KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
Celestijnenlaan 200A — 3001 Leuven (Heverlee)

TOP-DOWN INDUCTION OF
FIRST ORDER LOGICAL DECISION

TREES

Jury :

Prof. Dr. ir. E. Aernoudt, voorzitter

Prof. Dr. ir. M. Bruynooghe, promotor

Prof. Dr. L. De Raedt, promotor

Prof. Dr. B. Demoen

Dr. S. Dzeroski,

Institut “Jozef Stefan”, Ljubljana, Slovenié

Prof. Dr. D. Fisher,

Vanderbilt University, Nashville, Tennessee, USA
Prof. Dr. I. Van Mechelen

U.D.C. 681.3*126

December 1998

Proefschrift voorgedragen tot het
behalen van het doctoraat in de
toegepaste wetenschappen

door

Hendrik BLOCKEEL

©XKatholieke Universiteit Leuven - Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemmimg van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/1998/7515/57

ISBN 90-5682-156-3

Preface

Do. Or do not. There is no try.
— Yoda, Jedi master

This text describes the main results of the research I performed with the Ma-
chine Learning group of the Department of Computer Science at the Katholieke
Universiteit Leuven. On a global level, this research is about the application
possibilities of inductive logic programming in the context of databases. More
specifically, the research focuses on two topics. The first topic is what we call
inductive database design: finding a good design for a (deductive) database
from a set of extensionally defined relations. The second topic is the applica-
tion of inductive logic programming for data mining. As both topics differ a bit
too much to be handled elegantly in one single text, this text only encompasses
the second topic. The first one has been described in the literature.

I guess it is needless to mention that this work would not have been realized
without the help of a great many people. It does not seem possible to give
even a probably approximately complete overview of all the people who have
significantly influenced it. Nevertheless I would like to express my gratitude to
some people in particular.

First of all, I want to thank the Flemish Institute for the Promotion of
Scientific and Technological Research in the Industry (Vlaams Instituut voor
de Bevordering van het Wetenschappelijk-Technologisch Onderzoek in de In-
dustrie, IWT) for funding this research. Their financial support is not the only
thing T am grateful for, however; it has also been very pleasing to notice that
they actively show interest in the research they fund, by following up projects
and regularly sending reports on the activities of the institute.

During the four years I spent at the Leuven machine learning group I have
had the pleasure to work together with many different people, all of whom
contributed in their own way to this work and to the stimulating environment
that made it possible. I first want to mention Hilde Adé and Gunther Sablon,
who were working in the Leuven machine learning group at the moment I joined
it. Being seasoned researchers, they did not only share a lot of their knowledge
with the newer members of the group, but most of all, they created a very

ii PREFACE

pleasant atmosphere at work — an atmosphere that is still there three years
after they have left the group.

Luc Dehaspe and Wim Van Laer joined the group around the same time
I did, and they are the PhD students with whom I have co-operated most
closely. The countless spontaneous discussions among us have had an important
influence on my work (and I hope also on theirs!). The most physical evidence
of their contributions to this work, however, can probably be found inside
the code of the TILDE system. A significant part of this code was borrowed
directly from Wim’s ICL and Luc’s CLAUDIEN system. By making available
very readable and reusable code, they have not only significantly sped up the
development of TILDE, but most of all, motivated me to implement it in the
first place.

I would not do justice to these people, however, if I only praised their
professional qualities. They also proved to be highly enjoyable company both
at work and in between.

The arrival of Nico Jacobs, Kurt Driessens and Jan Ramon further added
to the good atmosphere in our machine learning group — and also to the
cosiness of our office, for that matter. They were also the first users of TILDE,
alpha-testers one might say, and their feedback has been very helpful. Nico and
Jan have also contributed to this work by performing some of the experiments
mentioned here.

It will probably not come as a surprise that the people I owe most to are my
promotors: Maurice Bruynooghe and Luc De Raedt. Maurice is undoubtedly
the person who has had the most condensed influence on this work. While he
has followed it from a greater distance than Luc, and contacts with him were
less frequent, on those occasions where he did have some advice it was usually
short but extremely useful. Some people say a picture is worth a thousand
words. I guess Maurice must talk in pictures, then.

But the person who has had by far the most influence on this work is Luc
De Raedt. I cannot express how much I owe to him in only a few paragraphs
— actually, ’'m not sure if even Maurice could. It was Luc who kindled my
interest in machine learning in the first place, and who motivated me to apply
for a grant at the IWT. It was also he who came up with many of the ideas
that have been fleshed out in this text.

But I can imagine that these tasks, while performed in an excellent man-
ner, are still part of the standard job specification of a good promotor. Luc’s
coaching has gone far beyond that, however. I feel he has really been a teacher
to me: a teacher who taught me how to do research and how to report on it;
who continuously evaluated my work and offered suggestions for improvements;
who pointed to existing work related to mine and brought me into contact with
many people in the machine learning community; and who promoted and de-
fended my work at every opportunity.

iii

I am also very grateful for his support during the writing of this text, for
his many comments and his insisting on improving the text when I would have
settled for less. When, at some moment during the preparation of this text, I
had found the time to watch the Star Wars Trilogy, and heard Yoda speak the
words quoted at the top of this text, it occurred to me that no words could
better describe Luc’s attitude.

Of the many people I have met outside the machine learning group of
Leuven, I would like to thank in particular a few people who have had a special
influence on this work. First, I want to mention Saso DZeroski, who has at
several times co-operated with our group, and who has been one of the most
enthousiastic users of the TILDE system.

At the Fifteenth International Conference on Machine Learning I have had
the pleasure to meet Douglas Fisher, who was so kind to set some time aside
for a discussion and to point us to some relevant work. It has been particularly
pleasing to see that both Douglas and SaSo accepted the invitation to serve as
a Jury member for this dissertation.

I also want to thank the members of the reading committee for their very
useful comments on an earlier draft of this text. Besides their improving the
final form of this text, each of them has had a significant influence on the
research itself. I already mentioned Luc De Raedt and Maurice Bruynooghe.
Iven Van Mechelen has influenced this work mainly through his course on In-
ductive classification methods. This course provided a very different view on
classification than the typical inductive logic programming views, and this has
broadened the scope of this text a lot. With respect to the implementational
aspects I want to thank Bart Demoen, who has often offered help and explan-
ations concerning the Prolog engine we use, and who has actively participated
in improving the efficiency of TILDE.

Special thanks go to Wim Van Laer, who has been so kind to proof-read
the Dutch summary of this text.

I would like to end these acknowledgements by mentioning Frank Matthijs
and Bart Vanhaute, who had nothing to do with this text or the research
described in it. In a sense they have been all the more valuable to me because
of that.

iv

PREFACE

List of Symbols

The following list indicates the meaning of symbols that are commonly used
throughout the text. Some of these symbols (e.g., single letters) may in specific
cases be used in a different context; in those cases their meaning is always
explicitly mentioned.

NQ® Wt 1 <>T

C(E)
Cc(E)

n
conj

HomS SRS

entailment

conjunction operator

disjunction operator

negation operator

implication operator

information corresponding to a space S

power set of S

background theory

a clause

a cluster

a clustering

the clustering space of a set of instances E
intensional clustering space of E w.r.t. a language £
binomial coefficient : C* = n!/(z!- (n — z)!)

a conjunction

class utility

description space; the subspace of I disjoint with P
a distance

Euclidean distance

equality distance

function mapping decision trees on decision lists
an instance from a given set of instances E

a set of instances

a partition of a set of instances

expected value operator

vi

SSg
SSw
tr

X,y
L1ye:e3Tn

LIST OF SYMBOLS

cluster assignment function

a logical formula that refers to the variable s
instance space

subspace of I — P available only to the learner
a language

lookahead operator

set of literals occuring in a clause ¢

minimal Herbrand model of logic program P
mean squared error of prediction

prototype function

prediction space

predictor function defined by clustering C
partition utility

target function

quality criterion

query

the set of real numbers

the set of positive real numbers

relative error

refinement operator

total sum of squared distances

sum of squared distances between sets

sum of squared distances within sets
function mapping decision lists on decision trees
a test in a node of a decision tree

a set of tests

an arbitrary instance

instances represented as vectors

first ...n-th component of a vector x

target variable

a value of the target variable

Contents

1 Introduction 1
1.1 Machine Learning and Artificial Intelligence 1
1.2 Data Mining and Knowledge Discovery 2
1.3 Logic Programming and Inductive Logic Programming 4
1.4 Connections Between These Fields 5
1.5 Motivation and Contributions 6
1.6 Structure of this Text 6

2 A Clustering Approach to Prediction 9
2.1 Introduction 9
2.2 Distances and Prototypes 10

2.2.1 Distances Between Individual Examples 10
2.2.2 Distances Between Sets of Examples 12
2.2.3 Prototypes e 13
2.3 Clustering e e 13
2.3.1 Problem Definitiono, 13
2.3.2 Dimensions of Clustering 22
2.3.3 Evaluation of Clusterings 31
2.4 Using Clusterings for Prediction 32
2.4.1 Extensional Clusterings 32
2.4.2 Intensional Clusterings 33
2.4.3 Mixing Extensional and Intensional Reasoning 34
2.5 Creating Clusterings for Prediction 36
2.5.1 Clustering in Different Spaces 36
2.5.2 Do Learners Ignore Useful Information? 38
2.5.3 Applications of Predictive Clustering 41
2.6 Related work oo 42
2.7 Conclusions 44

vii

viii CONTENTS
3 Top-down Induction of Decision Trees 45
3.1 Introduction. 45
3.2 Decision Trees. 46
3.3 Induction of Decision Trees 48
3.3.1 Splitting Heuristics 51
3.3.2 Stopping Criteria, 53
3.3.3 Information in Leaves 54
3.34 Post-pruning 55
3.3.5 Summaryo e e e e e e e e e e e e 55
34 TreesversusRules 56
3.4.1 Induction of Rulesets 56
3.4.2 A Comparison Between Trees and Rules 59
3.5 Related work 63
3.6 Conclusions e 63
4 First Order Logic Representations 65
4.1 Introduction 65
4.2 Concept Learning and Intensional Clustering 66
4.3 Attribute Value Learning 68
4.4 Learning from Interpretations 71
4.5 A Relational Database Viewpoint 74
4.5.1 Attribute Value Learning Versus Learning from Multiple
Relations 74
4.5.2 Conversion from Relational Database to Interpretations 77
4.6 Learning from Entailment 79
4.7 Relationships Between the Different Settings 84
4.7.1 On the Origin of Learning From Interpretations. 84
4.7.2 Learning From Interpretations Links Attribute Value Learn-
ing to Learning From Entailment 87
4.7.3 Advantages of Learning From Interpretations 89
4.7.4 Limitations of Learning From Interpretations 89
4.8 Related Work L o 90
4.9 Conclusions 90
5 Decision Trees in First Order Logic 91
5.1 Introduction L. 91
5.2 Setting 92
5.3 First Order Logical Decision Trees 93
5.3.1 Definition of First Order Logical Decision Trees 93
5.3.2 Semantics of FOLDTs 94
5.3.3 On the Expressiveness of FOLDTs and Other Formalisms 97
54 Related Worko 99
5.5 Conclusions 100

CONTENTS

6 Top-down Induction of First Order Logical Decision Trees
6.1 Introduction.
6.2 Architecture of TILDE
6.3 Upgrading TDIDT to First Order Logic

6.3.1
6.3.2

Computing the Set of Tests fora Node
Discretizationo Lo oo

6.4 Instantiations of TDIDT in TILDE

6.4.1
6.4.2
6.4.3

Classification Trees
Regression Trees
Clustering Trees

6.5 An Example of TILDE at Work
6.6 Some Efficiency Considerations

6.6.1
6.6.2

Scalability
Querying Examples Efficiently

6.7 Experimental Evaluation

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

Materials L Lo
Building Classification Trees with TILDE.
The Influence of Lookahead
The Influence of Discretization
Regression.
Clustering
The Effect of Pruning on Clustering
Handling Missing Information

6.8 Related work
6.9 Conclusions

7 Scaling up TILDE Towards Large Data Sets
7.1 Introduction
7.2 Different Implementations of TILDE
7.3 Optimizations Lo Lo

7.4 Experiments. Lo o e

7.4.1
7.4.2
7.4.3
74.4
7.4.5

DataSets
Materials and Settings L.
Experiment 1: Time Complexity
Experiment 2: The Effect of Localization
Experiment 3: Practical Scaling Properties

7.5 Related Work oo

7.6 Conclusions v v v v v i e e e e e e e e e e e

8 Conclusions

ix

103
103
104
105
105
114
116
117
117
119
121
122
122
126
126
127
129
131
133
134
137
139
141
142
144

145
145
146
150
154
154
155
156
160
163
166
168

169

CONTENTS

X
A Data Sets 183
A1 Soybeans 183
A2 Tris oL 183
A3 Mutagenesiso oL o Lo 183
A4 Biodegradability 000 188
A5 Musk. e 189
A6 Mesh 191
A.7 Diterpeneso 191
A8 RoboCup 195
A9 Poker 195

List of Figures

1.1

2.1
2.2

2.3
2.4
2.5

2.6

2.7
2.8
2.9

2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6

The knowledge discovery process.

A hierarchical clustering. L0000,

An intensional hierarchical clustering, different from the one in
Figure 2.1..o o

An example of clustering, in the context of fruit and vegetables.

Predictive clustering. oo
Conceptual clustering. The way in which the cross would typ-
ically be divided into two clusters depends on the context. The
context itself is, in these drawings, suggested by the other points
inthedataset.
Do people think the symbol in the middle is more similar to
the letter ‘B’, or to the number 13? It depends on the symbols
surrounding it. L Lol
Different clustering methods.
Clustering systems plotted along the flexibility dimension. . . .
The difference between predictive and descriptive clustering. (a)
original set of points; (b) a bad descriptive but good predictive
clustering; (c) a good descriptive but bad predictive clustering.
Clustering based prediction.
Clustering in the instance space and in its subspaces.
An example of an instance that has a high probability of being
misclassified by a simple tree.0 0L

Making a prediction for an example using a decision tree.

Two steps in the mapping from instances to predictions.
A fruit classifier in decision tree format.
The TDIDT algorithm.
Examples of rule sets in the Fruit& Vegetables example.

The covering algorithm, also known as separate-and-conquer.

xi

14

15
18
19

25

27
28
30

30
34
37

43

46
47
47
50
57
58

xii

3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

5.3
5.4

6.1

6.2
6.3

6.4

6.5
6.6
6.7

6.8

LIST OF FIGURES

A simple tree, together with an equivalent rule set. Although
the rule set is much more complex than the tree, it cannot be
simplified further. A decision list, however, does allow for a more
compact representation. Lo

A correct definition of a pair in Prolog..
A chemical database. 0oL oL,
Conversion of a relational database to interpretations.
Construction of the subdatabase KBpg,o0. . - - -
A correct definition of a pair in Prolog..
Graphical representation of the relationship between the differ-

ent settings, focusing on separation of information and openness.

88

Logical decision tree encoding the target hypothesis of Example 5.1. 93

Making a prediction for an example using a FOLDT (with back-
ground knowledge B).
Mapping FOLDT’s onto logic programs.
The tree of Figure 5.1, with associated clauses and queries added;
and the logic program derived from the tree.

Architecture of the TILDE system. Arrows denote information
flow. oL
Algorithm for first-order logical decision tree induction.
Pruning algorithm based on the use of validation sets. The al-
gorithm works in two steps. First, for each node of the tree the
quality of the node if it would be a leaf is recorded (p), as well
as the quality of the node if it is not pruned but the subtree
starting in it is pruned in an optimal way (u). In a second step,
the tree is pruned in those nodes where p > u. QUALITY is a
parameter of the algorithm; it yields the quality of a prediction
on the validation set. cov(T') denotes the set of examples in the
training set covered by T.
TILDE illustrated on the running example. A screen dump of a
run is shown, as well as a graphical representation of the tree-
building process.o
An output file generated by TILDE (slightly simplified).
Simplification of queries.
Comparison of TILDE’s performance with and without looka-
head, (a) on the Mutagenesis data; (b) on the Mesh data.
Influence of number of thresholds on accuracy: (a) Musk dataset,
comparing equalities and inequalities; (b) Diterpenes dataset,

94
95

96

104
106

118

123
124
127

133

comparing intervals with inequalities and no discretization at all. 135

LIST OF FIGURES xiii

6.9

6.10

6.11
6.12

7.1
7.2

7.3
7.4
7.5

7.6
7.7

7.8

Al
A2
A3

A4
A5

A6

At
A8

Comparison of running times for the different approaches (Diter-
penes dataset).l 135
Soybeans: a) Accuracy before and after pruning; b) number of
nodes before and after pruning. 140
Mutagenesis: Accuracy and size of the clustering trees. 141
Evolution of predictive accuracy in the presence of missing values.142

Computation of the best test @y in TILDEclassic. 147
The TILDELDS algorithm. The WACE function is defined in
Figure 7.1. The STOP_CRIT and MODAL_CLASS functions are
the instantiations of STOP_CRIT and INFO for classification as

mentioned in Chapter 6. 149
The difference between TILDEclassic and TILDELDS in the way

they process the examples and refinements. 151
Interleaved computation of answer substitutions for @) and the

success of each refinement on a single example. 152
Scaling properties of TILDELDS in terms of number of examples. 159
The effect of granularity on induction and compilation time. . . 162

Consumed CPU-time and accuracy of hypotheses produced by
TILDELDS in the Poker domain, plotted against the number of

examples. Lo 164
Consumed CPU-time for TILDELDS in the RoboCup domain,

plotted against the number of examples. 165
An example from the Soybeans dataset. 184
Examples from the Iris dataset. 185

The Prolog representation of one example in the Mutagenesis
data set. The atom facts enumerate the atoms in the molecule.
For each atom its element (e.g. carbon), type (e.g. carbon can
occur in several configurations; each type corresponds to one
specific configuration) and partial charge. The bond facts enu-
merate all the bonds between the atoms (the last argument is the
type of the bond: single, double, aromatic, etc.). pos denotes
that the molecule belongs to the positive class (i.e. is mutagenic).187
A typical settings file for the Mutagenesis data set. 188
A part of one example from the Musk data set: the molecule
called MUSK-211. It has several conformations, referred to as
211 1+l ete. . o L oL 189
The same molecule as shown in Figure A.6, but using a different
representation. Each conformation is described by a single fact
df; for each of its 166 numerical attributes. 190
A settings file for the Musk dataset. 192
Data representation in the Mesh dataset. 193

xiv LIST OF FIGURES

A.9 A typical settings file for the Mesh data set. The task is defined

as regression on the first argument of the resolution predicate. 194
A.10 The Prolog representation of one example in the RoboCup data

set. A fact such as player (other,3,-13.048958,23.604038,299)

means that player 3 of the other team was last seen at posi-

tion (-13,23.6) at time 299. A position of (0,0) means that that

player has never been observed by the player that has generated

this model. The action performed currently by this player is

turn(137.4931640625): it is turning towards the ball. 196
A.11 An example from the Poker dataset. 197
A.12 A typical settings file for the Poker dataset. 197

List of Tables

3.1 Overview of the different tasks that can be performed with TDIDT
by instantiating its procedure parameters. 50

3.2 CNF and DNF definitions for the 4+ and — classes from Figure 3.7. 62

4.1 Representing examples for learning poker concepts. Each tuple
represents one hand of five cards and the name that is given to

thehand. 69
4.2 Constructed attributes for learning poker concepts. The mean-
ing of, e.g., Er25 is that cards 2 and 5 have equal rank. 70

4.3 Representing the poker data in the learning from interpretations
setting. 73

4.4 Representing the poker data in the learning from entailment set-
ting. Negative examples are written with a preceding : - symbol;
the original information is written as a comment. 82

6.1 Comparison of tests in the continuous domain and the discrete
domain. 116

6.2 Accuracies, times and complexities of theories found by PRrRO-
GoL, FoiL and TILDE for the Mutagenesis problem; averaged
over ten-fold cross-validation. Times for TILDE were measured
on a Sun SPARCstation-20, for the other systems on a Hewlett
Packard 720. Because of the different hardware, times should be
considered to be indicative rather than absolute. 130

6.3 Comparison of accuracy of theories obtained with TILDE with
those of other systems on the Musk dataset. 130
6.4 Accuracy results on the Diterpenes data set, making use of
propositional data, relational data or both; standard errors for
TILDE are shown between parentheses. 131
6.5 Comparison of TILDE’s performance with and without lookahead
on the Mutagenesis and Mesh data sets. 132

XV

XVvi

6.6

6.7
6.8
6.9

7.1
7.2

7.3

7.4

LIST OF TABLES

Comparison of regression and classification on the biodegradab-

ility data. RE = relative error of predictions; acc. = proportion
of predictions that are correct. 136
Comparing TIC with a supervised learner. 138

Prediction of all attributes together in the Soybeans data set. . 139
Classification accuracies obtained for Mutagenesis with several
distance functions, and on several levels of missing information. 142

Overview of the different optimizations. 153
Comparison of different TILDE versions on Mutagenesis: TILDELDS,
TiLDEclassic, TILDEclassic without localization but with index-

ing (-loc, +ind) and TILDEclassic without localization and without

indexing (—loc, —ind). L 160
Consumed CPU-time and accuracy of hypotheses produced by
TILDELDS in the Poker domain. 165

Consumed CPU-time of hypotheses produced by TILDELDS in
the RoboCup domain; for induction times standard errors are

Chapter 1

Introduction

This work is situated at the intersection of several scientific domains. It is
primarily about machine learning, which in itself is a sub-domain of artificial
intelligence. Much of the research in machine learning is also relevant to the
quite new field of data mining. And finally, the research builds on logic pro-
gramming, whence it borrows a knowledge representation formalism.

In this introductory chapter, we situate our research in the context of these

different fields.

1.1 Machine Learning and Artificial Intelligence

The term artificial intelligence is hard to define, which is reflected by the fact
that many different definitions exist. Russell and Norvig (1995) (p. 5) give a
nice overview of several definitions, classifying them along two dimensions.

For this introduction, however, it is probably easiest to adopt the following
nearly trivial definition:

Definition 1.1 (Artificial intelligence) Artificial intelligence, as a scientific
field, is the study of how to make machines exhibit the kind of intelligence that
human beings exhibit.

While it is difficult to give a concise definition of human intelligence, it is
relatively easy to identify certain characteristics of it, such as the ability to
reason, to be creative, etc. One very important characteristic is the ability
to learn. Any agent (be it a human, an animal or a machine) that could be
called intelligent, should at least be able to learn from its past experience. An
agent that blindly makes the same mistakes over and over again would never
be called intelligent.

Langley (1996) proposes the following definition of learning;:

1

2 CHAPTER 1. INTRODUCTION

Definition 1.2 (Learning) (Langley, 1996) Learning is the improvement of
performance in some environment through the acquisition of knowledge result-
ing from experience in that environment.

Machine learning can then be trivially defined as follows:

Definition 1.3 (Machine learning) Machine learning, as a scientific field,
is the study of how to make machines learn.

According to Langley’s definition of learning, the learning process consists
of two subtasks: acquiring knowledge, and putting it to use. In this text we
will be concerned mainly with the acquisition of knowledge. More precisely,
we consider the inference of a general theory (the knowledge) from a set of
observations (the experience). This reasoning from specific to general is called
inductive reasoning.

Example 1.1 The following are some examples of inductive reasoning and
learning:

e An amateur bird watcher observes 10 ravens and, noticing that these 10
are all black, induces that all ravens are black.

e A child tries to build towers from blocks with different shapes (cubes,
cones, spheres, . ..). After several trials the child induces that a cube on
top of a cone is never stable, and a cone on top of a cube is always stable.

If the child uses the discovered knowledge to build higher towers, we can say,
according to Langley’s definition, that it has learned something. The amateur
bird watcher could use the knowledge that all ravens are black when attempting
to classify new birds. o

A system that is able to induce knowledge but cannot use this knowledge
is not a learning system, according to the above definition. In the literature,
however, learning is often used as a synonym for inductive reasoning, and in
the remainder of this text we will also use it in this broader sense. Only in
this introduction, we stick to the narrow definition of learning. When a system
induces knowledge, not to improve its own performance, but simply to provide
other systems (or humans) with that knowledge, we call it a knowledge discovery
system.

1.2 Data Mining and Knowledge Discovery

Knowledge discovery (Frawley et al, 1991; Piatetsky-Shapiro and Frawley,
1991; Fayyad et al., 1996) is a field that has recently become very popular in

1.2. DATA MINING AND KNOWLEDGE DISCOVERY 3

both the scientific and the industrial community. Companies are interested in
the field because of its large application potential for market studies, process
optimization, and other ways of increasing their gains.

Example 1.2 Some examples of business applications of knowledge discovery:

e A bank might discover that a certain service mainly appeals to a spe-
cific market segment, and hence focus a promotional campaign on that
segment.

e A supermarket might discover that two products are often bought to-
gether, and put these products far away from one another so that many
customers have to walk past many other products, in the hope that this
will increase sales.

The knowledge discovery task is often described as follows:

Definition 1.4 (Knowledge discovery) (Frawley et al., 1991) Knowledge
discovery is the nontrivial extraction of implicit, previously unknown, and po-
tentially useful information from data.

The process of knowledge discovery actually consists of several subtasks (see
also Figure 1.1):

o Pre-processing of the data. The data in their original form may contain
missing values, noise, or may simply not be in a format fit for applying
a data mining algorithm. Transforming the data into a suitable format
can be an elaborate and non-trivial task.

e Data mining. One or more algorithms are used to extract general laws,
patterns or regularities from the data.

o Post-processing of the results. The results obtained by the data mining
algorithm may not be in an easily interpretable format. It can therefore
be desirable to transform them into another, more intelligible format.

The terms “data mining” and “knowledge discovery” have been used some-
what inconsistently in the early literature. More recently a convention was
generally adopted that “data mining” refers to the central inductive reason-
ing task, and “knowledge discovery” refers to the whole process depicted in
Figure 1.1. We follow this terminology in this text.

4 CHAPTER 1. INTRODUCTION

1100010101

0010101011 /\/
1101101011
0101010101

1100011100
1110110111, ; post-processing
» | pre-processing L
0101010111 [of deta datamining of results AB->C
0101110011
0101010110

1110111001

0101011011
0000000000
1010010011

Raw data Knowledge

Figure 1.1: The knowledge discovery process.

1.3 Logic Programming and Inductive Logic Pro-
gramming

Logic programming is a programming paradigm in which programs consist of
first order predicate logic formulae. The main representative of logic program-
ming languages is Prolog. In this text it is assumed that the reader is familiar
with logic programming and Prolog. Readers for whom this assumption does
not hold can consult (Bratko, 1990; Sterling and Shapiro, 1986; Clocksin and
Mellish, 1981) (about Prolog) or (Kowalski, 1979; Lloyd, 1987) (about logic
programming), which are excellent introductions to these topics.

Logic programming engines (such as Prolog systems) can deduce facts from
logic formulae; i.e. they can compute those facts that are certainly true, assum-
ing the formulae they start from are correct. A classic example of deductive
reasoning is the following: all humans are mortal, and Socrates is human, hence
Socrates is mortal. In Prolog the premises of the reasoning would be written
as follows:

mortal(X) :- human(X). {for all X: if X is human then X is mortal}
human (socrates) . {socrates is human}

(the :- symbol represents the implication operator +-). One could ask the
Prolog system whether Socrates is mortal, in which case the system would
answer yes, or ask it for which X it can prove that X is mortal, in which case it

1.4. CONNECTIONS BETWEEN THESE FIELDS 5

would answer X = socrates.

While the classical logic programming engines implement deductive reason-
ing, inductive logic programming (ILP) engines implement inductive reasoning.
One could e.g. provide an inductive logic programming system with the fol-
lowing data:

raven(bird1).
raven(bird2) .

black(birdl).
black(bird2).

and ask it what properties ravens have. The system could then come up with
the rule black(X) :- raven(X): all ravens are black.

In contrast to deductive reasoning, inductive reasoning does not guarantee
that the answer is correct (seeing 2 black ravens does not guarantee that all
ravens in the world are black). Therefore the result of inductive inference is
usually called a hypothesis. Such a hypothesis needs some external motivation,
such as statistical evidence. In the above example the evidence is rather weak;
observing large numbers of ravens that are all black would make it stronger.

Induction is harder than deduction, and currently inductive logic program-
ming is very much a research topic. Many different techniques and approaches
exist, but at present there is no single language or framework for inductive logic
programming that has the status Prolog has for deductive logic programming.

1.4 Connections Between These Fields

Both machine learning and data mining depend heavily on inductive reasoning.
As data mining has only recently started to receive much attention, the field
is less mature than machine learning. It is therefore not surprising that it
borrows many techniques from machine learning (and also from statistics, for
that matter).

Since inductive logic programming provides a framework for inductive reas-
oning, it is an obvious candidate as a paradigm for both machine learning and
data mining. However, until now, it has not been used extensively for machine
learning, and even less for data mining. The main reason for this seems to
be its computational complexity. While ILP is more powerful than most other
techniques, such as attribute value learning, this power comes at an efficiency
cost. Especially in the context of data mining, where very large data sets are
often considered, efficiency is crucial.

Learning from interpretations (De Raedt and Dzeroski, 1994) is a relatively
novel setting for ILP that makes it possible to alleviate this efficiency problem.
The learning from interpretations setting could be situated somewhere between

6 CHAPTER 1. INTRODUCTION

classical ILP and attribute value learning, with respect to both efficiency and
expressive power. The learning from interpretations setting opens up new pos-
sibilities for using inductive logic programming in the fields of machine learning
and data mining.

1.5 DMotivation and Contributions

Attribute value learning is much more mature than inductive logic program-
ming, and many sophisticated techniques for a variety of tasks exist for that
formalism. The main motivation for this work is the desirability of upgrad-
ing some of these techniques to the first order framework of inductive logic
programming.

A first contribution of this text is that we unify several induction tasks (clas-
sification, regression, and certain kinds of clustering) into one framework which
we call predictive clustering. The result is one general inductive technique that
can be specialized towards more specific tasks.

A second contribution is the study of first order logical decision trees. These
are an upgrade of the classical propositional decision trees, as used for attribute
value learning, to first order predicate logic. The properties of these trees are
studied, and it is shown that within the learning from interpretations frame-
work they are more expressive than the flat logic programs that most ILP sys-
tems induce. This study also sheds new light on several other representation
formalisms and puts them in perspective.

As a third contribution, we upgrade the induction of decision trees in the
general framework of predictive clustering towards inductive logic programming
by means of first order logical decision trees. We present an implementation of
the technique and evaluate it empirically. The system is the first inductive logic
programming system to combine classification, regression, and several kinds of
clustering.

1.6 Structure of this Text

In Chapter 2 we discuss the clustering task in detail, and we identify a special
kind of clustering that we call predictive clustering. We show that certain other
inductive tasks that are usually not considered to be clustering tasks (induction
of classifiers, regression) are in fact special cases of predictive clustering.

In Chapter 3 we demonstrate how induction of decision trees, a technique
that is often used for induction of classifiers or regression, can be generalized
to predictive clustering. We show that many classical approaches to decision
tree induction are instantiations of our general framework.

1.6. STRUCTURE OF THIS TEXT 7

In Chapter 4 different representation formalisms for learning are compared.
One of these, the inductive logic programming setting called learning from
interpretations will be used throughout the remainder of the text.

In Chapter 5 we introduce and study first order logical decision trees. These
trees form a stepping stone for upgrading the general decision tree induction
technique from Chapter 3 to inductive logic programming.

Chapter 6 presents the TILDE system, which is an implementation of the
general decision tree induction technique from Chapter 3 that induces first order
logical decision trees as defined in Chapter 5. Details of the implementation
are discussed and the system is evaluated empirically.

In Chapter 7 we investigate how the proposed techniques scale up towards
large data sets, as the ability to handle large data sets is essential for data
mining. We discuss a re-implementation of TILDE that aims specifically at
working with large data sets and evaluate its scaling properties empirically.

Chapter 8 concludes by discussing the main contributions of this work and
pointing to future work.

CHAPTER 1. INTRODUCTION

Chapter 2

A Clustering Approach to
Prediction

2.1 Introduction

Within machine learning and knowledge discovery a large variety of predictive
induction techniques exist. While it is clear that many of these are related to
one another, few authors stress this relationship or explicitly exploit it. There
are, for instance, many texts on classification and regression, but few texts
treat both at the same time (the CART book (Breiman et al., 1984) being
an important exception). In this text we try to stress the similarities between
the different tasks by explicitly taking the viewpoint that they are just specific
kinds of clustering.

In this chapter we introduce clustering, and discuss how it can form the
basis of a general approach to predictive induction that encompasses many
existing approaches to classification and regression but also offers further pos-
sibilities. This predictive clustering approach is the one that will be taken in
the remainder of this text.

We first introduce the concepts of distances and prototypes (Section 2.2).
In Section 2.3 we discuss clustering. We show how a special kind of clustering
that we call predictive clustering generalizes over many current approaches
to classification and regression, both supervised and unsupervised. We also
locate our approach by giving a more global (though certainly not complete)
view on clustering methods, discussing them along several dimensions. Finally,
we discuss the evaluation of clusterings.

In Section 2.4 we take a closer look at how clusterings can be used for making
predictions, situating existing approaches in this view. In Section 2.5 we discuss
several ways in which the clusters can be formed. We again locate the classical

10 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

approaches, and show that our framework offers several opportunities that are
not exploited by most of them or generalize over ad hoc methods. Section 2.6
discusses some related work and Section 2.7 concludes.

2.2 Distances and Prototypes

In order to find clusters of similar objects, one first needs a similarity measure.
Similarity is often expressed by means of a distance measure: the more similar
two objects are, the smaller the distance between them is. We define distances
between instances and sets of instances, and then define the prototype of a set
as the instance that is most representative for the set.

2.2.1 Distances Between Individual Examples

Definition 2.1 (Distance) A function d: I x I — IR" is a distance on I if
and only if it is positive definite, symmetric and fulfills the triangle inequality:

Ve,y € [:d(z,y) >0 and d(z,y) =0z =y (2.1)
Vo,y € I:d(z,y) = d(y, z)
Va,y,= € I d(r,y) < d(z, 2) + d(z,) (2.3)

In some cases these constraints are too restrictive and one may relax them;
the resulting measure is then sometimes called a dissimilarity measure. In this
text we will only use distances.

