Scalar: Systematic scalability analysis with the
Universal Scalability Law

Thomas Heyman
iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium
thomas.heyman @cs.kuleuven.be

Abstract—Analyzing the scalability and quality of service
of large scale distributed systems requires a highly scalable
benchmarking framework with built-in communication and syn-
chronisation functionality, which are features that are lacking in
current load generation tools. This paper documents Scalar, our
distributed, extensible scalability analysis tool that can generate
high request volumes using multiple communicating, coordinated
nodes. We show how Scalar offers analytics capabilities that
support the Universal Scalability Law. We illustrate Scalar on
an electronic payment case study, and find that the framework
supports complex work flows and is able to characterize and give
predictive insights into the quality of service and relative capacity
of the system under test in function of the user load.

I. INTRODUCTION

Over the last decade, the scale of online systems has
increased dramatically. Not only do we use online services
more for everyday tasks, but the degree to which we depend on
these services increases as well. This makes software qualities
such as availability, scalability and performance essential for
these systems. As the scale of these systems increases (both
in planned number of users and complexity), assessing their
actual capacity, performance, and future scalability potential
becomes even harder: Generating user loads to simulate the
scalability scenarios of a single web server for a local website
is trivial compared to the complexity of simulating user
loads for complex cloud enabled distributed deployments. The
complexity increase is two dimensional, i.e., simulating ever
more complex workflows and generating large enough loads
to sufficiently stress the system under test.

Complex workflows are not only due to the user needing
to fulfill more actions or follow a more involved business
process, they often also depend on the collaboration of multiple
(simulated) users. That, in turn, requires inter-user commu-
nication and synchronisation facilities in the load generation
and benchmarking platform. Similarly, complex workflows
might require out of band data processing and high volume
data storage capacity. As client side computational overhead
increases, care must be taken that the load generator itself does
not become the bottleneck. In that respect, increasing workflow
complexity and generating sufficient loads are not orthogonal
problems—they reinforce each other.

This paper documents Scalar, a highly scalable distributed
load generation and benchmarking platform that is developed
specifically to handle these complex, large scale benchmarking
problems. It supports inter- and intra-node communication and
synchronization for aggregation of results, with built-in node

Davy Preuveneers
iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium
davy.preuveneers @cs.kuleuven.be

Wouter Joosen
iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium
wouter.joosen @cs.kuleuven.be

monitoring to detect bottlenecks. Its analytics capabilities are
backed by the Universal Scalability Law [1], [2] to enable
systematic comparisons and trade-offs. Furthermore, Scalar
features distributed statistics processing that take advantage
of data locality, in order to enable it to easily scale to much
larger load generation setups.

The paper is structured as follows. We give an overview
of benchmarking and load generation systems in Section II.
The problem statement is made explicit and illustrated on an
e-payment case study in Section III. The tool architecture and
design are documented in Section IV. We apply our solution
to the case study and document our results in Section V.
The results are discussed in Section VI. We conclude in
Section VIIL.

II. RELATED WORK

There are a number of load testing frameworks in existence,
ranging from load tests embedded in integrated development
environments (such as Microsoft Visual Studio) to web testing
frameworks with support for distribution (such as Apache
JMeter). An overview of load testing tools can be found online
[3]. We briefly overview four of these frameworks (Selenium,
Gatling, JMeter and The Grinder), and identify their main
strengths and weaknesses.

Selenium [4] is a browser automation framework. It comes
in two flavours. Selenium IDE is a Firefox add-on that allows
recording of interactions between a user and a website that
can be played back later. Selenium WebDriver is a collection
of language specific bindings that allow controlling a browser
programmatically. Clearly, Selenium IDE is the closest thing
to having an actual human behind a computer—it is easy to
automate and intuitive, but does not scale well to supporting
complex business flows with conditional execution, and does
not allow easy communication and synchronisation between
various instances. As Selenium IDE requires instantiating a
browser, it has a large overhead, especially when thousands of
concurrent users need to be simulated'.

Selenium WebDriver does away with some of these dis-
advantages, at the cost of user friendliness. By embedding
browser control in a host programming language, arbitrarily
complex workflows can be supported. WebDriver nodes can
also leverage the Selenium Server to automate the distribution

IBecause Selenium leverages real browsers, it is the obvious choice when
it comes to QA testing and ensuring that a web application works correctly
in a specific browser version. That, however, is out of scope for this work.

