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Abstract—The scalability of a software system is greatly im-
pacted by the scalability of the underlying access control system,
which makes analyzing the scalability of that access control
system paramount. However, this is not trivial, as contemporary
access control systems have a myriad of architectural deployment
variations, each of which has a potentially large impact on overall
system throughput. There is a need for a systematic approach
to map these architectural variations to a reference model which
allows to make comparisons and to identify trade-offs. This work
provides a piece of the puzzle by demonstrating how this can
be achieved by systematically applying the Universal Scalability
Law (USL). We illustrate our approach by performing a rigorous
scalability analysis of the OpenAM access control system for
various deployment alternatives in the domain of authentication.
We conclude that the approach is able to provide both qualitative
and quantitative results which can be translated into practical
operational recommendations for the envisioned types of system
deployments.

I. INTRODUCTION

Identity management and access control are crucial sup-
porting services in contemporary online software systems—
it is hard to imagine an interactive web site that does not
depend on authentication, authorization and even federation
with third party identity providers such as Facebook or Google.
When viewed from a business perspective, these services need
to be as transparent as possible, and it should be avoided
at all costs that they become a bottleneck. Moreover, access
control services need to be always available in order for users
to be able to log into protected software systems, instead of
rendering those protected systems inaccessible. Consequently,
the scalability and performance of access control systems are
crucial system qualities to consider, and scalability is often
mentioned as one of their key requirements [1].

The question of whether a certain access control system is
scalable, is not a simple one: It is exacerbated by the many ar-
chitectural variations in which these systems can be deployed.
For instance, traffic composition, stateful (i.e., “sticky”) load
balancing, session replication strategies, and configurations
of the data backend all have a potentially huge impact on
the overall access control system performance. Even though
there is a need to take architectural deployment variations into
account, there are currently very few studies that document
these systematic comparisons and verify whether the correct
trade offs have been made.

This paper documents our experiences in analyzing and
characterizing both the scalability and performance of Open-
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AM', a widely used open source access control system, de-
ployed globally by government agencies, financial institutions,
telecom operators and IT services. Our analysis is based
purely on benchmarking data and treats the system as a black
box: We identify and characterize the impact of a number
of architectural variations by applying Gunther’s Universal
Scalability Law (USL) [2], [3], [4], and analyze the quality of
service by characterizing the distribution of residence times.
As deployment variations, we consider the dimensions of
user load, traffic composition, number of deployed service
instances, used replication strategies in data backend systems,
and session persistence options. For scoping reasons, we limit
ourselves to the authentication functionality of OpenAM.

The rest of this paper is structured as follows. Section II
provides an overview of both OpenAM and quantifying scala-
bility. Section III documents our experimental setup and bench-
marking methodology. Section IV documents our results. Sec-
tion V provides a discussion of these results and summarizes
some lessons learned for software architects and deployers of
access control systems such as OpenAM. Section VI gives an
overview of related work. We conclude in Section VII.

II. BACKGROUND

This section provides a brief overview of authentication
and the OpenAM access control software in Section II-A,
increasing capacity through clustering in Section II-B, and of
scalability as a non-functional requirement and its analysis in
Section II-C.

A. Authentication

Authentication, or the act of confirming the identity of a
user, is an essential part in the larger picture of access control
and identity management. OpenAM is an open source software
product that offers authentication, authorization, identity man-
agement and federation functionality. It is maintained by Forg-
eRock, and is the continuation of Sun’s OpenSSO?. OpenAM
is part of the ForgeRock Open Identity Stack®, which includes
software such as the OpenDJ LDAP server, and OpenIDM,
which offers user identity lifecycle management. OpenAM
depends on OpenDJ, which it uses as a data backend—both
configuration and user details are stored in a different OpenD]J
instance.

Thttp://openam.forgerock.org/
2http://en.wikipedia.org/wiki/OpenSSO
3http://forgerock.com/products/open-identity-stack/
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Figure 1. A deployment view on a simple OpenAM instantiation.