There are many different ways to define a distance. Even in the simplest
case where example descriptions are vectors of numerical values, a choice can
be made between, e.g.,

o the Fuclidean distance:

dE(Xa y) = d2(x7 y) = Z(Xi - yi)2 (24)

7
o the Manhattan distance:

di(x,y) = Z Ix; — yil (2.5)

o the Chebyshev distance:

doo(x,y) = m?x|xi - vi (2.6)

2.2. DISTANCES AND PROTOTYPES 11

which are all special cases of the Minkowski family of distances:

dr = (3 Ixi = yil)/ (2.7)

It may be necessary to rescale the different dimensions in order to make
them comparable, e.g., to rescale so that the values along each dimension have
a standard deviation of 1. The Mahalanobis distance

dy = (xi —yi)C ' (xi — yi) (2.8)

with C the covariance matrix of the vector components (C;; = o;;) performs
such rescaling, and also takes covariance between variables into account.
Another complication is that it may be desirable to apply transformations
to the variables. E.g., is 1 kg of salt more similar to 1 g than 20 kg is to 21 kg?
Probably not, but the difference 1 kg — 1 g = 999 g is smaller than 21 kg — 20
kg = 1 kg. A logarithmic transformation may be in place here.
For nominal variables a useful distance is the equality distance d—:

d=(z,y) = 0o z=y (2.9)
= 1 otherwise (2.10)

which for vectors of nominal variables generalizes to the Hamming distance:

di(x,y) = D d=(xi,ys) (2.11)

Until now we have only considered vectors of either numerical or nominal
variables; the situation becomes more complex when a vector can consist of
a mix of nominal and numerical variables. Different notions of distance have
to be used for the different components, and the problem of incomparability
becomes even larger; see e.g. (Wilson and Martinez, 1997) for a discussion and
proposed solutions. The problem escalates even more when one uses first-order
descriptions of examples. A veritable wealth of distances and dissimilarities
has been proposed in this context, some of them very complex and not well
understood; see e.g. (Emde and Wettschereck, 1996; Bisson, 1992b; Hutchinson,
1997; Nienhuys-Cheng, 1997; Ramon and Bruynooghe, 1998; Ramon et al.,
1998; Sebag, 1998).

In the following we assume that a distance measure d that computes the
distance d(e;, e2) between examples e; and e is already given. How one should
decide upon which distance to use is out of the scope of this text, and we refer
to the literature mentioned above.

12 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

2.2.2 Distances Between Sets of Examples

Besides the need to measure the distance between individual examples, it is
often also necessary to measure the distance between sets of examples. Again,
different approaches have been suggested in the literature. The dissimilarity
between two sets of instances S; and S; can, e.g., be defined as

o the smallest distance between any = € S; and y € Sa:

dmzn d(ShS?) z€S11I,l£€SZ d(.’IJ,'y) (212)
e the largest distance :
dmaz d(51752) sup d(l‘,y) (213)
r€S1,YyES2
e the average distance :
dpng,a(S1,52) = Y d(z,y)/(|51]-]S2]) (2.14)
z€S51,yES2

o the Hausdorff distance:

dHausdo’rﬁ d(51752) —max{ sup inf d(3y) sup inf d(7y)} (2]‘5)
z€S; YES2 zES, YES

e the center distance:

enter,d,p(S1,92) = d(p(S1),p(S2)) (2.16)

where the function p mapping a set onto its center is to be specified (see

below)

Note that even when the dissimilarity between single examples is a distance,
the dissimilarity between sets does not necessarily inherit this property. The
Hausdorff distance and the center distance inherit the properties of a distance,
except the property that d'(S1,S2) =0= S; = S>.

In this text we will adopt the center-based approach. The notion of the
center of a set of examples is formalized in the concept of a prototype.t

1The term “prototype” was chosen here only because it conveys a suitable intuitive mean-
ing. Our use of the term is not necessarily related to its use in other contexts.

2.3. CLUSTERING 13

2.2.3 Prototypes

Definition 2.2 (Prototype function, prototype) A prototype function is
a function p : 21 — I that maps a set of instances E onto a single instance
p(E). p(E) is called the prototype of E.

Ideally, a prototype of a set E should be maximally representative for the
instances in E, i.e., as close as possible to any e € E.

Definition 2.3 (Ideal prototype function) Given a distance d over an in-
stance space I, a prototype function p is ideal if and only if

VECI:Vzel: Z d(z,e;)* > Z d(p(E), e;)? (2.17)

e;€E e;€E

While other criteria could be chosen instead of the least squares criterion,
choosing the latter in Definition 2.3 ensures that in a Euclidean space (with
distance dg) the ideal prototype p(E) is the mean of all the vectors in E,
which is intuitively a good choice for a prototype. In a space of nominal val-
ues with distance d=(z,y), the ideal prototype corresponds to the mode (the
most frequently occurring value), which is also desirable. In a first order do-
main, a prototype function could, e.g., be the (possibly reduced) least general
generalization of the examples in the cluster, using Plotkin’s (1970) notion of
f-subsumption or the variants corresponding to structural matching (Bisson,
1992b; De Raedt et al., 1997).

Example 2.1 Given I = R x C with C = {blue,red}, and d(x,y) = (z1 —
y1)? + d—(z2,y2), a maximally representative prototype of the set of instances
{(1, blue), (2, red), (3, blue)}is (2, blue). o

Unless stated otherwise, in the remainder of this text we assume that a
prototype function p is given, and that p is ideal. The dissimilarity between
two sets of examples E; and Es is then defined as the distance d(p(E1), p(E>))
between the prototypes of the sets.

2.3 Clustering

2.3.1 Problem Definition

Before defining the clustering task, we define the concepts that are involved.

Definition 2.4 (Extensional flat clustering) An ertensional flat cluster-
ing C of a set of instances E is a partition of E.

14 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

C3 c4

1

Figure 2.1: A hierarchical clustering.

Definition 2.5 (Extensional hierarchical clustering) An extensional hier-
archical clustering C of a set of instances E is a set of subsets of E such that

EecC (2.18)
Vee E:{e}eC (2.19)
VC1,02 € C: Cl g C2 or Cz C Cl or Cl n CZ = 0 (220)

Example 2.2 Figure 2.1 shows a set of data E, and an extensional hierarchical
clustering of the set. The clustering is represented in two ways: by drawing
the clusters in the instance space, and as a tree. The extensional hierarchical
clustering represented in the figure is C = {E, Cy,C3,C3,Cy } UJ, cp{e}. Some
flat clusterings are C; = {Cy,C>} and C; = {C5,Cy, Cs}. o

Definition 2.6 (Cluster) The elements of an extensional clustering are called
clusters.

An extensional clustering of a set E is uniquely determined by describing
the clusters (which are just sets of instances) in it. We distinguish two kinds
of descriptions:

Definition 2.7 (Extensional description) An extensional description of a
set S is of the form S = {s1,82,...,8,}, i.e. an enumeration of its elements.

Definition 2.8 (Intensional description) An intensional description of a
set S in a language L is of the form S = {s|F(s)} where F(s) is a sentence
(formula) in L.

2.3. CLUSTERING 15

YA E
4___-_;‘;‘ Cl’ C21
COo +
+++,_ T—I—I + ++
2_______ C4 + +
o R
3 5 X

Figure 2.2: An intensional hierarchical clustering, different from the one in
Figure 2.1.

While there is a one-to-one correspondence between an extensional cluster-
ing of a set F and the extensional description of its clusters, the correspondence
with intensional cluster descriptions is one-to-many. I.e., different intensional
cluster descriptions may correspond to the same extensional clustering.

Example 2.3 In Figure 2.1 the cluster Cy could be represented intensionally
as Cy = {(z,y) € E|(z — 4)* + (y — 3)? < 1}, which is suggested by drawing
its boundary as a circle. Figure 2.2 represents a hierarchical clustering C’ that
is in a sense different; the intensional description of cluster C could, e.g., be
Ci ={(z,y) € E|3 <z <5A2 <y < 4}. Still, the extensional clusterings
defined by C and C’ are the same.

o

In order to be able to distinguish clusterings that are intensionally different,
we define intensional (as opposed to extensional) clusterings as follows:

Definition 2.9 (Intensional flat clustering) Given an instance space I and
a set of instances E C I, an intensional flat clustering C of E is a function
C: 1 — 2" such that |J,.z{C(e)} is an estensional flat clustering of E.

Definition 2.10 (Intensional hierarchical clustering) Given an instance

space I and a set of instances E C I, an intensional hierarchical clustering C
of E is a function C : I — 22" such that

Ve € E : {e} € C(e) (2.21)

Vee E: E €C(e) (2.22)

Ve € E:VC;,Cy €C(e): C; CCyVCy CCy ()

(2.24)

U C(e) is an extensional hierarchical clustering.
ecFE

16 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

An intensional flat clustering of a set of instances E maps each instance of
E onto a single cluster. An intensional hierarchical clustering of E maps each
instance e € E onto a set of clusters that are contained in one another and in
the tree representation form a path from the top to {e}.

Example 2.4 The instance labeled a in Figure 2.2 is mapped by C’ onto the set
of clusters {E, C{,C%, {a}}, i.e., the set of all the clusters in C’ that a belongs
to. An intensional flat clustering could, e.g., map a onto C]. o

Assuming each cluster C; in an extensional hierarchical clustering is de-
scribed intensionally using a formula Fj, this set of intensional cluster descrip-
tions uniquely defines a function

C: T2 :C;ecC(z) & Fi() (2.25)

which is an intensional hierarchical clustering according to Definition 2.10.
Conversely, if two intensional hierarchical clusterings C and C’ are equal, their
intensional descriptions F; and F] for any cluster C; must be equivalent in
the sense that Vo € I : F;(z) & F/(z). A similar reasoning can be made for
intensional flat clusterings. We conclude that intensional clusterings are equal
if and only if all their intensional cluster descriptions are equivalent; in other
words, Definitions 2.10 and 2.9 adequately capture intensionality as defined in
Definition 2.8.

Definition 2.11 (Clustering) C is a clustering of E if and only if it is an
intensional or extensional, hierarchical or flat, clustering of E.

Definition 2.12 (Clustering space) The set of all clusterings of E is called
the clustering space of E and is written C(E).

We can now formulate the clustering problem as follows:?2

Definition 2.13 (Task definition for clustering) We define the clustering
task as follows:

Given:
e a set of instances E
e a distance d on E

e and a quality criterion Q defined over C(E)

2More general formulations exist. One possible extension is that the distance is replaced
by a dissimilarity. A further extension is to start from a n X n dissimilarity matriz, i.e. no
descriptions of the objects themselves are given, only the dissimilarities between them are;
see e.g. (Sneath and Sokal, 1973). Still other approaches allow clusters to overlap.

2.3. CLUSTERING 17

Find:
e a clustering C such that Q(C) is optimal, i.e. YC' € C(E) : Q(C") < Q(C)

The quality criterion Q is not specified in detail in Definition 2.13; typically,
however, Q favors clusterings in which the distance between two clusters is large
(unless one is a subcluster of the other) and the distance between elements of
the same cluster is small.

We illustrate the clustering task with a toy example.

Example 2.5 Assume that a set of objects is given; each object is either a
strawberry, a tomato or an apple. Figure 2.3 locates the objects in a two-
dimensional space (Color x Weight). A good flat clustering should put all
strawberries in one cluster, tomatoes in another one and apples in a third
cluster. A good hierarchical clustering should also identify these clusters, but
could moreover identify, e.g., different types of apples. In this example we only
consider a flat clustering.

In Figure 2.3 both extensional and intensional descriptions of the differ-
ent clusters are shown. The language £ for the intensional descriptions is
assumed to be propositional logic, with propositions of the form Attribute(z)
® value with Attribute = Color or Weight, ® € {<,>,<,>,=} and value
€ {red,green,blue,...} UIR (this corresponds to the so-called attribute value
formalism). The cluster of apples, for instance, is extensionally described as

Apples = {c,d, f,1,n}
and intensionally as
Apples = {z|Color(z) = green A Weight(z) > 130g}

Note that an equally valid intensional description of the cluster of apples
would be, e.g., Apples = {z|Color(z) = green A Weight(z) > 100g}. S

Predictive clustering

Many machine learning and data mining tasks involve the induction of a proced-
ure to classify new instances or to predict unknown values for them. Prediction
of a nominal variable is equivalent to classification; prediction of a continuous
value is usually referred to as regression. For convenience, we will use the terms
classification and regression both to refer to the induction of the predictor and
its use (although originally, the term regression denotes the construction of the
predictor rather than its use).

18 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

color
ek
red i a m g Extensional: 1: {ek,a,i}
j by 2:{m,g,j,b,h}
o 3:{ncf,l,d}
nf
green c Intensional: 1: weight<40g and color=red
d 2: weight>120g and color=red
3: weight> 130g and color=green

T

Figure 2.3: An example of clustering, in the context of fruit and vegetables.

Both classification and (certain types of) regression® can be seen as special

cases of clustering. Indeed, many predictors are structured (implicitly) in such
a way that an unseen instance is first assigned to a certain cluster, and the
prototype of the cluster is then used to make a prediction.

To show this, we first define predictive clustering as a special case of clus-
tering that is fit for prediction purposes. It is assumed that a function f exists
that assigns unseen instances to existing clusters, and that the prototype of
the assigned cluster is used as a prediction for the unseen instance; the qual-
ity criterion @ is maximal if predictions are as close as possible to the actual
values, according to the distance measure d.

In the following we assume that a probability distribution over I exists. E
denotes the expected value operator.

Definition 2.14 (Cluster assignment function) A cluster assignment func-
tion is a function f : I x C(I) — 2T such that

Vxe I[INECI:VC e C(E): f(z,C) eC (2.26)

Le., given any clustering C of a set of instances E, [assigns each possible
instance in I to a cluster in C.

Definition 2.15 (Predictive clustering) We define the task of predictive
clustering as follows:

Given:

e an instance space I

3Sometimes called piece-wise regression.

2.3. CLUSTERING 19

YA
a
2_
c1 c2
1 b
0 .
T T T =
o 1 2 3 X

Figure 2.4: Predictive clustering.

a distance d over I

e a set of instances E C T

a prototype function p
e g cluster assignment function f
Find:

e q clustering C over E that mazximizes

Q(C) = —E(d(z, p(f(x,C)))*) (2.27)
(where x ranges over I)

Note that, except for the minus, the right hand side of Equation 2.27 can
be seen as a kind of variance. Maximizing @) corresponds to minimizing the
expected intra-cluster variance in the clustering.

Example 2.6 Figure 2.4 illustrates our predictive clustering setting. We as-
sume that I = IR? and d(x,y) = dr(x,y). There are two clusters C; and Cs
with prototypes p(C1) = (1,1) and p(Cs) = (3,1). Assume furthermore that
we have a cluster assignment function that maps instances onto the cluster of
which the prototype is closest:

f(z,C)=C & VC' €C:d(z,p(C")) > d(z,p(C)).

Then a = (1,2) would be mapped onto (1,1), and b = (4,1) would be mapped
onto (3,1). o

20 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

Maximizing @ intuitively means that E is clustered so that the prototype of
a resulting cluster C; is as representative as possible for the part of the instance
space assigned to C;. In other words, each example in I will be mapped to a
prototype that is quite similar to it. The prototype can be seen as a prediction,
or as a basis for prediction.

Classification and regression

In the context of classification and regression, the prediction usually is not a
full instance, but a single attribute which we call the target attribute.

Definition 2.16 (Target function) Given an instance space I and a predic-
tion space P, a target function w : I — P s a function mapping instances onto
their target value.

For instance, in a classification setting, we call w(z) the class of z.

Definition 2.17 (Predictor, prediction) Given a cluster assignment func-
tion f, a prototype function p and a target function 7, each clustering C defines
a function prede : I — P:

prede(z) = m(p(f(x,C))) (2.28)
We call predc a predictor, and predc(z) its prediction for x.

We can now define classification and regression as special cases of predictive
clustering;:

Definition 2.18 (Classification) Classification is a special case of predictive
clustering where the range of m is nominal and the distance d between two
instances is d(z,y) = d=(7(z),7(y)).

Most classification systems try to maximize predictive accuracy, which in
this context is defined as follows:

Definition 2.19 (Predictive accuracy) The predictive accuracy of a clas-
sifier pred is the probability that it makes a correct prediction, i.e.

a=E(1 — d_(pred(z),n(z))) (2.29)

It is easy to show that maximizing a indeed corresponds to maximizing @ for
a distance d(z,y) = d-(w(z), 7(y)):
Q) = -E(d(z,p(f(2,0)))?)
—E(d—((2))?)
= —E(d-((z))) (since d is 0 or 1)
-1

w(x), predc

w(x),predc

|
S

2.3. CLUSTERING 21

Definition 2.20 (Regression) Regression is a special case of predictive clus-
tering where the range of m is continuous and the distance d between two in-
stances is d(z,y) = dg(m(z), 7(y)).

Most regression systems minimize the mean squared prediction error
MSE = E(dg(n(z), prede(z))?) (2.30)

which is easily seen to be equal to —Q(C).

The usefulness of this formalization may not be obvious right now, but in
the remainder of this text the view that classification and regression are special
types of predictive clustering will be adopted several times. On these occasions
the above formalization will be further illustrated.

Limitations of this approach
We identify two limitations to our definition of classification and regression.

e The above definitions presume a specific quality criterion for predictions:
accuracy in the case of classification, the least squares criterion in the
case of regression. They thus do not encompass approaches that use
other criteria. This could be changed by making the quality criterion in
Definition 2.15 more general.

e It is assumed that within a cluster one specific value will always be pre-
dicted (the prototype); this excludes, e.g., linear piece-wise regression, ,
where in each cluster a linear prediction model should be stored (e.g.,
Y = aX + b, where a and b differ according the cluster). Our definition
can be extended by making the prototype p(C) a function that maps
individual instances onto predictions, rewriting Equation 2.27 as

Q(C) = —E(d(z,p(C)(x))?) (2.31)
and Equation 2.28 as

prede(x) = = (p(f(z,C))(z)) (2.32)

Example 2.7 Given a cluster of vectors C = {(1,3),(2,5),(3,7)} the proto-
type of the cluster could be a function that maps an instance (z,y) (y is the
target variable) onto (z,2z + 1). The prediction for an instance x = (5,10)
(assuming it has been assigned to C)?* is then w(p(C)(x)) = =((5,11)) = 11.
The distance d(x,p(C)(x)) = |10 — 11| = 1. o

4We assume here that we know that y = 10 but the predictor does not; otherwise it need
not really compute a prediction.

22 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

In this text we will not make use of these extensions, therefore we stick to
the simple definitions as stated. These definitions already encompass a large
subset of the many approaches to classification and regression.

A last remark: in practice, d(z, p(f(z,C))) is unknown for unseen instances.
@ is then usually estimated via

O(C) = — 2eeE d(e[ng ©ON° _ ompi(c) (2.33)

where E is the set of examples from which C was generated, and compl(C) is
a penalty that is higher for more complex cluster descriptions (without such
a penalty, the optimal clustering would be the trivial clustering where each
cluster consists of one element).

2.3.2 Dimensions of Clustering

Clustering systems can be distinguished along many dimensions. It is not our
intention to give a complete overview of all these dimensions, nor to locate
all the existing clustering systems along these dimensions. Rather, we discuss
a few dimensions to give the reader just a flavor of the variety of clustering
systems that exists, and to introduce some terminology that will be used later
on in this text.

In this section we first briefly discuss flat versus hierarchical clustering. We
next discuss intensional versus extensional clustering systems, then introduce
the notion of conceptual clustering. We also look at clustering approaches
from the point of view of the flexibility they have with respect to defining
clusters. This dimension is not orthogonal to the others but strongly correlated
with the intensional/extensional distinction. Finally we compare predictive and
descriptive clustering.

Flat versus hierarchical clustering

As might be suspected from our problem definition (Definition 2.13), clustering
systems can be divided into systems that find flat clusterings and systems that
find hierarchical clusterings.

Hierarchical clustering algorithms can be (but are not necessarily) derived
from flat clustering algorithms in a straightforward way: one simply repeats
the flat clustering algorithm over and over again. The divisive approach works
top-down: the data set is divided into large clusters, each of which is then
divided into smaller clusters, and so on up to the level of single instances.
Alternatively, the agglomerative approach works bottom-up: small clusters of
examples are formed, then the clusters are joined into larger clusters, and so
on until one single cluster is obtained.

2.3. CLUSTERING 23

The LEADER algorithm (Hartigan, 1975) is an example of a flat clustering
algorithm. An example of an agglomerative clusterer is KBG (Bisson, 1992a).
Divisive systems are RUMMAGE (mentioned in (Fisher and Langley, 1985)),
DiscoN (Langley and Sage, 1984), CLUSTER/2 (Michalski and Stepp, 1983),
... The incremental system COBWEB (Fisher, 1987) has a flavor of both, as it
has operators both for combining and splitting clusters.

Intensional versus extensional clustering

We call a clustering system an intensional clustering system if it returns in-
tensional descriptions of the clusters it finds; otherwise we call the system an
extensional clustering system.

The LEADER algorithm is an example of an extensional clustering sys-
tem. Intensional clusterers are KBG, RUMMAGE, DiscoN, CLUSTER/2 and
COBWEB.?

The descriptions returned by an intensional clusterer can be understood
in two ways. They can be seen as characterizing the clusters, or as only dis-
criminating between them. While characteristic descriptions should contain
a maximum of information about a cluster, discriminant descriptions should
contain a minimum of information (they should focus on what distinguishes a
cluster from the other clusters).

Example 2.8 The description of apples in Figure 2.3 is “an apple is green and
weighs more than 130g”. If we want to answer the question “What are apples
like?”, a better description of apples that is still consistent with the picture is
“an apple is green and weighs between 130g and 180g”. It is better because it
gives more information about apples. We call this a characteristic description.

However, if want to answer the question “How can I know if something is an
apple?”, the answer should allow to discriminate apples from strawberries and
tomatoes with a minimum of information. In this case it suffices to look at the
color: “if the object is green, it is an apple”. This sentence is a discriminant
description. o

Intensional clustering systems may return either discriminant descriptions,
characteristic descriptions, or both. An approach that is sometimes followed
is that an intensional clustering system first finds discriminant descriptions to
define the clusters, then for each cluster calls a procedure for characterizing it.

In our example the language that is used for an intensional description of
clusters is based on the same properties as the distance measure. (A cluster can
be described by means of the weight and color of its elements, and we want to
find clusters in which elements are similar with respect to weight and color.) In

5COBWEB returns probabilistic descriptions, which are intensional in a broader sense than
defined by Definition 2.8.

24 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

general, this need not be the case. The intensional description language could
make use of a strict subset of the properties used for the distance measure,
could use a superset of it, or could even use a set that is totally disjoint from
it. Alternatively, the language for discriminant descriptions may differ from
the language for characteristic descriptions.

Example 2.9 In the Fruit&Vegetables example, one could add a property
Taste to the description of each object and include it in the language for
characteristic descriptions as well as in the distance measure, but not in the
language for discriminant descriptions. Objects are then clustered according
to their taste, but assigning an unseen instance to a cluster is always pos-
sible without knowing anything about its taste (by means of the discriminant
descriptions). o

In general, one would typically use easily observable properties for a dis-
criminant description of the clusters, but use less easily observable properties
for the clustering process itself (in order to get a higher-quality clustering) and
for the characteristic descriptions.

Conceptual clustering versus numerical taxonomy

The term conceptual clustering was introduced by Michalski and Stepp (1983).
It refers to a general type of clustering where similarity between examples is
computed relative to a background of concepts and other examples, and the
clusters themselves should be defined in terms of (possibly other) concepts.
Michalski and Stepp (1983) contrast this setting with numerical taxonomy
(e.g., (Sneath and Sokal, 1973)), where the focus is on forming the clusters
rather than describing them. This contrast emphasizes the difference between
what we call intensional and extensional clustering in this text. Since we have
already discussed that, we now focus on the computation of distances relative
to a background of concepts and examples.

In this setting the similarity criterion is non-trivial; it can be complex and
domain-dependent. It can even be the case that the similarity of two objects is
not fully determined by the objects themselves, but also by the other objects
in the set. Figure 2.5 illustrates this. The data are represented as dots in a
two-dimensional space. Both in situation 1 and 2, there is a subset of data
that forms a cross. The most obvious way of clustering the data depends on
the context. In a context where straight lines are natural concepts (situation
2), the cross would be clustered into two straight lines; but in a context where
hooks are natural concepts, it is more natural to cluster the cross into two
hooks (situation 1).

While the context for the clustering would usually be given in advance, it
can also be suggested by the data themselves, as is the case in these drawings.

2.3. CLUSTERING

situation 1

25

situation 2

o
o

C

Figure 2.5: Conceptual clustering. The way in which the cross would typically
be divided into two clusters depends on the context. The context itself is, in
these drawings, suggested by the other points in the data set.

26 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

The abundance of hooks in situation 1 could make the clusterer prefer hooks
as the typical cluster form, while in situation 2 it would prefer straight lines.

Note that the current view on clustering makes it necessary to adopt a non-
trivial definition of similarity (at least if we stick with the assumption that a
good cluster groups examples that are similar). In the context of Figure 2.5
two points are similar if one can superimpose a certain shape over them (a
hook, or a straight line) such that the shape covers many other points. Thus,
how similar two instances are does not depend solely on these instances, but
also on the positions of the other instances.

We can thus distinguish three different contexts for conceptual clustering,
in ascending order of difficulty:

1. The similarity between two instances is determined by the descriptions
of these two instances themselves, and by a context consisting of a fixed
set of concepts that are considered important.

2. The similarity between two instances is determined by all the instances in
the data set (not only the two between which the similarity is computed),
and by a fixed context.

3. The similarity is determined by all the instances in the data set, and by
a context that is itself constructed from the data.

Figure 2.5 is an illustration of the third setting. A classic example that
illustrates the same issue is shown in Figure 2.6. This is an experiment where
human subjects are asked to classify the middle symbol on a card. Depending
on whether people see the “ABC” card or the “12 13 14” card, they classify the
middle symbol as a “B” or a “13”, even though it is exactly the same symbol.
One could say that the middle symbol is more similar to the letter “B” if it is
surrounded by letters, and is more similar to the number 13 if it is surrounded
by numbers.

A prototypical conceptual clusterer is Michalski and Stepp’s CLUSTER/2
algorithm. The development of intensional clustering is strongly related to
conceptual clustering, hence most intensional clusterers are also conceptual
clusterers. Most clusterers work in context 1 or 2, however.

Flexibility with respect to cluster formation

We can distinguish the different approaches to clustering along a dimension that
represents the flexibility that a system has in splitting a cluster into subclusters.
Extensional clustering systems have no restrictions with respect to how a cluster
can be split. Intensional clustering systems have restrictions according to the
language of cluster descriptions they allow: weak restrictions if a large set
of complex descriptions is allowed, strong restrictions if only a limited set of

2.3. CLUSTERING 27

= AL C
=[5

Figure 2.6: Do people think the symbol in the middle is more similar to the
letter ‘B’, or to the number 13?7 It depends on the symbols surrounding it.

simple descriptions is allowed. In machine learning, this is usually referred to
as the language bias of the system.

The stronger the restrictions on the language, the harder it is to define high
quality clusters. Figure 2.7 shows how different kinds of clustering systems
would proceed on an example data set. The data set contains three clearly
distinguishable clusters, indicated by 1, 2 and 3 on the drawing. An intensional
clustering system can only use the attributes A, B, and C to describe the
clusters. Each attribute can be 0 or 1. Straight lines indicate the boundaries in
the example space between points with a value of 0 or 1 for a certain variable.

An extensional clustering system can define any set of examples to be a
cluster, hence it should find the clusters without any problem. An inten-
sional clustering system can only use the straight lines that are drawn to
define clusters. By using combinations of variables (i.e. descriptions such as
A =0A B =0), such a system can still identify the clusters correctly; but if it
can only use single variables to describe subclusters it cannot find the correct
clusters. In Figure 2.7 the third clustering method can only find two clusters
in the data set (looking only at the highest level of the tree): one with A =0
and one with A = 1.

Figure 2.7, while illustrating the problem, also suggests a solution: by al-
lowing an intensional clustering system that can only use simple descriptions
to build a hierarchy of clusters instead of a flat clustering, the problem is par-
tially solved. On the second level of the tree, the clusters 1 and 2 are identified
correctly. The cluster 3 however has not been found as a single cluster, but is
divided into two subclusters.

We can actually look at the rightmost cluster tree in Figure 2.7 in two ways:

e We can view it as a cluster hierarchy. In this case a cluster is associated
with each node. Some nodes define clusters of low quality; this is the
case for the nodes on level 1 (directly below the root) and for the nodes

28 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

B
A 2 0
0,1 71
1 A
| -t ¢
+ + ! ST+
+ I S+
+ +++ l// 0 c
R . R
+ + e :
/// !
. -’ ++
.7 40t
- |+
! 3
|
extensional conceptual, complex descriptions conceptual, simple descriptions
flat
Wl
1 2 3 1 2 3
hierarchical
A=0 A=1
B= B=1 C= C=1
1 3a 2 3b

Figure 2.7: Different clustering methods.

2.3. CLUSTERING 29

labelled 3. One could say that the hierarchy identifies “weak” intermedi-
ate clusters in its search for good clusters. These weak clusters may be
less apparent from the data but are not necessarily meaningless.

e We can also choose to ignore the weak clusters in the tree, and extract a
flat clustering from the tree by selecting a set of nodes S so that no node
in S is an ancestor of an other node in S, and all nodes together cover
all the examples. In Figure 2.7 we would then select the flat clustering
{1, 2, 3a, 3b}. Note that this clustering is still not optimal. Further
post-processing could be performed to improve it, e.g., by rearranging
clusters as is done in (Fisher, 1996).

Several methods for extracting a flat clustering from a hierarchy have
been proposed; see e.g. (Kirsten and Wrobel, 1998).

Intensional clustering systems that use complex descriptions of subclusters
can yield clusters of higher quality, but this comes at the cost of a higher com-
putational complexity. Indeed, the search space involved in finding complex
descriptions is larger than the search space involved in finding single descrip-
tions.

Another disadvantage of using complex descriptions is exactly the fact that
they are complex. The idea behind intensional clustering is that clusters are
good if they have simple intensional descriptions. There may be other criteria
for the quality of clusters than just the simplicity of their description, but
when the latter has a high weight there may not be a good reason for allowing
complex tests.

Summarizing, we can say that using only simple descriptions is computa-
tionally more efficient than using complex descriptions, but may yield lower
quality clusterings. This difference is more pronounced for flat clustering than
for hierarchical clustering.

Figure 2.8 places several existing clustering systems on an axis indicat-
ing how flexible they are with respect to defining clusters: COBWEB (Fisher,
1987), CLUSTER/2 (Michalski and Stepp, 1983), LEADER (Hartigan, 1975),
RUMMAGE (Fisher and Langley, 1985) and DiscoN (Langley and Sage, 1984).
Note that COBWEB, although returning intensional (probabilistic) descriptions
for clusters, has the flexibility of an extensional system in forming the clusters:
the clustering can be any partition of the example set.

Predictive versus descriptive clustering

One can see a clustering as purely descriptive, i.e. describing structure in the
data; or one can see it as a means for making predictions. Whether a clustering
is considered good or not depends on this. We illustrate this with Figure 2.9.
Two flat clusterings are shown; the intensional cluster descriptions are equally

30 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

flexible less flexible
extensional intensional

complex descriptions simple descriptions
LEADER CLUSTER/2 RUMMAGE
COBWEB DisconN

Figure 2.8: Clustering systems plotted along the flexibility dimension.

Y Y A=1 Y oot
. =
+ o+ +
ST e B
+ o+ +
+ o+ o+
* + o+ _ Q A=5
+ vy A=2 B=2
+ A=4
A=3
X X X

@ (b) ©

Figure 2.9: The difference between predictive and descriptive clustering. (a)
original set of points; (b) a bad descriptive but good predictive clustering; (c)
a good descriptive but bad predictive clustering.

simple in both cases. Assuming we want to use the clusters to predict values for
X and Y, clustering (b) is reasonably good: the examples in each cluster differ
little with respect to the variables X and Y. This means that X and Y can be
predicted accurately if the cluster is known. We say that the predictability of
the variables is high.

In clustering (c) the predictability of the variables is lower, because the
clusters are spread out more. On the other hand, these clusters identify the
existing structure in the data in a much better way: if one looks at plot (a),
the clusters in (c) are apparent, while those in (b) are not. From a descriptive
point of view, clustering (c) is to be preferred.

Note that in this case, a hierarchical clustering system could identify both
the large and the smaller clusters. In this sense, hierarchical clusterers are good
at combining both predictive and descriptive quality. Still, different clustering
systems may be biased towards different quality criteria, and one should choose
a clusterer accordingly.

2.3. CLUSTERING 31

2.3.3 Evaluation of Clusterings

The quality of a clustering can be measured in different ways. The main cri-
terion for choosing a certain quality measurement should be the goal of the
clustering: is it seen as purely descriptive (identifying clusters in a set of data)
or is it to be used for prediction?

Descriptive Quality

Measuring the descriptive quality of a clustering is hard, and there are no
agreed-upon criteria. One of the more popular criteria is the partition utility,
defined in (Fisher, 1996) as

PU({C,...,Cn}) =Y _CU(Cx)/N (2.34)

i.e., the average category wutility of each cluster; the latter was introduced by
Gluck and Corter (1985) and can be defined as

CU(Cr) = P(Ck) Y D> (P(As = Vi4|Cr)* = P(A; = Viy)?) (2.35)

It is assumed here that each instance is described by a vector of attributes
A;, and the domain of each attribute A; is a set of values V;;. Category
utility measures both the predictability of attribute values (how precise can
the attribute of an instance be predicted if the instance’s cluster is known),
and their predictiveness (how well can the cluster be predicted if the attribute
value is known). Note that this measurement assumes finite domains for all
the attributes; moreover Fisher (1996) discusses some problems with it.