Buyer Seller

Seller ‘

I 1 1

[Scalar — Benchmarking and Scalability}

|

Payment as a Service

Public key infrastructure

Account management

OpenAM Cluster

1]

2

< o

& Distributed data store Load

> balancer

[

£ =2

T = \ \ |
(=2

1000 1000 1000 1000 o || OpenAM OpenAM OpenAM

o

3 - | | |

I L.}

c =2}

E = Load

£ 250 (250 | [250 (250 [250 | 5 D e

p 250 250 250 250 250 =

g 250 250 250 250 250 o

@ T 250 250 250 250 250 =

E henj ﬁenﬂ ﬁ,enj

El Node 1 Node 2 Node 3 Node 4 Node 5

§ Replication between nodes with 1 backup for every entry Replication between OpenDJs

Figure 1. High-level overview of the MobiCent framework.

of load tests to a cluster of Selenium machines. However,
Selenium is not built specifically for load testing, and does
not come with built in scalability and quality of service
analysis tools. There is also no out of the box support for
communication and synchronisation between these nodes. As
WebDriver nodes depend on instantiating browsers, this im-
parts a huge performance penalty and prevents easily scaling
up to thousands of concurrent users. Finally, Selenium is
focused on web applications, and it is not suited to automate
load testing of arbitrary (i.e., non web) services.

Gatling [5] is an open source tool that focuses on load and
stress testing. Scenarios can be encoded in either a domain spe-
cific language, or recorded via a proxy that intercepts browser
traffic. It provides reports for load testing analysis which
include a breakdown of active sessions, requests per second,
and request residence time distribution. Gatling focuses mainly
on testing HTTP(S) scenarios. It does not support clustering
out of the box, but there is a workaround to aggregate output
from multiple independent Gatling instances. However, these
can neither synchronize nor communicate with each other.

JMeter [6] is one of the best known open source load
testing tools. It is very flexible, and supports not only web
applications, but also SOAP, FTP, various database protocols,
SMTP(S), etc. It also supports clustering out of the box, by
leveraging RMI. This limits JMeter clusters to the same subnet.
There is also no inter machine communication facility, except
for passing static data in configuration files. Although JMeter
is fully extensible by means of plugins, there is no default
support for scalability analysis (e.g., by means of applying the
Universal Scalability Law).

The Grinder [7] is a Java load testing framework for HTTP
web servers, SOAP and REST web services, and application
servers. It offers a simple and minimal runtime, with flexible
scripting in Jython. It is fairly straightforward to run distributed
tests that leverage many load injector machines. As with

JMeter, The Grinder has distributed agents that collate the
data and send it back to the coordinator. The Grinder differs
from JMeter in architectural design: its scripting based nature
is a major difference with the component based structure of
JMeter. Similarly to JMeter, however, The Grinder does not
offer default built-in support for scalability analysis.

III. ILLUSTRATION AND PROBLEM STATEMENT

In order to illustrate the problem, consider the MobiCent
framework, an online RESTful payment system that allows
the creation and consumption of monetary transactions as a
service. MobiCent allows business owners to create electronic
coupons that can later be redeemed by customers, or sellers
to create payment requests that can be sent to a buyer for
completion at a later time. This decoupling of creating and
consuming payment requests allows for more flexibility in
applying the payment framework to different use cases. In
order to achieve this, it is built on top of a public key
infrastructure, coupled to an off-the-shelf user management
and access control systemz. However, in order to be successful
in real-life deployments, its implementation must be scalable.
Therefore, it uses a scalable distributed data store in the
backend, which enables clustering of MobiCent servers—
transactions are automatically partitioned and replicated among
the different MobiCent instances.

A high-level graphical overview of MobiCent is shown in
Figure 1. It depicts a logical high-level overview of a grid
enabled payment architecture, the main core assets and how
they are linked with one another. It exposes internal core
assets through RESTful services for experimental purposes.
The application offers a RESTful interface for 1) configuration
management to customize the MobiCent deployment and the

2For user management and access control, MobiCent leverages OpenAM
and the accompanying OpenDJ data store, http://forgerock.com/products/
open-identity-stack/.

assets it provides, 2) user authentication to identify buyers
and sellers using ForgeRock’s OpenAM and OpenDJ identity
and access management frameworks, 3) user provisioning for
online bank accounts, 4) key-pair management for signing
and verifying digital monetary transactions, 5) transaction
management with support for distributed locking and various
replication modes, and 6) performance monitoring.

The actual deployment of this architecture can differ in the
number of nodes, as well as with regard to the replication and
backup mechanism used for the in-memory data store and the
OpenD]J stores. Regarding the latter, we did not differentiate
between dedicated OpenDJs for (a) user stores and for (b)
configuration stores. As the configuration stores also store
and replicate live OpenAM sessions (to support failover if an
OpenAM instance goes down), it will more likely create a
bigger replication impact.