An example OpenAM instantiation is shown in Figure 1. It
shows a service deployed at a service provider which uses one
of two OpenAM instances deployed on separate application
servers for authentication. These instances can be clustered, as
documented in Section II-B. The OpenAM instances, in turn,
depend on two distinct instances of the OpenDJ LDAP service
for its data backend—one, the user store, contains all relevant
user account details, while the other, the configuration store,
contains the current OpenAM configuration and active session
data.

There are two main ways to interact with OpenAM: Via
the built-in web interface, or via the REST interface. For the
remainder of this work, we focus on the REST interface, as
it is the most flexible and extensible interface, and therefore
more likely to be used. As an example, given an OpenAM
service deployed at the endpoint http://mydomain.org/openam/,
a user can log in given a username ‘joe’ and password ‘secure’
by calling http://mydomain.org/openam/identity/authenticate?
username=joe&password=secure. The specified credentials are
checked against the user account details in the user store.
If successful, that call returns a token (i.e., an alphanu-
meric string) which represents the newly created user ses-
sion. The validity of a session can later be established
by calling http://mydomain.org/openam/identity/isTokenValid?
tokenid=token, with token the alphanumeric string returned
earlier. Finally, a user can log out of a session by passing the
corresponding token to http://mydomain.org/openam/identity/
logout?subjectid=token. Similar REST APIs exist to check user
authorization and perform identity management functions.

B. Clustering

Clustering is an often used technique to increase the
capacity of a service by deploying it on multiple servers
that collaborate to handle a workload. OpenAM supports
clustering out of the box. If one OpenAM instance fails to
meet the volume of incoming authentication requests, more
instances can be deployed on different access control servers,
each of which uses the same configuration and user stores.
Similarly, each of the data backend services can be replicated
in order to distribute the load of the OpenAM cluster, and
decrease the risk of data loss. OpenDJ supports best effort (i.e.,
eventually consistent), assured write (i.e., data is guaranteed to
be replicated to at least one other machine) and assured read
(i.e., data reads are guaranteed to be consistent) replication
options.

When a user logs in, the newly created session is only

local to the current OpenAM instance. Upon subsequent user
requests, the validity of the token has to be established by that
issuing OpenAM instance. When multiple OpenAM instances
are deployed behind a load balancer, this implies that the other
instances constantly have to query the originator to establish
the validity of a token. Similarly, when one instance becomes
unavailable, the validity of the sessions created by that instance
can no longer be verified, and those users need to log in
again. The first issue can be handled by stateful (or ‘sticky’)
load balancing, in which subsequent user requests are always
directed to the same OpenAM instance. The second issue can
be resolved by making sessions persistent. In that case, all
session state is stored in the configuration store, which is
shared between all OpenAM instances of the same cluster.
All these features have an impact on scalability, as we will
see in Section IV. First, we elaborate on what we mean with
‘scalability’.

C. Scalability

In this work, scalability means the ability of a service to
handle various user loads. In the strict interpretation, scalability
is the function C(p) of how service capacity C' varies in
function of user load p. In this context, user load is defined as
the number of concurrent user processes that periodically issue
requests to a service. For instance, if a user process issues two
requests per second, then a user load of 50 implies that 100
requests per second will be issued to the service. The relative
capacity C'(50) shows how many of those 50 user processes
are effectively served by the service.

However, scalability also has a more qualitative aspect—
it can be seen as the function of how the quality of service
depends on that user load. In that sense, scalability is the
function R(p) of how residence times R vary in function
of the user load. We begin by detailing the service capacity
interpretation, after which we deal with residence times and
quality of service.