Predictive Quality

If a clustering is going to be used for prediction, the predictability of the at-
tributes that are going to be predicted is the most important criterion. In some
cases, such as (supervised or unsupervised) classification, one single nominal
attribute is to be predicted. The accuracy with which the class can be predicted
is usually the evaluation criterion then, see e.g. (Fisher, 1987). Note that this
is a special case of the variance criterion we introduced in Definition 2.15.

In the regression context variance itself is a good relative quality criterion,
but it is less fit as an absolute criterion; e.g., if the intra-cluster variance is 10,
should we consider this high or low? A more popular criterion is therefore the
relative error .)

RE = izt (Ui 9 (2.36)
21 (yi —9)?

32 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

This criterion compares (on a test sample) the mean squared error of a predictor
with the mean squared error of a default predictor that consistently predicts
the global mean of the training sample (the y; are the values observed in the
test sample, the ¢; are the corresponding predictions, and § is the global mean
of the training sample).

The previous criteria assumed that one single variable is to be predicted.
Another setting is when any value may need to be predicted in a new instance;
this is sometimes called flexible prediction or pattern completion. The quality
of a clustering should then be computed as an average over the predictability of
each single attribute. Such an evaluation can be found in e.g. (Fisher, 1996).
Unfortunately, when both continuous and discrete attributes are used, it is
not obvious how such an average should be computed, as the predictability of
discrete and continuous attributes is expressed in different ways.

Assuming that the distance between examples reflects the similarity of their
attributes, the relative error criterion can be generalized to a quality criterion
for flexible prediction:

S den, &)
RE = S d(es, o) (2.57)

where the e; are the examples in a test set, €; the corresponding predictions
and p(T'r) is the prototype of the training set. In the clustering context, it
compares how far off the predictions are from the actual examples, compared
to how far off the prototype of the training set is.

Note that if the predictor was constructed by a predictive clusterer by find-
ing a clustering C of the training set T'r, then

Y d(ei, p(f(e:,C)))?
RE = =5 den p(Tr))?

which shows that by trying to maximize @Q, a predictive clusterer tries to min-
imize the expected value of RE.

(2.38)

2.4 Using Clusterings for Prediction

2.4.1 Extensional Clusterings

Given an extensional clustering and a new instance (one that is not in the
clustering), how can one predict unknown information for the instance?

This is usually done using a two-step process. In a first step, the instance
is assigned to a cluster. This assignment is typically based on the distance of
the instance to the clusters in the extensional clustering. The distance of the
instance to a cluster could be chosen as the distance to the prototype of the

2.4. USING CLUSTERINGS FOR PREDICTION 33

cluster, the average distance to all the elements of the cluster, the distance
to the closest element of the cluster, etc. This choice determines the cluster
assignment function f.

Once the instance has been assigned to a cluster C', the second step can
be performed, which consists of making a prediction about the new instance,
based on the information in C. The most obvious way to do this is to predict
a value that is typical for the examples in C; i.e., predict the value that is
observed in the cluster prototype: m(p(C)).

Both steps are represented in the following scheme:

distance prototype
example — cluster — prediction

Instance Based Learning

The above prediction method is related to instance-based learning (Aha et al.,
1991; Mitchell, 1997; Langley, 1996). An instance-based learner typically stores
all the examples it has seen (or at least some of them), and when it sees a new
instance, bases its prediction for it on the previously observed examples that
are most similar to it. The k-nearest neighbor method, for instance, consists
of gathering the k stored examples that are most similar to the new instance
(k is a parameter of the method), and predicting the class value that occurs
most often among these k examples (or the mean of the observed values, for a
continuous target variable).

An interesting difference with the k-nearest neighbor method is that the
latter does not form any clusters in advance; rather, at the time of prediction
a cluster of k examples is improvised. The second step of the prediction is
then similar to the one we propose. Note that our extensional clustering based
prediction method coincides with 1-nearest neighbor if all the clusters consist
of a single example that is also the prototype of the cluster.

2.4.2 Intensional Clusterings

Intensional clusterings can be used for predicting unseen properties of examples
in a similar way as extensional clusterings. In Section 2.3 we distinguished
discriminant and characteristic descriptions of clusters. Assuming a clustering
method yields both discriminant and characteristic descriptions of the clusters
it forms, the results of the clustering method can be used for making predictions
in the following way:

e assign a new object to a cluster using the discriminant descriptions

e predict unknown properties of the object using the characteristic descrip-
tion of the cluster

34 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

discrimination characterization

intensional level

cluster prediction ~ €xtensional level

example
P distance prototype

Figure 2.10: Clustering based prediction.

This is a two-step prediction process that is very similar to the one used
with extensional clustering:

discrimination characterization
example — > cluster ————* prediction

Note that prediction is to be understood in a very general sense here; one
can not only predict specific values but also more general properties such as
Weight>130, if Color=green then Taste=sour, etc.

2.4.3 Mixing Extensional and Intensional Reasoning

We have seen two-step prediction processes both at the extensional level and
at the intensional level. Since the clusters themselves are the same on both
levels, the two types of reasoning can be mixed, and we obtain the situation
depicted in Figure 2.10.

This scheme indicates different reasoning mechanisms for making predic-
tions: from an example description the cluster is predicted, either on the inten-
sional or extensional level; then from the cluster one can infer a characteristic
description of the example or predict a missing value.

Example 2.10 We illustrate the different types of reasoning on the Fruit &
Vegetables example. Suppose we have the following intensional cluster descrip-
tions:

discriminant characteristic
apples Weight>80g Weight € [130g — 180g)]

AColor = green AColor = green A Taste = sour
tomatoes Weight>80g Weight € [120g — 180g)]

AColor = red AColor = red A Taste = sour
strawberries Weight<80g Weight € [10g — 40g]

AColor = red A Taste = sweet

2.4. USING CLUSTERINGS FOR PREDICTION 35

Extensional cluster descriptions are sets of examples. We here consider the
prototype to be part of the extensional description. We assume the prototype
for apples is (green, 160g, sour).

Some examples of the different reasoning mechanisms are (reasoning on the
extensional/intensional level is indicated by =g and =):

1. Color=green =>r instance is an apple =1 Taste = sour A Weight €
[130g,180g] A Color = green. “Is an apple” is an abbreviation for “be-
longs to the cluster of apples” here.

This type of reasoning allows us to complete a partial description of an
object.

2. Color=green = the instance is an apple =g it must be similar to the
prototypical apple (green, 160g, sour).

This type of reasoning can be used for predicting, e.g., the taste of an
object by observing other properties of it (its color in this case).

3. An instance is most similar to some object in the “apple” cluster =g
it is an apple =g it is similar to the prototypical apple (green, 160g,
sour).

With this type of reasoning, we do not look merely at properties of the
object itself but compare it with other objects, in order to predict its
taste.

4. An instance is most similar to some object in the “apple” cluster =g
it is an apple =7 it conforms to the characteristic description of apples:
Weight € [130g — 180g] A Color = green A Taste = sour.

We infer a more detailed description of the object by comparing it with
other objects. E.g., the object looks like an apple, apples weigh between
130g and 180g, hence this object also has a weight between those bound-
aries.

We remark that:

e a characteristic description of a cluster may contain elements that are
not present in an explicit representation of any object. E.g., a prototype,
being a representation of a single example, has one single weight. From a
prototype one could not predict that an apple must have a weight between
130g and 180g. Hence, characteristic descriptions allow predictions of a
more general kind than prototypes.

36 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

e while in the above example the information used in intensional descrip-
tions is the same as that used in extensional descriptions, this need not
be the case. Some parts of an example description may be fit for comput-
ing distances, others (e.g., properties described in a first order language,
where distances are harder to define) may be more suitable for intensional
descriptions.

e predictive induction systems (among which systems that induce rule sets
or decision trees for classification or regression) usually induce hypotheses
that involve reasoning of type (2). For instance, the normal way of using
a regression tree is to sort an instance down the tree into a leaf (i.e.
assigning it to a cluster via intensional reasoning) and predict the value
stored in that leaf. A rule based system would first find a rule that applies
to the instance (i.e. it assigns it to a cluster; the body of the rule is an
intensional description of the cluster) and then make a prediction based
on a (extensional) value stored in the head of the rule.

The last remark illustrates that rule based systems and decision tree induc-
tion systems can be seen as predictive clusterers.

2.5 Creating Clusterings for Prediction

2.5.1 Clustering in Different Spaces

In the previous section we discussed how clusters can be used; we now focus on
how they are created. We distinguish several variants of the clustering process,
according to the directions along which the clusters should be coherent.

We distinguish those situations where the variables to be predicted are
known beforehand (as is the case for, e.g., classification or regression) and
those situations where they are not (flexible prediction). In the latter case, one
simply creates clusters that are coherent in the instance space I (i.e., have low
variance in I). In the former case however, we can divide the instance space I
into a subspace D (the part of the instance that will be given to the predictor)
and a subspace P (the part that will have to be predicted):

I=DxP. (2.39)

Instead of clustering in I, one can then also cluster in D or P. By “clustering
in a subspace of I” we mean that the distance criterion for that subspace is

6We should mention that in the case of rule set induction, the clusters may overlap, which
makes a more general definition of clustering than ours necessary. The approach essentially
stays the same though.

"It is assumed here that except for the target variable, all the information available to the
learner will also be available to the predictor.

2.5. CREATING CLUSTERINGS FOR PREDICTION 37

++ +
+ ++
ot
(@i nin w)] D
D D D
(a) clusteringin | (b) clusteringin P (c) clustering in D

Figure 2.11: Clustering in the instance space and in its subspaces.

used when forming the clusters. Figure 2.11 gives an illustration. The D and
P subspaces are represented as (one-dimensional) axes on this figure, although
they may of course be of higher dimensionality. The projections of instances
and clusters onto relevant axes is also shown.

We can then distinguish the following settings:

e form clusters in P: this is the classical supervised learning setting.

The idea behind forming clusters in P is that, since predictions will be
made for P only, it is sufficient that the instances within one cluster are
close to one another in the P subspace; coherence in D is not important.
Classification and regression, as we have defined them, cluster in P (the
quality criterion is based on the distance in the prediction space P).

e form clusters in D: this is the classical unsupervised learning setting.

When the clusterer does not have access to the values in P, the only option
that is left is to cluster in D. Such unsupervised learning presupposes
that examples close together in D will also be close together in P. If
this assumption is false, good results cannot be obtained. Such a case is
shown in Figure 2.11(c): the two rightmost clusters in I simply cannot
be distinguished in D.

e form clusters in I.

To our knowledge this setting is mainly used for descriptive clustering or
flexible prediction, i.e. when P is not known beforehand.

If we compare the clusterings in Figure 2.11, clustering (a) is the only
“good” clustering in I; the other methods identify overly general clusters. Clus-
tering (b) is a good clustering in P, while (a) identifies overly specific clusters

38 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

(two clusters are formed that are really indistinguishable in P); similarly, (a)
identifies overly specific clusters in D while (c¢) identifies the correct clusters.

Note that, from a descriptive point of view, it is as undesirable to find overly
specific clusters as to find overly general clusters. However, from a predictive
point of view finding overly specific clusters is not necessarily worse than finding
the right clusters, while finding overly general clusters is. Hence, clustering in
I might be an interesting alternative to clustering in P.

2.5.2 Do Learners Ignore Useful Information?

In the previous section, we have shown how supervised learners actually cluster
in P instead of in I, reasoning that the resulting clusters should be coherent in
P. In this section we look at this approach from an information-based point of
view, i.e. what kinds of information are available to the learner and how well
does it exploit the available information?

Given an N-dimensional space S, we define the information S corresponding
to S, as the set of dimensions of S. For instance, if I = Weight x Color, then
I= { Weight, Color}. Having the information S available for an instance means
that the coordinates of the instance in S are known.

In the previous section we assumed that the only information that the
learner has in addition to what the predictor has, is the target variable. We
now slightly extend the learning setting, in that the learner might have extra
information I available that the predictor cannot use and that need not be
predicted either. Thus, instead of Equation 2.39 we have:

I=DxPxL (2.40)
In terms of information, we get:
I=DUPUL (2.41)

We define one last piece of information: H is the information that the
learner uses in its heuristics. We can then express two constraints that every
learner must satisfy:

I (2.42)
=0 (2.43)

RIS
N

Dn

These constraints say that a learner cannot use heuristics based on unavailable
information, and that we consider only non-trivial predictions.
For an unsupervised system it furthermore holds that

HnP=9 (2.44)

2.5. CREATING CLUSTERINGS FOR PREDICTION 39

These are the only restrictions that apply for inductive learners. However,
practical systems often impose extra constraints. For most classical supervised
systems it holds that

0 (2.45)

P (2.46)

=

where P = {Y} with Y a discrete (classification) or continuous (regression)
variable. I.e., the predictor is allowed to use all the knowledge available to
the learner (except the value that is to be predicted), and the heuristics for
building the predictor are based solely on the variable to be predicted.

For some applications it might be feasible to provide the learner with well-
studied examples, about which more is known than what will be known of the
instances for which predictions will have to be made, i.e. I # 0.

Example 2.11 This example is based on the Mutagenesis dataset (see Ap-
pendix A for a description). Suppose one wants to find a theory that predicts
the mutagenicity of molecules from their molecular structure. For the molecules
that are provided to the learner, one could add information that is known to
be relevant, e.g., the numerical features lumo and logp. By taking this extra
information into account, it may be possible to obtain a better clustering. Still,
as long as these extra features are not used in the intensional descriptions of
the clusters, they need not be available for making predictions. o

Thus, our framework offers the possibility to use certain information (be-
sides the target variable) for building a predictor, even if that information will
not be available to the predictor. Most classical approaches to induction do not
exploit such knowledge (see, e.g., the description of tree learners in Chapter 3).

Let us now take a look at Equation 2.46: H = P. To our knowledge
this equation has been violated by very few, if any, predictive induction al-
gorithms. The equation says that the search for a good predictive theory is
guided by the variable to be predicted, and by that variable alone. For instance,
tree induction algorithms use heuristics such as information gain or gain ratio
(Quinlan, 1993a), Gini index (Breiman et al., 1984) or mean squared prediction
error (Kramer, 1996; Breiman et al., 1984); rule set induction algorithms count
the number of correct and incorrect predictions to guide their search (Clark
and Niblett, 1989; De Raedt and Van Laer, 1995; Michalski et al., 1986) or
some other measure of predictive quality in the case of regression (Karali¢ and
Bratko, 1997).

The reasoning behind this could be that the search for a high quality pre-
dictor can best be guided by computing the predictive quality of intermediate
predictors; in other words, the quality of an intermediate predictor is the best
indicator of the quality of the predictor it will ultimately lead to.

However, we see two counterarguments against this reasoning;:

40 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

o It is not always true that the best predictor, according to a quality cri-
terion @, can best be found by using @ as heuristic. For instance, systems
that build classification trees and try to maximize the accuracy of the fi-
nal tree use information gain (Quinlan, 1993a) or Gini index (Breiman et
al., 1984) as heuristics. These are not equivalent to using the accuracy of
the intermediate tree, in the sense that the heuristic may prefer one tree
over another without its accuracy being higher. Still, these heuristics on
average yield a final tree with higher accuracy than when accuracy itself
is used as a heuristic. Breiman et al. (1984) discuss this phenomenon.

e While the heuristics just mentioned are different from accuracy, they are
computed from the same information P, so Equation 2.46 still holds. One
situation where this may not be an optimal approach, is when noise is
present in the data. If the values for P can be inaccurate, an algorithm
using these values to guide its search might easily be misguided. Making
use of other values in the search heuristic can make it more robust.

In statistics it is known that when one has several independent estimators
0; for a certain parameter 6, each estimator being unbiased and having a
standard error o;, the estimator

(2.47)

(a weighted average of the original estimators) is optimal in the sense
that of all unbiased estimators that are a linear combination of the éi, 6
has the smallest standard error. While it is difficult to apply this result in
a more general context where variables are not necessarily numerical and
structural information can be taken into account, the general message
remains. In the presence of noise, the observed class of an instance may
not be the best estimator of its real class; instead, a better estimator can
probably be formed by including other information.

In the context of unsupervised learning, it is common to let the heuristic
use all the available information except P. The fact that such an approach
works, suggests that even for supervised learning, information outside P may
be relevant. So, it turns out that learning with H = P is only a special case of
a more general supervised learning setting where P C H C I.

If we view the use of only P in the heuristics as one extreme, and using
everything except P as the other extreme, it becomes clear that between these
two extremes a broad range of other possibilities remains unexplored. Some of
these are discussed in the next section.

2.5. CREATING CLUSTERINGS FOR PREDICTION 41

2.5.3 Applications of Predictive Clustering

In addition to the classical approaches to classification, regression, unsuper-
vised learning and flexible prediction, which are all special cases of predictive
clustering, there are several other interesting applications that do not fall into
one of the categories mentioned, but extend them in some way or combine
properties of different categories.

Classification from Scarce Class Information

Assume one has to induce a classifier from a set of data where only a small
percentage of the examples is labelled with a class. One way to handle this
setting is to perform unsupervised learning, and once the clusters are formed
(and not before) use the available class values to compute a prototype for each
cluster. If the clusters are coherent with respect to classes, this method should
yield relatively high classification accuracy with a minimum of class information
available. This is quite similar in spirit to Emde’s method for learning from
few classified examples, implemented in the COLA system (Emde, 1994).8

In the context of the information-based approach we have just discussed,
this technique can be explained by stating that H NP = (. More generally, one
could devise an algorithm where H > P, i.e. the learner uses not only class
information but also other information in its heuristics. A similar reasoning
can be followed for regression.

Noise Handling

Our clustering based prediction technique is not only robust with respect to
missing class information, but also with respect to noise in general. Dis-
criminant descriptions are not very robust in this respect: if, e.g., in our
Fruit& Vegetables example a red apple were encountered, following the dis-
criminant descriptions of clusters it would certainly be misclassified, even if it
has all the other characteristics of an apple. When discriminant descriptions
can be supplemented with, e.g., characteristic descriptions or distance based
criteria, a much more robust predictive system is obtained.

Combining Advantages of Different Approaches

There are many ways in which extensional and intensional reasoning could be
combined. For instance, one could assign an object to a cluster according to

8The concept learner COLA first makes use of the first-order clusterer KBG-2 (Bisson,
1992a) to cluster the data, then defines the concept as a disjunction of some of these clusters,
where preference is given to clusters that contain many positive and few negative examples
(and, by the user’s choice, many or few unclassified examples, biasing it towards more general
or more specific concepts).

42 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

its discriminant description, check whether it fits the (more elaborate) charac-
teristic description of the cluster, and if not, use an extensional method (e.g.,
k-nearest neighbor) to predict missing values. Alternatively, one could com-
pute the distance of the example to the prototype, and if it is too far off, again
resort to an extensional prediction method.

The possibility to combine extensional and intensional reasoning points out
opportunities to join existing prediction techniques (such as instance based
learning and rule set induction) into one hybrid system that combines the
advantages of both separate techniques. The effect of this would not be limited
to increased robustness with respect to noise, but could also lead to more
efficient prediction methods or higher predictive accuracy even in noise-free
domains. The latter claim is confirmed by some related work, which we discuss
in the following section.

2.6 Related work

Part of this chapter is based on (Blockeel et al., 1998b), but extends it in
that the latter paper only discusses predictive clustering in the decision tree
context, while the approach followed in this chapter makes abstraction of the
representation formalism.

Our work is of course related to the many approaches to clustering that ex-
ist; within machine learning COBWEB (Fisher, 1987) and CLUSTER/2 (Michal-
ski and Stepp, 1983) are probably the most influential ones. Although cluster-
ing is usually seen as a descriptive technique (it identifies structure in the data),
the possibility of using it for predictions has been recognised since long. In fact,
many clustering systems have been evaluated by measuring their potential to
make accurate predictions, given the difficulty of assessing the descriptive qual-
ity of clusterings. Nevertheless, to our knowledge an explicit clustering based
approach to classification and regression has never been discussed in detail.

Hybrid Approaches

Concerning hybrid approaches to predictive induction, our work bears an inter-
esting relationship with Domingos’ work on combining instance based learning
with rule induction (Domingos, 1996; Domingos, 1998). In Domingos’ ap-
proach, a rule induction system is used to induce rules from a data set; these
rules are considered a generalized form of instances. Predictions are then made
for new instances, based on their distance from the induced rules. The gener-
alized instances have exactly the same functionality as the clusters (or more
specifically, the prototypes) in our approach.

Another approach towards combining the use of distances for prediction
with explicit induction is presented by Webb (1996). Webb, in contrast to

2.6. RELATED WORK 43

Figure 2.12: An example of an instance that has a high probability of being
misclassified by a simple tree.

Domingos, focuses on decision trees instead of rule sets. He demonstrates that
the predictive accuracy of a decision tree can significantly increase by making
the tree more complex (instead of pruning it, as most decision tree induction
systems do). The argument for splitting leaves into separate parts, even if
those leaves are pure with respect to the class value, is based on distances.
An example is given in Figure 2.12. The unseen example labelled (a) is in a
leaf of positive instances, while all its closest neighbors are negative. Webb’s
approach handles such cases by constraining the area where an example will
be predicted to be positive as much as possible, and to this aim keeps splitting
nodes that with the standard decision tree approach would become leaves.

A third approach to combining distance based prediction and induction is
followed by SRT (Kramer, 1996); this regression tree builder makes predictions
using the classical sorting approach (i.e. it sorts an example down the tree into
a leaf), but it also performs a check by computing the distance between the
example and the leaf it belongs to. When the distance is suspiciously high,
the example is reclassified by assigning it to the cluster that is closest to the

44 CHAPTER 2. A CLUSTERING APPROACH TO PREDICTION

example, considering the tree as a hierarchy of clusters. The effect is very
similar to that of Webb’s approach. Kramer refers to this technique as outlier
detection.

Domingos (1996), Webb (1996) and Kramer (1996) have all been able to
show that mixing a distance based approach with explicit induction often leads
to an increase in predictive accuracy. These results provide support for our
thesis that a general approach can combine the advantages of more specific
approaches.

2.7 Conclusions

In this chapter we have first introduced distances, prototypes and clustering.
We have identified a special case of clustering that we called predictive clus-
tering; it encompasses classification and regression but can also be used for
flexible prediction and unsupervised learning. We have distinguished a purely
extensional form of it, which was related to instance based learning; a purely
intensional form; and a mixed form. The latter turns out to be the most in-
teresting one, since it offers a broad range of possibilities; moreover it contains
several classical approaches to predictive induction (rule set induction, decision
tree induction) as special cases. These classical approaches turn out to occupy
only the extremes of a spectrum provided by our framework. We have then
argued that the area in between these extremes may provide interesting oppor-
tunities with respect to, e.g., noise handling, as well as for combining existing
approaches. Some recent work with such hybrid approaches has been discussed
in this context, providing support for the usefulness of a unifying approach.

Chapter 3

Top-down Induction of
Decision Trees

3.1 Introduction

Decision trees are among the most popular tools for machine learning and data
mining. They are most often used in the context of classification, and hence
are often defined with this specific purpose in mind. Sometimes they are used
for regression, in which case a slightly different definition is given. In both
cases the tree is seen as simply a function mapping instances onto predictions.
A few authors have pointed out, however, that a decision tree also represents a
cluster hierarchy, and hence decision tree induction can be used in the clustering
context.

In this chapter we study decision trees in the context of predictive clustering.
We first show in Section 3.2 how decision trees represent the two steps in the
prediction process we discussed in the previous chapter. Then, in Section 3.3,
we discuss top-down induction of decision trees as a generic procedure that
can be instantiated with parameter procedures. We show how some typical
instantiations result in the classical TDIDT approaches to prediction.

This approach is reminiscent of the one in the previous chapter, where
we showed that classification and regression can be seen as special cases of
clustering. The difference is that the discussion in Chapter 2 made abstraction
of the precise induction method; in this chapter we narrow the focus to one
method (induction of decision trees) and study it in more detail.

In Section 3.4 we briefly compare decision trees with another popular rep-
resentation formalism: rule sets. Section 3.5 discusses some related work and
in Section 3.6 we conclude.

45

46 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

procedure SORT(T": tree, e : example) returns leaf:
N:=T
while N # leaf(C) do
let N = inode(r, {(r,t,)|r € range(7)})
N := tr(e)
return N

procedure TARGET(N : leaf) returns prediction:
let N = leaf(C)
return p'(C)

procedure PREDICT(T": tree, e: example) returns prediction:
return TARGET(SORT(T, €))

Figure 3.1: Making a prediction for an example using a decision tree.

3.2 Decision Trees

Definition 3.1 (Decision tree) A decision tree for a domain I is defined
recursively as follows:

e leaf(C) is a decision tree for I (C can be anything)

e inode(r, S) is a decision tree for I if and only if T is a function from
I to some set R (we call T a test) and S is a set of couples such that
Vr € R: (r,t,) € S and t, is a decision tree for I

Le., each node in o decision tree contains a test and associates a subtree with
each possible outcome of the test.

A decision tree maps an instance e onto a leaf in the following manner:
starting with the root node r, one subjects the instance e to the test 7. and
selects the child node associated with 7,.(e). This procedure is repeated for the
new node until a leaf node is reached. We say that the instance has then been
sorted into that leaf. The SORT algorithm in Figure 3.1 implements this pro-
cedure. In this algorithm a leaf is represented as leaf(C') with C an extensional
representation of the cluster. Note that if we consider leaves as clusters, SORT
is in fact a cluster assignment function f.

Through this sorting procedure, each decision tree defines a function ¢ :
I — C, where I is the instance space and C is the set of all possible leaves. We
can consider ¢ a specialization of the cluster assignment function f for C, i.e.

t(e) = f(e;C).

3.2. DECISION TREES 47

t
example — |edf P prediction

Figure 3.2: Two steps in the mapping from instances to predictions.

(weight < 80g?)

true false
strawberry (color)
red green

| tomato | | apple|

Figure 3.3: A fruit classifier in decision tree format.

For convenience we define
P C— P y(C) = (p(C)) (3.1)

Figure 3.2 then illustrates how t and p’ implement the two-step prediction pro-
cess we discussed in the previous chapter. An algorithm is given in Figure 3.1;
it has the same structure. In practical implementations, however, the TARGET
function is often made implicit, i.e. p'(C) is stored in a leaf instead of C. Al-
ternatively, p(C') could be stored, where p(C) could be either a prototype as
we have defined it, or a generalized prototype (so that, e.g., trees with linear
models in the leaves are also allowed).

Note that t makes use of the tests in the tree, which form an intensional
description of the clusters (see further), while p’ makes use of the prototype,
which is part of the extensional description. The process is thus an instantiation
of the “example =1 cluster = g prediction” type of reasoning.

We can distinguish several kinds of decision trees. A classification tree
is a decision tree where P is nominal; such a tree is shown in Figure 3.3. A
regression tree is a decision tree where P is numerical. One could call a decision
tree a flexible prediction tree if p' = p.

A decision tree is very similar to a cluster hierarchy: all the nodes on
one level define a partition of the examples, and the children of a node define a
partition of the examples covered by that node. Each cluster has a discriminant

description of the form
{el \ri(e) = ri}

48 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

with 7 ranging over all the ancestor nodes of the cluster and r; the result of ;(e)
for all e in the cluster. Thus, the induction of a decision tree can be seen as a
descriptive hierarchical clustering method, returning discriminant descriptions
of the clusters. Such a tree could be called a clustering tree.

Example 3.1 For the tree in Figure 3.3, the following table shows the clusters
in the tree and the corresponding discriminant descriptions:

cluster description

strawberries Weight<80g = true

tomatoes+apples Weight<80g = false

tomatoes Weight<80g = false A Color = red
apples Weight<80g = false A Color = green

In practice, an expression such as Weight<80g = false is of course abbreviated
to Weight>80g. o

We want to stress here that the quality criterion for descriptive clusterings is
in a sense more severe than for predictive clusterings. For a predictive clustering
it suffices that the intra-cluster variance of the leaf clusters is small. If a tree is
considered as a descriptive cluster hierarchy, the quality of the clusters defined
by internal nodes is also important. In the previous chapter we discussed
flexibility of clustering, and noted that by allowing complex cluster descriptions
one may obtain clusterings of higher quality. In the context of decision trees
this translates to allowing complex tests 7; in the internal nodes of a tree.

3.3 Induction of Decision Trees

Most systems that induce classification or regression trees construct the tree
from the root to the leaves. This method is usually referred to as Top-Down
Induction of Decision Trees (TDIDT) (Quinlan, 1986), or as the divide-and-
conguer approach. Both incremental and non-incremental approaches exist. In
this text we only consider non-incremental approaches.

A generic non-incremental TDIDT-algorithm is shown in Figure 3.4. We
use the convention that procedures that are in fact parameters of the algorithm
are written in normal capitals (e.g. OPTIMAL_SPLIT), while real procedure
names are written in small capitals (e.g. TDIDT). Our TDIDT algorithm?!
consists of two phases, a growing phase and a pruning phase. The tree growing
algorithm works as follows: given a set of examples F, it constructs some set

of tests T (GENERATE_TESTS). This set usually depends on the form of the

1TDIDT is used as an abbreviation of Top-Down Induction of Decision Trees, while TDIDT
refers to the specific algorithm in Figure 3.4.

3.3. INDUCTION OF DECISION TREES 49

example descriptions, but may also depend on specific values occurring in the
data. For instance, if example descriptions contain an attribute Color that
takes only the values red, blue in the observed data, then the tests Color=red
and Color=blue are in 7.

Each test 7 € T, being a function from the instance space to a finite result
space, induces a partition £ on E that can be defined as follows:

£ ={E;|E; = {e € E|r(e) =r;}}. (32)

The algorithm calls the function OPTIMAL_SPLIT to find that test 7 € T
that partitions E in some optimal way.

The algorithm next calls a function STOP_CRIT to check whether the op-
timal partition £ that was found is sufficiently good to justify the creation of a
subtree. If it is not, a leaf is constructed containing some relevant information
about E (this relevant information is computed by the function INFO). If £ is
sufficiently good, then GROW_TREE is called recursively on all the E; € £, and
the returned trees t; become subtrees of the current node.

In many systems the GROW_TREE procedure grows an overly large tree that
may overfit the training data. Therefore, after the tree-growing phase these
systems have a post-pruning phase in which branches are pruned from the tree,
in the hope to obtain a better tree. The pruning algorithm PRUNE performs
this.

The functions OPTIMAL_SPLIT, STOP_CRIT, INFO and PRUNE are
parameters of TDIDT that will be instantiated according to the specific task
that is at hand (e.g., classification requires different functions than regression)?.
Note that the choice of OPTIMAL_SPLIT, STOP_CRIT and PRUNE determ-
ines the function ¢ that maps examples to leaves, whereas the INFO function
determines whether C, p(C), p'(C) or possibly something else is stored.

Most (classification or regression) tree induction systems that exist today
are instantiations of this generic algorithm: we mention C4.5 (Quinlan, 1993a),
CART (Breiman et al.,, 1984), STRUCT (Watanabe and Rendell, 1991), SRT
(Kramer, 1996), ... The main exceptions are incremental decision tree learners
(Utgoff, 1989; Chapman and Kaelbling, 1991). These systems typically build
the tree top-down, but contain operators for changing the tree when new evid-
ence suggests to do so (by changing tests, rearranging nodes, extending leaves
or collapsing internal nodes into leaves).

We now discuss possible instantiations of the generic algorithm in Figure 3.4
in the context of classification, regression and clustering. Table 3.1 gives an
overview of these instantiations, stressing the similarities between the different
algorithms.

2The function GENERATE_TESTS is also a parameter, but is irrelevant to the discussion
in this chapter.

50 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

function GROW_TREE(E: set of examples) returns decision tree:

T := GENERATE_TESTS(E)
r := OPTIMAL_SPLIT(T, E)
& := partition induced on E by 7
if STOP_CRIT(E, &)
then return leaf(INFO(E))
else

for all E; in &:

t; := GROW_TREE(E})
return inode(7, {(j,t;)})

function TDIDT(E: set of examples) returns decision tree:
T’ := GROW_TREE(E)
T := PRUNE(T")

return T
Figure 3.4: The TDIDT algorithm.
OPTIMAL_SPLIT STOP_CRIT INFO PRUNE
classification gain (ratio) x>-test mode C4.5
Gini index min. coverage valid. set
MDL
regression intra-cluster variance F-test, t-test mean valid. set
of target variable min. coverage
MDL
clustering intra-cluster variance F-test, t-test prototype valid. set
min. coverage identity
MDL

Table 3.1: Overview of the different tasks that can be performed with TDIDT
by instantiating its procedure parameters.

3.3. INDUCTION OF DECISION TREES 51

3.3.1 Splitting Heuristics

Given a set of tests 7, the function OPTIMAL_SPLIT computes for each 7 €
T the partition induced by 7 on the set of examples E. It evaluates these
partitions and chooses the test 7 that is optimal with respect to the task that
is to be performed.

Classification

For classification, many quality criteria have been proposed. We mention a
few of them; for each one it is the case that a split is considered optimal if it
maximizes the criterion.

e Information gain (Quinlan, 1993a): the class entropy of a set of examples

FE is defined as
k

s(B) =Y p(ci, E)log p(ci, E) (3.3)

=1

where k is the number of classes, the c; are the classes and p(c;, E) is the
proportion of the examples in E that belong to class ¢;. The information
gained by performing a test 7 is

G=sE)- > |Ei|s(E,v) (3.4)

E;€& |E|

where £ is the partition on E induced by 7.

e Information gain ratio (Quinlan, 1993a): the information gain obtained
with a test is compared to the maximal gain that can be offered by
any test 7/ for which the cardinality of the induced partition and of the
elements of this partition are the same as for 7.

MG = Z p; log p; (3.5)
B, €€

with p; = |E;|/|E|. The gainratio is the ratio of the gain and this maximal
gain:

GR =G/MG (3.6)

e the Gini heuristic (Breiman et al., 1984): this is similar to information
gain, but instead of class entropy, the Gini index for impurity is used:

k k

9(E) = plci, E)(1 = p(ci, B)) =1 =) plci, E)? (3.7)

i=1 1=1

52 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

The quality of a split is computed as

|E

Q=9(B) - Y 1ol (39

E,e& |

These criteria seem to be the most popular ones for induction of classi-
fication trees. Empirical comparisons between different criteria can be found
in (Mingers, 1989; Buntine and Niblett, 1992); (Breiman et al., 1984) and
(Breiman, 1996) contain some more theoretical discussions. An interesting ob-
servation is that none of these heuristics are directly related to the intra-cluster
variance in the partition induced by the test (as also remarked in Section 2.5.2).