A detailed discussion on the operation of this framework is
out of scope of this work. A high-level overview of the creation
of a transaction is shown in Figure 2. A seller creates a pay-
ment request, adds an authentication token, adds his certificate
and digitally signs the request. This request is then uploaded to
a payment service which uses the token to verify that the seller
is authenticated, and that the payment request is valid. A URL
to the payment request is returned, which can then be used
by the buyer to consume the payment request and complete
the transaction. Completing a transaction mirrors the payment
request creation, but instead creates an authenticated response
to the original request. Additional information about this case
study can be found at https://pong.cs.kuleuven.be/mobicent/.

Seller Payment
service

Identity
provider

Buyer J'_
1: checkout

1.1: create

Payment
request

T

|

|

|

|

T |
1.2: add authentication token :
|

1.3: sign | |
|
|
|
|

1.4: upload paymerit request
P pay 1 9 1.4.1: verify tokgn

|

signature

1.4.4: URL of request

I
|

Figure 2. Creating a request.

Load testing and benchmarking the MobiCent framework
is not a trivial endeavour for the following reasons.

1) MobiCent needs to support distinct usage scenarios (e.g.,
payment request creation and payment request consump-
tion). Depending on intended use cases, a combination
of different user types is required. Either way, we are
interested in a statistical breakdown per request type,
independent of the specific mix of both scenarios.

2) Both usage scenarios are not completely independent:
Clearly, payment request consumption depends on pay-
ment request creation. In order to execute the consump-
tion scenario, we need some sort of data storage so that

a priori created requests can be retrieved. We also need
a communication infrastructure, so that the creation and
consumption can be coordinated.

3) Advanced coordination models require synchronisation in
addition to data storage and communication.

4) As we are interested in benchmarking, care must be
taken that the load generation itself is not the bottleneck.
To facilitate this, we would need at least a warning
mechanism when the load generator cannot handle the
required load, a way to offload computation intensive
tasks, and an auto benchmarking feature to find how far
the load generator can scale on the underlying hardware.

5) The benchmarking should be fully automatable, so that
experiments can be batch executed and results automati-
cally gathered and processed. This improves repeatability,
which in turn increases the confidence that the analysis
results are representative.

6) The load generation process should be highly scalable it-
self, to accommodate benchmarking the largest distributed
systems. This includes both horizontal scalability (i.e.,
deploying more instances in parallel), as well as vertical
scalability (i.e., extensibility by means of plugins).

7) The scalability analysis should be scalable as well. Load
tests of the envisioned distributed setups easily involve
hundreds of thousands of requests per minute. The gen-
erated data volumes quickly outgrow the simple strategy
of sending all data to a single processor for aggregation.

IV. ToOOL ARCHITECTURE AND DESIGN

This section summarizes the design of Scalar, and high-
lights how it is able to support complex workflows and scale
up to load test large deployments. More details, as well as
a step-by-step tutorial on how to use Scalar, is provided
online®. Scalar is a fully distributed system. It consists of
multiple individual, collaborating Scalar instances. When de-
ployed, Scalar instances discover each other, and a master is
elected automatically. The master coordinates the start of an
experiment (i.e., a scalability analysis), which consists of a
number of individual runs (i.e., single load tests). Each run
contributes one data point to the experiment. A run consists
of a lower load warm-up phase, followed by a gradual ramp
up to full load, the peak load phase during which statistics are
collected, a ramp down phase, and finally another lower load
cool down phase. Both the duration and the difference between
the low and high load phases is configurable, any of these
phases can be skipped by setting its duration to zero. When
an experiment is complete, the master collates the results,
quantifies the relative throughput of the system under test in
function of user load by applying the Universal Scalability
Law, and provides a statistical breakdown of request results
and their residence times.

The Universal Scalability Law combines (a) the initial
liniar scalability of a system under increasing load, (b) the
cost of sharing resources, (c) the diminishing returns due to
contention, and (d) the regative returns from incoherency into
a model that defines the relative capacity C'(N):

N

O(N):1+a(N—1)+ﬂN(N—1)

ey

3See https://distrinet.cs.kuleuven.be/software/scalar/.

core data

[Manager |
[1
ConfigurationManager HazelcastProvider

F LocalStorageProvider
plugin

SystemMonitor
DashboardRei_gorter
ExperimentalResultsPublisher [LocalTestuser | [DistributedTestUser |

Figure 3. High-level design of Scalar. Details of the users, data and plugin
packages are given in Section IV-A, Section IV-B and Section I'V-C.

i

users

where N represents the scalability of the software system in
terms of the number of concurrent users, « represents the
contention penalty, and 3 defines the coherency penalty, with
0 < «,f < 1. To benchmark the scalability, the number of
users [V is incremented on a fixed configuration.