1) Service capacity and the Universal Scalability Law:
Our approach is based on that presented in [5]. In order to
analyze the capacity of the OpenAM service under varying
user loads, we generate simulated user requests at a fixed rate
and calculate the rate at which those requests are successfully
handled, i.e., the throughput X. Based on this data, we can
calculate the capacity ratio C'(p) = X(p)/X (1), which is
the ratio of the throughput of the system for a load of p,
compared to the baseline of its throughput for a load of 1. In
practice, for a user load p, a system configuration with relative
capacity C'(p) = 1.5 has 50% more throughput than a system
configuration with relative capacity C(p) = 1. The relative
capacity curve C(p) is a good indicator for how much the
observed behaviour diverges from the ideal linear scalability
Cr(p) = p. The closer C(p) is to CL(p), the better the
scalability of that system configuration. Note that the relative
capacity of real systems is never larger than the ideal linear
scalability, or C'(p) < Cr(p).

One way to model the capacity of a system is by applying
the universal scalability law (USL) [2], [4]. The universal
scalability model of a system takes into account both the
serial nature of the workload of that system (i.e., how much
of the workload can be parallelized in theory) and coherency



costs (i.e., the costs incurred when waiting for data to become
consistent between different instances of a system that share
the same workload). The universal scalability model takes the
form of the following curve:

C(p) b

T 1t+a(p—1)+rpp—1)

Here, « denotes the impact of coherency on the system
performance, and o denotes the serial fraction, which is the
fraction of the workload that cannot be parallelized. When the
coherency factor « is negligible, the maximum performance
of the system is bounded only by the serial fraction. When
is non zero, the performance model of a system will have a

specific maximum, achieved for a load p* = L (14+0)/ HJ.
Beyond p*, the throughput of a system will decrease.

We can find values for ¢ and « for a specific OpenAM
deployment by measuring specific values for C(p), after which
the measurements are fitted to the USL model.

2) Residence time and quality of service: The residence
time of a service is the time that a request resides in the
system, i.e., the time between issuing a request and receiving
an answer. While the service capacity considers the business
view (i.e., “How many servers do I need to handle this many
concurrent users?”), residence time considers the end user’s
perspective (i.e., “How long do I have to wait before my
request is handled?”). Residence time R is often seen as the
sum of the queueing time @), i.e., the time that the request
spends waiting to be serviced, and the actual service time S.
However, as we are only interested in the end user experience,
we do not make this distinction.

Characterizing the residence time in function of the user
load is important to anticipate how responsive or fast the end
user will experience that service. However, simply knowing
the average residence time does not suffice in most cases—
quality of service is usually expressed in a policy that states
that X% of requests need to be handled within Y (milli-)
seconds. In other words, we need to know the distribution
of residence times too. This distribution can be analyzed by
collecting residence times for sufficient requests and plotting
them in a histogram.

III. EXPERIMENTAL SETUP

We begin by outlining the goals of our experiments in Sec-
tion III-A. As mentioned in Section II, in order to characterize
the scalability of a deployed system, we need to collect data
on both throughput and residence times in function of user
load. The experimental OpenAM deployment on which the
benchmarks are run, as well as the setup we use to generate
user load, are documented in Section III-B. The benchmarking
methodology followed is documented in Section III-C.

For completeness, the software versions used are OpenAM
11.0 deployed on Apache Tomcat 7.0.47, and OpenDJ 2.6.0.
A. From stakeholder concerns to experimental goals

The goals of the experiment as documented in this section
are distilled from actual stakeholder concerns encountered in
an industrial research project. The goal of that project was to

investigate the feasibility of a proposed authentication frame-
work for online media in Belgium, which implies a user base
of up to 11 million users. The stakeholder concerns mainly
related to validating the proposed access control infrastructure
(e.g., “Is the proposed cluster architecture a good idea?”, “Will
we be able to scale out further?”’), but also involved use case
related questions (e.g., “Should we strive for longer session
durations, or let sessions time out faster?”).