Regression

Regression systems typically use as quality criterion the intra-subset (or within-
subset) variation of the target variable (see e.g. CART (Breiman et al., 1984),
SRT (Kramer, 1996)):

SSw="Y_ > (v — %) (3.9)

E; €€ j

where y;; denotes the j-th observation of the target variable in the set E;, §; =
>-;Yii/|Ei| and § =37, . yi;/|E|. This quality criterion should be minimized,
not maximized.

From the statistical technique known as analysis of variance (ANOVA), it
is known that if a set of values for a variable is partitioned into subsets, the
total variation of the variable (measured as the sum of squares of differences
between the values and the mean) can be decomposed into a within-subset and
a between-subset variation, as follows:

SSr =S5+ SSw (3.10)
with

SSp = Z(yu—w (3.11)

7”]
SSp > ni(@i —9)° (3.12)

where n; is the number of elements belonging to subset z, 5SSt stands for total
variation, SSp is between-subset variation and SSyy is within-subset variation.
Equation 3.10 shows that minimizing SSw is equivalent to maximizing SSp.
In the case where only two subgroups are formed, maximizing SSp is equivalent
to maximizing |§1 — 2.

3.3. INDUCTION OF DECISION TREES 53

Clustering

Since the heuristic for regression minimizes variance, a generalization towards
predictive clustering is straightforward:

SSr = Y d(ei;,p(E)) (3.13)
SSp = Zmal(;v(Ei),p(E))2 (3.14)

SSw Z Z d(eij, p(E;))? (3.15)

If d = dg, it still holds that SSt = SSp + SSw, but this does not hold for
every distance. A clustering system then has to choose between maximizing
SSp and minimizing SSw. If only two clusters F; and E, are formed, it could
also maximize d(p(E;),p(E>)).

3.3.2 Stopping Criteria

Many different stopping criteria have been proposed in the literature. Some
very simple criteria are:

e stop splitting when a cluster is sufficiently coherent (i.e. its variance is
below an acceptable threshold)

e stop splitting when the number of examples covered by a node is below
some threshold

A more complicated criterion is the MDL principle (Rissanen, 1978).
MDL stands for Minimal Description Length. The reasoning behind such a
criterion is that the correct target values of a set of examples can be encoded
in the form of a hypothesis, together with a list of corrections: an exhaustive
enumeration of all the values that are predicted incorrectly by the hypothesis.
When comparing two hypotheses with different predictive quality and different
complexity, one should prefer the one with minimal description length; in other
words: only make a hypothesis more complex if the gain in predictive quality
is sufficiently large to justify it.

Hence, MDL is some sort of exchange rate that is applied when trading
simplicity for accuracy. While the method has theoretical foundations, it is still
relatively ad hoc in the sense that the best theory is not necessarily the most
compact one. Moreover, applying it outside the classification context is quite
complicated. Kramer (1996) discusses how it can be applied for regression. This
version of MDL could in principle be generalized to the clustering context.

Another family of stopping criteria is based on significance tests. In
the classification context a y2-test is often used to check whether the class

54 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

distributions in the subtrees differ significantly (the same test is used by some
rule-based systems, e.g. CN2 (Clark and Niblett, 1989) and ICL (De Raedt and
Van Laer, 1995)). A x2-test was also incorporated in Quinlan’s ID3 algorithm
(Quinlan, 1986), the predecessor of C4.5. It was not incorporated in C4.5
because, as Quinlan notes (Quinlan, 1993a), the test is relatively untrustworthy
and better results are usually obtained by not using any significance test but
pruning the tree afterwards. A similar argument is given by Breiman et al.
(1984).

Significance tests do have the advantage that one can stop growing a tree
relatively early, instead of growing a large tree and pruning away most of its
branches; thus, an important gain in efficiency is achieved. For this reason,
they are still incorporated in many systems.

Since regression and clustering use variance as a heuristic for choosing the
best split, a reasonable heuristic for the stopping criterion seems to be the F-
test. If a set of examples is split into two subsets, the variance should decrease
significantly, i.e.,

 SSp/(n—1)

F= 55w /m=n

(3.16)

should be significantly large (where SS7 and SSw are defined by Equations
3.13 and 3.15, k is the number of subsets in the partition and n is the number
of examples in the whole set). When k = 2 the F-test is equivalent to a t-test
on the prototypes, which could be used instead.

3.3.3 Information in Leaves

The INFO function computes the information that is to be stored in a leaf.
Typically, one stores only that information that will be necessary for prediction,
i.e. the value that is to be predicted:

e for classification trees: store the mode of the class values observed in the

leaf

o for regression trees: store the mean of the values of the target variable
that are observed in the leaf

e for clustering trees: store an extensional cluster representation C, or the
prototype p(C)

Storing a prototype or extensional representation makes flexible prediction pos-
sible, but of course it can also be done for classification or regression trees.

3.3. INDUCTION OF DECISION TREES 55

3.3.4 Post-pruning

Because it is hard to find good stopping criteria, many tree building systems
grow an oversize tree and afterwards prune away those branches that do not
seem useful. This procedure is computationally more expensive, but is known
to yield better trees (see e.g. (Breiman et al., 1984; Quinlan, 1993a)).

Several methods for post-pruning are in use. C4.5 uses an estimate of the
tree accuracy on unseen data; this estimate is based on the errors in the training
set as well as the complexity of the tree.®> The method lacks a firm statistical
ground, but seems to work reasonably well in practice. It only works for clas-
sification trees, however (although it could possibly be generalized towards
regression or clustering).

Another way to estimate the accuracy on unseen data, is to simply remove
a random sample from the training set, and use it as unseen data to evaluate
the tree afterwards. The set that is removed in this way is called a wvalidation
set, hence we call this pruning method walidation set based pruning. The idea
is that through consecutive pruning, a series of subtrees of the original tree
is generated; the subtree that has the highest quality on the validation set is
chosen as the final tree. This method is described by Breiman et al. (1984),
who also propose a more sophisticated algorithm that uses the same underlying
idea. In their approach, pruning is controlled by a parameter « that represents
the marginal cost of having an extra leaf in the tree. The optimal value for
a is estimated using a cross-validation: several auxiliary trees are grown, each
with a different validation set, and « is chosen so that the average quality of
each auxiliary tree on its own validation set is maximized. This « is then used
to prune a tree that has been grown on the whole data set.

Advantages of this method are that it can be used for any kind of trees,
as long as there is some notion of the quality of a tree and a way to compute
it (see Section 2.3.3), and that it is a statistically sound technique to estimate
the quality of a tree on unseen data. A disadvantage of the simple validation
set based pruning method is that the training sample becomes smaller, which
may affect the quality of the tree; this disadvantage is avoided with Breiman et
al. (1984)’s cross-validation-based algorithm.

3.3.5 Summary

Looking back at Table 3.1, we can conclude that the currently existing ap-
proaches to the induction of classification or regression trees are all very similar
from the point of view of building predictive clustering trees:

3Using the data in the leaf, a confidence interval for the predictive accuracy of the leaf is
constructed; the accuracy of the leaf is estimated as the lower bound of this interval, following
the reasoning that the training set accuracy in the leaf is probably too optimistic. Smaller
leaves yield larger intervals, hence more pessimistic estimates.

56 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

e The OPTIMAL_SPLIT procedure basically minimizes the intra-cluster
variance of the partition induced by a test; exceptions are mainly found
with classification, where variance based heuristics work less well than
specialized heuristics based on information gain (ratio) or Gini index.

e The STOP_CRIT procedure for regression is similar to that for clustering,
but for classification the significance test and the implementation of the

MDL technique differ.

e Given that modes and means are special cases of prototypes, the INFO
procedure is essentially the same in all cases.

e The validation set based post-pruning method can be used in all cases, al-
though at least one classification system (C4.5) contains a specific method
that does not immediately generalize to the other settings.

3.4 Trees versus Rules

There are two very popular representation formalisms within symbolic machine
learning; decision trees form the first one, a second one is rule sets. We now
briefly discuss induction of rule sets and compare it with induction of decision
trees. This section provides some motivation for the use of decision trees in
this text, but is not mandatory for reading the remainder of this text.

3.4.1 Induction of Rule sets

A hypothesis can be represented by a set of rules, where each rule is in the
following format:

IF condition AND condition AND ... THEN conclusion

Most predictive systems learn rules where the conclusion of the rule indic-
ates the class. An example of what a typical rule set would look like for the
Fruit& Vegetables example is given in Figure 3.5. Both attribute-value rules
and a Prolog program are given. Indeed, Prolog programs are basically rule
sets, and since practically all ILP systems learn logic programs or Prolog pro-
grams, most of them (though not all, see e.g. (Bostrom, 1995)) follow the
covering approach.

Sometimes the rules in a rule set are supposed to be ordered: a rule is
only applicable when none of the preceding rules are applicable. In that case
the rule set is called a decision list. Decision lists have the advantage that it
is more easy to define a concept that has exceptions: the rule describing the
exceptions is then written before the more general rule. When no ordering of

3.4. TREES VERSUS RULES 57

A rule set in the attribute-value framework:

IF Weight < 80g THEN Class = strawberry
IF Color = red AND Weight >= 80g THEN Class = tomato
IF Color = green THEN Class = apple

The same rule set written as a Prolog program:

strawberry(X) :- weight(X, W), W<80.
apple(X) :- color(X, green).
tomato(X) :- color(X, red), weight(X, W), W>=80.

Figure 3.5: Examples of rule sets in the Fruit&Vegetables example.

rules is present, the general rule often has to be made more complex to exclude
the exceptions.

Decision lists can be represented easily in Prolog by putting a cut at the
end of each program clause. The semantics of propositional rule sets (whether
they form a decision list or just a set of unordered rules) are usually defined
by the system that induces them. (One could change the IF-THEN format to
an IF-THEN-ELSE format to make the ordering of the rules more explicit.)

Most algorithms for the induction of rule sets are variants of the algorithm
shown in Figure 3.6. The task is to learn rules of the form IF conditions THEN
positive, i.e. the rule set as a whole should make a positive prediction for those
instances that are indeed positive.

If all the conditions in a rule are true for a specific example, we say that the
rule covers the example. Basically, the approach is that one rule at a time is
learned. Rules are preferred that cover as many positive examples as possible,
and as few negatives as possible (since these two criteria may conflict, weights
have to be assigned to both according to their importance; the exact weights
may vary in different instantiations of the algorithm). Each new rule should
at least cover some previously uncovered instances. This is continued until no
more uncovered positive instances exist, or until no additional rules can be
found.

The variant shown in Figure 3.6 grows individual rules top-down:* it al-
ways starts with a general rule that covers all examples and keeps adding
conditions until the rule does not cover any negative examples (i.e. not cov-
ering negative examples gets an infinitely high weight here). The procedure
OPTIMAL_CONDITION selects a condition that removes as many negative
examples from the covering of R and keeps as many positive examples in it
as possible. This procedure uses a heuristic which may vary along different

4Bottom-up approaches to rule growing also exist.

58 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

procedure INDUCE_RULESET(ET, E~: set of examples) returns set of rules:
H:=10
U:=E*
while U # 0 do
R := GrROW_RULE(U, E™)

H:= HU{R}
U :=U — {ele is covered by R}
return H

procedure GROW_RULE(E™T, E~: set of examples) returns rule:
R := IF true THEN Class=pos
while R covers some negative examples
T := GENERATE_TESTS(E™*, E™)
C := OPTIMAL_CONDITION(R, T, E*, E")
add C to the condition part of R
return R

Figure 3.6: The covering algorithm, also known as separate-and-conquer.

implementations.

The approach of learning rules one at a time is usually referred to as the
separate-and-congquer approach, or as the covering approach. The latter name
comes from the fact that it focuses on uncovered examples. Once a set of
positive examples has been covered by a rule, it is removed from the set on
which the algorithm focuses.

The covering algorithm as given here only induces unordered rule sets. In-
duction of decision lists takes a more complicated approach. First of all, rules
predicting different classes must be learned in an interleaved fashion, because
for a set of rules predicting the same class the order of the rules can never be
important. A different algorithm is followed according to whether rules are
learned from first to last in the list, or in the opposite direction. In the latter
case, the strong bias towards keeping negative examples uncovered should be
removed, because when a rule covers negatives this may be taken care of by
new rules that are still to be found.

Examples of rule-based systems are CN2 (Clark and Niblett, 1989), the AQ
series of programs (Michalski et al., 1986) and almost all ILP systems : PRO-
coL(Muggleton, 1995), FoiL(Quinlan, 1993b), ICL(De Raedt and Van Laer,
1995), . .. The ILP systems FoibL(Mooney and Califf, 1995) and FFoIL(Quinlan,
1996) learn first order decision lists.

3.4. TREES VERSUS RULES 59

3.4.2 A Comparison Between Trees and Rules

Comparing the tree in Figure 3.3 with the rule sets in Figure 3.5 reveals a strong
correspondence: they have a similar structure and use the same tests. Not
surprisingly, in the attribute value framework trees can be always be converted
to rule sets using a very simple algorithm that is described in e.g. (Quinlan,
1993a)°. Basically, for each leaf one just collects the tests on the path from
the root to the leaf and constructs a rule from these. For the decision tree in
Figure 3.3 this yields the following rule set:

IF Weight < 80g THEN Class = strawberry
IF Weight >= 80g AND Color = red THEN Class = tomato
IF Weight >= 80g AND Color = green THEN Class = apple

Typically a rule set that is derived in this straightforward manner from
a tree contains redundant tests. Quinlan (1993a) shows how these can be
eliminated during a post-processing phase. The above rule set is then reduced
to the one in Figure 3.5.

Given this strong correspondence between decision trees and rule sets, one
might question whether there are any important differences at all between the
representation formalisms. These do exist. We divide them into two groups:
differences with respect to the representation itself, and differences with respect
to the induction process.

Differences with respect to the representation

A first difference is understandability. A rule set is generally considered to
be easier to understand than a decision tree. The hypothesis is structured in a
modular way: each rule represents a piece of knowledge that can be understood
in isolation from the others. (Although this is much less the case for decision
lists.)

A second difference originates in the concept learning point of view, and
concerns the representation of the concept that is to be learned. From
the concept learning point of view, the concept that one wants to learn can be
either the function mapping examples onto their labels, or a specific class that
is to be predicted. E.g. for the Poker data set (see Appendix A), one could
try to learn the concept of a pair (which is one of the classes) or consider the
association of hands with names to be the concept. The first one is probably
the most natural here. In the finite element mesh data set (see Appendix A),
where the aim is to predict into how many pieces an edge must be divided, it
makes more sense to say that the concept to be learned is that of a good mesh
(i.e. predicting a good number of each edge) than to say that one wants to

5More surprisingly, this algorithm does not work in the first order logic framework, as we
will show in Chapter 5.

60 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

learn the concept of “an edge that should be divided into four parts”, among
other concepts.

For the task of learning a definition for one class, rules are more suitable
than trees because typical rule based approaches do exactly that: they learn a
set of rules for this specific class. In a tree, one would have to collect the leaves
containing this specific class, and turn these into rules.

On the other hand, if definitions for multiple classes are to be learned, the
rule based learner must be run for each class separately. For each individual
class a separate rule set is obtained, and these sets may be inconsistent (a
particular instance might be assigned multiple classes) or incomplete (no class
might be assigned to a particular instance). These problems can be solved, see
e.g. (Van Laer et al., 1997), but with a tree based approach they simply do
not occur: one just learns one hypothesis that defines all the classes at once.

We could summarize this by saying that rules are more fit when a single
concept is learned, and this concept corresponds to one single class. When
multiple concepts are learned, or the concept corresponds to the mapping of
instances onto classes (or numeric values), a tree based approach is more suit-
able.

A third difference is the way in which exceptions can be handled. When
a concept is easiest to describe with general rules that have some exceptions
(indicated by more specific rules), tree based approaches can usually handle it
more easily than rule based approaches (except when decision lists are induced).
The covering algorithm easily finds concepts that can be described as the union
of sub-concepts, where each sub-concept can be described by a relatively simple
rule; but sometimes a concept can easily be described as the difference of two
concepts C; = Cy — C3, but much less easily as a union of other sub-concepts
C; (these C; may have complicated descriptions which makes them harder to
find). Figure 3.7 illustrates this with a simple example: a tree is given together
with an equivalent rule set. The class positive has a complicated definition
when we define it as a rule set, but a much simpler definition when written in
tree format or as a decision list.

Differences with respect to the induction process

The divide-and-conquer approach is usually more efficient than the separate-
and-conquer approach. For separate-and-conquer, the size of the set of ex-
amples that is used to grow a new rule can be expected to decrease more
or less linearly (actually only the number of uncovered positive examples de-
creases; for each rule all the negative examples are taken into account). With
a divide-and-conquer approach, if the splits are balanced, the size of the sets
of examples decreases exponentially when one goes down the tree. We refer to
(Bostrom, 1995) for more details.

3.4. TREES VERSUS RULES 61

Decision tree:

1 he

+ -
Rule set:
IF A=1 AND B=1 AND C=1 AND D=2 THEN Class = +
IF A=1 AND B=1 AND C=1 AND E=2 THEN Class = +
IF A=1 AND B=1 AND C=1 AND F=1 THEN Class = +

Decision list:

IF D=1 AND E=1 AND F=2 THEN Class = -
ELSE IF A=1 AND B=1 AND C=1 THEN Class = +
ELSE Class = -

Figure 3.7: A simple tree, together with an equivalent rule set. Although the
rule set is much more complex than the tree, it cannot be simplified further.
A decision list, however, does allow for a more compact representation.

62 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

format theory # literals
(A=1IAB=1AC=1AD=2)V
+ < (A=1AB=1AC=1AE=2)V 12
DNF (A=1AB=1AC=1AF=1)
-~ & A=2VB=2VC=2V(D=1AE=1AF=2) 6
+ © A=1IAB=1IAC=IA(D=2AE=2AF=1) 6
CNF (A=2vB=2vC=2vVvD=1)A
- & (A=2VB=2VC=2VE=2) 12
(A=2vB=2VvC=2VF=2)

Table 3.2: CNF and DNF definitions for the 4+ and — classes from Figure 3.7.

A second difference is that divide-and-conquer is a more symmetric ap-
proach than separate-and-conquer. The latter strategy focuses on one single
class (positive) and only tries to find sufficient conditions for this class. It does
not try to find sufficient conditions for the other class or classes. This causes
the approach to be very dependent on a choice that the user has to make,
namely for which class one wants to find sufficient conditions.

If we look again at Figure 3.7, we see that if the user had decided to learn
rules for — instead of + (i.e. calling class — positive), a rule set would have
been produced that contains only 6 conditions, just like the decision list:

IF A=2 THEN Class
IF B=2 THEN Class
IF C=2 THEN Class
IF D=1 AND E=1 AND F=2 THEN Class = -

The reason for this dependency is that some concepts are more easily de-
scribed in disjunctive normal form (DNF), i.e. as a disjunction of conjunctions
(each conjunction thus represents a sufficient condition); others are more easily
described in conjunctive normal form (CNF), i.e. as a conjunction of disjunc-
tions (each disjunction thus represents a necessary condition); and sometimes
a mix of the two is even better. Whenever a concept is easier to describe in
DNF, its complement is easier to describe in CNF (see (De Raedt et al., 1995)
for details). Table 3.2 illustrates this by comparing CNF and DNF definitions
for + and —.

Most rule-based systems construct DNF descriptions. Hence, they are good
at learning classes that have a simple DNF description, but less good at learning
classes with a simple CNF but complex DNF description.

The fact that some concepts are easier to describe using CNF than using
DNF has also been noted by Mooney (1995), who proposes an alternative learn-
ing approach that yields CNF descriptions. Also the ICL system (De Raedt

3.5. RELATED WORK 63

and Van Laer, 1995) originally returned CNF descriptions of concepts, although
later versions of it offer the user a choice between CNF and DNF descriptions.

It is noteworthy that the divide-and-conquer approach is not subject to
whether a concept is easier to describe in CNF or in DNF. We already saw that
decision trees can always be converted to rule sets (i.e. DNF descriptions). In
a similar fashion, they can be converted to CNF descriptions. It is possible,
then, that a simple tree yields a simple DNF description of a certain class but a
complex CNF description of it; that it yields a simple CNF but complex DNF
description of the class; or that it does not yield any simple description at all
in any of these normal forms, because the simplest description would make use

of a mix of both CNF and DNF.

Conclusions

Our comparison suggests that the differences between induction of decision
trees and induction of rule sets should not be underestimated; both induction
methods are biased differently and may yield very different theories. We will
see later that in inductive logic programming almost all systems are rule based.
The difference between trees and rules is a motivation for introducing tree based

methods in ILP.

3.5 Related work

This chapter is mainly based on (Blockeel et al., 1998b). This work was in-
fluenced strongly by Pat Langley’s discussion of decision trees in his book
Elements of Machine Learning (Langley, 1996). It is this discussion that poin-
ted us to the viewpoint that decision trees describe clustering hierarchies, al-
though we have since learned that several other authors have taken this view
either explicitly (e.g. Fisher (1985; 1996), who mentions the possibility of us-
ing TDIDT-techniques for clustering) or implicitly (e.g. Kramer (1996), who
adopts such a view for his outlier detection method).

There are many texts on decision tree induction in the context of classific-
ation or regression; probably the most influential ones in the machine learning
community are (Quinlan, 1986) and (Breiman et al., 1984).

3.6 Conclusions

In this chapter we have taken a look at top-down induction of decision trees
(TDIDT) from the viewpoint of predictive clustering. We have described
how instantiations of this general approach yield many existing approaches
to TDIDT. Induction of decision trees can thus be seen as a promising method
for implementing predictive induction, as defined in the previous chapter, with

64 CHAPTER 3. TOP-DOWN INDUCTION OF DECISION TREES

all the possibilities that it creates (such as flexible prediction, noise handling,
hybrid approaches, ...) We have also compared trees with rules, mainly fo-
cusing on the differences between them, and arguing that these differences are
large enough to justify the co-existence of both formalisms.

Chapter 4

First Order Logic
Representations

4.1 Introduction

In the context of symbolic induction, two paradigms for representing knowledge
can be distinguished: attribute value representations and first order logic rep-
resentations. The latter are used in the field of inductive logic programming.
Representation of knowledge in first order logic can itself be done in different
ways. We distinguish two main directions in ILP: the representation of the
knowledge base (data and background knowledge) as one single logic program,
where each example is represented by a single clause (usually a ground fact);
and the representation of examples as sets of facts or interpretations. These
two different paradigms within ILP are known as learning from entailment and
learning from interpretations. These are not the only possible settings; an over-
view of different settings and the relationships among them can be found in
(De Raedt, 1997).

In this chapter we discuss in turn the three different formalisms for sym-
bolic induction that we have mentioned: attribute value learning, learning from
interpretations and learning from entailment. We will use a running example
to illustrate and compare these formalisms. The task that is considered in the
example is to learn definitions of concepts that are used in the poker card game
(i-e. learn what a pair, double pair, full house. . .1is).

Section 4.2 briefly discusses the relationship between concept learning and
induction of predictors; this is useful for comparing the task definitions for the
different settings. Next, we introduce attribute value learning in Section 4.3
and learning from interpretations in Section 4.4. The two are compared from a
database point of view in Section 4.5. We then discuss learning from entailment

65

66 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

(Section 4.6) and relate it to the other settings in Section 4.7. The last two
sections discuss related work and conclude.

4.2 Concept Learning and Intensional Cluster-
ing

Since in this chapter we will compare different representation formalisms, it is
useful to first define intensional clustering using a language £ in more detail.

Definition 4.1 (Intensional clustering space) The intensional clustering
space of a set of instances E with respect to a language L, written Cg(E),
1s the set of all clusterings over E for which each cluster has an intensional
description in L.

Definition 4.2 (Intensional clustering task) We define the task of inten-
sional clustering in a language L as follows:

Given:
e an instance space I

a distance d on I

a set of instances E C I

e a language L

e a quality criterion Q defined over C(E)
Find:

e a clustering C € C. such that Q(C) is optimal, i.e.
VC' € Co(B) : Q(C) < Q(C)

e an intensional description in L for each cluster C € C

This clustering task can be instantiated towards predictive clustering, classi-
fication and regression, similarly to what was done in Chapter 2. Often, the
language £ is then extended slightly so that the prediction function as a whole
can be described in L.

Example 4.1 We return to the Fruit& Vegetables example. Assume L is pro-
positional logic over a set of propositions

P = {Color = red,Color = green} U {Weight < zg|z € IR}.

4.2. CONCEPT LEARNING AND INTENSIONAL CLUSTERING 67

An intensional clustering algorithm could come up with the following descrip-
tion of strawberries, which is in £: Weight < 80g A Color = red.
For predictive purposes, a slightly different language

L= {/\(F1 — Class =v;)|v; € {apple,tomato,strawberry} A F; € L}

K3

allows to describe the predictor as follows:

Weight < 80g A Color = red — Class = strawberry

Definition 4.3 (Concept learning) The concept learning task can in gen-
eral be stated as follows:

Given:
e an instance space I
e a set of positive examples E¥ C I
e g set of negative ezamples E— C I
e and a language L

Find: an intensional description in £ of Et

Under the assumption that £ is closed with respect to disjunction (i.e. if
formulae Fy € £ and F> € £, then Fy V Fy € L), which will be the case for all
the languages considered in this text, concept learning can be seen as a special
case of classification, where the prediction space is {positive, negative}.
The concept description is the disjunction of those clusters for which the value
positive is predicted.

Example 4.2 In the previous example, the concept of strawberries correspon-
ded to one single cluster, hence the intensional description of that cluster is
also an intensional description of the concept. A concept may also consist of
several clusters, as this example shows: suppose we have a classifier described
as

(X=1AY=0— Class = positive)A(X =1 AY =1 — Class = negative)A
(X=0AY=0— Class = negative) A (X=0AY =1 — Class = positive)

68 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

The classifier predicts positive for two clusters, hence the concept description
is the disjunction of both cluster descriptions:

X=1AY=0VX=0AY=1

<

This shows that intensional clustering, concept learning and learning pre-
dictors are all related. In the following we will often assume a predictive setting,
but the results are generally applicable for clustering and concept learning as
well.

4.3 Attribute Value Learning

In the attribute value formalism, it is assumed that each example can be de-
scribed by a fixed set of attributes for which values are given. Each example
is thus represented by a vector of values. All the data together form a table
where each row corresponds to an example and each column to an attribute.
The hypothesis language is propositional logic, where propositions usually are
of the form “Attribute ® value” with @ an element of a predefined fixed set of
operators, e.g. {<,<,=}.

Definition 4.4 (Attribute value learning) The task of learning a predictor
in the attribute value framework can be defined as follows:

Given:
e q target variable Y

e a set of labelled examples E; each example is a vector labelled with a
value y for the target variable

e and a language L consisting of propositional logic over a given set of
propositions P

Find: o hypothesis H of the form \,(F; — Y =y,;) where each F; € L such
that for each example e with label vy,

e HEY=y
o Vy' Fy HFEY=y

The attribute value formalism is the formalism that is most frequently used
for data mining and symbolic machine learning. Most systems working in this
framework do not allow the use of a background theory about the domain,
although in principle this would not be a problem.

4.3. ATTRIBUTE VALUE LEARNING 69

Ranki1 Suitil R.2 S.2 R.3 S.3 R.4 S.4 R.5 S.5 Class
7 L) 8 Q K & Q Q 7 Q pair
2 ® 5 & A & 4 ® Q & nought
3 V) 3 & 8 & 8 ® 8 V) full house
4 ® 2 ® A ® A & 9 ® pair
A & A & 2 ® 6 & 4 V) pair
5 Q 4 Q 7 V) K ' 3 2 & nought

Table 4.1: Representing examples for learning poker concepts. Each tuple
represents one hand of five cards and the name that is given to the hand.

Table 4.1 shows how poker hands can be represented in this framework.
Each row in the table describes one example (one hand of cards) by listing the
rank and suit of every card in the hand, and also stating its class label.

While this may seem a very natural representation of poker hands, it is not
fit for learning definitions of the classes. A good definition for the concept of a
pair is very hard to write if this format is used: one needs to check that exactly
two cards have the same rank. A possible definition of the concept of a pair is
the following:!

(Rank1=2 A Rank2=2 A [Ranks 3,4,5 differ from 2 and from each other])

V (Rank1=3 A Rank2=3 A [Ranks 3,4,5 differ from 3 and from each other])
(VI

V (Rank1=2 A Rank3=2 A [Ranks 2,4,5 differ from 2 and from each other])
(VI

— Class = pair

Note that the cards with equal ranks could be any 2 of the 5 cards, which
yields C2 = 10 combinations. Moreover, one cannot test the equality of two
attributes directly, they can only be compared with constants; therefore it is
necessary to test for the 13 different constants whether the ranks of 2 specific
cards are equal to them. This means that the hypothesis as written above
contains 130 lines. Note that each line in itself is far from complete: each
part between brackets is to be expanded, for instance into a disjunction of 132
conjunctions similar to

Rank3 = 3 A Rank4 = 4 A Rank5 # 2 A Rank5 # 3 A Rankb # 4

The full definition would then contain a total of 17160 such conjunctions.
While the above format of the hypothesis is not necessarily the simplest
one, any correct hypothesis will have a complexity that is of the same order

1The definition is written in the form of a predictor, conform to the Definition 4.4; the
actual concept description is the antecedent of the rule.

70 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

Eri2 Eri3 Eri4 Erib Er23 Er24 Er25 Er34 Er35 Er4b5 Class

no no no yes no no no no no no pair
no no no no no no no no no no nought
yes no no no no no no yes yes yes full house
no no no no no no no yes no no pair
yes no no no no no no no no no pair
no no no no no no no no no no nought

Table 4.2: Constructed attributes for learning poker concepts. The meaning
of, e.g., Er25 is that cards 2 and 5 have equal rank.

of magnitude. The problem is that in the attribute value framework the data
simply cannot be handled in the format of Table 4.1.

A Dbetter way to tackle the problem is to construct new attributes and
add them to the table. Observing that equality of different attributes (in this
case: equality of the ranks of different cards) may be interesting to check, we
can explicitly add information about such equalities to the table. This yields
Table 4.2. There are 10 attributes Er;; in this table; Er;;=yes if the ranks of
the cards 7 and 7 are equal.

One could now learn from the original data in Table 4.1 augmented with the
constructed attributes in Table 4.2, or use the constructed attributes only. The
latter is sufficient for learning the concept of a pair, but not for, e.g., learning
a flush or straight.

The definition of a pair can now be written in a much simpler way:

(Er12 = yes A Erl3 = no A---)
V (Er12 = no A Er13 = yes A---)
AVATIN

V (Er12 = no A---A Erdb = yes)
— Class = pair

This definition contains 10 conjuncts, and each conjunct consists of 10
terms. It basically says that a hand is a pair if exactly one of the ten Er-
attributes is a yes. This makes clear that by constructing one more attribute,
one that indicates how many yes values there are in a tuple, a very concise
definition can be obtained: Pairs with_equal rank = 1 — Class = pair.

This example illustrates a number of important aspects of attribute value
learning:

e Learning from the most natural representation of the examples is not
always feasible. It may be necessary to add attributes to the data. These
new attributes are supposed to capture properties of the example that
are expected to be important for the concept that is to be learned. Note
that the new attributes do not add new information about the example:

4.4. LEARNING FROM INTERPRETATIONS 71

they can be computed from the other attributes. They only explicitate
information.

e The complexity of a hypothesis depends on the attributes that are avail-
able. A hypothesis can seem deceptively simple if it makes use of attrib-
utes that are very complex to compute.

e It may not be obvious to find good attributes. In the above example
we could easily come up with constructed attributes because we already
knew what the correct definition of a pair is. In general the task of
constructing good attributes is much harder.

Note that constructing good attributes is as much a part of the knowledge
discovery process as the search for a good hypothesis itself is.

The dependency of attribute value learners on the representation can be
solved in several ways. One is to have an inductive learner construct good
attributes itself. This task is known as feature construction and has been the
subject of many studies, see e.g. (Wnek and Michalski, 1993; Bloedorn and
Michalski, 1996; Srinivasan and King, 1996; Kramer et al., 1998). Another
approach to alleviate the problem is enlarging the hypothesis space by allowing
tests that involve multiple attributes. For instance, one could have a test such
as Rank1=Rank2. This approach is taken by Bergadano et al. (1997) with the
RELIC system.

4.4 Learning from Interpretations

In the learning from interpretations setting each example e is represented by
a separate Prolog program that encodes its specific properties, as well as its
label. Background knowledge about the domain can be given in the form of a
Prolog program B. The interpretation that represents the example is the set
of all the ground facts that are entailed by e A B (this set is called the minimal
Herbrand model of e A B). The hypothesis to be induced is a first order theory,
represented as a Prolog program.

Example 4.3 Suppose we have an example called Tweety, represented by the
following Prolog program:

bird.
color(yellow).
likes(bird_seed).
gets(bird_seed) .

and a background theory

72 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

flies :- bird.
swims :- fish.
happy :- likes(X), gets(X).

then the interpretation representing Tweety is {bird, color(yellow),

likes(bird seed), gets(bird seed), flies, happy}. It sums up all the
properties of Tweety that can be derived from its description together with the
background knowledge. 3

The essential difference with attribute value learning is that a set is used
to represent an example, instead of a (fixed-length) vector. This makes the
representation much more flexible.

Definition 4.5 (Learning from interpretations) Learning from interpret-
ations is usually set in a predictive context, where the task definition is the
following:

Given:
e q target variable Y

e g set of labelled examples E; each example is a Prolog program e labelled
with a value y for the target variable

e a language L C Prolog
e and a background theory B
Find: o hypothesis H € L such that for all labelled examples (e,y) € E,
o HAeAB |=label(y), and
o Vy' #y:HAeA B~ label(y')

This task reduces to the concept learning task by choosing as labels positive
and negative.