A high-level structural view on its design is provided in
Figure 3. The core package implements the creation, schedul-
ing and managing of simulated users. Representative user
behaviour against which the system is to be tested, is encoded
by creating one or more specific user and request types. That
process is discussed in Section IV-A. Next, we document
how we implement inter-user and machine communication and
synchronisation to support complex workflows by means of
data providers in Section IV-B. Finally, we show how we
enable systematic scalability analyses with many Scalar nodes
by means of plugins in Section IV-C.

A. Encoding workflows via users and requests

The abstract User class represents individual simulated
users that follow a business flow which encodes the antici-
pated representative way in which the system will be used.
All benchmarking results are relative towards the behaviour
exhibited by the User objects. The typical life cycle of a User
object is shown in Figure 4. Depending on the configuration,
the Manager instructs the UserPool to create a number of User
objects. The UserPool delegates User object creation to the
UserSpawner, which uses reflection to load and instantiate the
configured concrete user types at runtime.

Newly created user objects are scheduled for execution
by adding them to a thread pool, which is responsible for
periodically scheduling every User object for execution in
its own thread. While user threads are scheduled with a
configurable fixed wait in between two consecutive requests,
they are started with small random delays. If the amount
of users is large with respect to the inter-request wait time,
the request arrivals are Poisson distributed. The business flow
to be followed by individual user objects is encoded in the
abstract goFetch method. By overriding this method, concrete
User types can encode how to interact with the system to be
benchmarked.

ThreadPool UserPool UserSpawner

| I
| |
: 1: spawnUser :

1.1: create User

T
|
|
|
|
|
|
|

2: schedule(user) .
3: startMeasuring |
|

|
| 4: stopMeasuring
| 5: remove(user)

S

|
t
6: stop :
T
|

T

Figure 4. User life cycle.

User specific initialisation tasks can be handled by over-
riding the constructor. The User class also offers the option
to override the onStop method to handle tasks that need to be
done when a user object is destroyed. Finally, in order to make
a distinction between requests generated during the warm-up
phase, not all user actions are considered statistically relevant.
The UserPool instructs user objects when to start and stop
measuring by invoking the similarly named methods. Although
collecting and processing requests is handled completely on an
abstract user level, User subclasses are able to inspect whether
the current requests are statistically relevant or not.

B. Supporting coordination with data providers

Inter-user communication is implemented by means of
the blackboard architectural pattern: There is one central
data repository, implemented by the DataProvider abstraction,
which allows user objects to store and retrieve arbitrary objects.
All communication between users is done via that repository.
The interface of a DataProvider is similar to that of a map, and
is based around a put(key, value) and get(key) operation. This
abstraction allows for many interchangeable data provider im-
plementations. Depending on the load testing requirements, a
LocalStorageProvider can be used which leverages an underly-
ing SynchronizedHashMap to store data per virtual machine, or
a HazelCastProvider which leverages the HazelCast distributed
storage system [8] that allows inter-machine communication.
Adding a new data provider is as easy as extending the abstract
DataProvider class, and specifying the new data provider
implementation in the Scalar configuration file.

Synchronization is also built on top of the data provider
abstraction. A data provider offers both lock(key) and unlock(
key) operations, which allows synchronisation of both Scalar
instances and user objects on specific key values. The
LocalStorageProvider implements locks with standard Java
ReentrantReadWriteLocks, while the HazelcastProvider lever-
ages the underlying distributed Hazelcast locking mechanisms.
Given that calls to the underlying HazelCast engine are in-
herently thread safe, the notion of distributed locks is suffi-
cient for most synchronization requirements. However, other
synchronization primitives such as spinlocks could equally
be implemented by the data provider mechanism. As the
overall Scalar functionality (including master election, instance
discovery, experimental synchronization and results exchange)
is built on top of this abstraction, fine tuning the Scalar cluster
behavior can be achieved by selecting a correct underlying
data provider. For instance, adapting Scalar to handle hard

real time constraints could be achieved by creating in a new
data provider that is able to offer real time guarantees on data
storage, retrieval, and synchronisation.