In order to provide a quantified answer to these concerns,
they were subsequently mapped to configurable architectural
deployment properties (e.g., varying the OpenAM cluster
size, varying the OpenDJ replication model, varying session
persistence and load balancing strategies), resulting in a list
of quantifiable experimental goals. That last step of mapping
stakeholder concerns to deployment alternatives also shows
that many of the initial stakeholder questions are actually ask-
ing about the impact of a small list of architectural properties,
which can then be prioritized based on how many stakeholder
concerns they relate to. The end result is the following list.

a) Traffic composition: Not all requests are handled
equally. Both login and logout requests imply mutating session
data, while token verification requests serve as inspectors and
do not mutate state. Determining how many times tokens are
verified, or establishing guidelines for session longevity clearly
impact the traffic composition. But how large is this impact?

b) Cluster size: Depending on the nature of the work-
load, adding more and more nodes to a cluster quickly runs
into the wall of diminishing returns. But where is this wall,
and how high is it?

c) Load balancing strategy: Is stateful load balancing
essential for achieving a scalable deployment, or is its effect
limited?

d) Replication strategy: Whether session persistence
should be enabled, and what replication strategy should be
used in the backend, greatly impacts service availability and
user convenience by not requiring users to log in again unnec-
essarily. But what is the cost of these features on scalability?

For each of these dimensions, we want to express the
capacity of the OpenAM service in function of user load,
and extrapolate additional scaling capacity by applying the
universal scalability law.

B. Distributed deployment

Our testing setup that we use to generate and collect data
is shown in Figure 2. Load generators simulate a variable
number of users that each generate a fixed load. The users
begin by logging in, repeatedly verify their token, and have
a configurable probability of logging out after every token
verification. A user that is logged out, will log in automatically
upon the next request. A user generates a request every 250ms,
i.e., 4 requests per second. User load is increased by spawning
more concurrent user threads. Note that, while the ‘thinking
time’ per user is constant, i.e., 250ms, the different user
processes are started in a staggered fashion with a random
delay. If the number of concurrent user processes is large
with respect to the time between two requests for one user,
the request inter-arrival rate at the service follows a Poisson
distribution.
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The experimental setup used for obtaining benchmark data.

Figure 2.

The load generators communicate directly to one or more
OpenAM instances. In order to avoid an intermediate load
balancer as a potential bottleneck, load balancing functionality
is emulated by the load generators: Depending on whether
stateful load balancing is configured, every simulated user
will send all requests to the same, resp. a random OpenAM
instance. The OpenAM instances are configured as a cluster.
They all use one user store*, and multiple configuration
stores. The configuration stores are all in the same replication
topology, their replication strategy is configurable.

Overall system health is monitored, and measurement data
is gathered, by the dashboard. Load generators send their
results directly to the dashboard. The OpenAM instances are
monitored by a JMX client that sends intermediate data to the
dashboard as well. All data is visualised in real time to check
results and identify anomalies, and is stored for later reference.

Every component is deployed on a dedicated machine.
All machines are off-the-shelf Dell Optiplex 755 desktops
with Intel Core2 duo processors and 4GB of RAM. They are
connected via a dedicated gigabit ethernet network.

C. Load generation methodology

We are only interested in system throughput and residence
times for various user loads and architectural configurations.
This is a significant advantage, as it allows us to treat the
system as a black box, and avoids the need to create intricate
models (e.g., queueing networks in the case of queueing
theory).

For every system configuration under test, the following
benchmarks are performed. The load generators begin gener-
ating a constant load p, wait for 15 seconds until the OpenAM
services stabilize, and then begin to record request residence
times for 60 seconds. The specific time to wait (i.e., 15
seconds) is established beforehand by monitoring residence
times and CPU utilisation: Due to class loading and just-in-
time compilation, there is a clear peak in both CPU utilisation
and residence times when a newly started service is placed
under load, which abates and stabilises on average after 10
seconds (to which we added 50% to be on the safe side).
After the measurement period, the load generators stop, system
throughput is calculated, the state of the dashboard is reset, and
the OpenAM services are allowed to cool down for another 30
seconds. Again, the exact duration of this cool down period has
been experimentally obtained by monitoring CPU utilisation
and residence times of a low number of sample requests.