Table 4.3 shows how the hands would be represented in the learning from
interpretations setting. Note that the label need not be indicated explicitly by a
predicate called 1abel; in this example the nullary predicates pair, full house
etc. represent the labels.

A correct definition of a pair in first order logic is:

3Rank, Suity, Suity : card(Rank, Suit1) A card(Rank, Suity) A Suity # Suils
A ASuits : (card(Rank, Suits) A Suits # Suity A Suitz # Suits)
A ARanks, Suits, Suits : card(Rank2, Suits), card(Ranks, Suits), Ranks #
Rank, Suits # Suits
— pair

4.4. LEARNING FROM INTERPRETATIONS 73

{card(7, spades), card(8, hearts), card(king, clubs),
card(queen, hearts), card(7, hearts), pair}

{card(2, spades), card(5, clubs), card(ace, clubs),
card(4, spades), card(queen, diamonds), nought}

{card(3, hearts), card(3, clubs), card(8, clubs),
card(8, spades), card(8, hearts), fullhouse}

{card (4, spades), card(2, spades), card(ace, spades),
card(ace, clubs), card(9, spades), pair}

{card(ace, clubs), card(ace, diamonds), card(2, spades),
card(6, diamonds), card(4, hearts), pair}

{card(5, hearts), card(4, hearts), card(7, hearts),
card(king, clubs), card(2, diamonds), nought}

Table 4.3: Representing the poker data in the learning from interpretations
setting.

The first line states that there must be two different cards with equal ranks,
the next line signifies that there must not be a third card with the same rank,
and the last two lines of the antecedent add the constraint that there must be
no other pair of cards with equal ranks.

The definition can also be written as a Prolog program, which is the form
in which most ILP systems represent the result. A Prolog program equivalent
to the above definition is shown in Figure 4.1.

Note that this definition, although relatively complex, is much simpler than
the first two definitions that were given in the attribute value learning frame-
work. Still, the definition does not make use of any constructed features in the
data, whereas the second propositional definition did.

Of course, one could still add constructed features to the data, e.g. counting
how many combinations of two cards with the same rank there are. This could
be done by adding a pairs_with_equal_ranks fact to each example?; for in-
stance the first example would be extended with pairs_with_equal_ranks(1).
The definition then becomes

pairs_with equal ranks(1) — pair.

2 Alternatively, the predicate can be defined in the background by writing a Prolog program
that counts the number of pairs with equal ranks in a hand.

74 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

pair :-
card(Rank, Suitl), card(Rank, Suit2), Suitl \= Suit2,
not third_card(Rank, Suitl, Suit2),
not second_pair(Rank, Suitl, Suit2).

third_card(Rank, Suitl, Suit2) :-
card(Rank, Suit3), Suitl \= Suit2, Suitl \= Suit3.

second_pair(Rank, Suitl, Suit2) :-
card(Rank2, Suit3), card(Rank2, Suit4),
Rank2 \= Rank, Suit4 \= Suit3.

Figure 4.1: A correct definition of a pair in Prolog.

This shows that feature construction can also be done (at least in principle)
in ILP, and that there as well it leads to more compact definitions. The need
for feature construction is smaller in ILP than in attribute value learning,
due to the greater expressivity of first order logic, but it still exists. Feature
construction can be seen as a special case of predicate invention, which is a
difficult and extensively studied topic in ILP (see, e.g., (Stahl, 1996) for an
overview).

4.5 A Relational Database Viewpoint

ILP systems use logic-based data representations, but in practice, data are of-
ten stored in a relational database. In this section, we discuss the difference
between attribute value learning and first order learning from a relational data-
base point of view. This offers an interesting and clear view of the relationship
between the two settings, namely that first order learning amounts to learning
from multiple relations and attribute value learning amounts to learning from
one relation.

There is a simple way to convert the data in a relational database to the
learning from interpretations format; in the second part of this section we
present an algorithm.

4.5.1 Attribute Value Learning Versus Learning from Mul-
tiple Relations

Attribute value learning always involves learning from one single relation, and
more specifically: learning a hypothesis that relates different attributes of the

4.5. A RELATIONAL DATABASE VIEWPOINT 75

same tuple. We could call this single-relation, single-tuple learning. In the first
order context, one can learn patterns that relate attribute values of several
tuples, possibly belonging to different relations, to one another.

Example 4.4 Assume the following database is given:

FINES KNOWS

Name Job Speed Fine Namel Name2
Ann teacher 150 km/h Y Ann Chris
Bob politician 160 km/h N Ann Dave
Chris engineer 120km/h N Bob Earnest
Dave writer 155 km/h N Chris Dave
Earnest politician 120 km/h N Dave Bob

An attribute value learner can learn a rule such as “if you drive faster than
120 km/h and are not a politician, you get a fine”, but not the (more correct)
rule “if you drive faster than 120 km/h, are not a politician and do not know a
politician, then you get a fine”. This rule relates attributes of different tuples

in the relation FINES that are linked via the relation KNOWS. o

Tt is known from relational database theory, see e.g. (Elmasri and Navathe,
1989), that storing data in one single table can be very inefficient; it is advisable
to structure a database into several relations that are in some normal form.
Attribute value learning is limited in the sense that in order to take into account
all the information in a database, one has to convert all the relations into a
single relation. The resulting relation can be huge, typically containing a large
amount of redundant information; moreover its computation is costly. This
problem is ignored in many approaches to data mining. In his invited talk at the
Fifteenth International Conference on Machine Learning (1998), Ron Kohavi
acknowledged the shortcomings of attribute value learning in this respect and
stressed the need for learning techniques that learn from multiple relations.
De Raedt (1998) shows that the conversion of multiple relations to a single
relation, together with the problems it generates for learning (as we have seen
with the Poker example, correct theories may become extremely complex and
hard to find), causes attribute value learning to become much more inefficient
than first order learning on this kind of problems.

The following is an example of a database where learning from multiple
relations is desirable, and where joining the relations into one single relation is
clearly not feasible.

Example 4.5 Assume that one has a relational database describing molecules.
The molecules themselves are described by listing the atoms and bonds that
occur in them, as well as some properties of the molecule as a whole. Mendelev’s

76 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

MENDELEV
Number Symbol Atomic weight Electrons in outer layer
1 H 1.0079 1
2 He 4.0026 2
3 Li 6.941 1
4 Be 9.0121 2
5 B 10.811 3
6 C 12.011 4
MOLECULES CONTAINS
Formula Name Class Formula Atom_id
H>0O water inorganic H>0O h2o0-1
COy carbon dioxide inorganic H>O h20-2
cO carbon monoxide inorganic H>O h20-3
CH, methane organic COq co2-1
CHsOH methanol organic COq co2-2
ATOMS BONDS
Atom_id Element Atom_idl Atom_id2 Type
h2o0-1 H h2o-1 h20-2 single
h20-2 (0) h20-2 h20-3 single
h20-3 H co2-1 co2-2 double
co2-1 O co2-2 co2-3 double

Figure 4.2: A chemical database.

periodic table of elements is a good example of background knowledge about
this domain. Figure 4.2 illustrates what such a chemical database could look
like. A possible classification problem here is to classify unseen molecules into
organic and inorganic molecules, based on their chemical structure. o

Note that the database contains both information about specific molecules
(i-e. specific examples) and background knowledge (e.g., Mendelev’s periodic
table).

This example should make clear that in many cases joining all the rela-
tions into one single, huge relation is not an option. The information in
Mendelev’s table, for instance, would be duplicated many times. Moreover,

4.5. A RELATIONAL DATABASE VIEWPOINT 7

unless a multiple-instance learner is used (Dietterich et al., 1997) all the atoms
a molecule consists of, together with their properties, have to be stored in one
tuple, so that an indefinite number of attributes is needed.

While mining such a database is not feasible using propositional techniques,
it is feasible using learning from interpretations. We now proceed to show how
a relational database can be converted into a suitable format.

4.5.2 Conversion from Relational Database to Interpret-
ations

Typically, each predicate in the logical representation will correspond to one
relation in the relational database. Each fact in an interpretation is a tuple in
the database, and an interpretation corresponds to a part of the database (a
set of subsets of the original relations). Background knowledge can be stored
in the relational database by means of views as well as extensional tables.

Converting a relational database to a set of interpretations can be done
easily and in a semi-automated way via the following procedure and with the
help of the INTERPRETATIONS algorithm in Figure 4.3.

e Decide which relations in DB are background knowledge.
e Let KB be the original database without the background relations.

e Choose an attribute K in a relation that uniquely identifies the examples;
we call this the example key.

Collect all foreign keys in the database scheme of KB in a set FK. Foreign
keys are attributes that are in fact references to other attributes; we write
a foreign key from R;.A to R2.B as (R;.A — R,.B). For instance, in
Example 4.5 the Name attribute in FINES is a foreign key to Namel in
KNOWS, which we write FINES.Name - KNOWS.Namel.

Run INTERPRETATIONS(KB, K, FK). This algorithm works as follows.
For each example with key k, a database KB}, is constructed in which each
relation is a subrelation of a relation in KB. The algorithm first gathers
all the tuples in KB that contain k, and puts them in the corresponding
relations in KBy. It then keeps adding tuples outside KB that are
referenced from inside KB} to relations in KBy, until KB} does not
change anymore. After this has been done for each k, the set of all
databases KB}, is returned.

Note that values are assumed to be typed in this algorithm, i.e., two values
are considered to be equal only if their types are also equal. For instance,
if a relation PERSON has an ID attribute and an Age attribute that
are both represented as numbers, PERSON.ID = PERSON.Age never

78 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

procedure INTERPRETATIONS(KB: database, K: example key,
FK: set of foreign keys)
returns set of databases
for each value k of K:
{add tuples that contain ezample key k}
for each R; € KB:
R, :={r, € R|3A :r;. A=k}
KBy = U, {R})
repeat
{add tuples that are referenced from S via a foreign key}
for each R, € KBy:
R;:= R;U{r; € Ri|3(R;.A — R;.B) € FK : 3r; € R}, : r;.A = r;.B}
until KB}, does not change anymore
return |J, KB

Figure 4.3: Conversion of a relational database to interpretations.

succeeds even if the values of both attributes are equal, because a person
identification number and an age cannot be the same.

e Convert the interpretations and background relations into logic format.

A tuple (attry,...,attr,) of a relation R can trivially be converted to a fact
R(attry,...,attr,). By doing this conversion for all KBy, each KB becomes
a set of facts describing an individual example k. The extensional background
relations can be converted in the same manner into one set of facts that forms
the background knowledge. Background relations defined by views can be
converted to equivalent Prolog programs.

The only parts in this conversion process that are hard to automate are the
selection of the background knowledge (typically, one selects those relations
where each tuple can be relevant for many examples) and the conversion of view
definitions to Prolog programs. Also, the user must indicate which attribute
should be chosen as an example key, as this depends on the learning task.

Example 4.6 In the chemical database, we choose as example key the molecu-
lar formula. The background knowledge consists of the MENDELEV table.
In order to build a description of H,0O, the INTERPRETATIONS algorithm in
Figure 4.3 first collects the tuples containing H2O; these are present in MO-
LECULES and CONTAINS. The tuples are put in the relations MOLECULES’
and CONTAINS’. The database KBp,o is thus initialized as shown in Fig-
ure 4.4.

4.6. LEARNING FROM ENTAILMENT 79

The tuples in KB p,o contain references to Atom_id’s h2o-i, ¢ = 1,2,3, so
the tuples containing those symbols are also collected (tuples from ATOMS and
BONDS). The result is shown in the second part of Figure 4.4. The new tuples
refer to the elements H and O, which are foreign keys for the MENDELEV
relation. Since this relation is in the background, no further tuples are collected;
hence, KBy,o as shown in the second part of Figure 4.4 is complete.

Converting the tuples to facts, we get the following description of HO:

{molecules(’H20’, water, inorganic), contains(’H20’, h20-1),
contains(’H20’, h20-2), contains(’H20’, h20-3), atoms(h20-1,
’H’), atoms(h20-2, ’0’), atoms(h20-3, ’H’), bonds(h20-1, h20-2,
single), bonds(h20-2, h20-3, single)}

<

Some variations of this algorithm can be considered. For instance, when the
example key has no meaning except that it identifies the example, this attribute
can be left out from the example description (in our example, all occurrences
of ’H20’ could be removed if we consider this name unimportant).

The key notion in this conversion process is localization of information. It
is assumed that for each example only a relatively small part of the database
is relevant, and that this part can be localized and extracted. Further in this
text, we will refer to this assumption as the locality assumption.

Definition 4.6 (Locality assumption) The locality assumption states that
all the information that is relevant for a single example is located in a small
part of the database.

If the locality assumption is not fulfilled, the localization process as de-
scribed above would give rise to a significant duplication of information.

4.6 Learning from Entailment

Learning from entailment is the most frequently used paradigm within induct-
ive logic programming. The framework is described in e.g. (Muggleton and
De Raedt, 1994) (under the name of normal semantics) and at this moment
almost all ILP systems use it, e.g. PROGOL (Muggleton, 1995), FoIL (Quinlan,
1990), SRT (Kramer, 1996), Fors (Karali¢ and Bratko, 1997), ...

All the data, as well as the background knowledge, are encoded in a Prolog
program. The concept that is to be learned is represented by a predicate, and
the learner has to learn a definition for the predicate from a set of positive
and negative examples. In principle, this can go as far as the synthesis of a full
logic program from examples. In practice, the problems that are considered are
often constrained or simplified versions of this very general and difficult task.

80 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

Initialization:
MOLECULES’ CONTAINS’
Formula Name Class Formula Atom_id
H50O water inorganic H50O h2o0-1
HQO h20-2
HQO h20-3
ATOMS’ BONDS’
atom_id element Atom_idl1 Atom_id2 Type
After one step:
MOLECULES’ CONTAINS’
Formula Name Class Formula Atom._id
H50O water inorganic H50O h2o0-1
HQO h20-2
HQO h20-3
ATOMS’ BONDS’
atom_id element Atom_idl Atom_id2 Type
h2o0-1 H h2o-1 h20-2 single
h20-2 (0] h20-2 h20-3 single
h20-3 H

Figure 4.4: Construction of the subdatabase KB y,0.

4.6. LEARNING FROM ENTAILMENT 81

For instance, predictive induction such as classification and regression can
be seen as a constrained version of program synthesis. Examples are then
typically represented by constants, and they are labelled either using a unary
predicate (e belongs to class p if p(e) is true), or using a binary predicate that
indicates the label of the example (label(e,y) means that the label of example

e is y).

Definition 4.7 (Learning from entailment) In the learning from entail-
ment framework, we define the concept learning task as follows:

Given:
e a set of positive examples ET (each ezample is a clause)
e a set of negative examples E~
e background knowledge B (a Prolog program)
e and a first order language £ C Prolog
Find: a hypothesis H C L such that
eVec EY: HAB|=e and
eVec E-:HABe

Table 4.4 shows how the data from the Poker example would typically be
represented in this ILP setting: each example is represented by a single fact.?
Note that every hand that is not a pair is explicitly written as a negative
example. Some ILP systems would automatically deduce from the fact that
e.g. hand3 is a full house, that it is not a pair; in that case no negative
examples need to be given. Note, however, that the learner then makes the
assumption that the predicate to be learned is a function. This is general
enough for the classification or regression setting but less general than learning
a predicate. Examples of ILP systems learning from positive examples only are
FoipL (Mooney and Califf, 1995), FFoIL (Quinlan, 1996) and PRoGOL (in a
specific setting, see (Muggleton, 1996; Muggleton et al., 1996)).

The following first order logic formula defines the concept of a pair:

3Rank, Suity, Suity : card(Hand, Rank, Suit1) A card(Hand, Rank, Suits) A Suit; #
Suitz
A ASuits : card(Hand, Rank, Suits) A Suitz # Suit; A Suits # Suits
A ARanks, Suits, Suits :
card(Hand, Ranks, Suits)Acard(Hand, Ranks2, Suits) ASuits # Suita A Ranks # Rank
— pair(Hand)

3In principle, one can also use non-fact clauses to represent the examples, but this is not
often done.

82 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

card(handl, 7, spades).
card(handl, 8, hearts).
card(handl, king, clubs).
card(handl, queen, hearts).
card(handl, 7, hearts).
card(hand2, 2, spades).
card(hand2, 5, clubs).
card(hand2, ace, clubs).
card(hand2, 4, spades).
card(hand2, queen, diamonds).
card(hand3, 3, hearts).

card(hand3, 3, clubs).
card(hand3, 8, clubs).
card(hand3, 8, spades).
card(hand3, 8, hearts).
card(hand4, 4, spades).
card(hand4, 2, spades).

card(hand4, ace, spades).
card(hand4, ace, clubs).
card(hand4, 9, spades).
card(hand5, ace, clubs).
card(hand5, ace, diamonds).

card(hand5, 2, spades).
card(hand5, 6, diamonds).
card(hand5, 4, hearts).
card(hand6, 5, hearts).
card(hand6, 4, hearts).

card(hand6, 7, hearts).
card(hand6, king, clubs).
card(hand6, 2, diamonds).

% positive examples
pair(handl).
pair(hand4) .
pair(hand5).

% negative examples

:— pair(hand2). %nought (hand2) .
:— pair(hand3). %fullhouse (hand3).
:— pair(hand6). %nought (hand6) .

Table 4.4: Representing the poker data in the learning from entailment set-
ting. Negative examples are written with a preceding :- symbol; the original
information is written as a comment.

4.6. LEARNING FROM ENTAILMENT 83

pair(Hand) :-
card(Hand, Rank, Suitl), card(Hand, Rank, Suit2),
Suit1l \= Suit2,
not third_card(Hand, Rank, Suitl, Suit2),
not second_pair(Hand, Rank, Suitl, Suit2).

third_card(Hand, Rank, Suitl, Suit2) :-
card(Hand, Rank, Suit3), Suitl \= Suit2, Suitl \= Suit3.

second_pair (Hand, Rank, Suitl, Suit2) :-
card(Hand, Rank2, Suit3), card(Hand, Rank2, Suit4),
Rank2 \= Rank, Suit4 \= Suit3.

Figure 4.5: A correct definition of a pair in Prolog.

A Prolog version of this definition is shown in Figure 4.5. Note that this
definition is very similar to the one found when learning from interpretations;
the main difference is that when learning from interpretations no explicit ref-
erence to an example identifier (the variable Hand) is given; all information
is automatically assumed to be information about the example that is to be
classified, not about any other example.

With respect to the representation of the data (comparing Table 4.4 with
Table 4.3), we note that in the learning from interpretations setting inform-
ation about one example is clearly separated from information about other
examples*, whereas when learning from entailment all this information, to-
gether with the background knowledge, forms one single Prolog program. We
will return to this in the next section.

The Poker example is an example of a classification task. Once more, we
stress that ILP is much more general and can be used to learn (in principle)
any definition of a predicate, e.g. from the following data:

member (1, [1,2,3]).
member (5, [3,8,5,2]).
:— member(2, [1,4]).

:— member(8, [1).

:- member (12, [1,2,3]).

one could induce a definition for the member predicate:

member (X, [X|Y]).

41t is also separated from the background knowledge, although this is less clear here
because in this example there is no background knowledge.

84 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

member (X, [Y|Z]) :- member(X, Z).

This illustrates that in the learning from entailment setting, ILP has an
extremely broad application potential. In practice, this potential is severely
limited due to the complexity of many of these tasks. Within computational
learning theory several negative results have been published (Dzeroski et al.,
1992; Cohen and Page, 1995; Cohen, 1995), showing that many tasks that can
in principle be handled by ILP systems cannot be handled in practice, due
to practical limitations such as space and time constraints (more specifically:
they are not PAC-learnable with polynomial time complexity; PAC stands for
probably approzimately correct, see Intermezzo 1 for a brief discussion on PAC-
learnability). These results have strongly influenced the attitude towards ILP
of many researchers in machine learning and data mining.

An interesting property of the learning from interpretations setting is that
under fairly general assumptions, first order hypotheses are PAC-learnable in
this setting (De Raedt and DZeroski, 1994). This is mainly due to the fact that
the setting exploits the locality assumption; we will discuss this in the next
section.

4.7 Relationships Between the Different Settings

4.7.1 On the Origin of Learning From Interpretations

Originally, learning from interpretations (also called nonmonotonic ILP) was
seen as an alternative setting, where a hypothesis is a set of clauses such that
each positive example (together with the background) makes each clause in the
set true, and none of the negative examples do so. l.e., a hypothesis H is to be
found such that

e Ve € E* : H is true in M(e A B)
e Ve € E~ : H is false in M(e A B)

where M(e A B) is the minimal Herbrand model of e A B (intuitively: the
interpretation represented by e A B, as illustrated in Example 4.3). This is to
be contrasted with the classical setting where

eVec EY:HABEe
eVec E-:HABIe

Note that in the classical setting H (together with B) is supposed to explain
e, while in the nonmonotonic setting H describes e; therefore the settings are
also sometimes called ezplanatory ILP and descriptive ILP. A brief history of
how learning from interpretations evolved from a descriptive technique towards
a predictive (explanatory) technique is given in Intermezzo 2.

4.7. RELATIONSHIPS BETWEEN THE DIFFERENT SETTINGS 85

Intermezzo 1: PAC-learnability

Computational learning theory (COLT) is the subfield of machine learning that
is concerned with describing how hard a certain learning task is. In general, the
complexity of an algorithm is described by giving its time and space require-
ments for solving a certain problem, in terms of certain parameters that are
indicative of the size or difficulty of the problem. Based on such a description
algorithms can for instance be classified as tractable (execution time is poly-
nomial in the parameters) or not tractable (execution time is not polynomial
but, e.g., exponential).

Of course, complexity results depend on the parameter that is used; e.g., if
adding two numbers is linear in the number of bits used to represent the num-
bers, it is logarithmic in the numbers themselves; and if an algorithm for com-
puting the factorial of a number n has a time complexity O(n), it is exponential
in the number of bits used to represent the number. Whether this algorithm is
tractable or not depends on the parameters in terms of which the complexity
is described. Hence, in order to adequately describe the complexity of learning
tasks, these parameters need to be fixed.

Nowadays the PAC-learning framework, introduced by Valiant (1984) is prob-
ably the most popular framework for studying the complexity of learning tasks
or algorithms. PAC stands for probably approrimately correct. In this frame-
work, it is assumed that the task is to learn a hypothesis that approximates the
correct theory to an agreeable extent. A learning algorithm need not guarantee
that it will find such a hypothesis, but should have a certain probability (close
to 1) of doing so.

Definition 4.8 (d-correctness) A predictor pred is d-correct if and only if
P(pred(z) # w(z)) < § (where w(x) is the class of x).

Definition 4.9 (PAC-learnability) A function w is PAC-learnable if and
only if for each § > 0 and for each € > O there exists an algorithm that, given a
sufficient number of examples, with probability 1—e induces a §-correct predictor
pred.

The sample complexity is the number of examples needed to learn such a theory;
the time complexity is the time needed to learn it. A PAC-learning algorithm
is considered to be tractable if it has time complexity polynomial in 1/¢ and

1/e.

86 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

Intermezzo 2: History of Learning From Interpretations

The nonmonotonic setting (Helft, 1989) was originally meant for descriptive in-
duction. The first ILP system to use this setting was CLAUDIEN (De Raedt and
Bruynooghe, 1993; De Raedt and Dehaspe, 1997), which returned clausal descrip-
tions of regularities in the data. The development from clausal discovery towards
prediction can be sketched as follows:

1. CLAUDIEN, the clausal discovery engine, examines a set of data D and returns
as hypothesis H all the clauses (within a certain language, and excluding redundant
clauses) that are true for the data (De Raedt and Bruynooghe, 1993).

For instance, given a set of data on family relationships, CLAUDIEN would derive
clauses such as < parent(X,X) (nobody is his own parent) or sibling(X,Y)
parent(X,Z), parent(Y,Z), X # Y (people with the same parent are siblings).

2. A later version of CLAUDIEN can handle multiple sets of data. It returns all
clauses that are true within each data set. It is recognised that, by regarding the
hypothesis as a definition of a concept, CLAUDIEN can be seen as a concept learner
that learns from positive examples only (De Raedt and Dzeroski, 1994). It learns the
most specific concept that covers all the examples.

For instance, CLAUDIEN could be provided with 10 data sets, each set describing a
different typical Belgian family. The system would then return a hypothesis that
represents the concept of a typical Belgian family, containing the same clauses as
shown above but also clauses such as Y=Z < married(X,Y), married(X,Z) (one can
be married to only one person).

3. A further development is the ICL system (De Raedt and Van Laer, 1995). The
interpretations fed into this system are labelled; all the interpretations with a certain
label are considered to be positive examples, the other interpretations are negative
examples. ICL then tries to find clauses that are true in all the positive examples,
but are false in at least some of the negative examples. It searches for a minimal set
of clauses such that each negative example violates at least one clause. ICL thereby
is the first ILP system to learn a concept from positive and negative examples that
are represented as interpretations.

For instance, suppose ICL is provided with 10 families labelled “Belgian” and 10
families labelled “Kuwaitian”. ICL then tries to find a minimal set of clauses that
allows to distinguish Belgian from Kuwaitian families. Such a set could contain the
clause Y=Z ¢ married(X,Y), married(X,Z), if this is true for all Belgian families
but violated for some Kuwaitian families.

4. Tt is noticed that the hypotheses returned by ICL, which (being sets of clauses)
are in conjunctive normal form (CNF), usually become easier to interpret if they
are converted to disjunctive normal form (DNF). ICL is extended so that it can
learn DNF theories instead of CNF theories, if the user desires this. A note on the
relationship between DNF and CNF is (De Raedt et al., 1995), which also links to
earlier work on learning CNF (Mooney, 1995).

For instance, assuming the clause Y=Z < married(X,Y), married(X,Z) is use-
ful for distinguishing Belgian families from Kuwaitian families, a sufficient condi-
tion for a family being Kuwaitian would be married(X,Y), married(X,Z), Y #
Z. Such a condition would appear in the DNF definition of Kuwaitian families.

4.7. RELATIONSHIPS BETWEEN THE DIFFERENT SETTINGS 87

4.7.2 Learning From Interpretations Links Attribute Value
Learning to Learning From Entailment

Learning from interpretations can be situated in between the other settings; in
a sense it provides a link between them. Learning from interpretations differs
from learning from entailment (as it is practically used) in that it exploits the
locality assumption by providing a clear separation between different pieces of
information, in two ways:

e the information that is contained in examples is separated from the in-
formation in the background knowledge;

e information in one example is separated from information in another ex-
ample.

It is this separation of information that provides the link with attribute value
learning, where such a separation is also present.

Figure 4.6 gives a graphical illustration of how the three settings differ. In
attribute value learning, the learner has to find a link between the information
in one example and the target variable. When learning from interpretations, the
learner has to link the information that is contained in one example, together
with the background knowledge, to the target. When learning from entailment,
the learner has to link an indefinitely large part of the database to the target
variable. It is possible that only a part of the information in the database is
relevant, but in general this is not guaranteed, and even when it is it may not
be obvious which part that is. Hence, the learner has to look up the relevant
information in a large database, which may be a costly operation.

Figure 4.6 also illustrates a second point: a difference in assumptions that
can be made about completeness of knowledge. If we do not consider the
possibility of missing or noisy values, then each example description in attribute
value learning is complete. Since the examples are only a sample from a certain
population, the knowledge about the population itself is not complete. We say
that example descriptions are closed, and the description of the population is
open.

For learning from interpretations, the situation is exactly the same. For
learning from entailment, it is very different however. Due to the fact that
no clear separation between information about specific examples is made, indi-
vidual example descriptions are not distinguished from the description of the
training sample as a whole, and hence example descriptions must be open.®

5 Actually, the locality can be introduced in learning from entailment by learning from
clauses with a non-empty body. The information local to an example is then put in the body
of the clauses. This representation is not often used, however, and few systems support it.

88 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

Attribute Value Learning

data target

open

Learning From Interpretations

back- gata target
ground

O e
// //
, -
I /
=
\ 1
\)
[] =
L] e
iopen

Learning From Entailment

background
+ data target

- N

Figure 4.6: Graphical representation of the relationship between the different
settings, focusing on separation of information and openness.

4.7. RELATIONSHIPS BETWEEN THE DIFFERENT SETTINGS 89

4.7.3 Advantages of Learning From Interpretations

The separation of information that is realized by learning from interpretations
has positive effects in two respects.

First of all, it affects the efficiency of the learning process. De Raedt and
Dzeroski (1994) have shown that in the learning from interpretations setting,
PAC-learning a clausal theory is tractable (given upper bounds on the com-
plexity of the theory). This positive result stands in contrast with the negative
PAC-learning results obtained for the learning from entailment setting, and is
strongly related to the property that all example descriptions are complete.

Second, many techniques in attribute value learning implicitly exploit the
independence of the examples. Since learning from interpretations also assumes
this independence, such techniques can trivially be upgraded to this setting,
whereas an upgrade to learning from entailment, if at all possible, is non-trivial.
An example of such a technique is the use of internal validation sets. Setting
apart a subset of the training set is easy if all examples are independent; one
can choose the subset randomly. When dependences between examples exist,
however, it may be necessary to carefully choose the examples that are kept
apart, because removing an example from the training set may cause relevant
information about another example to be removed. The same problem occurs
when one wants to mine a large database by learning from a sample of the
database.

We can conclude from this that learning from interpretations offers better
opportunities for upgrading techniques from attribute value learning to ILP
than learning from entailment.

4.7.4 Limitations of Learning From Interpretations

As already mentioned, the assumption that all the relevant information for a
prediction is localized in one example (together with the background know-
ledge) means that in the learning from interpretations setting one cannot learn
predictors that make use of the information in multiple examples. Hence, re-
cursive predicates such as member cannot be learned from interpretations. This
means the setting is less powerful than learning from entailment.

An interesting observation, however, is that when one takes a look at the
practical applications of ILP that have been reported on during the last few
years, e.g. at the yearly workshops on ILP (De Raedt, 1996; Muggleton, 1997;
Lavra¢ and Dzeroski, 1997; Page, 1998) then it turns out that almost every
application involves problems of the kind that can be handled by learning
from interpretations. Luc De Raedt mentioned in his invited talk at the Fighth
International Conference on Inductive Logic Programming that in the literature
on ILP he has found only one single application where a recursive rule was
found.

90 CHAPTER 4. FIRST ORDER LOGIC REPRESENTATIONS

These points suggest that in practice the limitations of learning from inter-
pretations are not as bad as they might seem at first sight.

4.8 Related Work

The learning from interpretations has its origin in the non-monotonic learn-
ing setting by Helft (1989). De Raedt and Dzeroski (1994) showed how it can
be used for concept learning and proved that in this setting (under certain as-
sumptions) first order logic hypotheses are PAC-learnable with polynomial time
complexity. De Raedt (1997) relates learning from interpretations with other
settings within ILP (among which learning from entailment). De Raedt et al.
(1998) illustrate the practical applicability of the learning from interpretations
setting by means of the CLAUDIEN, ICL and TILDE systems. An illustration of
the use of nonmonotonic ILP for other than prediction purposes (restructuring
a deductive database) is (Blockeel and De Raedt, 1998a).

4.9 Conclusions

In this chapter we have compared different data representation formalisms. We
have discussed the attribute value framework, which is essentially propositional,
and the inductive logic programming framework, in which first order logic is
used to represent hypotheses. Two settings for ILP were discussed: learning
from interpretations and learning from entailment. We have compared the dif-
ferent settings with respect to their representational power and their efficiency,
and related the representational power to learning from multiple relations in a
relational database.

Our main conclusions are that learning from interpretations can be seen
as situated somewhere in between the other settings, extending the attribute
value framework towards ILP without giving up its efficiency. Due to its favor-
able position, the learning from interpretations framework is a good choice for
upgrading the techniques discussed in the previous chapters to ILP.

Chapter 5

Decision Trees in First
Order Logic

5.1 Introduction

Decision trees have mainly been employed within attribute value learning. Due
to the focus on logic programming that has dominated the research on relational
learning techniques during the latest decennium (in the form of inductive lo-
gic programming), relational hypotheses are almost always represented as first
order rule sets. A few exceptions exist; we mention KATE (Manago, 1989),
STRUCT (Watanabe and Rendell, 1991), ML-SMART (Bergadano and Giord-
ana, 1988), SRT (Kramer, 1996) and TRITOP (Geibel and Wysotzki, 1997).
Not all of these systems operate within a strict logical framework; e.g. KATE
uses a frame-based representation language. There is also some variation in cer-
tain restrictions that are imposed. The decision tree format used by STRUCT
and SRT is closest to the one we will propose in this chapter.

While STRUCT and SRT induce relational (also called structural) decision
trees, the semantics of such trees have never been addressed explicitly. This is
most probably due to the fact that they seem trivial. We show in this chapter
that they are not. There are a few peculiarities in the semantics of first order
logical decision trees that are easily overlooked, and these have interesting
consequences with respect to the representational power of this formalism.

In this chapter we first introduce the notion of a first order logical decision
tree. We then discuss how such a tree can be transformed into a rule set,
and show that Quinlan’s (1993a) method for turning propositional decision
trees into rule sets does not work in the first order case. We further discuss
the relationship with the flat logic programs that most ILP systems induce
and with first order decision lists, and relate this to predicate invention and

91

92 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

induction of logical formulae with mixed quantification.

5.2 Setting

We use the learning from interpretations setting. We recall the problem spe-
cification as given in Chapter 4:

Given:

e a target variable Y

e a set of labelled examples E (each example is a Prolog program e
labelled with a value y for the target variable)

e alanguage £ € Prolog,

e and a background theory B,
Find: a hypothesis H € L, such that for all labelled examples (e,y) € E,
e HAeAB [=label(y), and

o Vy' #y:HAeA B~ label(y')
Throughout this chapter we will repeatedly refer to the following example.

Example 5.1 An engineer has to check a set of machines. A machine consists
of several parts that may be in need of replacement. Some of these can be
replaced by the engineer, others only by the manufacturer of the machine. If a
machine contains worn parts that cannot be replaced by the engineer, it has to
be sent back to the manufacturer (class sendback). If all the worn parts can
be replaced, it is to be fixed (fix). If there are no worn parts, nothing needs
to be done (ok).