Internal synchronisation and deadlock issues in user code is
easily detected, as Scalar automatically detects when internal
handling of requests takes too long: When the time between
two user requests exceeds the configured delay by more
than 5%, a warning is generated. That not only allows the
experimenter to be warned of deadlocks in the test cases
themselves, but also to detect bottlenecks in the load generation
process. In the case where Scalar becomes too slow to generate
sufficient load for the system under test, overall throughput
can be optimized by refactoring user code (i.e., perform more
processing asynchronously in helper threads or out of band in
plugins), starting fewer user threads per Scalar instance, and
increasing the Scalar cluster size.

C. Enabling large scale analyses with plugins

The overall functionality of Scalar can be modified and
extended by means of plugins. A plugin is notified of different
system events by means of several callback methods: When it
is loaded and destroyed, and when the different load testing
phases (i.e., warm-up, ramp up, peak load, ramp down, and
cool down) take place. This allows plugins to perform platform
wide initialisation tasks, such as populating the data provider
with certain transactions to be executed, configuring the server
under test, etc. Similarly, plugins can clean up the platform
state in between different runs.

Plugins can also be used to inspect requests—every plugin
receives a call-back for every executed request. This allows
plugins to perform real-time request analysis and reporting.
Clearly, care must be taken to process requests in real-time,
as hundreds of requests can be generated per Scalar instance
per second. For more computationally intensive processing, the
plugin receives a call-back with a list of all requests generated
during the previous run when that run is finished. Plugins can
use the underlying data providers to store results.

The Scalar platform comes with three domain indepen-
dent plugins built in which are crucial in enabling large
scale analyses: The SystemMonitor, the DashboardReporter
and the ExperimentalResultsPublisher. The first two plugins,
the SystemMonitor and DashboardReporter, are essential in
monitoring an experimental setup and gaining confidence in
the correctness of the results. The SystemMonitor periodically
gathers system resource usage, such as CPU and memory
usage, as well as data sent and received per network interface.
This allows identifying bottlenecks in the load generation
process itself—for instance, when the network consumption
data would indicate that the amount of generated traffic is close
to the maximum network capacity. The DashboardReporter

calculates simple statistics on request residence times and
request results, and sends them to a web based dashboard for
real-time visualisation. The dashboard allows experimenters to
get a quick overview on how the load test is progressing, and
whether results are not anomalous (e.g., when all requests have
an error status because the system under test is not responding).

The third plugin, the ExperimentalResultsPublisher, han-
dles distributed processing of request data and quantifies the
scalability of the system under test in two dimensions. First, it

calculates statistics per request type, and provides an overview
of the distribution of request type residence times: it fits
residence times to a specific distribution and calculates its
parameters. That allows experimenters to calculate the resi-
dence time density function, which, in turn, provides answers
to questions such as “How many requests were handled within
10ms?”. Second, the plugin computes the relative capacity of
the system under test for various user loads, and fits the relative
capacity data to the Universal Scalability Law. That allows
experimenters to extrapolate how many users the system under
test would be able to handle under different circumstances. It
additionally allows pinpointing of the optimal load point, and
provides a precise characterisation of the coherency and serial
fraction parameters of that system, as per [9].

l slave1 : ExperimentalResultsPublisher] l slave2 : ExperimentalResultsPublisher I

1: publishResuItst(resuIts1)l i 2: publishResults(results2)

l : HazelcastProvider H : HazelcastProvider]

k—‘ : HazelcastProvider i»—J

3: publishResuIts(resuItsS)T i 3.1: getResults()

l master : ExperimentalRe sultsPublisher]

Figure 5. Aggregating and publishing results.

The ExperimentalResultsPublisher is critical to achieve
scalability of Scalar to analyze large, distributed setups, where
sending all requests to a single point for analysis is not
an option. It achieves the necessary scalability by means of
distributed processing: Every Scalar instance is responsible to
perform statistical processing on locally generated requests,
i.e., calculate the mean and standard deviation of the local
residence times, and provide total counts for all issued requests
and their result status. Only these values are sent to the
master Scalar instance. When all runs are completed and
the experiment terminates, the ExperimentalResultsPublisher

on the master Scalar instance aggregates the partial results

statistics, and uses these to compute a global view on the
system scalability and request residence time distribution.
That reduces the problem of exchanging all request data to
exchanging six floating point numbers and eight integers per
Scalar instance, per request type. A graphical overview of
result aggregation is shown in Figure 5.

V. CASE STUDY

To illustrate the working of the Scalar platform, we apply
it to the MobiCent framework as documented in Section III.
Instantiating Scalar for a specific problem domain is straight-
forward. First, one or more user types are created in Java that
encode how a user is expected to interact with the system
under test. Scalability results are relative to these user types.
Second, one or more request types are created that are used
by the user types to communicate with the system under test.
Quality of service results are broken down per request type.
Finally, extra functionality can be added to Scalar by means
of plugins.

