Based on the median and the average of the estimation errors, it can be seen
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Simulation statistics of the distribution of theEMSEβ values
Designs Average Median St.dev. Min 5% perc. 95% perc. Max

Dpref -opt. 0.4254 0.1861 0.7401 0.0500 0.0689 1.8231 6.7664
Apref -opt. 0.4622 0.1537 1.1227 0.0467 0.0636 2.3182 8.1819
cpref -opt. 0.3986 0.1448 0.8281 0.0533 0.0694 1.9917 6.3500
minimaxpref opt. 1.6493 0.2543 2.9409 0.0724 0.0939 8.4852 14.4558
varminpref opt. 0.8469 0.1726 1.7113 0.0763 0.0918 5.3933 9.4517
fidpref opt. 0.8182 0.2117 1.6384 0.0742 0.0961 4.8621 9.7954
Mpref -opt. 0.3752 0.1645 1.1950 0.0467 0.0712 0.8263 14.3829
DWTP -opt. 0.3763 0.1779 0.7380 0.0495 0.0647 1.5762 6.7147
AWTP -opt. 0.9434 0.1971 1.9403 0.0658 0.0839 5.9907 11.7927
varminWTP opt. 1.3732 0.2206 3.0451 0.0727 0.0957 7.8439 17.5498

Table 5: Simulation statistics of the distribution of theEMSEβ values yielded by the different designs
assuming incorrect prior information

that theDpref -optimal, theApref -optimal, thecpref -optimal, theMpref -optimal and theDWTP -

optimal design estimate the utility coefficients the most precisely. The more accurate estimation

of theWTP comes at a small cost in terms of the estimation precision of the utility coefficients.

However, the difference is not sufficiently large to rule out one of the designs.

In a second scenario, the real utility coefficients used in the data generation process come from a

6-dimensional normal distribution with mean [0 0 0 0 0 -0.5] and variance-covariance matrix

 0.25 · IM−1 0(M−1)×1

01×(M−1) 0.0025


 . (27)

This implies that individuals are almost indifferent between the different attribute levels of a com-

modity, except the price. Results for this scenario are not shown as the conclusions are similar to

those of the first scenario.

This simulation study leads to the conclusion thatfiducialpref optimal designs, thevarminpref

optimal designs and theAWTP -optimal designs estimate theWTP accurately no matter whether

the prior information to create the design is correct or not. Moreover, the designs generated by

these criteria seem to reduce most successfully the number and the size of extremeWTP es-

timates. The disadvantage of these designs is a slightly reduced performance in estimating the
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utility coefficients. Although thefiducialpref optimal designs lead to the best results, they are the

hardest of the three designs to compute.

5 Illustration

Hole [2008] examines the patient’s preference for appointments with a general practitioner (GP)

by means of a discrete choice experiment. By including the cost for the patient, the estimated util-

ity coefficients of the conditional logit model can be used to calculate his/her willingness-to-pay

for these attributes. In this way, the government is able to align health services to the preferences

of the population and to quantify to which extent it is prepared to pay for quality. In this section,

we examine the performance of the designs proposed in previous sections and compare them with

the design strategy used in the original study.

The experiment investigated theWTP for five attributes of an appointment with a GP: waiting

time for an appointment, flexibility of the time of the appointment, the doctor’s interpersonal man-

ner, the doctor’s knowledge of the patient and the thoroughness of the examination. To be able to

compute theWTP for the different attributes, the patient’s cost for an appointment is considered.

The levels of the attributes are given in Table 6. All attributes are dummy coded, except the waiting

time and the cost for the patient which are linearly coded.

Attribute Levels
Waiting time for appointment same day, next day, 2 or 5 days
Cost for the patient £0, £8, £18 or£28
Doctor’s knowledge of patient knows you well or not
Flexibility of time one appointment offered or choice
Doctor’s interpersonal manner friendly and warm or formal and businesslike
Thoroughness of examination thorough or not

Table 6: Attributes of the experiment eliciting a patient’s preference for a GP appointment

Each of the 409 respondents had to choose his or her preferred alternative in eight choice sets of

size two. The original study used a locallyD-optimal design with the attribute coefficients set

to zero which assumes that the patient is indifferent between the attribute levels. The estimated
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utility coefficients, their t-statistics and correspondingWTP estimates obtained after analysis of

the choices by a conditional logit model are shown in Table 7.

Attribute β̂ t-stat. ŴTP
Waiting time -0.131 -7.71 -1.71
Cost for patient -0.077 -27.22 /
Dr’s knowledge 0.344 6.49 4.48
Flexibility of time 0.194 3.60 2.53
Dr’s interpers. manner 0.317 6.13 4.13
Thoroughness 1.061 18.24 13.82
Constant -0.023 -0.40 /

Table 7: Parameter estimates, t-statistics andWTP resulting from the original GP experiment

We compare the Bayesiancpref -optimal, the Bayesianfiducialpref optimal, the Bayesianvarminpref

optimal, the BayesianAWTP -optimal design, the locally and BayesianDpref -optimal design in

terms of their ability to yield preciseWTP estimates. We exclude theApref -optimal, Mpref -

optimal,minimaxpref optimal,DWTP -optimal andvarminWTP optimal designs in this evalua-

tion as they were outperformed by the others in the simulation study in Section 4. We include the

locally Dpref -optimal design generated assuming zero prior coefficients as this design was used

in Hole [2008]. To generate the Bayesian optimal designs under consideration, we assume a 7-

dimensional normally distributed prior with mean01×7 and variance0.25 · I7.