Given the following set of examples (each example corresponds to one ma-
chine) and background knowledge:

Example 1 Example 2 Example 3 Example 4
label(fiz) label(sendback) || label(sendback) || label(ok)
worn(gear) worn(engine) worn(wheel)
worn(chain) worn(chain)
Background knowledge
replaceable(gear)
replaceable(chain)

not_replaceable(engine)
not_replaceable(wheel)

a Prolog rule for the sendback class is:

label(send_back) :- worn(X), not_replaceable(X)

5.3. FIRST ORDER LOGICAL DECISION TREES 93

worn(X)

not Je&ce{le(){)

Figure 5.1: Logical decision tree encoding the target hypothesis of Example 5.1.

5.3 First Order Logical Decision Trees

5.3.1 Definition of First Order Logical Decision Trees
Definition 5.1 (FOLDT) A first order logical decision tree (FOLDT) is a

binary decision tree in which
1. the nodes of the tree contain a conjunction of literals, and

2. different nodes may share variables, under the following restriction: a
variable that is introduced in a node (which means that it does not occur
in higher nodes) must not occur in the right branch of that node.

The need for the restriction in part (2) of Definition 5.1 follows from the
semantics of the tree. A variable X that is introduced in a node, is existentially
quantified within the conjunction of that node. The right subtree is only rel-
evant when the conjunction fails (“there is no such X”), in which case further
reference to X is meaningless.

Example 5.2 An example of a logical decision tree is shown in Figure 5.1. It
encodes the target hypothesis of Example 5.1. o

Figure 5.2 shows how to use FOLDTs for prediction. We use the following
notation: a tree T is either a leaf with label y, in which case we write T =
leaf(y), or it is an internal node with conjunction conj, left branch left and
right branch right, in which case we write T = inode(conj, left, right).!

Because an example e is a Prolog program, a test in a node corresponds
to checking whether a query < C succeeds in e A B (with B the background
knowledge). Note that it is not sufficient to define C' as the conjunction conj
in the node itself. Since conj may share variables with nodes higher in the
tree, C' consists of several conjunctions that occur in the path from the root
to the current node. More specifically, C is of the form Q A conj, where Q is

1This notation is slightly simplified with respect to the one from Chapter 3; in the original
notation we would have written T' = inode(conj, {(true, left), (false, right)}).

94 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

procedure PREDICT(e : example) returns prediction:
Q = true
N := root
while N # leaf(y) do
let N = inode(conj, left, right)
if ¢ Q A conj succeeds in e A B
then Q := Q A conj
N :=left
else N := right
return y

Figure 5.2: Making a prediction for an example using a FOLDT (with back-
ground knowledge B).

the conjunction of all the conjunctions that occur in those nodes on the path
from the root to this node where the left branch was chosen. We call + @ the
associated query of the node.

When an example is sorted to the left, @ is updated by adding conj to it.
When sorting an example to the right,) need not be updated: a failed test
never introduces new variables.

Example 5.3 If in Figure 5.1 an example is sorted down the tree, in the node
containing not_replaceable(X) the correct test to be performed is worn(X),
not_replaceable (X);it is not correct to test not_replaceable(X) on its own.
o

5.3.2 Semantics of FOLDTSs

Figure 5.3 shows how an equivalent logic program can be derived from a
FOLDT. Where we use the term “logic programs” in this chapter, it refers
to normal logic programs, i.e. programs that may contain negative literals in
the body of clauses. When the latter is not allowed, we will explicitly refer to
definite logic programs.

With each internal node in the tree a clause defining a newly invented
nullary predicate is associated, as well as a query. This query can make use of
the predicates defined in higher nodes. With leaves only a query is associated,
no clause.

The queries are defined in such a way that the query associated with a
node succeeds for an example if and only if that node is encountered when
that example is sorted down the tree. Therefore, if a query associated with a

5.3. FIRST ORDER LOGICAL DECISION TREES 95

procedure ASSOCIATE(T : foldt, + Q : query):

if T = inode(conj, left, right) then
assign a unique predicate p; to this node
assert p; «+ @, conj
ASSOCIATE(left, (+ @, conj))
ASSOCIATE(right, (+ Q,p;))

else
let T = leaf(k)
assert label(k) < Q

procedure DERIVE_LOGIC_PROGRAM(T": foldt):
ASSOCIATE(T, +)

Figure 5.3: Mapping FOLDT’s onto logic programs.

leaf succeeds, the leaf indicates the label of the example. The clauses define
invented predicates that are needed to express these queries. Thus the queries
associated with leaves, together with these clauses, form a logic program that
is equivalent to the tree.

An important point is that the algorithm adds to a query the negation of
the invented predicate p;, and not the negation of the conjunction itself (see
Figure 5.3: the query « @Q,-p; and not < Q,—conj is associated with the
right subtree of T'). Indeed, the queries of the left and right subtree should be
complementary: for each example sorted into this node (i.e. + @ succeeds), ex-
actly one of both queries should succeed. Now, «— Q, conj (which is equivalent
to + @, p;) and < @, —p; are complementary, but < Q,conj and + Q, ~conj
are not, when conj shares variables with). For instance, in the interpretation

{q(1),p(1),4(2)} both < ¢(X),p(X) and + ¢(X), -p(X) succeed.

Example 5.4 Figure 5.4 shows the result of applying the algorithm in Fig-
ure 5.3 to our running example. Consider in Figure 5.4 the node containing
not_replaceable(X). The query associated with the right subtree of this node
contains —p; and not —mnot_replaceable(X). Indeed, in the latter case the
query would succeed if there is a worn part in the machine that is replaceable,
while it ought to succeed if there are worn parts in the machine, but all of them
are replaceable. o

Because a literal and its negation are not complementary, adding a literal
is not equivalent to adding the negation of the literal while at the same time
switching the branches. This means it may be interesting to allow negated
literals in queries.

96 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

worn(X)
P
po + worn(X)

not_replaceable(X) ok
— worn(X) — —po
p1 worn(X), not_replaceable(X)

sendback fix

+— worn(X), not_replaceable(X) +— worn(X), —p1
Po + worn(X)
p1 + worn(X),not_replaceable(X)
label(sendback) < worn(X),not_replaceable(X)
label(fix) + worn(X),p;
label (ok) — po

Figure 5.4: The tree of Figure 5.1, with associated clauses and queries added;
and the logic program derived from the tree.

5.3. FIRST ORDER LOGICAL DECISION TREES 97

Example 5.5 In our running example, not_replaceable(X) partitions the
set {e1,es,e3} (see Example 5.1) into {{e1}, {e2,e3}}. replaceable(X) would
partition it into {{e1, ez}, {es}}. o

This is an important difference with the propositional case, where a test
(e.g- X < 5) and its negation (X > 5) always generate the same partition. In
the first order context they may generate different partitions. This fact and its
influence on the tree-to-ruleset conversion are new findings that have not been
mentioned in existing literature on relational decision trees (Watanabe and
Rendell, 1991; Kramer, 1996), but are important for a correct understanding
of their semantics.

5.3.3 On the Expressiveness of FOLDTs and Other Form-
alisms

While the logic program that is equivalent to a decision tree typically contains
auxiliary predicates p;, in Prolog these can be avoided by using the cut operator.

We then get a first order decision list (FODL):

label(sendback) :- worn(X), not_replaceable(X), !.
label(fix) :- worn(X), !.
label(ok).

In general, a tree can always be transformed into a decision list and vice
versa. The following functions dl and ¢r define such mappings (@ represents
concatenation of lists):2

di(T) = dl'(T, true)
dl'(leaf(c), PC') = [(label(c) :- PC,)]
dl'(inode(conj, left,right), PC) = dl'(left,(PC, conj))Qdl' (right, PC)

tr([(label(c) :- conj, !)|Rest] = inode(conj,leaf(c),tr(Rest))
tr([label(c)]) = leaf(c)

This establishes the equivalence with respect to expressiveness of FODLs
and FOLDTSs. We now turn to the relationship with logic programs.

We consider only non-recursive logic programs as hypotheses. The hypo-
theses essentially define the target predicate label. They may also define in-
vented predicates which do not occur in the background theory. We assume
here that the background is not changed by the learner and not part of the

2In tr, we make use of the fact that nodes can contain conjunctions of literals. If only one
literal is allowed in each node, the conversion is still possible but more complex.

98 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

hypothesis. Then the hypotheses H; and Hs are equivalent if and only if for
all backgrounds B, B A H; assigns the same label to any possible example as
B A Hy. We call a hypothesis in the form of a logic program flat if it contains
no invented predicates, otherwise we call it layered.

A hypothesis in the form of a layered definite logic program can always be
transformed into a flat definite logic program by unfolding calls to invented
predicates. Layered normal logic programs, however, cannot always be trans-
formed to flat normal logic programs in this way. Unfolding a negative literal
for an invented predicate may introduce universally quantified variables in the
body, which is beyond the expressive power of logic program clauses (by defini-
tion, variables not occurring in the head of a clause are existentially quantified
in its body).

Example 5.6 Unfolding the layered logic program of our running example
yields:

label (ok) + VX :-worn(X)
label(sendback) <« 31X :worn(X) Anot_replaceable(X)
label(fix) + 3X :worn(X)A

VY : (~worn(Y) V —not_replaceable(Y))

Since any flat logic program, when written in this format, only contains
existential quantifiers (by definition of logic program clauses), no flat hypothesis
exists that is equivalent to this theory (e.g. VX -worn(X) cannot be written
with only existential variables).? o

We conclude from the above that FOLDTs can always be converted to
layered normal logic programs (Figure 5.3 gives the algorithm), but not always
to flat normal logic programs.

Finally, observe that a flat logic program that predicts only one label for a
single example (which is not a restrictive condition in the context of prediction)
can always be transformed into an equivalent decision list by just adding a cut
to the end of each clause.

As FODLs and FOLDTSs can be converted into one another, and flat logic
programs can be converted into FODLs or FOLDTSs but not the other way
around, we have the following property:

In the learning from interpretations setting, the set of theories that
can be represented by FOLDTs is a strict superset of the set of

3Using \+ to denote Prolog’s unsound version of negation as failure (which does not check
the groundness of its argument), one might remark that e.g. label(fix) :- worn(X), \—|—
(worn(Y), not_replaceable(Y)) correctly computes the label fix. However, we do not call
this a flat program. Operationally, \+ starts a subquery. Declaratively, the meaning is
label(fiz) «+ worn(X), (Y (worn(Y'), not_replaceable(Y'))) which is beyond the expressive
power of a normal clause.

5.4. RELATED WORK 99

theories that can be represented by flat normal logic programs, and
is equivalent to the set of theories that can be represented by FODLs.

All this means that systems that induce trees or decision lists (examples of
the latter are FFOIL (Quinlan, 1996) and FoIiDL (Mooney and Califf, 1995)) can
find theories that cannot be found by systems that induce flat (normal or def-
inite) logic programs (e.g. FoIL (Quinlan, 1993b), PRocoL (Muggleton, 1995)
and most other ILP systems). This extends the classical claim that the use of
cuts allows for a more compact representation (see, e.g., (Mooney and Califf,
1995)) with the claim that also a greater expressivity is achieved. The same
expressivity could be achieved by classical ILP systems if they allow negation
and perform predicate invention (or if they allow Prolog’s unsound negation
as failure: \+ with as argument a conjunction of literals, which essentially
amounts to the same).

In this respect we want to mention Bain and Muggleton’s non-monotonic
induction method (Bain and Muggleton, 1992). The hypotheses generated
with this method have a structure similar to that of FOLDTs (when only two
classes are involved), in that the induced theory is typically also layered through
the use of invented predicates, and the invented predicates occur as negative
literals in the clauses, accomodating exceptions to them. However, in Bain and
Muggleton’s framework the learning method is incremental and rule-based.

5.4 Related Work

This chapter is based on (Blockeel and De Raedt, 1998b).

Of the existing decision tree approaches to relational learning (Watanabe
and Rendell, 1991; Kramer, 1996; Manago, 1989; Bergadano and Giordana,
1988; Bostrom, 1995; Geibel and Wysotzki, 1997; Bowers, 1998), STRUCT
(Watanabe and Rendell, 1991) and SRT (Kramer, 1996) are most relevant
to our approach; they both induce the kind of logical decision trees we have
discussed. This work, however, has focused on induction techniques and has
ignored the logical and representational aspects of decision trees, needed to
fully understand the potential of this technique for first-order learning.

Bostréom’s work (Bostrom, 1995) has in common with ours that he compared
the covering and divide-and-conquer paradigms in the context of ILP. The
algorithm he provides employs a divide-and-conquer approach and is in this
respect similar to TDIDT. However, with his method the resulting theory is
still a flat program (each leaf in the tree that is built contains one clause;
by gathering all the leaves that predict one specific class, a logic program is
obtained that defines that class).

Peter Geibel’s TRITOP system (Geibel and Wysotzki, 1997) induces first
order logical decision trees where different nodes cannot share variables. The

100 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

approach is still relational because complex conjunctions can occur in individual
nodes. One could say that the system constructs propositional features in
a relational domain, and uses these features as tests in the tree. The tree
itself can thus be seen as propositional. A similar approach, learning from
propositionalized first order knowledge, is described in (Kramer et al., 1998).

The machine learning group at Bristol (Lloyd, Flach, Bowers) is studying
structural decision trees in the context of the functional programming language
Escher. Their approach is similar to ours in that the representation of an ex-
ample resembles the interpretations we use. However, as in Geibel’s approach,
different nodes in a tree do not share variables. An early implementation of
their relational decision tree learner is described by Bowers (1998).

The results concerning expressivity of trees and rule sets are quite different
from those obtained for propositional learning systems. Rivest (1987) has com-
pared the expressivity of DNF formulae, CNF formulae, decision lists and de-
cision trees in the propositional case, and has shown that propositional decision
lists are more expressive than the other formalisms, given a fized mazimum on
the length of rules and the depth of the tree; i.e., the set of theories that can be
represented by decision lists with rules of length at most k strictly includes the
set of theories that can be represented by decision trees with maximal depth
k, as well as the set of theories that can be represented in k-CNF or k-DNF
format. Without such complexity bounds, propositional theories can always be
transformed into any of the alternative formats, and all formats are equivalent
in this sense.

5.5 Conclusions

Earlier in this text we have observed that the TDIDT approach is very suc-
cessful in propositional learning and differs significantly from the covering ap-
proach. This suggests that in ILP, too, TDIDT might have advantages over
the covering approach (this point was also raised and investigated by Bostrom
(1995)). In an attempt to make the TDIDT paradigm more attractive to ILP
we have investigated the logical aspects of first order decision trees. The res-
ulting framework should provide a sound basis for first order logical decision
tree induction.

Our investigation shows that first order logical decision trees are more ex-
pressive than the flat non-recursive logic programs typically induced by ILP
systems for prediction tasks, and that this expressive power is related to the
use of cuts, or the use of negation combined with predicate invention. This in
turn relates our work to some of the work on induction of decision lists and
predicate invention (Bain and Muggleton, 1992; Quinlan, 1996; Mooney and
Califf, 1995), showing that these algorithms too have an expressivity advant-
age over algorithms inducing flat logic programs. These expressivity results are

5.5. CONCLUSIONS 101

specific for the first order case; they do not hold for propositional learning.

102 CHAPTER 5. DECISION TREES IN FIRST ORDER LOGIC

Chapter 6

Top-down Induction of
First Order Logical
Decision Trees

6.1 Introduction

In this chapter we discuss the induction of decision trees in the learning from
interpretations setting, as implemented in the TILDE system (Blockeel and
De Raedt, 1998b). This chapter builds on Chapter 5, where we introduced
first order logical decision trees, and on Chapter 3, where we discussed top-
down induction of decision trees in the predictive clustering framework.

We first present the general architecture of TILDE. Next, we discuss the
features of the system in more detail. This discussion consists of two parts:
first we look at the way in which techniques from propositional learning can
be adapted or upgraded towards first order logic (Section 6.3); next, we dis-
cuss TILDE as an instantiation of the predictive clustering technique presented
before (Section 6.4). After having discussed the algorithms used by TILDE,
we illustrate the use of the system with a sample run in Section 6.5. The dis-
cussion of the implementation is concluded with some efficiency considerations
(Section 6.6).

Section 6.7 consists of an empirical evaluation of TILDE, in which the system
is compared with other inductive learners and the effect of certain implementa-
tion details is investigated. The focus of this evaluation is on the use of TILDE
for classification, although other tasks are considered as well.

The chapter ends with a short discussion of related work and conclusions.

103

104 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS
(o
A
general purpose utilities corey l ILP utilities
T
user ———=|[output - TDIDT -

environment for data access
experimentation

classification ‘ ‘ regression ‘ ‘ clustering

task dependent procedures

Figure 6.1: Architecture of the TILDE system. Arrows denote information flow.

6.2 Architecture of TILDE

The architecture of the TILDE system® is sketched in Figure 6.2.

At the core of the TILDE system is the generic TDIDT algorithm. The

auxiliary modules can be divided into three groups:

e One group implements the ILP part of the system: it contains the code

for applying a user-defined refinement operator to a clause (in order to
generate the set of tests that is to be considered at a node), as well as
the code for accessing the data (testing a clause in an example, obtaining
the class of an example, ...). The modules in this group make direct use
of Prolog functionality.

A second group implements all the procedures that are specific to cer-
tain tasks. This group contains three modules: classification, regres-
sion and clustering. Each module instantiates the OPTIMAL_SPLIT,
STOP_CRIT, INFO and PRUNE functions referred to by the generic
TDIDT algorithm in Figure 3.4, defines quality criteria for trees, a post-
pruning method, etc. TILDE always uses exactly one of these three mod-
ules, according to the mode it is in.

A third group contains various auxiliary modules that are not directly
related to any specific task or to the ILP character of the system; these
include user interaction, procedures for writing trees in a readable format,
conversion of trees to Prolog programs, facilities for testing hypotheses
(e.g. cross-validation, evaluation on separate test set), etc.

1More specifically TILDE2.0. An earlier version, TILDEL.3, only performs classification.

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 105

The system takes two types of input: a settings file, specifying the various
parameters of the system (which mode it should run in, the language bias,
..), and a knowledge base (divided into a set of examples and background
knowledge). It generates one or more output files containing the results of the
induction process.

The architecture emphasizes the similarity between the three tasks for which
TILDE can be used. The part of the code that is task-specific is clearly isol-
ated and turns out to be relatively small (a rough estimate based on the file
sizes suggests this part is about 15% of the total code). The system has been
designed so that new modes can be added relatively easily.

The TILDE system is implemented in Prolog, and runs within the Master-
ProLog engine (the former ProLog-by-BIM)Z2. From the above it will be clear
that it is mainly the first group of modules (the ILP part of the code) that
fully exploits the functionality offered by Prolog.

6.3 Upgrading TDIDT to First Order Logic

In this section we discuss the adaptations that have been made to the general
TDIDT algorithm to upgrade it to the first order context. Figure 6.2 shows the
basic TDIDT algorithm, but now in an ILP context, where the tests are first
order conjunctions. We first discuss the way in which the computation of tests
for nodes is adapted; next, we briefly discuss how a propositional discretization
algorithm has been upgraded to the first order context.

6.3.1 Computing the Set of Tests for a Node

The main point where TILDE differs from propositional tree learners is the
computation of the set of tests to be considered at a node. To this aim, it em-
ploys a user-defined refinement operator under #-subsumption (Plotkin, 1970;
Muggleton and De Raedt, 1994).

Definition 6.1 (f-subsumption) A clause ¢; 8-subsumes a clause ¢y (we
write this as ¢ <g c2) if and only if there exists a variable substitution 6 such
that Lits(c10) C Lits(cz) with Lits(c) the set of literals occurring in a clause c
when it is written as a disjunction.

Example 6.1 The clause ¢; : p(X,Y) « q(X,Y) 6-subsumes the clauses

C2 :p(X,Y) «— q(X,Y),T(X)
C3 :p(X,a) A Q(X7a‘)

2A compiled version exists that runs outside the MasterProLog interpreter; this version
offers slightly less functionality.

106 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

procedure GROW_TREE(T": tree, E: set of examples, Q: query):

+ Qp := OPTIMALSPLIT(p(+ Q), E)

if STOP_CRIT(+ Qs, E)

then T := leaf(INFO(E))

else
conj == Qp — Q
E, := {e € E| + @ succeeds in e A B}
E, := {e € E| + @y failsin e A B}
GROW_TREE(left, E1, Qp)
GROW_TREE(right, Es, Q)
T := inode(conyj, left, right)

procedure TILDE(T: tree, E: set of examples):
GROW_TREE(T’, E, true)
PRUNE(T", T)

Figure 6.2: Algorithm for first-order logical decision tree induction.

because Lits(c;) C Lits(cy) (6 is then the empty substitution) and ¢z is ob-
tained by substituting the constant a for the variable Y. 3

Intermezzo 3 offers some background on #-subsumption and why it is im-
portant in ILP.

Definition 6.2 (Refinement operator) A refinement operator under 6-sub-
sumption p maps a clause ¢ onto a set of clauses, such that ¥c' € p(c),c <q .

In TILDE the user-defined refinement operator p always consists of adding
a conjunction to a clause; a variable substitution can be simulated be adding
a unification literal (=). In order to refine a node with associated query + Q,
TILDE computes p(+— @) and chooses that query « @, in it that results in the
best split. The conjunction put in the node consists of @, — @, i.e. the literals
that have been added to @ in order to produce Q.

Specifying the Basic Refinement Operator

The specific refinement operator that is to be used, is defined by the user in
a ProcoL-like manner (Muggleton, 1995). A set of specifications of the form
rmode(n: conjunction) is provided, indicating which conjunctions can be added
to a query, the maximal number of times the conjunction can be added (n),
and the modes and types of the variables in it.

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 107

Intermezzo 3: f-subsumption

f-subsumption, first defined by Plotkin (1970), is a crucial concept in ILP; it
has been studied extensively and almost all ILP systems employ it in one way
or another. We summarize the basics.

As Definition 6.1 states, ¢; <g ca & 30 : Lits(c10) C Lits(cz). Example 6.1
in the text suggests that if ¢; f-subsumes cy, it also entails it. Indeed, 6-
subsumption can be seen as a sound but incomplete version of entailment. An
example where c; entails ¢y but does not #-subsume it is

a =p(Y) « p(X),s(X,Y)
Cy = p(Z) (—p(X),S(X, Y),S(Y,Z)

Despite this shortcoming, -subsumption is popular in ILP because it is much
cheaper to compute than entailment. It is useful because it imposes a quasi-
order on a set of clauses, and this quasi-order is used to structure the search
space.

A quasi-order < is a reflexive and transitive relation that does not satisfy
antisymmetry, i.e. it is possible that a < b and b < a without a and b being
equal. We define the relation ~ as follows: a ~ b <& a < bAb < a. The ~
relation is symmetric and inherits the reflexivity and transitivity of <, hence
it is an equivalence relation. Each quasi-order thus induces an equivalence
relation in its domain, and a partial order on the equivalence classes.

We write the equivalence relation induced by <y as ~y. If a ~¢ b, we call a and
b syntactic variants. Since #-subsumption implies entailment, the ~y relation
implies logical equivalence. This means that in a set of syntactic variants only
one formula needs to be tested in order to obtain the truth value of every
formula in the set; or, in the context of TDIDT: we need generate only one
formula for each set of syntactic variants.

A refinement operator under #-subsumption p maps a clause ¢ onto a set of
clauses, such that V¢’ € p(c),c <4 ¢’. A good refinement operator avoids
generating clauses that are syntactic variants of one another.

The importance of refinement operators under #-subsumption in ILP can most
easily be seen by looking at how hypotheses are typically induced by machine
learning systems. Usually, an inductive learner starts with a coarse hypo-
thesis and generates a series of increasingly more refined hypotheses until an
acceptable one is found. Refinement operators under #-subsumption provide
a formalization of this refinement process; they have been studied extensively
(e.g. (van der Laag and Nienhuys-Cheng, 1998)).

108 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

The mode of an argument is indicated by a 4+, — or +— sign before a
variable. + stands for input: the variable should already occur in the associated
query of the node where the test is put. — stands for output: the variable has
to be one that does not occur yet. +— means that the argument can be both
input and output; i.e., the variable can be a new one or an already existing
one. Note that the names of the variables in the rmode facts are formal names;
when the literal is added to a clause actual variable names are substituted for
them.

Example 6.2 In the Machines example we introduced in Chapter 5, the fol-
lowing rmode specifications could be given:

rmode (5: worn(+-V)).
rmode (5: not_replaceable(+V)).
rmode(5: replaceable(+V)).

This rmode definition tells TILDE that a test in a node may consist of
checking whether a component that has already been referred to is worn (e.g.
worn(X) with X an already existing variable), checking whether there exists
an worn component in the machine (e.g. worn(Y) with Y not occurring in
the associated query), or testing whether a component that has already been
referred to is replaceable. At most 5 literals of a certain type can occur on any
path from root to leaf (this is indicated by the 5 in the rmode facts).

To make this a bit more concrete, look back at the tree in Figure 5.4.
The left child of the root has as associated query <—worn(X). The refinement
operator p defined by the above specifications generates for this query

p(+ worn(X)) = { « worn(X), replaceable(X),
+ worn(X),not_replaceable(X),
+ worn(X), worn(Y),
+ worn(X), worn(X)}

where the fourth clause, being in fact equal to the original clause, is filtered out.
Hence, the three literals that are considered for this node are replaceable(X),
not_replaceable (X) and worn(Y). Of these three the second one is preferred
by the heuristic and filled in in the node.

<&

A conjunction can have multiple mode declarations, e.g. the following facts
specify that at least one of the two arguments of a predicate inside has to be
input:

rmode(5: inside(+V,+-W)).
rmode(5: inside(-V,+W)).

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 109

Types

TILDE allows the user to specify types for literals. When adding a new literal,
the variables in it can only be unified with variables that have the same type.
This often results in a huge reduction of the branching factor.

A declaration typed_language(yes) tells the system that it should take
type information into account. For each predicate the types of its arguments
are then given by facts of the form type(t;, ..., t,) with a the arity of the
predicate. Multiple type specifications can be given for a predicate.

Example 6.3 Suppose the following rmodes are given:

rmode(5: atom(+-ID, +-Elem, -Charge)).
rmode (5: bond(+ID1,+-ID2,+-BID)).
rmode(5: +Charge<0).

If at some point a node with associated query

+atom(A1,E1,C1), bond(Al, A2, B), atom(A2,E2,C2)

is to be refined, a < literal can be added in many ways: {A1 < 0,E1 < 0,C1 <
0,A2 < 0,B < 0,E2 < 0,C2 < 0}. Of these only C1 < 0 and €2 < 0 are
useful: we only want to compare charges with 0, as the other variables are not
numerical. The choice of variable names in the rmode specifications reflects
this; however, while variable names might be suggestive to the user, TILDE
does not take them into account. The problem is easily solved by adding type
declarations, as follows:

typed_language (yes) .
type(atom(id, elem, real)).
type(bond(id, id, bondtype)) .
type (real<real).

TILDE will now only add a < literal if the variable to the left is of type real,
which is only the case for C1 and C2 in the above example.

Note that these type specifications also have an influence on the number
of atom and bond literals that have to be considered. For instance, since 7
variables occur in the associated query and the first two arguments of atom can
be unified with already occurring variables or can be new, 64 different literals
can be generated for atom; using types reduces this to 4. o

Generation of Constants

As the above example illustrates, it is possible to use literals with constant para-
meters instead of variables. Unfortunately, there are many situations where lots
of constants can be useful, so that one could have a specification such as

110 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

rmode(5: +X < -1).
rmode(5: +X < -0.5).
rmode(5: +X < 0).
rmode(5: +X < 0.5).
rmode(5: +X < 1).

Fortunately, TILDE can generate suitable constants itself. It does this in
the following way: for each example in the set of examples covered by a node,
a query is run that generates one or more constants. Each of these constants
is then filled in in the test that is to be put in this node. In order to keep
the branching factor of the search space limited, maxima can be given for
the number of examples TILDE should look at, as well as for the number of
constants that can be generated from each example. We illustrate the constant
generation algorithm with an example.

Example 6.4 We again use the Machines example. To tell TILDE that a test
worn(c) can be used, with ¢ being any constant for which worn could possibly
succeed, the following rmode fact could be used:

rmode(5: #(15%5%X: worn(X), worn(X))).
% a dc b e

This specification means that in at most 15 (a) examples, TILDE should run
worn(X) (b) and see which values X (c) can take; it should return at most 5 (d)
values per example. Finally, the test worn(X) (e) will be put in the node, but
with X changed into one of the constants: worn(gear), worn(engine),... o

In the above example, the constant generating predicate is the same as the
predicate that is to be filled in, but this need not be the case.® Another example
of the use of constant generation, now in a continuous domain, is:

rmode(10: #(100*1*C: boundary(C), +X < C)).

In at most 100 examples one numeric boundary will be computed, and a test
should consist of comparing an already occurring variable X with this bound-
ary. The computation of a suitable boundary can be defined in background
knowledge. It might be done by, e.g., a discretization algorithm (see further).

While the above syntax may be a bit awkward, it is very general and allows
the generation of constants in many different settings. It is even possible to
generate a whole literal (instead of only its constant parameters), one could

3When the generating predicate is the same as the predicate that is to be filled in, this
method mimicks the lazy evaluation technique as implemented in PROGOL4.4 (Srinivasan and
Camacho, 1996).

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 111

for instance generate a numerical computation such as Y is 3.14#X*X or a
function £ (X,Y,Z) where the definition of f is computed at runtime. As another
example, the method for predicate invention that is incorporated in Proco14.4
(Khan et al., 1998) can also be simulated with the #-construct.*

Lookahead

An important problem in ILP is that refinement of a clause by adding a single
literal may result in little immediate improvement, although the literal may in-
troduce new variables that are very relevant. The following example illustrates
the problem.

Example 6.5 In Belgium a person can apply for a driver’s license from the
age of eightteen. When presented with a suitable set of examples, an inductive
learner should be able to come up with the following rule:

label(can_apply) :- age(X), X>=18.

If the system learns rules top-down, i.e. it starts with an empty body and adds
literals to it, then before finding the correct rule it has to generate one of the
following rules:

label(can_apply) :- age(X). ¢D)
label(can_apply) :- X>=18. (2)

Unfortunately, none these rules make any sense. The body of rule (1) succeeds
for each and every person (everyone has an age), hence addition of the literal
age(X) does not yield any improvement over the empty rule. Rule (2) only
imposes a constraint on a variable that has no meaning yet. In Prolog such a
body always fails, in a constraint logic programming language it might always
succeed; but in neither case will it yield any gain. A top-down rule learner may
discard both rules because they do not seem to bring it any closer to a solution,
thereby failing to find the solution when it is only one step away from it. ¢

While the problem is easiest to explain using a rule-based inductive learner,
it also arises for tree-based systems. The problem is inherent to heuristic
searches in general. For greedy systems, it may heavily influence the induction
process. Although some systems have provisions for alleviating the problem
in specific cases (e.g. FOIL (Quinlan, 1993b) automatically adds so-called
determinate literals®, such as the age literal in the above example), it has not
been solved satisfactorily yet.

4This method consists of applying Srinivasan and Camacho’s lazy evaluation technique
to generate not a constant but a predicate.

5Given a clause, a literal to be added to that clause is called determinate if all its free
variables can take at most one value.

112 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

One technique for coping with the problem is to make the learner look ahead
in the refinement lattice. When a literal is added, the quality of the refinement
can better be assessed by looking at the additional refinements that will become
available after this one, and looking at how good these are. This technique is
computationally expensive, but may lead to significant improvements in the
induced theories.

There are several ways in which lookahead can be performed. One is to
look at further refinements in order to have a better estimate for the current
refinement. In that case, the heuristic value assigned to a refinement ¢’ of a
clause cis a function of ¢’ and p(c’), with p the user-defined refinement operator.
p itself does not change with this form of lookahead.

A second kind of lookahead is to redefine the refinement operator itself so
that the two-step-refinements are incorporated in it. That is, if the original
refinement operator (without lookahead) is p’, then

pl)=ru |J A (6.1)

c'€p’(c)

This approach, as well as the former one, can be extended in the sense that
the learner could look more than one level ahead.®

Example 6.6 Suppose that the test X < 3 causes the highest information gain,
but that a heuristic using lookahead prefers X < 4 because it turns out that the
test X > 2, in combination with X < 4, will lead to a higher gain than any test
combined with X < 3. The difference between the two lookahead approaches
is then that with the first approach, X < 4 is simply added as best test, while
with the second approach (redefining p) one immediately adds X < 4A X > 2.

Both approaches are not equivalent: it is not guaranteed that after adding
X < 4, the test X > 2 will turn out to be the best test to add next. Indeed,
although it caused highest gain in combination with X < 4, the computation
of the new test can use lookahead to find another test that in itself causes less
gain but is more promising for further refinements. o

The TILDE system follows the second approach. It relies on the user to
provide some information about when lookahead is needed, because in many
cases the user has a better idea about this than what a learning system can
derive on the basis of e.g. determinacy.

%0ne could object that the second approach to lookahead can always be simulated by
adding to the background knowledge predicates that are equivalent to the combination of
several other predicates. Lookahead would not be needed then. This is true, but if many
combinations of literals are possible, then a background predicate must be provided for each
combination. HEspecially when allowing lookahead of more than one level, the number of
predicates may become huge. Our lookahead templates offer a much more flexible way of
specifying which combinations are possible.

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 113

The effect of lookahead can be described as follows. First, we define a basic
refinement operator p’ that takes only the rmodes into account:”

p'(H <+« B)={H + B,C0| rmode(n:C) and
C has been used less than n times to form B
and (H < B, (C#9) is mode- and type-conform }
(6.2)
We now extend the operator p’ so that lookahead is allowed, obtaining a new
operator p.