We begin by encoding the MobiCent use cases in a new
MobiCentUser in Section V-A. How requests to MobiCent are

encoded, is documented in Section V-B. We show how plat-
form specific configuration and initialisation can be performed
by means of plugins in Section V-C. Finally, we show how
to operate the platform and example output in Section V-D.
Code examples are provided, where applicable, for illustration
purposes. Note that these are necessarily incomplete due to
size considerations.

A. Creating a MobiCent user

In order to encode the MobiCent use cases, we introduce
a MobiCentUser as a subclass of User. New user objects can
be configured by overriding the constructor and leveraging the
built-in data providers to read and optionally write values. Note
that domain specific configuration options can simply be added
to the traffic generator configuration file as key-value pairs,
and retrieved via the data().getAsString(...) method, as shown
below.

Listing 1. Creating a new User type.
1 package be.kuleuven.distrinet.trafficgenerator.users;
2
3 class MobicentUser extends User {
4 MobiCentUser(DataProvider data, Plugin plugin)
throws DataException {
super(data, plugin);
// Store and retrieve data via the data() DataProvider.
String mobicent_url=data().getAsString("mobicent_url”);
9 // Create and execute requests.
10 MobiCentAuthenticate r1=new MobiCentAuthenticate(this);
11 // Note that User has support for generating and

5
6
7
8

12 // (re—) using configurable user names and credentials

13 // via the built—in username() and password() methods.

14 String token = r1.doRequest(mobicent_url, username(),
password());

15

16}

17 }

If multiple use cases have to be supported in parallel, then
multiple user types can be created. The tool instantiates user
objects based on its configuration. For instance, assume that
we want to distinguish between transaction producers (i.e.,
product sellers) and consumers (i.e., users), then two types
MobiCentUser and MobiCentSeller can be created. If we want
to test the system behaviour with a mix of 5% sellers and 95%
users, then the following configuration can be used.

user_implementations=
MobiCentUser,MobiCentSeller

MobiCentUser=0.95

MobiCentSeller=0.05

If a seller wants to collaborate with other sellers or with
a user to exchange transactions, then this is possible by
means of the built-in data providers. Assume that transactions
get assigned a strictly incrementing globally unique sequence
number, for testing purposes. This implies that sellers need
a synchronisation and locking feature to read and update the
value of this counter, and users need to be able to receive
transactions from sellers. This can be implemented as follows.

Listing 2. Synchronization and communication between users.
18 class MobiCentSeller extends User {

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

public void publishTransaction() {
data().lock("transaction_counter”);
int counter = data().getAsInt("transaction_counter”);
data().put("transaction_counter”, counter+1);
data().unlock("transaction_counter”);
data().put("transaction” + counter,

new Transaction(this,counter));
}

}

class MobiCentUser extends User {
public void consumeTransaction() {
for (String key : data().keys()) { // Find a transaction... }
Transaction t = (Transaction) data().get(key);

=
}

Clearly, this is a (rather naive) simplification: locking
on a system wide value and generating transactions inline
during load testing (which requires expensive cryptographic
operations), risks creating a bottleneck in the traffic generation
process itself. Additionally, the MobiCent service should be
configured before the start of an experimental run, and its state
reset after every run to make everything repeatable. However,
as many runs can be scheduled automatically as part of an
experiment, we need a way to automate this. That functionality
can be handled by creating a plugin, as shown in Section V-C.

B. Creating requests

Requests are easily encoded by creating a new request type
that extends the Request class. Requests are automatically
aggregated and processed by Scalar—a breakdown is pro-
vided per request type, and per request result. Request results
are indicated by means of the done(RequestResult) method;
RequestResults include SUCCEEDED, ERROR, NO_RESULT
, etc. The programmer can leverage the startTimer() and
stopTimer() methods to finely measure the exact duration of
an actual service request, and avoid interference from any pre
or post processing.

Listing 3. Creating a new Request type.
package be.kuleuven.distrinet.trafficgenerator.requests;

public class MobiCentAuthenticate extends Request {
public String doRequest(String url,
String username, String password) {
try {

String dst= url +
”/authentication/authenticate ?username="+
URLEncoder.encode(username, "UTF—8") +
"&password=" +
URLEncoder.encode(password,”"UTF—8");

// Start the timer.

startTimer();

// Perform the request.

String jsonResult = HitpUtil.doGet(dst);

stopTimer(); / Stop the timer.