Choices for 409 participants are generated using the utility coefficient estimates of the original

study that are displayed in Table 7. TheWTP estimates for the attributes are computed from the

estimated utility coefficients of the conditional logit model. This simulation study is performed for

2 000 data sets. We assess the different designs by examining the distribution of the 2 000WTP

estimates for each attribute.

Table 8 shows the statistics of the distribution of theWTP estimates for the attribute ’Interpersonal

manner’. We do not present the results for the other attributes as they lead to similar conclusions.

It can be seen that the BayesianDpref -optimal design does not yield accurateWTP estimates.

This design also results in the largest outlyingWTP values. The estimation precision obtained by
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Distribution of theWTP estimates for ’Interpersonal manner’
Designs Average Median St.dev. Min 5 perc. 95 perc. Max

Loc. Dpref -opt. 4.2072 4.1588 0.7365 1.6840 3.1469 5.4133 9.4130
Bays.Dpref -opt. 7.1533 4.0558 160.9592 -3422.4283 2.2978 12.6046 6256.5390
Bays.cpref -opt. 4.1424 4.1511 0.9021 1.4307 2.6192 5.6272 7.1413
Bays.fidpref opt. 4.1366 4.0996 0.4975 2.7231 3.3464 5.0062 6.0905
Bays.varminpref opt. 4.1021 4.1398 1.0960 0.1857 2.3149 5.9347 8.6526
Bays.AWTP -opt. 4.0935 4.0925 1.0734 0.2226 2.3075 5.8136 7.1806

Table 8: Statistics of the distribution of theWTP estimates for the attribute ’Interpersonal manner’ for the

different designs when̂WTP int.man.= 4.13

Distribution of theWTP estimates for ’Interpersonal manner’
Designs Average Median St.dev. Min 5 perc. 95 perc. Max

Loc. Dpref -opt. 8.3441 8.4905 1.4816 4.8260 6.0196 10.6010 16.3688
Bays.Dpref -opt. 14.4053 6.9037 203.3741 -1480.2320 -18.3102 33.6259 6915.8390
Bays.cpref -opt. 7.4350 7.4668 1.3791 1.8227 5.1240 9.6403 12.1934
Bays.fidpref opt. 7.5114 7.4743 0.7227 5.4147 6.3557 8.7379 9.9137
Bays.varminpref opt. 7.6152 7.6229 1.0330 4.9169 5.9484 9.3456 11.7827
Bays.AWTP -opt. 7.5227 7.5459 0.8837 4.4050 6.0675 8.9688 10.4274

Table 9: Statistics of the distribution of theWTP estimates for the attribute ’Interpersonal manner’ for the

different designs when̂WTP int.man.= 7.50

the other designs does not differ sufficiently to rule out one of them.

However, it has to be noticed that the zero prior utility coefficients used to develop the locally

Dpref -optimal design are close to the utility coefficients used to generate the data. This gives the

locally Dpref -optimal design an advantage when comparing with the Bayesian designs which take

the uncertainty on the prior formally into account. That is why we also study the case in which the

data are generated with coefficients [-0.75 -0.10 0.75 0.75 0.75 0.75 0]. The statistics of the

distribution for theWTP estimates for the attribute ’Interpersonal manner’ are given in Table 9.

Only the results for this attribute are given as the conclusions for the other attributes are similar. It

can be seen in Table 9 that the locallyDpref -optimal design is not robust against incorrect prior in-

formation as it leads to less accurateWTP estimates and larger outlying values than the Bayesian

design criteria, except the BayesianDpref -optimal one. Thefiducialpref optimal design yields
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the most accurateWTP estimates and reduces the size of the largestWTP most succesfully.

This illustration confirms that thefiducialpref optimality criterion results in precise estimates of

the WTP whether the prior information used to develop the design is correct or not. However,

in this illustration, the difference between the other proposed design efficiency criteria to estimate

the WTP precisely is not sufficiently large to exclude one of them. Although, it is clear that

more preciseWTP estimates can be obtained by accommodated design criteria than by theDpref -

optimality criterion.

6 Conclusion

To estimate theWTP accurately, Vermeulen et al. [2008] applied acpref -optimality criterion to

create conjoint choice experiments. Although, this criterion yields more accurateWTP estimates

than several benchmark designs includingD-optimal, orthogonal, random and balanced overlap

designs, it still leads to extreme estimates. In this paper, other optimality criteria which reduce the

occurrence of extremeWTP estimates as much as possible are considered.

We distinguish between two categories of criteria: (i) criteria in preference space, which specifies

the utility of a commodity in terms of the utility coefficients associated with the attribute levels,

and (ii) criteria inWTP -space, which defines the utility in terms of theWTP and the price coef-

ficient. We show how to create Bayesian optimal designs in these two spaces and compare them in

terms of the accuracy of theWTP estimates and estimated utility coefficients.

A simulation study and a numerical example reveal that thefiducialpref optimal, thevarminpref

optimal and theAWTP -optimal designs allow accurateWTP estimates. This result is valid no

matter whether the prior information on the utility coefficients is correct or not. Moreover, these

designs are more successful in reducing the occurrence of extremely large estimates of theWTP

than all other design options. The enhanced ability to estimate theWTP accurately comes only at

a small cost in estimation accuracy of the utility coefficients themselves. Although thefiducialpref

optimal designs lead to the best results, they are the hardest of the three designs to compute.

24



What is clear though, is that using theDpref -optimality or theApref -optimality criterion to create

designs for the purpose of estimating theWTP yields less accurateWTP estimates and results in

a large number of extremeWTP values, although they still perform better than standard designs

including orthogonal, random and balanced overlap designs.
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