The user can provide templates of the form lookahead(C;, Cs), specifying
that whenever a conjunction is added matching C;, the conjunction C5 may
be added as well. To formalize this, we define an operator A that maps a set
of clauses onto the set of clauses that is obtained by applying lookahead:

AMS)={H+B,C",C| (H+<B,C'")eSAF:Ci0=C"ANC20=C
Alookahead(C1,Cs)}
(6.3)
On the new clauses, lookahead can again be applied if the newly added con-
junctions themselves match lookahead specifications, so that finally p can be

defined as
p(Q) = U X (p'(Q)) (6.4)

where N is the maximum number of lookahead steps allowed.

Example 6.7 In the context of the Mesh data set (see Appendix A for a
description), one could have the following specifications:

rmode(10:neighbour (+V1, -V2)).
lookahead (neighbour(V1l, V2), long(V2)).

These would cause TILDE to add, in one refinement step, tests such as (with
El a bound variable and E2 free):

neighbour(E1, E2)
neighbour(E1, E2), long(E2)

In other words, TILDE can (but need not) test a new edge at the same time it
introduces it. o

"For convenience, we consider the +, — and +— symbols that occur in the rmode spe-
cifications to be meta-information; i.e. we treat e.g. worn(+V) as if it were worn(V) when
applying a substitution, but still take the mode information into account when generating
substitutions.

114 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

6.3.2 Discretization

Discretization is a technique that is used by symbolic induction methods in
order to be able to generate tests on numerical data. It consists of converting a
continuous domain into a discrete one. The motivation for discretizing numeric
data is twofold and based on the findings in attribute value learning.

On the one hand, there is an efficiency concern. Some ILP systems (e.g.,
FoIL (Quinlan, 1993b)) generate numbers during the induction process itself,
which may cause a lot of overhead: at each refinement step (a lot of) constants
need to be generated. By discretizing numeric domains beforehand, as TILDE
does, the induction process becomes much more efficient.

On the other hand, by discretizing the data, one may sometimes obtain
higher accuracy rates (as the hypothesis is less likely to overfit the training
data). Such results have been obtained by, e.g., Catlett (1991).

The discretization procedure that TILDE uses was developed and imple-
mented by Luc De Raedt, Saso Dzeroski and Wim Van Laer (Van Laer et al.,
1997) for the ICL system (De Raedt and Van Laer, 1995), but could be incor-
porated in TILDE without significant modifications. The method only works
for classification though; as of now TILDE does not contain any discretization
algorithms that are usable for regression or clustering.

The approach followed in TILDE is that the user can identify declaratively
the relevant queries and the variables for which the values are to be discret-
ized. For instance, to_be_discretized(atom(A,B,C,D), [D]) states that the
fourth argument of the predicate atom should be discretized.

The resulting numeric attributes are then discretized using a simple modific-
ation of Fayyad and Irani’s method. The details of this method can be found in
(Fayyad and Irani, 1993) and (Dougherty et al., 1995). In short, the algorithm
finds a threshold that partitions a set of examples into two subsets such that
the average class entropy of the subsets is as small as possible, as follows. Let
s(E) be the class entropy of a set of examples E:

k
s(E) ==Y p(ci, E)logp(c:, E) (6.5)

=1

(p(ci, E) is the proportion of examples in E that have class ¢;, k is the number
of classes). If a threshold T' for an attribute A partitions E into By = {z €
E|r.A < T} and E; = E— E;, then the average class entropy after partitioning
is

%S(El) + %S(Ez) (6.6)

The threshold T is chosen so that this average entropy is minimal.® This

8This corresponds to the threshold that offers maximal information gain, as defined by
Equation 3.3.

6.3. UPGRADING TDIDT TO FIRST ORDER LOGIC 115

procedure is applied recursively on E; and F, until some stopping criterion is
reached.

With respect to Fayyad and Irani’s algorithm, two adaptations have been
made. First, Fayyad and Irani propose a stopping criterion that is based on the
minimal description length (MDL) principle, but for both ICL and TILDE this
method was found to generate very few thresholds. Therefore TILDE’s discretiz-
ation procedure accepts a maximum number of thresholds as a parameter. This
has the additional advantage that one can experiment with different numbers
of thresholds.

A second adaptation made to Fayyad and Irani’s method specifically con-
cerns non-determinacy. Due to the fact that one example may have multiple
or no values for a numeric attribute, we use sum of weights instead of number
of examples in the appropriate places of Fayyad and Irani’s formulae (in the
attribute value case all values have weight 1 as each example has only one value
for one attribute). The weight of an example in a set is equal to the number of
values occurring in it that pass the test describing the set, divided by the total
number of values in the example; it is O if there are no values. The sum of the
weights of all values for one numeric attribute or query in one example always
equals one, or zero when no values are given.

Example 6.8 Consider an example e; = {p(1), p(2), p(3)}, and some threshold
T = 2.5. If each example had only one value for p, T' would partition a set of
examples S into S; (examples that have a value < 2.5) and Ss, the rest. In our
context, e; has three values for p, two of which are smaller than 2.5, hence e;
has weight 2/3 in S;, and 1/3 in S,. o

These weights can then be used in the formulae for class entropy by defining
for any set S,

S| = wes (6.7)

eeS
and defining p(c;, E) as

_ |{e € E|class(e) = c; }|

p(Ci,E) |E|

(6.8)

Note that the use of weights is more or less arbitrary; other approaches could
be followed. We found this approach to work well.

Aside from the generation of thresholds, there is the topic of how these
thresholds should be used. We see several possibilities:

¢ Using inequalities to compare whether a value is less than a discretization
threshold; this corresponds to an inequality test in the discrete domain.

116 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

continuous domain discrete domain

inequalities = < b; zp < d;
equalities b; <z <bij Tp = d;
intervals b <z <Yy d; <xzp < d;

Table 6.1: Comparison of tests in the continuous domain and the discrete
domain.

e Checking whether a value lies in some interval bounded by two consecut-
ive thresholds. Such an interval test corresponds with an equality test in
the discretized domain.

e Checking whether a value lies in an interval bounded by nonconsecutive
thresholds. This corresponds to an interval test in the discrete domain.

Table 6.1 gives an overview of the relationship between tests in the continu-
ous domain using discretization thresholds, and tests in the discrete domain.
We use the following notation. If z is a value of the continuous domain, zp is
the corresponding value in the discrete domain. The discrete domain is assumed
to have n different values which we denote di,...,d,; each d; corresponds to
an interval [b;, b;11) in the continuous domain.

Although allowing only inequality tests is complete (interval tests simply
consist of multiple inequality tests), it seems better to explicitly allow interval
tests that correspond to discrete equality tests. After all, most learning systems
use tests such as z = ¢, and need not generate this test in two steps (z < cAz >
c).? Allowing intervals that correspond to discrete interval tests is a less obvious
decision (not all learners generate interval tests such as z € [a,b)), but seems
an interesting option because of the following property. When the number of
thresholds is increased, the new set of thresholds is a superset of the previous
one. This means that the discrete values of the first discretization correspond
to intervals of the second one. By using intervals in the discrete domain with
n thresholds, all equality tests for discretizations with a number of thresholds
smaller than n are generated as well.

6.4 Instantiations of TDIDT in TILDE

In this section we discuss how TILDE instantiates the procedure parameters of
TDIDT for the different induction tasks, as well as some more general proced-
ures that are not task-dependent.

°In fact, since an interval or equality test is equivalent to two inequality tests, this can be
seen as a special case of lookahead.

6.4. INSTANTIATIONS OF TDIDT IN TILDE 117

6.4.1 Classification Trees

The subsystem of TILDE that induces classification trees is based upon the
detailed description of C4.5 in Quinlan’s C4.5: Programs for Machine Learning
(Quinlan, 1993a). More specifically, TILDE inherits from C4.5 the following
properties:

e OPTIMAL_SPLIT: the heuristic used for choosing the best split in a
given node is by default gain ratio, although information gain can also
be chosen by the user (see Section 3.3.1 for definitions). Quinlan (1993a)
mentions that gain ratio usually performs slightly better than gain.

e STOP_CRIT: TILDE does not split a node when at least one of the fol-
lowing conditions is fulfilled:

— the examples covered by it all have the same class,

— no split can be found that yields any gain at all and for which both
branches cover at least some minimal number of examples (by de-
fault 2)

e INFO: the information stored in a leaf is the modal class value among
the examples covered by the leaf.

e PRUNE: for classification trees, TILDE offers two instantiations of the
PRUNE procedure:

— The C4.5 post-pruning technique, based on an non-empirical estim-
ate of the predictive accuracy of a tree on unseen data (see Sec-
tion 3.3.4).

— Pruning based on the predictive accuracy of the tree on an internal
validation set, as explained in Section 3.3.4. TILDE’s pruning al-
gorithm is shown in Figure 6.3. The QUALITY function is instan-
tiated with the accuracy of a prediction on the validation set.

When running TILDE on a propositional data set, the main difference with
C4.5 is that TILDE can only induce binary decision trees (conform to the defin-
ition of first order logical decision trees). When run on a propositional data set
with only binary features, TILDE usually returns the same trees as C4.5 (small
differences can be accounted for by the fact that when there are multiple best
tests, TILDE may choose a different best test than C4.5).

6.4.2 Regression Trees

The algorithm for building regression trees is a special case of the clustering
algorithm.

118 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

procedure COMBINE_QUALITIES(T}, T5: tree) returns real:
wy = |cov(Ty)|
wy 1= |cov(Ty)|
return (w; max({71.p,T1.u}) + wy max({Ts.p, Tz.u}))/(w1 + wy)

procedure COMPUTE_TREE_QUALITY(T": tree):

if T = leaf(info)
T.u := QUALITY (info)
Tp:=Twu

else
COMPUTE_TREE_QUALITY(T.left)
COMPUTE_TREE_QUALITY (T .right)
T.p := QUALITY(INFO(cov(T)))
T.u := COMBINE_QUALITIES(T.left, T.right)

procedure CHANGE_NODES_INTO_LEAVES(T': tree):
if T.p >=T.u then T := leaf (INFO(cov(T)))
else
CHANGE_NODES_INTO_LEAVES(T.le ft)
CHANGE_NODES_INTO_LEAVES(T.right)

procedure PRUNE_TREE(T": tree):
COMPUTE_TREE_QUALITY(T)
CHANCE_NODES_INTO_LEAVES(T)

Figure 6.3: Pruning algorithm based on the use of validation sets. The al-
gorithm works in two steps. First, for each node of the tree the quality of the
node if it would be a leaf is recorded (p), as well as the quality of the node if
it is not pruned but the subtree starting in it is pruned in an optimal way (u).
In a second step, the tree is pruned in those nodes where p > u. QUALITY
is a parameter of the algorithm; it yields the quality of a prediction on the
validation set. cov(T') denotes the set of examples in the training set covered

by T.

6.4. INSTANTIATIONS OF TDIDT IN TILDE 119

o OPTIMAL_SPLIT: the heuristic used for deciding which split is best, is
based on the difference between the mean of the two subsets created by
the split. The greater this difference is, the better the split is considered
to be. As we mentioned before, maximizing the difference between the
means is equivalent to minimizing the variance within the subsets.

e STOP_CRIT: TILDE does not split a node if

— no split can be found that reduces the variance of the target vari-
able within the subsets and where each branch covers at least some
minimal number of examples (by default 2)

— no split can be found that causes a significant reduction of vari-
ance for the target variable. An F-test is used to test this (see
Section 3.3.2). By default, the significance level is 1 (which means
this test is turned off).

e INFO: the information stored in a leaf is the mean of the values of the
examples covered by the leaf.

e PRUNE: the pruning algorithm in Figure 6.3 is used; the QUALITY func-
tion returns minus the mean squared error (MSE) of the prediction on the
validation set (minus, because maximizing the quality should minimize

the MSE).

The regression subsystem of TILDE is also mentioned as TILDE-RT in the
literature (RT stands for regression trees). We will also use this term in this
text, when we specifically refer to the regression subsystem of TILDE.

6.4.3 Clustering Trees

The algorithm for building clustering trees is very general and highly paramet-
rized. For many applications the user needs to provide some code that defines
domain-specific things. The reason why TILDE contains a separate mode for
regression, even though it is in all respects a special case of clustering, is that
for regression all these parameters can be instantiated automatically. Thus, the
regression mode is much more user-friendly than the general clustering mode.

e OPTIMAL_SPLIT: this procedure is parametrized with a distance and
a prototype function. By default, TILDE chooses a split such that the
distance between the prototypes of the clusters is as large as possible.
Two distance measures are predefined in TILDE:

— Fuclidean distance: this distance is only useful when the examples
can be represented as points in an n-dimensional space. The user

120 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

needs to specify how the coordinates of an example are to be com-
puted from its first order description. A prototype function is also
predefined for this distance.

— the distance proposed by Ramon and Bruynooghe (1998): this is a
first order distance measure. Jan Ramon implemented this distance
and incorporated it in TILDE.

The user can instantiate the OPTIMAL_SPLIT procedure at several
levels:

— one of the predefined distances can be chosen

— the user can define a distance, together with a prototype function
(e.g., a distance that is specifically designed for the application at
hand)

— the OPTIMAL_SPLIT procedure can be redefined entirely. This ap-
proach was taken with Ramon’s distance, where a prototype function
is not available (the prototype of a set can be computed theoretic-
ally, but in practice the computation is not feasible). The distance
between two sets E; and FE, is here defined as the average distance
between all the examples in the sets:

EeieEl,ejeEg d(e’h e])
| By || B

D = avg. dist(Ey x E») = (6.9)
Because this computation of D may be expensive,!® when E; x E,
is large D is estimated by computing the average distance for a
randomly chosen sample of fixed size:

D = avg dist(S) with S C E; X E,. (6.10)
e STOP_CRIT: TiLDE does not split a node if

— no split can be found that reduces the variance of the subsets and
where each branch covers at least some minimal number of examples

(by default 2)

— no split can be found that causes a significant reduction of variance.
An F-test is used to test this (see Section 3.3.2). By default, the
significance level is 1 (which means this test is turned off).

e INFO: by default, this is the identity function, i.e., the whole set of
examples covered by the leaf is stored. This can be redefined by the user.

10Computing D has quadratic time complexity in the number of examples; this is to be
avoided because the time complexity of the heuristic is crucial for the time complexity of the
whole induction process, as we will see in Section 6.6.1.

6.5. AN EXAMPLE OF TILDE AT WORK 121

e PRUNE: the pruning algorithm in Figure 6.3 is used; the QUALITY
function returns minus the mean squared distance of the prototype of the
covered training examples to the covered examples in the validation set.

The clustering subsystem of TILDE is also referred to as TIC (Top-down
Induction of Clustering trees).

6.5 An Example of TiLDE at Work

We now illustrate how TILDE works on the Machines example.

Data Format

A data set is presented to TILDE in the form of a set of interpretations. Each
interpretation consists of a number of Prolog facts, surrounded by a begin and
end line. Thus, the data for our running example are represented as follows:

begin(model(1)).
fix.

worn (gear) .
worn(chain) .

end (model(1)).

begin(model(2)).
sendback.
worn(engine) .
worn(chain) .

end (model(2)).

begin(model(3)).
sendback.

worn (wheel) .

end (model(3)).

begin(model(4)).
ok.
end (model(4)).

The background knowledge is simply a Prolog program:

replaceable(gear) .
replaceable(chain) .
not_replaceable(engine).
not_replaceable(wheel) .

122 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

Settings

The settings file includes information such as whether the task at hand is
a classification, regression or clustering task; what the classes are, or which
variables are to be predicted; the refinement operator specification; and so on.
Most of these settings can be left to their default values for this application. A
good settings file is:

minimal_cases(1).
classes([fix,sendback,ok]).

rmode (5: replaceable(+-X)).
rmode (5: not_replaceable(+-X)).
rmode(5: worn(+-X)).

The minimal cases setting indicates how many examples should at least
be covered by each leaf; it is by default 2, but for a small data set such as this
one we prefer to make it 1.

Running TILDE with the above settings and input causes it to build a tree
as shown in Figure 6.4. The figure shows the output TILDE writes to the screen,
as well as a graphical representation of how the tree is built. Each step in the
graphical representation shows the partial tree that has been built, the literals
that are considered for addition to the tree, and how each literal would split
the set of examples. E.g. fss|o means that of four examples, one with class fix
and two with class sendback are in the left branch, and one example with class
ok is in the right branch. The best literal is indicated with an asterisk. The
one that is barred would in principle be generated by the refinement operator,
but is filtered out because it generates the same test as the one in the root
node and hence is useless.

Output

The (slightly shortened) output file generated by TILDE for the above example
is shown in Figure 6.5. It contains some statistics on the induction process and
the induced hypothesis, as well as a representation of the hypothesis both as a
first order logical decision tree and as a Prolog program.

6.6 Some Efficiency Considerations

6.6.1 Scalability

De Raedt and Dzeroski (1994) have shown that in the learning from interpreta-
tions setting, learning first-order clausal theories is tractable. More specifically,

6.6. SOME EFFICIENCY CONSIDERATIONS 123

building tree...

true , replaceable(A)

true , not_replaceable(A)

true , worn(A)

[gain = 0.811278,gainratio = 1]
Considering true , worn(A)

+ Best test up till now.

Best test: true , worn(A)

(true , worn(A)) , replaceable(A)

[gain = 0.251629,gainratio = 0.274018]

(true , worn(A)) , replaceable(B)

(true , worn(A)) , not_replaceable(A)

[gain = 0.918296,gainratio = 1]

(true , worn(A)) , mnot_replaceable(B)

(true , worn(A)) , worn(B)

Considering (true , worn(A)) , replaceable(A)
+ Best test up till now.

Considering (true , worn(A)) , not_replaceable(A)
+ Best test up till now.

Best test: (true , worn(A)) , not_replaceable(A)

? worn(X) worn(X)

? not_replaceable(X)

worn(X) fsso * worn(X)— —fssi-

replaceable(X) fsso| replaceable(X) fys

not_replaceable(X) fsso| not_replaceable(X) ssf *
worn(Y) fss|
replaceable(Y) fss|
not_replaceable(Y) fsg|

Refinement operator specification:
rmode(5: replaceable(+-X)).
rmode(5: not_replaceable(+-X)).
rmode(5: worn(+-X)).

Figure 6.4: TILDE illustrated on the running example. A screen dump of a run
is shown, as well as a graphical representation of the tree-building process.

124 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

** Output of Tilde 2.0 *x*
Run on droopy : sparc SUNW,Ultra-2 running Sun0OS 5.6

Settings:
heuristic(gainratio)
classes([fix,sendback,ok])
tilde_mode(classify)
pruning(c45)
minimal_cases(1)

Induction time: 0.04 seconds.

after pruning:

pruned_complexity : 2 nodes (2 literals)
pruned_training accuracy : 1 =4 / 4
pruned_global_accuracy : 1 =4 / 4
pruned_C4.5_error_estimation : 2.5 (relative: 0.625)

Compact notation of pruned tree:

worn(A) 7

+--yes: not_replaceable(A) 7

| +--yes: sendback [2 / 2]
| +--no: fix [1 / 1]
+--no: ok [1 / 1]

Equivalent prolog program:

class(sendback) :- worn(A) , not_replaceable(A), !.
h2/2=1.

class(fix) :- worn(A), !.

“1/1=1.

class(ok).

“1/1=1.

Figure 6.5: An output file generated by TILDE (slightly simplified).

6.6. SOME EFFICIENCY CONSIDERATIONS 125

given fixed bounds on the maximal length of clauses and the maximal size of
literals, such theories are polynomial-sample polynomial-time PAC-learnable.
This positive result is related directly to the learning from interpretations set-
ting.

Quinlan (1986) has shown that induction of decision trees has time com-
plexity O(a - m - n) where a is the number of attributes of each example, m
is the number of examples and n is the number of nodes in the tree. Since
TILDE uses basically the same algorithm as C4.5, it can be expected to inherit
the linearity in the number of examples and in the number of nodes. However,
there are some differences that can affect its time complexity.

The main difference between TILDE and C4.5, as we already noted, is the
generation of tests in a node. The number of tests to be considered in a node
depends on the refinement operator. There is no theoretical bound on this, as
it is possible to define refinement operators that cause an infinite branching
factor (through the use of lookahead). In practice, useful refinement operators
always generate a finite number of refinements, but even then this number may
not be bounded: the number of refinements typically increases with the length
of the associated query of the node (because the number of different ways in
which new variables can be unified with already occurring ones depends on
the number of variables already occurring). Also, the time for performing one
single test on a single example depends on the complexity of that test (it is in
the worst case exponential in the number of literals in the test).

A second difference is that Quinlan’s derivation exploits the fact that the
computation of the quality of a test is linear in the number of examples. This
is easy to achieve in the case of classification or regression (e.g. a class entropy
or variance can be computed in linear time) but for clustering some care needs
to be taken, as for instance the discussion of Ramon’s distance in Section 6.4
illustrates.

If there are n nodes, in each node t tests are performed on average, each test
is performed on m examples, the average complexity of testing a single example
is ¢ and the computation of the heuristic for a single test takes time h(m), then
TILDE has time complexity O(n -t - (m - ¢ + h(m))) (assuming the averages c
and t exist). If one is willing to accept an upper bound on the complexity of
the theory that is to be learned (which was done for the PAC-learning results)
and defines a finite refinement operator, both the complexity of performing a
single test on a single example and the number of tests are bounded and the
averages do exist.

If care is taken that h(m) is O(m), then TILDE’s time complexity is O(n -
t-m-c). This means that, under fairly general conditions, the time complexity
of TILDE is linear in the number of examples. The time complexity also de-
pends on the global complexity of the theory and the branching factor of the
refinement operator, which depend on the application domain.

126 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

6.6.2 Querying Examples Efficiently

Although TILDE is quite efficient according to ILP standards (see also Sec-
tion 6.7), it is much less efficient than propositional systems. Preliminary com-
parisons with C4.5 (results not included in this text) indicate that the latter is
often much faster, sometimes in the order of a factor of 1000.

There are many reasons why TILDE cannot be made as efficient as C4.5.
Most of them are related to the fact that TILDE is an ILP system. The use of a
relational representation for the examples complicates the querying algorithm.
The set of tests to be considered at a node is not constant but depends on the
node and its associated query, and hence needs to be computed at runtime.
Also, performing one single test may take more time.

Another source of inefficiency is that TILDE is implemented in Prolog. Many
algorithms incorporated in TILDE are essentially procedural, and Prolog often
cannot execute these algorithms as efficiently as when they would be imple-
mented in a lower level language.

There are, however, some points where the basic algorithm can be improved.
A rather important one is the following.

As was explained earlier, in order to compute the quality of a test conj in a
node, queries of the form + @, conj must be sent to every example. However,
it is clear that when conj does not share any variables with Q, it could be
tested on its own. The extra computations involved in computing a variable
substitution for Q can be very expensive.

Example 6.9 Suppose that Q = p(X,Y,Z2),q(X,U),r(U,V),s(V,Z) and conj = a
(a literal of a nullary predicate). It is extremely simple to test whether a suc-
ceeds in a single example, but if the query < p(X,Y,2),q(X, V), r(U,V),s(V,2),a
is executed in an example where a is false, the underlying Prolog engine back-
tracks on the p,q,r,s literals trying to make a succeed. There is no bound on
the complexity of this query; if the example description is relatively large, it
can be many times more expensive than just testing a. o

An algorithm has been implemented in TILDE that simplifies queries so
that such unnecessary computations are avoided. To this aim, all literals in
the clause are collected that are linked with the added conjunction along a path
of literals that share variables. The literals in @) that are not collected cannot
possibly influence the success of conj and hence are absent in the simplified
query. The algorithm is shown in Figure 6.6.

6.7 Experimental Evaluation

In this section we describe the experiments performed to evaluate TILDE. We
first give some general information, then discuss each experiment in detail.

6.7. EXPERIMENTAL EVALUATION 127

procedure SIMPLIFY(Q, conj) returns query:

V := variables of conj

repeat
L := literals in @ that contain variables in V'
V := V U variables in L

until V does not change anymore

Q' := conjunction of all literals in L

return < Q’', conj

Figure 6.6: Simplification of queries.

6.7.1 Materials

All the experiments described in this text were run on Sun machines under the
Solaris operating system. By default experiments were run on a Sun SPARC
Ultra-2 at 168 MHz. In some cases a Sun SPARCstation-20 running at 100MHz
was used; where this was the case it is mentioned explicitly in the text.

We now give a brief description of the data sets that have been used for our
experiments. Detailed descriptions can be found in Appendix A. Most of the
data sets are available on the Internet, at either the UCI machine learning data
repository (Merz and Murphy, 1996) or the ILP data repository (Kazakov et
al., 1996).

e Soybeans: this database (Michalski and Chilausky, 1980) contains de-
scriptions of diseased soybean plants. Every plant is described by 35
attributes. A small data set (46 examples, 4 classes) and a large one (307
examples, 19 classes) are available at the UCI data repository. The data
sets are mainly used to evaluate clustering algorithms.

e Iris: a simple database of descriptions of iris plants, available at the
UCI repository. It contains 3 classes of 50 examples each. There are 4
numerical attributes. The set is mainly used for unsupervised learning.

e Mutagenesis: this database (Srinivasan et al., 1996), available at the
ILP repository (Kazakov et al., 1996), contains descriptions of molecules
for which the mutagenic activity has to be predicted. Originally muta-
genicity was measured by a real number, but in most experiments with
ILP systems this has been discretized into two values (mutagenic or non-
mutagenic), making the task a classification task.

The data set consists of 230 molecules, which are divided into two sub-
sets: regression-friendly (188 molecules) and regression-unfriendly (42

128

CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

molecules). The term regression here refers to the use of linear regres-
sion, not regression trees. The names stem from the fact that experiments
with linear regression yielded good results on some of the data but not
on all.

Biodegradability: a set of 62 molecules for which structural descrip-
tions and molecular weights are given. The biodegradability of the mo-
lecules is to be predicted. This is a real number, but has been discretized
into four values (fast, moderate, slow, resistant) in most past experiments.
The dataset was provided to us by Saso Dzeroski but is not yet in the
public domain.

Musk: the aim is to predict for a set of molecules which ones are musk
molecules and which ones are not. Each molecule can have a number of
conformations, and the molecule is musk if and only if at least one of its
conformations is musk. Introduced to the machine learning community
by Dietterich et al. (1997), this problem was used to illustrate the so-
called multiple-instance problem: an example is not represented by a
tuple but by a set of tuples. Multiple-instance problems are hard to cope
with for propositional learners.

The Musk database consists of two data sets, a small one (320K, 476
tuples) and a large one (4.5MB, 6600 tuples). Each tuple consists of
166 numerical attributes. The database is a non-typical ILP database,
because of its orientation towards numerical data and the almost propos-
itional representation. It is available at the UCI data repository.

Mesh: this data set, introduced in the ILP community by Dolsak and
Muggleton (1992), has its origin in engineering. For many engineering
applications, surfaces need to be approximated by a finite element mesh.
Such a mesh needs to be fine in some places (in order to assure accuracy),
and can be coarser in other places (which decreases the computation
cost). The task is to learn rules that predict how fine a mesh should be,
by studying a number of meshes.

The data set consists of descriptions of 5 meshes. It is a typical ILP data
set in that it contains structural information and a lot of background
knowledge is available. It is available at the ILP data repository (Kaza-
kov et al., 1996).

Diterpenes: a detailed description of this application can be found in
(DZeroski et al., 1998). The task is to identify substructures in diterpene
molecules by looking at the 13C NMR spectrogram of the molecule (peaks
occurring in such a spectrogram may indicate the occurrence of certain
substructures). This is a multiple class problem: there are 23 classes.

6.7. EXPERIMENTAL EVALUATION 129

This problem is inherently relational, but propositional attributes can be
defined (so-called engineered attributes) that are highly relevant.

This data set is not in the public domain. The data were kindly provided
to us by Steffen Schulze-Kremer and Saso Dzeroski.

6.7.2 Building Classification Trees with TILDE
Aim of the experiment

The aim of this experiment is to compare TILDE’s performance with that of
other systems for the task of inducing classifiers. We want to investigate several
aspects of its performance: the predictive accuracy of the hypothesis that is
induced, its interpretability, and the efficiency with which it is induced.

Methodology

We have evaluated the classification subsystem of TILDE by performing exper-
iments on several data sets, and comparing the obtained results with results
published in the literature.

For all the experiments, TILDE’s default parameters were used; only the
refinement operator and number of thresholds for discretization, when applic-
able, were supplied manually. Full details on the experimental settings, as well
as the datasets that were used (except for the Diterpenes dataset, which we
cannot make public), are available at

http://www.cs.kuleuven.ac.be/"ml/Tilde/Experiments/

All reported results are obtained using ten-fold cross-validations.!!

Materials

TILDEL.3 was used for these experiments. This is a stable version of TILDE that
is available for academic purposes upon request. The data sets are Mutagenesis,
Musk and Diterpenes. We chose these data sets because of the availability of
published results.

Discussion of the results

Table 6.2 compares TILDE’s performance on the Mutagenesis problem with
that of FoIL (version 6.2) and PROGOL (actually P-Progol, Srinivasan’s im-
plementation in Prolog), as reported in (Srinivasan et al., 1995) (four levels of

11 Cross-validation is a method for estimating predictive accuracy. Performing an n-fold
cross-validation means that a set of data is partitioned into n subsets, and n runs are per-
formed where for each run a different subset is set apart as a test set, while the other n — 1
subsets form the training set. The predictive accuracy for unseen examples is computed as
the average predictive accuracy on the n test sets.

130 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

Accuracies (%) Times (s) Complexity (literals)

By Bz B3z By B; By B3 By B, Bo B3 By
ProGOL 76 81 83 88 117k 64k 42k 41k 24.3 11.2 11.1 9.9
FoiL 61 61 83 82 4950 9138 0.5 0.5 24 49 54 46
TILDE 75 79 85 86 41 170 142 352 8.8 14.4 12.8 19.9

Table 6.2: Accuracies, times and complexities of theories found by PrRocoL,
FoiL and TIiLDE for the Mutagenesis problem; averaged over ten-fold cross-
validation. Times for TILDE were measured on a Sun SPARCstation-20, for
the other systems on a Hewlett Packard 720. Because of the different hardware,
times should be considered to be indicative rather than absolute.

Algorithm % correct
iterated-discrim APR 89.2
GFS elim-kde APR 80.4
TILDE 79.4
backpropagation network 67.7
C4.5 58.8

Table 6.3: Comparison of accuracy of theories obtained with TILDE with those
of other systems on the Musk dataset.

background knowledge B, are distinguished there, each one being a superset
of its predecessor, see Appendix A). For the numerical data, TILDE’s discret-
ization procedure was used. Lookahead was allowed when adding bond-literals
(addition of a bond typically does not lead to any gain, but enables inspection
of nearby atoms).

From the table it can be concluded that TILDE efficiently finds theories with
high accuracy. The complexity of the induced theories is harder to compare,
because TILDE uses a radically different format to represent the theory. When
simply counting literals, TILDE’s theories are about as complex as PROGOL’s,
but clearly simpler than FoIL’s. (Converting the trees towards decision lists
and then counting literals yields much larger numbers (respectively 20.4, 34.0,
53.3 and 73.5 literals for By to B,) due to duplication of many literals, but this
comparison method is biased in favor of rule induction systems.) The fact that
TILDE finds more compact theories than PROGOL on Bj, although PrRoGoL
performs an exhaustive search (using the A*-algorithm), can be attributed to
the greater expressivity of FOLDTs.

With the Musk dataset, the main challenge was its size. We used the
largest of the two Musk data sets available at the UCI repository. As we noted
before, this data set is not a typical ILP data set (it contains mainly numerical
data) but cannot be handled well by propositional learners either. Dietterich
et al’s approach (Dietterich et al., 1997) is to adapt propositional learning

6.7. EXPERIMENTAL EVALUATION 131

Prop Rel Both
FoiL 70.1 46.5 78.3
RIBL 79.0 86.5 91.2

TILDE 78.5 (1.3) 81.0 (1.0) 90.4 (0.6)

Table 6.4: Accuracy results on the Diterpenes data set, making use of pro-
positional data, relational data or both; standard errors for TILDE are shown
between parentheses.

algorithms to the multiple-instance problem in the specific case of learning
single axis-parallel rectangles (APR’s). For ILP systems no adaptations are
necessary. Still, TILDE’s performance is comparable with most other algorithms
discussed in (Dietterich et al., 1997), with only one (special-purpose) algorithm
outperforming the others (Table 6.3). For the experiments with TILDE, all the
numerical attributes were discretized.!'? The average running time of TILDE
on one cross-validation step was about 2 hours.

For the Diterpenes data set, several versions of the data are distinguished:
purely propositional data (containing engineered features), relational data (non-
engineered), and both. Best performance up till now was achieved by the RIBL
system (Emde and Wettschereck, 1996), an instance-based relational learner.
Table 6.4 shows that TILDE achieves slightly lower accuracy than RIBL, but
outperforms FoIL. Moreover, it returns a symbolic, interpretable (although
complex) theory, in contrast to RIBL.

Conclusions

In all these experiments, we have compared TILDE’s accuracies with the best
known results, which were obtained with different systems. As far as predict-
ive accuracy is concerned, TILDE does not outperform the best systems, but
consistently performs almost as well. The complexity of the theories it yields is
usually comparable with that of other systems, sometimes better. With respect
to efficiency, the system seems to perform very well.

6.7.3 The Influence of Lookahead
Aim

We have argued that lookahead is a useful extension to TILDE; with this exper-
iment we want to validate this claim. We want to investigate not only whether
lookahead enables TILDE to find better hypotheses, but also how it affects
TILDE’s efficiency.

12The number of discretization bounds was determined by running experiments on the
smaller dataset and choosing the number of bounds that works best on that set.

132 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

Mutagenesis Mesh
accuracy time accuracy time
TILDE, no lookahead 74.6 23s 62.1 36s
TILDE, lookahead 77.0 539s 66.2 563s

Table 6.5: Comparison of TILDE’s performance with and without lookahead on
the Mutagenesis and Mesh data sets.

Methodology

We have tested the effect of lookahead on several data sets. For each data set
we compared TILDE’s performance with lookahead to its performance without

lookahead.

The datasets repeatedly were partitioned randomly into 10 subsets. Two
ten-fold cross-validations were run based on each such partition; one without
allowing lookahead, and one with lookahead. For each single partition the
accuracy of TILDE with and without lookahead was compared.