// Perform result post processing.

if (result.getCode() == 200)
done(RequestResult. SUCCEEDED);

}

59
60
61
62
63
64
65
66

85
86

Of course, one user can generate multiple kinds of
requests. For instance, MobiCent users create and con-
sume transactions by means of MobiCentGetTransaction and
MobiCentPutTransaction requests. Each MobiCentUser object
also logs out of the system when it is destroyed, to avoid
leaving sessions in an inconsistent state, by means of a
MobiCentLogOut request. The code of these requests is omitted
for brevity.

C. Platform configuration and initialisation via plugins

The main tasks of a plugin are platform initialization, tear
down, user life cycle management, and offloading processing
intensive operations to a point in time where the load testing
results can not be biased. In the case of generating transactions,
for instance, we want to distinguish between preparing a
transaction (i.e., obtaining a sequence number and signing it)
and registering a transaction (i.e., sending it to the MobiCent
service for validation). The latter, load testing the service, is
what we are interested in, and care must be taken that the for-
mer does not bias the results. Therefore, preparing transactions
can be performed by a plugin right before each experimental
run commences. The same holds for configuring the MobiCent
service and deleting registered transactions after each run. As
with user and data provider implementations, plugins can be
loaded by specifying them in the Scalar configuration file.

Listing 4. Creating a plugin.
public class MobiCentPlugin extends Plugin {
@Override
public void onlnitialization() {
// Read configuration from data(), send to server.
// Note that this should only be done by one traffic
// generator instance, letting the master do it is
// an easy way out:
if (data().getAsBoolean(
Option.LOCAL_MASTER.toString())) {
// Retrieve configuration options.
boolean senderAuthentication =
data().getAsBoolean(’sender_authentication”);

// Send configuration options to the server...

}
}

@0Override
public void onStartUp() {
// Prepare and store transactions.

}

@Override
public void onStop(ArrayList<Request> allRequests) {
// Reset the service configuration.

}
)

D. Performing the experiment

To illustrate, consider the following experiment. A
Scalar configuration file is created by the experimenter for
MobiCentUsers to generate a transaction every 500ms for a
period of one minute per run, and that for various increasing
loads. A number of Scalar instances are started, which perform

auto-discovery and master election. The master then coor-
dinates the individual experimental runs, and aggregates the
experimental results. An overview of the output generated by
Scalar for a load test of transaction creation and consumption is
shown in Table I; the output fitted to the Universal Scalability
Law is depicted in Figure 6.

200

T

MobiCent scalability
Linear scalability - - - -
Measured values @

150 | L B

Effective users handled
=
)
IS
T
|

50 |- - —

0 L L L
0 50 100 150 200

Load (concurrent users)

Figure 6. Scalability graph of the MobiCent framework.

The results give an indication of how many concurrent
users that match the specified simulation could be handled by
that specific MobiCent instantiation, i.e., with the given data
replication strategy in the backend, load balancing strategy, and
so on. The output of the dashboard during a load test of the
authentication step of the MobiCent flow is shown in Figure 7.
It contains an indication of the load on the Scalar system in
the top left corner (as calculated by taking the average CPU
usage of all Scalar instances), an overview of request residence
times in the candlestick chart on the bottom left, the USL
model of the service with an indication of the current load level
on the bottom right, and a prediction of how many requests
are successfully handled within an example quality of service
policy of 5ms on the top right.

Predicted quality of service

W Good
Other

1 15
Time Issued requests (in 1000 rs)

Figure 7. Monitoring the scalability analysis results in real time with the
DashboardReporter plugin.

VI. DISCUSSION

The coding effort required to create new user and request
types in Scalar is low. For instance, a trivial user class that
performs simple HTTP HEAD requests to a web server, is 30
lines of code (including whitespace), while the HTTP HEAD
request class is 43 lines of code.

Users Min (ms) Max (ms) Mean (ms) Std. dev. Shape Scale Requests

100 5.0 2240 18.79 14.775 1617 11617 6798

120 5.0 351.0 21.048 20.902 1.014 20.756 8659

140 5.0 218.0 26.277 22.084 1.416 18.56 11033

200 3.0 618.0 43288 59.41 0.531 81.537 17446
Table 1. EXAMPLE PERFORMANCE RESULTS GENERATED BY SCALAR.

When compared to frameworks such as IMeter?, it is clear
that the data provider abstraction of Scalar allows for more
flexible communication and synchronisation. Scalar inherits
the scalability of the underlying Hazelcast system, which is
explicitly designed to scale up to clusters of hundreds of
nodes’. However, in specialized contexts (e.g., a real-time
or embedded domain), it is fairly straightforward to plug
in a different communication and synchronisation layer, as
the dependency on Hazelcast is not hard coded. Similarly,
the distributed statistics aggregation means that longer, high
volume experiments involving many Scalar nodes can be
achieved.