4Initial experiments have shown that, for our experiments, the load on the
user store is negligible. For simplicity, we have only deployed one user store.

The values for p are chosen after initial experimentation
so that they are sufficiently interesting and cover the region
of optimal load p*, if possible. In total, around 10 different
p values are used to ensure a proper USL fit. Finally, as an
upper bound on the p value region, we take the load p,;,4, for
which the service starts returning a significant (i.e., more than
1%) amount of errors—initial experiments showed that once
this point is reached, the relative frequency of errors quickly
increases, rendering the measured relative capacity useless as
a significant fraction of requests are not handled properly.

IV. RESULTS

This section documents the results of the OpenAM scalabil-
ity experiments. Section IV-A documents the throughput of one
OpenAM instance in function of various traffic compositions.
Section IV-B documents the throughput of an OpenAM cluster
of various sizes. Section IV-C documents the impact of stateful
load balancing. Section IV-D documents the impact of various
session replication models.

In all the subsequent graphs, dots denote measured data
points, and lines denote instances of the universal scalability
model fitted to that data as per Section II. Load is expressed
in concurrent users that each issue a request every 250ms—
to get the load in requests per second, multiply the indicated
user load by 4. Fitting is done with gnuplot, with the additional
constraints that the resulting values for o and k are positive;
a small example script is provided in Appendix A.

A. Throughput in function of traffic composition
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Figure 3. Comparing OpenAM throughput in function of traffic composition.
0% logout: o = 2.41 x 1072,k = 3.95 x 10~8; 5% logout: o = 2.47 x
1079,k = 1.56 X 10~7; 10% logout: 0 = 1.14x 1075,k = 2.81 x 10~ 7;
20% logout: o = 5.05 x 10~%,k = 3.32 x 10~ 7.

Figure 3 shows the throughput of one OpenAM instance,
in function of increasing user load, for different traffic com-
positions. Clearly, the number of requests that one OpenAM
instance is able to handle, is highly dependent on the relative
frequency of login and logout requests with respect to token
verification requests: Login and logout requests impart more
overhead on the OpenAM service as credentials need to be
verified and sessions need to be created, resp. destroyed. Token
verifications are relatively more light weight.

Note that for token verifications, the throughput of one
OpenAM instance is very good up to 1200 concurrent users,



at which point its capacity starts to deviate measurably from
linearity. At this point, however, an OpenAM that handles traf-
fic consisting of 20% logout requests only has half (49%) the
throughput of the ideal case where no logouts are performed.

B. Scaling to multiple instances
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Figure 4. Comparing scalability for multiple OpenAM instances in a cluster.
The load is normalized per OpenAM instance. One: o = 2.47 x 1072,k =
1.56 x 1077; Two: ¢ = 1.60 x 1079,k = 1.47 x 10~ 7; Three: 0 =
2.08 x 1079,k =2.22 x 10~ 7.

Figure 4 shows the relative capacity of OpenAM instances
in a cluster of size one, resp. two and three. Note that the
data shows the throughput normalized by the cluster size,
so that the contribution of individual OpenAM instances can
be compared. The OpenAM instances were configured to
use persistent session data which is actively replicated over
three configuration stores, to allow the data backend to scale
together with the OpenAM service and avoid it becoming the
bottleneck. A traffic configuration of 5% logout requests was
used.

The data shows that the difference in throughput of indi-
vidual nodes in a cluster of size one and two is negligible—
in other words, a cluster of size two has twice the capacity
of a cluster of size one. In fact, this cluster of size two has
slightly more than twice the capacity of a cluster of size one,
however, this difference is small enough to be attributable to
experimental variance. Adding a third OpenAM instance to
this cluster decreases the relative throughput of the cluster
significantly. For instance, while one OpenAM instance is
capable to effectively handle 1224, resp. 1296 users when
confronted with a load of 2400, adding a third instance lowers
this capacity to 1024 users. We expect the penalty of adding
additional instances to the cluster to be higher still. However,
in the range where individual OpenAM throughput still scales
linearly, i.e., below approximately 1000 concurrent users per
instance, the overhead of adding extra OpenAM instances to
a cluster is negligible.

C. Impact of stateful load balancing

Figure 5 shows the impact of stateful load balancing on
an OpenAM cluster throughput. As in Section IV-B, traffic is
configured to consist of 5% logout requests, and the config-
uration store backend consists of three OpenDJ instances in
active replication.
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Figure 5. Assessing impact of stateful load balancing on OpenAM through-
put. The load is per OpenAM instance. Sticky (x2): 0 = 1.13 x 1072,k =
1.16 x 1075, Sticky (x3): ¢ = 4.97 x 1072,k = 7.85 x 10~6; Nor
sticky (x2): ¢ = 1.60 x 1079,k = 1.47 x 10~7; Not sticky (x3):
0c=208x10"9k=222x10"".

Clearly, the overhead incurred from intra-cluster commu-
nication to verify whether tokens are valid, is unacceptable.
Once multiple OpenAM instances come into play, stateful load
balancing is a necessity to achieve even a modest throughput.

D. Impact of session replication
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Figure 6. Comparing scalability for different session replication models.

Assured read: o = 2.47 x 1079,k = 1.56 x 10~7; Assured write: ¢ =
2.55 x 1079,k = 1.49 x 10~7; Best effort: 0 = 1.25 x 1078 x = 1.43 x
10~7; No persistence: o = 2.37 x 1079, k = 1.14 x 10~ 7,

Figure 6 shows the impact of replication on a deployment
with 5% logout traffic, and one OpenAM instance that is
connected to a configuration store consisting of a cluster of
3 OpenAM instances. The figure compares the performance
penalty incurred by the different replication strategies with the
situation where session persistence is disabled (and session
data is not stored in the configuration store).

Disabling session persistence is the most performant con-
figuration, but also offers the least guarantees. The other
replication models incur a systematically higher performance
penalty, but all methods are generally equivalent in the range
where OpenAM scales linearly, i.e., below approximately 1000
concurrent users.



E. Quality of service

In order to analyze the quality of service offered by
OpenAM, we investigate the distribution of residence times.
Figure 7 shows the quality of service for the default single
OpenAM configuration with active session replication. Note
that of the three request types, token verification is the most ef-
ficient, followed by logout requests, and finally login requests,
which have the longest residence times.
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Figure 7. Quality of service for one OpenAM, 5% logout requests, active

session replication.

Note that at higher loads, the 90th percentile of request
residence times remains relatively stable, while the 99th per-
centile grows very rapidly. This is due to the nature of the
distribution of residence times, which is generally modelled as
an Erlang distribution: the majority of requests will be handled
efficiently, even under high loads, but the ‘tail’ of the distribu-
tion becomes arbitrary large. Therefore, under high load, the
majority of requests will still be handled fast. However, the
‘tail’ of the request distribution will grow to arbitrary size.
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Figure 8. Quality of service for a cluster of three OpenAMs, 5% logout

requests, active session replication.

Figure 8 shows the quality of service for a cluster of three
OpenAMs. Note that these values are largely comparable to the
single node cluster, with the difference that login and logout
requests take noticeably longer. On average, token verifications
happen very fast for low loads, but at higher loads token
verification takes significantly longer than in the single node
case.
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Figure 9. Quality of service for one OpenAM, 5% logout requests, no session
replication.

Finally, Figure 9 depicts the quality of service for one
OpenAM instance without persistent sessions. Of all config-
urations, this exhibits the best quality of service. First, the
difference between login, logout and token verification requests
is insignificant, and all three happen extremely fast in the
majority of cases. Second, even under higher loads, the ‘tail’
of the residence time distribution does not grow as fast as in
the other configurations.

V. DISCUSSION

We summarize the main lessons learned in Section V-A.
We briefly discuss alternative scalability models and motivate
our choice for the USL in Section V-B.