During the presentation of the case study in Section V, we
tacitly assumed that it is possible to configure the MobiCent
service remotely. Clearly, this is not always so. In order to
streamline the automation of the scalability analysis, we have
added a simple REST interface that allows changing the most
common configuration options at runtime. Of course, adding
operations to a service is not always possible, nor desired. In
that case, however, simple management tools could equally
be automated—for instance, a simple JMX component could
be triggered by the traffic generator framework to provide the
same effect. This is the topic of future work.

Load testing is a very subtle process. Even though Scalar
immensely facilitates the scalability and quality of service
analysis of a system, care must be taken to avoid pitfalls.
The most common pitfall is that the bottleneck is not in
the system under test, and that the load testing results are
skewed by the load generation process itself. In order to avoid
this, the following guidelines can be used. First, make use
of the built-in LocalTestUsers to verify that the underlying
traffic generation systems can easily handle the envisioned
amount of user threads without significant slowdown. Second,
perform the same test with the DistributedTestUsers, if node-
to-node communication is used, to test that the network is
able to comfortably handle the traffic generation cluster size.
Third, enable the SystemMonitor to monitor resource usage
and identify potential bottlenecks.

To ensure that the load testing results adequately character-
ize the system under test, it is first necessary to obtain a rough
estimate of the optimal load point p*. This can be achieved
by performing initial, rough experiments and observing when
the relative capacity starts to stagnate in function of increasing
load. Once this point is found, an experiment with preferably
at least 10 runs distributed over the interval [1..1.5p*] should
be performed. That ensures that the relative capacity curve
adequately characterizes the maximum service throughput.

4How JMeter could be deployed in a similar distributed context is summa-
rized in http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_
by_step.pdf.

SE.g., http://cloud.dzone.com/articles/running-hazelcast- 100-node.

Also, be wary of interference from other system processes (it
would not be the first time that an automated apz-get update
skews some of our data points). This can be partly mitigated
by observing the results in real time via the dashboard to spot
anomalies.

VII. CONCLUSION

We have presented Scalar, a distributed platform for large-
scale load testing and quality of service analysis. The platform
is developed specifically to support complex workflows that
involve both intra- and inter-machine communication and
synchronisation. It also supports scaling to large deployments
by means of distributed results processing. In order to achieve
that, it is built upon the Hazelcast distributed in-memory data
grid. The platform functionality is extensible by means of
custom user types, as well as plugins. Built-in functionality
includes monitoring of the underlying load generating plat-
form, support for data aggregation and analysis by means of
the Universal Scalability Law, and real-time visualisation of
results via a web based dashboard.

Scalar has already been applied successfully to a number of
in-house projects, as well as commercial systems. We conclude
that it is capable of characterizing both the scalability and
quality of service of complex, distributed services. Future work
involves automating the instantiation of Scalar for very large
cloud-based deployments. That would allow us to eventually
achieve load testing as a service.

ACKNOWLEDGMENT

This research is partially funded by the Research Fund KU
Leuven.

REFERENCES

[1] N.J. Gunther, “A simple capacity model of massively parallel transaction
systems,” in CMG-CONFERENCE-. COMPSCER MEASUREMENT
GROUP INC, 1993, pp. 1035-1035.

[2] D. Gross, J. E. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of queueing theory. John Wiley & Sons, 2013.

[3] N. J. Gunther, “How to Quantify Scalability,” http://www.perfdynamics.
com/Manifesto/USLscalability.html, online; accessed 13-May-2014.

[4] SeleniumHQ, “Selenium - browser automation,” http://docs.seleniumhgq.
org/, online; accessed 6-March-2014.

[S] Gatling, “Gatling Stress Tool,” http://gatling-tool.org/, online; accessed
6-March-2014.

[6] The Apache Software Foundation, “Apache JMeter,” http://jmeter.apache.
org/, online; accessed 17-February-2014.

[7]1 Philip Aston, “The Grinder,” http://grinder.sourceforge.net/, online; ac-
cessed 6-March-2014.

[8] Hazelcast, Inc., “The Hazelcast Open Source In-Memory Data Grid,”
http://www.hazelcast.org/, online; accessed 6-March-2014.

[9] N. J. Gunther, Guerrilla capacity planning - a tactical approach to
planning for highly scalable applications and services. Springer, 2007.