A. Lessons learned

Clearly, the results of a scalability assessment are relative
to whether a modelled user process accurately models real user
behavior. In the case of this study (which was performed before
the eventual service roll out), no data on typical user behaviour
was available. Therefore, a general user model was created
that issued a relatively high number of requests per second, to
err on the side of caution, at the risk of underestimating the
real service capacity of the eventual roll out. Given a more
representative user model, this analysis could be redone to
obtain data that is fine-tuned to the deployment at hand.

We have tried to avoid bottlenecks that are external to the
system under test. The load generators themselves have been
benchmarked to verify that they can handle the number of user
threads without significant slowdown. For a simulated bench-
mark with dummy users that only perform empty requests, we
achieve k = 2.31x 10~ '3, This extremely low value (six orders
of magnitude below the values for x in the other experiments)
shows that the load generating framework is not hindered by
coherency and its throughput is bounded only by the serial
fraction of the workload.

Similarly, the network was monitored to exclude it from
being the main bottleneck, as were the OpenDJ nodes. Finally,
the system throughput and residence times were visualised
(and recorded) by the dashboard to identify and analyze
potential abnormalities during data capture. The cool down
period between two different experiments is chosen to be large



enough for the system CPU activity to return to idle, so that the
risk of two subsequent experiments interfering with another is
low.

Based on the experimental data gathered, the experimental
goals are sufficiently quantified to formulate an answer to
the original stakeholder concerns. The following lessons were
learned from the experimental results.

e) Sticky load balancing is essential: Not employing
stateful load balancing imposes an unacceptable cost on both
the throughput and the quality of service of token verification
requests.

f) When session persistence is important, use active
replication: The extra overhead of active replication compared
to the assured write or best effort replication models is
negligible in practice. If session replication is required, active
replication offers the strongest guarantees.

g) Keep sessions as long lived as possible: In the case
of persistent sessions, the percentage of login and logout traffic
has an enormous impact on overall throughput and quality of
service. Therefore, users should be motivated to stay logged
in as long as possible.

h) Avoid login floods: When a substantial number of
sessions become invalidated at the same time, the subsequent
higher login traffic will have a significant impact on over-
all system performance, which in turn might impact overall
system stability and give rise to more sessions becoming in-
validated. This feedback loop could have major consequences
on overall system health. In order to avoid login floods,
the OpenAM setup should support throttling the number of
incoming login requests to allow the system to gracefully
recover after a major service interruption.

i) For optimal throughput, disable persistent sessions:
The impact of session persistence on both throughput and
residence time is noticeable. Disabling session persistence in-
creases both, at the cost of requiring users to log in again when
an OpenAM instance becomes unavailable. In times of high
peak loads (i.e., the “Slashdot effect”), media services often
fall back to a non interactive low-fidelity version. Temporarily
disabling persistent sessions could alleviate the higher peak
load, and act as an intermediate solution before falling back
to this low-fidelity version.

Note that these lessons only take scalability into account,
and might negatively impact other non-functional aspects. For
instance, active replication imparts a potentially high perfor-
mance cost on the system when a new node enters a replication
topology and needs to be synchronized. Additionally, active
replication negatively impacts recovery time as it takes longer
for timeouts to be generated in the case of failure. However,
these concerns are out of scope for this work.

B. Alternative scalability models

The main contender as an alternative scalability model,
is Amdahl’s law [6]. That model only considers how the
throughput of a system is constrained by the serial fraction
o—if the longest non serializable part of a workload is a
fraction o of the total workload, then the scalability of that
system is inherently limited to the size of that non serializable

fraction of the workload. Therefore, scalability models that are
only bound by Amdahl’s law tend to show a monotonically
increasing capacity that approaches the limit imposed by the
serial fraction asymptotically.

4000 ‘ \ \ T P
Universal Scalability model 7
L 3500 Amdahl's law model IR
2 3000 - L .
% -
£ 2500 gl -
2] -
$ 2000 - o7 .,
@ .-
2 1500 - .7 .,
g i
£ 1000 - L .,
w >
500 ’ 7
O 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000

Load (concurrent users)

Figure 10. Comparing the Universal Scalability Law with Amdahl’s law for
modelling the scalability of one OpenAM instance, with 5% logout probability.

In fact, the Universal Scalability Law reduces to Amdahl’s
law when contention is not considered, i.e., when « is 0. In
cases where contention is not negligible, however, Amdahl
scalability models clearly overestimate the capacity: A com-
parison of Amdahl’s law with the Universal Scalability Law for
one OpenAM instance with 5% logout probability is shown in
Figure 10. A discussion on other scalability models, and their
comparison with the Universal Scalability Law, can be found
in [5].

VI. RELATED WORK

Related work on benchmarking exists on many different
system levels, ranging from low-level benchmarks of execution
environments and embedded software, to high-level distributed
system and business process benchmarks. Guthaus et al. [7]
perform benchmarking on embedded programs and provide
a comparison with the industry standard benchmark suite
SPEC2000. Ghosh et al. [8] analyze the performance of
WiMax networks. Uskov [9] provides a comprehensive study
of the performance of authentication and encryption algorithms
for virtual private networking. Rashwan et al. [10] study
the performance of message authentication codes for mobile
networks, for both residence time and power consumption.
Dayarathna et al. [11] document their results of comparing
the performance of three complex event processing engines
via benchmarking. Carvalho et al. [12] document a method
to analyze scalability of running systems from the data center
viewpoint, by only measuring CPU utilization.

For the domain of authentication, some related work exists
on benchmarking authentication methods. Tirel et al. [13]
document a benchmark for multimodal authentication methods,
implemented as a prototype GUI in Matlab. Poh et al. [14]
systematically compare 22 fusion systems for multi-modal
biometric authentication. Shaikh et al. [15] document their per-
formance benchmarking results for fingerprint-based biometric
authentication. However, none of that work considers perfor-
mance analysis of these authentication methods in a large-scale
distributed setup. To the best of the authors’ knowledge, there



are little to no reports of scalability and performance studies
for large-scale access control deployments.

VII. CONCLUSION

We have presented a rigorous analysis of the scalability
of the OpenAM access control system for the domain of
authentication. Starting from specific stakeholder concerns, our
study characterizes the scalability of an OpenAM deployment
in function of traffic composition, cluster size, load balanc-
ing strategy and replication strategy. The scalability analysis
observes the system as a black box and does not depend
on internal system modelling. By systematically gathering
benchmarking data and applying the Universal Scalability Law,
we were able to provide quantitative answers to the initial
stakeholder concerns: We find that OpenAM with session
persistence disabled and stateful load balancing does not incur
a high coherency penalty and scales well when sessions are
long lived. On the other hand, session persistence and a higher
percentage of login and logout requests impact that scalability
measurably. Stateful load balancing, however, is essential to
achieve even modest throughput. The outcome of this analysis
had a real impact on stakeholder decision making, and allowed
the stakeholders to better evaluate OpenAM deployments pro-
posed by the contracted hosting company.
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APPENDIX

Regression was performed with gnuplot, a minimal gnuplot
configuration script is provided. Input is expected to be in a
file ‘data’, with the generated load p in the first column, and
the measured throughput X (p) in the second column.

# Fit to find a"2 and a2 + b"2, so we can

# constrain sigma and kappa to be positive

# (as required by the USL).

f(xX) = a*a * x**x2 + (a*atbx*b) * X

fit f(x) ’'data’ using ($1-1):(($1/$2)-1) \
via a,b

# The serial fraction.

sigma = bx*b

# The coherency factor.

kappa = axa

# The optimal load point p=.

p = floor(sqrt((l+sigma)/kappa))

# The universal scaleup model.
C(p) = p / (l+sigma=* (p—-1) + kappa*p* (p—1))

# Linear scaling,
L(p) = p

for comparison.
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