Materials

TILDEL.3 was employed for this experiment. We used two ILP data sets: Muta-
genesis and Mesh. These two were chosen because they are widely used as
ILP benchmarks, and because they contain structural data where properties of
neighboring substructures (atoms or edges) are important for classification, but
the link to a neighbor itself (bond and neighbour predicates) provides little or
no gain (therefore lookahead is important).

Discussion

In Figure 6.7, each dot represents one partition; dots above the straight line
are those partitions where accuracy with lookahead was higher than without
lookahead. For both the Mutagenesis and Mesh datasets, lookahead invariably
yields an increase in predictive accuracy except in one case (where it stays the
same). The hypothesis that lookahead does not yield improvement on these
data sets can be rejected at the 1% level.

Table 6.5 compares the average running times needed by TILDE for inducing
a single hypothesis. The table confirms that lookahead is computationally
expensive, but comparing the times for Mutagenesis with those of PrRoGOL
in Table 6.2 suggests that it is still much cheaper than, e.g., performing an
exhaustive search (which PrRoGOL does).

6.7. EXPERIMENTAL EVALUATION 133
0.8 T T T >
© © 0.68 |
< <
0.78 | oo E °
oo 0.66
el @ o
s 076 | B @ 8
2 ° 2 o064 s °
[l ©
] © S
& O0mar] o 062
0.72 B 06 F
07 Il Il Il Il 058 Il Il Il Il Il
07 072 074 076 078 08 058 06 062 064 066 0.68

no lookahead

no lookahead

(a) (b)

Figure 6.7: Comparison of TILDE’s performance with and without lookahead,
(a) on the Mutagenesis data; (b) on the Mesh data.

Conclusions

The experiments show that the ability to use lookahead can improve the per-
formance of TILDE. Its computational complexity also increases, but is still
acceptable. By letting the user control the lookahead, it is possible to keep the
computational complexity to a strict minimum and only use lookahead where
it really is useful.

6.7.4 The Influence of Discretization
Aim

The aim of this experiment is to study empirically how discretization influences
TILDE’s performance with respect to efficiency and predictive accuracy.

Methodology

The most frequently occurring approaches to number handling in symbolic
learning consist of allowing tests of the form V < v, where v can be either
any value in the domain of V, or one of a set of thresholds returned by a
discretization procedure.

We have run TILDE with these different languages, but also with some
alternative languages (allowing equality tests or interval tests), adapted to the
specific data set. Each run consists of a ten-fold cross-validation.

Materials

TiLDEL.3 was employed for these experiments. We used the Musk and Diter-
penes data sets, because both contain non-determinate numerical data, which

134 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

makes them fit to test our discretization procedure on.

Discussion

For the Musk data set we tested discretization with inequalities and equalit-
ies, for a various number of thresholds. By using discrete equality tests we
approximate the setting of Dietterich et al. (1997), who learn axis-parallel
rectangles. For the Diterpenes data set, inequalities and interval tests were
compared, as well as not using any discretization at all, again for a various
number of thresholds.

In Figure 6.8, predictive accuracies are plotted against the maximal number
of thresholds that was given, for each setting and for each data set. In the
Musk domain, the curves for inequalities and equalities are quite similar; using
inequalities seems to perform slightly better. In the Diterpenes domain, the
effect of discretization is very different according to how the discretization
thresholds are used: using interval tests increases performance, while using
only inequality tests decreases it. The effect also depends on the number of
thresholds that is chosen.

Figure 6.9 shows running times on the Diterpenes dataset. There are no sur-
prises here: discretization yields an efficiency gain, and the number of threshold
affects the induction time (linearly when inequality tests are used, quadratic-
ally for interval tests; this was expected since the number of intervals increases
quadratically with the number of thresholds).

Conclusions

Our conclusions are that the way in which discretization results are used (dis-
crete (in)equalities, intervals) significantly influences the accuracy of the in-
duced theory, as well as the efficiency of the induction process. Using discret-
ization does not guarantee better performance, but may make it possible. It is
up to the user to choose a suitable approach.

6.7.5 Regression
Aim

The aim of this experiment is to evaluate the regression subsystem of TILDE.

Methodology

We have evaluated TILDE-RT by running it on data sets and comparing the
results with those of other regression systems. Due to limited availability of

6.7. EXPERIMENTAL EVALUATION

0.88

0.86

0.84

0.82

accuracy

0.8

0.78

T T T
inequalities ——
equalities

2 3 4 5 6 7
number of thresholds

(a)

prediction accuracy

0.91

0.9
0.89
0.88
0.87
0.86
0.85

0.84

135

¥

T T
intervals —

no discretization

R s A E R SR
I I h's i—

inequalities -o---

5

Il 1
10 15 20 25 30 35
number of thresholds

(b)

40

Figure 6.8: Influence of number of thresholds on accuracy: (a) Musk data-
set, comparing equalities and inequalities; (b) Diterpenes dataset, comparing

intervals with inequalities and no discretization at all.

14000

0

e 12000

3

2 10000

5

8 8000

(]

£ 6000

2 4000

g

S 2000
0

- intervals =
B inequalities -o--- |
no discretization -----
e
ot i G e i
1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

number of thresholds

Figure 6.9: Comparison of running times for the different approaches (Diter-
penes dataset).

136 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

leave-one-out TILDE classification acc. = 0.532
leave-one-out TILDE-RT regression RE = 0.740
leave-one-out TILDE-RT classif. via regression acc. = 0.565
6-fold cross-val. SRT regression RE =0.34
6-fold cross-val. TILDE-RT regression RE =1.13

Table 6.6: Comparison of regression and classification on the biodegradability
data. RE = relative error of predictions; acc. = proportion of predictions that
are correct.

results on regression in ILP for which the data sets are accessible, this compar-
ison is very limited. We therefore also discretized the predictions afterwards
and compare with results obtained by classifiers.

Materials

We used the TILDE-RT algorithm as implemented in TILDE2.0. The system
was run on the Biodegradability data set. For each molecule biodegradability
was predicted on a logarithmic scale (since there is huge variation in the original
values). Given the small size of the data set, no validation set was used; instead
we used the F-test stopping criterion (significance level 0.01).

Discussion

Table 6.6 compares TILDE-RT’s performance with TILDE’s (classification, leave-
one-out) and SRT’s (regression, sixfold). The SRT experiments were performed
by Stefan Kramer.

The comparison with SRT is based on the relative error of the predictions.
As the table shows, TILDE-RT scores worse than SRT for this criterion. For
comparing TILDE-RT with TILDE, we have discretized TILDE-RT’s predictions
into four values, corresponding to the four classes that are usually distinguished
when the problem is handled as a classification problem. According to this
quality criterion, TILDE-RT turns out to score quite well.

Conclusions

These results indicate that there is clearly room for improvement with respect
to using TILDE for regression. A possible reason for the fact that it performs
worse than SRT is that SRT is specialized in regression and is much more
sophisticated. Note that TILDE-RT is just a trivial instantiation of TIC. While
SRT’s approach is computationally more complex, this certainly seems to pay
off with respect to accuracy.

6.7. EXPERIMENTAL EVALUATION 137

The fact that in a classification setting TILDE-RT scores as high as TILDE
is rather surprising, given the comparison with SRT. It suggests that, while
TILDE-RT is not optimal with respect to regression, the approach may be
competitive with classical approaches to classification, in domains where the
classification task is derived from a regression task.!® These results provide
an argument in favor of using regression systems for regression problems, and
against turning the regression problem into a classification problem and then
using a classifier.

6.7.6 Clustering
Aim

The aim of this experiment is to evaluate the clustering subsystem of TILDE
(TIC) with respect to its ability to form (in an unsupervised manner) clusters
that are useable for flexible prediction and for classification.

Methodology

We have run TIC on several data sets, comparing its performance with other
unsupervised learners. Two evaluation criteria were used: the ability to identify
predefined classes (unsupervised classification), and the coherence of the clusters
with respect to all attributes (i.e. how well can the values of attributes be pre-
dicted if one knows the cluster an instance belongs to).

For all the experiments euclidean distances were computed from all numer-
ical attributes, except when stated otherwise. For the Soybeans data sets all
nominal attributes were converted into numbers first. All the reported results
were obtained over a ten-fold cross-validation.

For unsupervised classification, the system was evaluated as follows: learn-
ing is unsupervised, but classes are assumed to be known at evaluation time
(the class of a test example is compared with the majority class of the leaf the
example is sorted into).

For flexible prediction, we followed the following strategy: using the training
set a clustering tree is induced. Then, all examples of the test set are sorted
in this hierarchy, and the prediction for all of their attributes is evaluated. For
each attribute, the value that occurs most frequently in a leaf is predicted for
all test examples sorted into that leaf.

These experiments were performed in co-operation with Jan Ramon.

130ne might wonder whether it is not simply the case that TILDE performs badly on
this data set. A comparison with other learners on this data set has shown that TILDE’s
performance is at par with that of most other classification systems. Hence, our conclusions
remain valid.

138 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

Soybeans Iris
Avg. accuracy avg. tree size Avg. accuracy avg. tree size
TIC 97% 3.9 nodes 92 % 15 nodes
TiLDE 100 % 3 nodes 94% 4 nodes

Table 6.7: Comparing TIC with a supervised learner.

Materials

We used TIC, as implemented in TILDE2.0. Relevant data sets are Soybeans
and Iris. These are data sets that have been used for clustering before.

Discussion

Unsupervised Classification: We applied TIC to the small Soybeans and
Iris databases, performing ten-fold cross-validations. Learning is unsupervised,
but classes are assumed to be known at evaluation time (the class of a test
example is compared with the majority class of the leaf the example is sor-
ted into). Table 6.7 compares the results with those obtained by TILDE in a
supervised setting.

We see that TIC obtains high accuracies for these problems. The only
clustering result we know of is the one of COBWEB, which obtained 100% on
the Soybeans data set (this does not differ significantly from TIC’s accuracy).
TILDE’s accuracies don’t differ much from those of TIC which induced the
hierarchy without knowledge of the classes. Tree sizes are smaller though.
This confirms our earlier remark that clustering in the instance space I yields
more and smaller clusters than clustering in the prediction space P.

Flexible prediction: We used the large Soybeans database, with pruning.
The quality criterion used for the pruning is the intra-cluster variation SSw
(see Equation 3.15).

Table 6.8 summarizes the accuracies obtained for each attribute and com-
pares with the accuracy of majority prediction. The high accuracies show that
most attributes can be predicted very well, which means the clusters are very
coherent. The mean accuracy of 81.6% is slightly lower than the 83+2% repor-
ted by Fisher (1996), but again the difference is not statistically significant.

Note that both this and the previous evaluation method aim at measur-
ing the usefulness of the clustering for predictions. The descriptive quality of
the clustering is not measured, although the size of the tree for the Soybeans
database indicates that subclusters of the ideal clusters are found, hence from
a descriptive point of view the clustering is not optimal. A better stopping
criterion or post-pruning method might help here.

6.7. EXPERIMENTAL EVALUATION 139

name range | default acc. name range | default acc.
date 0-6 21.2% 46.3% plant_stand 0-1 52.1% 85.0%
precip 0-2 68.4% 79.2% temp 0-2 58.3% 75.6%
hail 0-1 68.7% 71.3% crop_hist 0-3 32.2% 45.0%
area_damaged 0-3 32.9% 54.4% severity 0-2 49.2% 63.2%
seed_tmt 0-2 45.6% 51.1% germination 0-2 32.2% 45.0%
plant_growth 0-1 65.8% 96.4% leaves 0-1 89.3% 96.4%
leafspots_halo 0-2 49.5% 85.3% leafspots_marg | 0-2 52.2% 86.6%
leafspots_size 0-2 47.8% 87.0% leaf_shread 0-1 75.9% 81.4%
leaf_malf 0-1 87.3% 88.3% leaf_mild 0-2 83.7% 88.9%
stem 0-1 54.1% 98.4% lodging 0-1 80.7% 80.0%
stem_cankers 0-3 58.3% 90.6% canker_lesion 0-3 49.1% 88.9%
fruiting_bodies | 0-1 73.6% 84.3% external _decay | 0-2 75.6% 91.5%
mycelium 0-1 95.8% 96.1% int_discolor 0-2 86.6% 95.4%
sclerotia 0-1 93.2% 96.1% fruit_pods 0-3 62.7% 91.2%
fruit_spots 0-4 53.4% 87.0% seed 0-1 73.9% 85.7%
mold_growth 0-1 80.5% 86.6% seed_discolor 0-1 79.5% 84.0%
seed_size 0-1 81.8% 88.6% shriveling 0-1 83.4% 87.9%
roots 0-2 84.7% 95.8%

Table 6.8: Prediction of all attributes together in the Soybeans data set.

Conclusions

From a predictive clustering point of view, TIC performs approximately as
well as other clustering systems. From a descriptive point of view, it performs
worse; it tends to find overly specific clusters.

6.7.7 The Effect of Pruning on Clustering
Aim

In this experiment we evaluate the effect of our post-pruning method in TIC.
Note that the effect of post-pruning has been studied extensively in the clas-
sification and regression context (see e.g. (Quinlan, 1993a; Breiman et al.,
1984)), but much less within clustering (an exception is (Fisher, 1996), but the
pruning method described there differs significantly from ours). A related task
within the clustering field is “cutting” a hierarchical clustering at some level
to derive a flat clustering (see, e.g., (Kirsten and Wrobel, 1998)). However, the
aim of finding an optimal flat clustering differs from that of finding an optimal
hierarchical clustering, so the quality criteria (and hence the techniques) differ.

Methodology

The clustering subsystem of TILDE is run with and without pruning, and the
results are compared. Since the effect of pruning might depend on the size of
the validation set, we experiment with different validation set sizes. Ten-fold
cross-validations are performed in all cases. In each run the algorithm divides
the learning set in a training set and a validation set. Clustering trees are built

140 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

84 —— T T T T T T 90 T T T T -
8 | " accurracy of unpruned tree ----- B size of unpruned tree -----
. accurracy of pruned tree —— 80 - size of pruned tree —— -
80 'g,: 70k i
g g
< S et .
3 = 50 | e A
g 5 :
@ o
N 40 4
2
30 S
68 Il Il Il Il Il Il Il 20 Il Il Il Il Il Il Il
15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55
size validation set (%) size validation set (%)

Figure 6.10: Soybeans: a) Accuracy before and after pruning; b) number of
nodes before and after pruning.

and pruned in an unsupervised manner. The clustering hierarchy before and

after pruning is evaluated by trying to predict the class of each of the examples

in the test set (i.e., during evaluation the classes are assumed to be known).
This experiment was performed in co-operation with Jan Ramon.

Materials

We have applied TIC, as implemented in TILDE2.0, to two databases: large
Soybeans and Mutagenesis. For the Mutagenesis experiments, the tests allowed
in the trees can make use of structural information only (Background Bs),
though the heuristics (the distances) make use of the numerical information
included in Background Bs.

Discussion

In Figure 6.10, the average accuracy of the clustering hierarchies before and
after pruning is plotted against the size of the validation set (this size is a
parameter of TIC), and the same is done for the tree complexity. The same
results for the Mutagenesis database are summarized in Figure 6.11.

We see that for Soybeans TIC’s pruning method results in a slight decrease
in accuracy but a large decrease in the number of nodes. The pruning strategy
seems relatively stable w.r.t. the size of the validation set. The Mutagenesis
experiment confirms these findings (though the decrease in accuracy is less
clear here).

Conclusions

These experiments show that our post-pruning method for predictive clustering
is useful: it decreases the size of the tree without its accuracy suffering from
this too much.

6.7. EXPERIMENTAL EVALUATION 141

81 T T T T T T 50 T T T T T
accuracy of pruned free — e size of pruned tree —
45 e size of unpruned tree oo 1
= 8 40 |
S JS)
S < 35 i
g g
5 =1
3 s
@ o
N
"
72 Il Il Il Il Il Il Il 15 Il Il Il Il Il Il Il
15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55
size validation set (%) size validation set (%)

Figure 6.11: Mutagenesis: Accuracy and size of the clustering trees.

6.7.8 Handling Missing Information
Aim

Earlier we have explained how clustering based predictive induction allows
for more robust induction than the classical induction of classification trees,
because the heuristics can make use of other information than only the target
variable. More specifically, when many class values are missing or noisy, the
“clustering in I” technique should yield better theories than the “clustering in
P’ technique. With this experiment we try to validate this claim.

Methodology

We have experimented with leaving out information from the Mutagenesis data
set. In one experiment only class information is used to compute the distance,
in another experiment all three numerical variables available in Background B3
are used. Like for the pruning experiment, the tests allowed in the trees only
make use of Background Bs.

Information was left out from the data as follows: if the proportion of
available information is desired to be p, for each example and for each variable
there is a probability p that the value is available. The presence of information
on one variable is thus independent of the presence of information on another
variable.

Materials

A predecessor of the current TIC called C0.5 (De Raedt and Blockeel, 1997),
was used for these experiments. Only one data set is used: Mutagenesis.

142 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

available numerical data logmutag all three

100% 0.80 0.81
50% 0.78 0.79
25% 0.72 0.77
10% 0.67 0.74

Table 6.9: Classification accuracies obtained for Mutagenesis with several dis-
tance functions, and on several levels of missing information.

082 —r——T——T 7T T
08 | ~~--elustering on class attribute <—
. stering-en.3 attributes -+
078 | T i
0.76 -
0.74 |-
0.72
0.7 -
0.68 -
066 L | 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
proportion of numerical information that is missing

accuracy

Figure 6.12: Evolution of predictive accuracy in the presence of missing values.

Discussion

Table 6.9 and Figure 6.12 show how the performance of the system degrades
with a decreasing amount of information. It can be seen that performance
degrades less quickly when 3 numerical variables are used by the heuristics,
than when only the class information is used. Note that this experiment is
similar in spirits to the ones performed with COLA (Emde, 1994). A difference
is that COLA performs unsupervised clustering, while TILDE can use class
information when it is available (and hence is a bit more informed than COLA).

Conclusions

This experiment confirms our hypothesis that the use of other than just class
information may cause a system to perform better in the presense of missing
class values.

6.8 Related work

This chapter compiles and extends the descriptions of TILDE and its auxiliary
algorithms that appeared in (Blockeel and De Raedt, 1998b), (Blockeel and

6.8. RELATED WORK 143

De Raedt, 1997) and (Blockeel et al., 1998b). Most experimental results have
also appeared in these papers. (DzZeroski et al., 1998) perform an extensive
comparison of different ILP systems on the Diterpenes data set, which contains
some experiments performed with TILDE that are not included in this text.
The conclusions in that article are similar to ours. Ramon and Bruynooghe
(1998) have performed experiments with TIC using their first-order distance
and report promising results. The TILDE-RT system has also been used for
experiments with reinforcement learning in structured domains (DzZeroski et
al., 1998).

We have discussed how TILDE upgrades propositional techniques to the first
order logic context. This upgrading methodology is not specific for TILDE,
nor for induction of decision trees. It can also be used for rule induction,
discovery of association rules, and other kinds of discovery in the learning from
interpretations setting. Systems such as ICL (De Raedt and Van Laer, 1995)
and WARMR (Dehaspe and De Raedt, 1997) are illustrations of this. Both
learn from interpretations and upgrade propositional techniques. ICL learns
first order rule sets, upgrading the techniques used in CN2, and WARMR learns
a first order equivalent of association rules (“association rules over multiple
relations”). WARMR has been designed specifically for large databases and
employs an efficient algorithm that is an upgrade of APRIORI (Agrawal et al.,
1996).

TILDE is of course strongly related to other tree induction systems. As men-
tioned, it borrows techniques from C4.5 (Quinlan, 1993a) and CART (Breiman et
al., 1984). The difference with these systems is that TILDE works with first
order representations. In this respect it is closer to STRUCT (Watanabe and
Rendell, 1991) and SRT (Kramer, 1996). The main differences with these
systems are that TILDE learns from interpretations, is more general (in the
sense that the other systems focus on classification, respectively regression,
while TILDE can do both and in addition perform unsupervised learning and
flexible prediction) and that its structure emphasizes the similarities between
a) propositional learning and learning from interpretations and b) different
induction tasks. Moreover, TILDE returns hypotheses with a clear semantics
(as explained in Chapter 5), in contrast with STRUCT and SRT where this
issue is not discussed. Finally, TILDE makes use of modern ILP technology
(discretization, lookahead, ...) and well-understood techniques originating in
propositional learning.

A well-known first-order clusterer is KBG (Bisson, 1992a). Differences are
that KBG uses a fixed first-order similarity measure, and that it is an agglom-
erative clustering algorithm while TILDE is a divisive one. The divisive nature
of TILDE makes it as efficient for clustering as classical TDIDT algorithms.!*

14 Assuming that distances between clusters can be computed efficiently, i.e. with time
complexity linear in the number of examples.

144 CHAPTER 6. TOP-DOWN INDUCTION OF FOLDTS

A final difference with KBG is that TILDE directly obtains logical descriptions
of the different clusters through the use of the logical decision tree format. For
KBG, these descriptions have to be derived in a separate step because the clus-
tering process only produces the clusters (i.e. sets of examples) and not their
description.

Other approaches to first order clustering include Kietz’s and Morik’s Kluster
(Kietz and Morik, 1994), (Thompson and Langley, 1991), (Ketterlin et al.,
1995), (Yoo and Fisher, 1991) and (Kirsten and Wrobel, 1998).

The instance-based learner RIBL (Emde and Wettschereck, 1996) is related
to TILDE via the link between instance-based learning and predictive clustering
that was mentioned in Chapter 2. RIBL uses an advanced first order distance
metric that might be a good candidate for incorporation in TILDE.

6.9 Conclusions

In this chapter we have presented the inductive logic programming system
TILDE. We have discussed both the way in which it upgrades propositional
TDIDT to the first order logic context, and the way in which it generalizes
over different induction tasks. TILDE is the first ILP system that can perform
all these different tasks. Experiments have shown that the system is fast,
according to ILP standards, and usually yields hypotheses of high quality (both
with respect to interpretability and correctness). Its main shortcoming seems to
be located in the regression subsystem, where a comparison with SRT suggests
that it can be improved. We point out that currently the regression subsystem
is a trivial instantiation of the clustering subsystem that does not contain any
specialized techniques yet; this may account for the difference in performance
between SRT and TILDE.
Several factors contribute to the overall good performance of TILDE:

e the success of TDIDT in propositional learning;

e the usefulness of learning from interpretations to upgrade propositional
techniques;

e the fact that, thanks to the locality assumption, learning from interpret-
ations allows to partially preserve the efficiency of propositional learning;

e the fact that the locality assumption does not severely limit the practical
applicability of the system.

A stable version of TILDE, TILDEL.3, is available for academic purposes
(see http://www.cs.kuleuven.ac.be/ m1/Tilde/). TILDE1.3 only induces
classification trees, no regression or clustering trees. TILDE2.0, which does
incorporate these features, is only a prototype and not publicly available yet.

Chapter 7

Scaling up TILDE Towards
Large Data Sets

7.1 Introduction

Scalability is an important issue in data mining: a good data mining system
needs to be able to handle large data sets. In the previous chapters we have
shown that it is possible to upgrade techniques and efficiency results from
propositional learning to inductive logic programming by learning from inter-
pretations. By upgrading Quinlan’s result on the time complexity of learning
decision trees, we have shown that TILDE can be expected to scale up well, at
least as far as time complexity is concerned.

However, time complexity is not the only limitation on the size of the data
sets that an algorithm can handle; memory restrictions also need to be taken
into consideration. Even though at first sight memory may seem to be becom-
ing less important, as current hardware often offers hundreds of megabytes of
internal memory, the size of the databases that people want to mine also grows,
and it does not seem realistic to say that within a few years machines will exist
with so much internal memory that they can load a whole database at once.

Still, loading all data at once is what most machine learning and data min-
ing systems do nowadays, and ILP systems are no exception to that. In the
propositional learning community, people have recently started taking the prob-
lem of mining large databases seriously, and have devised algorithms for mining
large databases efficiently without having to load huge amounts of data into
main memory. Examples are (Agrawal et al., 1996) and (Mehta et al., 1996),
where algorithms are given for the discovery of association rules, respectively
induction of decision trees, that work with data stored in an external database
and minimize the database access that is needed, for instance by doing as many

145

146 CHAPTER 7. SCALING UP TiLDE

computations as possible off-line.

In this chapter we discuss a re-implementation of TILDE that is based on
the decision tree algorithm proposed by Mehta et al. (1996). This work can be
seen as one more illustration of how propositional techniques can be upgraded
to the first order logic setting in the learning from interpretations framework.
It also demonstrates the feasibility of using TILDE for learning from large data
sets.

The re-implementation is only a prototype; it focuses on classification and
does not provide all the functionality of the original TILDE system. It is worked
out sufficiently, however, for us to illustrate its feasibility and evaluate it ex-
perimentally.

In Section 7.2 we discuss the alternative implementation of TILDE and com-
pare it with the classical implementation. We next discuss the influence the
implementation has on the feasibility of certain optimizations (Section 7.3). In
Section 7.4 we present some experiments to validate our claims. Some of these
experiments involve data sets of 100MB or more, illustrating that, contrary to
a seemingly wide-spread belief within the machine learning community, the use
of ILP techniques is not confined to small databases. We end the chapter with
some related work (Section 7.5) and conclusions (Section 7.6).

7.2 Different Implementations of TILDE

We compare two different implementations of TILDE: one is a straightforward
implementation, following closely the TDIDT algorithm. The other is a more
sophisticated implementation that aims specifically at handling large data sets;
it is based on the work by Mehta et al. (1996). Both implementations are de-
scribed using classification terminology, but the same algorithms can be applied
for regression and clustering.

A straightforward implementation: TILDEclassic

The original TILDE implementation was presented in the previous chapter. In
this chapter we will refer to it as TiLDEclassic. This implementation is based
directly on the algorithm shown in Figure 6.2, which is the most straightforward
way of implementing TDIDT. Noteworthy characteristics are that the tree is
built depth-first, and that the best test is chosen by enumerating the possible
tests and for each test computing its quality (to this aim the test needs to be
evaluated on every single example), as is shown in Figure 7.1. The procedure
BEST_TEST is an instantiation of the OPTIMAL_SPLIT procedure in Figure 6.2
for induction of classifiers, using the information gain criterion.

Note that with this implementation, it is crucial that fetching an example
from the database in order to query it is done as efficiently as possible, because

7.2. DIFFERENT IMPLEMENTATIONS OF TILDE 147

/¥ WACE = weighted average class entropy */

function WACE(A, B: array|class| of natural) returns real:
Ty =Y, Al
Tp:=), Blc]
S =" Alc|log(Alc]/Ta) +). Blc]log(Blc|/T)
return S/(T4 + 1)

procedure BEST_TEST(S: set of queries, E: set of examples) returns query:
for each refinement + Q; in S:

/¥ counterftrue] and counter[false] are class distributions,
i.e. arrays mapping classes onto their frequencies */

for each class ¢ : counter[true][c] := 0, counter[false][c] := 0

for each example e in E:
if + @; succeeds in e
then increase counter[true][class(e)] by 1
else increase counter[false][class(e)] by 1

s; := WACE(counter[true], counter[false])
Qp := that Q; for which s; is minimal /* highest gain */
return Q)

Figure 7.1: Computation of the best test @ in TILDEclassic.

148 CHAPTER 7. SCALING UP TiLDE

this operation is inside the innermost loop. For this reason, TILDEclassic loads
all data into main memory when it starts up. Localization is then achieved
by means of the module system of the Prolog engine in which TILDE runs.
Fach example is loaded into a different module, and accessing an example is
done by changing the currently active module, which is a very cheap operation.
Testing an example involves running a query in the small database consisting
of the example together with the background knowledge; the data about other
examples is not visible.

An alternative is to load all the examples into one module; no example
selection is necessary then, and all data can always be accessed directly. The
disadvantage is that the relevant data need to be looked up in a large set of data,
so that a good indexing scheme is necessary in order to make this approach
efficient. We will return to this alternative in the section on experiments.

We point out that, when examples are loaded into different modules, TILDE-
classic partially exploits the locality assumption (in that it handles each indi-
vidual example independently from the others, but still loads all the examples
in main memory). It does not exploit this assumption at all when all the
examples are loaded into one module.

A more sophisticated implementation: TILDELDS

Mehta et al. (1996) have proposed an alternative implementation of TDIDT
that is oriented towards mining large databases. With their approach, the
database is accessed less intensively, which results in an important efficiency
gain. We have adopted this approach for an alternative implementation of
TILDE, which we call TILDELDS (LDS stands for Large Data Sets).

The alternative algorithm is shown in Figure 7.2. It differs from TILDE-
classic in that the tree is now built breadth-first, and examples are loaded into
main memory one at a time.

The algorithm works level-wise. FEach iteration through the while loop
will expand one level of the decision tree. S contains all nodes at this level
of the decision tree. To expand this level, the algorithm considers all nodes
N in S. For each refinement in each node, a separate counter (to compute
class distributions) is kept. The algorithm makes one pass through the data,
during which for each example that belongs to a non-leaf node N it tests all
refinements for V on the example and updates the corresponding counters.

Note that while for TILDEclassic the example loop was inside the refinement
loop, the opposite is true now. This minimizes the number of times a new
example must be loaded, which is an expensive operation (in contrast with
the previous approach where all examples were in main memory and examples
only had to be “selected” in order to access them, examples are now loaded
from disk). In the current implementation each example needs to be loaded at
most once per level of the tree (“at most” because once it is in a leaf it need

7.2. DIFFERENT IMPLEMENTATIONS OF TILDE 149

function BEST_TEST(N: node) returns query:
+ @ := associated_query(N)
for each refinement + Q; of + Q:
CDy := counter[N i true]
CD, := counter[N i false]
s; := WACE(CD,, CD,)
Qyp := that @Q; for which s; is minimal
return « Q,

procedure TILDELDS(T: tree):
S :={T}
while S # ¢ do
/* add one level to the tree */
for each example e that is not covered by a leaf node:
load e
N := the node in S that covers e
+ @ := associated_query(N)
for each refinement + Q; of «+ @:
if + Q; succeeds in e
then increase counter[N i, true][class(e)] by 1
else increase counter[N,i,false][class(e)] by 1
for each node N € S :
remove N from S
+ Qp := BEST_TEST(N)
if STOP_CRIT(+ Q3)
then N := leaf(MODAL_CLASS (N))
else
+ @ := associated_query(N)
conj := Qp — Q
N := inode(conj, left, right)
add left and right to S

Figure 7.2: The TILDELDS algorithm. The WACE function is defined in Fig-
ure 7.1. The STOP_CRIT and MODAL_CLASS functions are the instantiations of
STOP_CRIT and INFO for classification as mentioned in Chapter 6.

150 CHAPTER 7. SCALING UP TiLDE

not be loaded anymore), hence the total number of passes through the data
file is equal to the depth of the tree, which is the same as was obtained for
propositional learning algorithms (Mehta et al., 1996).

The disadvantage of this algorithm is that a four-dimensional array of coun-
ters needs to be stored instead of a two-dimensional one (as in TILDEclassic),
because different counters are kept for each refinement in each node.!

Care has been taken to implement TILDELDS in such a way that the size
of the data set that can be handled is not restricted by internal memory (in
contrast to TILDEclassic). Whenever information needs to be stored the size of
which depends on the size of the data set, this information is stored on disk.?
When processing a certain level of the tree, the space complexity of TILDELDS
therefore has a component O(r - n) with n the number of nodes on that level
and 7 the (average) number of refinements of those nodes (because counters
are kept for each refinement in each node), but is constant in the number of
examples m. This contrasts with TILDEclassic where the space complexity has
a component O(m) (because all examples are loaded at once).

While memory now restricts the number of refinements that can be con-
sidered in each node and the maximal size of the tree, this restriction is unim-
portant in practice, as the number of refinements and the tree size are usually
much smaller than the upper bounds imposed by the available memory. There-
fore TILDELDS typically consumes less memory than TILDEclassic, and may
be preferable even when the latter is also feasible.

7.3 Optimizations

The difference in the way the example loop and the refinement loop are nested
does not only influence the amount of data access that is necessary. It also has
an effect on the kind of optimizations that can be performed.

The way in which refinements and examples are processed in TILDEclassic
and TILDELDS is illustrated in Figure 7.3. The figure shows how TILDEclassic
chooses one refinement, tests it on all examples, then goes on to the next
refinement, while TILDELDS chooses one example, tests all refinements on it,
then goes on to the next example.

We have seen one opportunity for optimizing queries already: in Section 6.6.2
it was shown how some parts of a query can be removed because they cannot
possibly be relevant for this test. While the query simplification algorithm is
relatively expensive, it pays off when the query is to be run on many examples.

10ne of the dimensions fortunately does not depend on the application, as it can only
take the values true and false.

2The results of all queries for each example are stored in this manner, so that when the
best query is chosen after one pass through the data, these results can be retrieved from the
auxiliary file, avoiding a second pass through the data.

7.3. OPTIMIZATIONS 151

TILDEclassic TILDE-LDS
examples examples
12345 . mlm 12345 . mlm
1 s 1
w 2 > m 2
g 3 - g 3
g 4 s g 4
£ 5 - £ 5
© ©

y
;IU.
[EY

R-1
R

Y
Py}

Figure 7.3: The difference between TILDEclassic and TILDELDS in the way
they process the examples and refinements.

We recall that the algorithm changes a refinement @, conj; into a simpler
form @', conj;, where Q' only contains those literals in @ that can influence
the outcome of conj;. Now, when a query Q is simplified into Q’, this Q' can
be passed on horizontally in Figure 7.3; only when a new row is started (a new
refinement is processed), a new @' needs to be computed. This is necessary
because although @ stays the same, the simplification @’ is computed from
both @ and conj;, and conjy; is different for each row.

From Figure 7.3 it is clear that TILDEclassic can just compute Q' at the
beginning of a row and then use it to process the whole row before computing a
new one; TILDELDS, on the contrary, needs to recompute Q' for each example.
Since the simplification of a query may be more expensive than what is gained
by testing the simpler query on a single example (this strongly depends on the
application), in some cases it may be better not to use simplified queries. An
alternative is to compute each Q' once and store them in an array indexed by
refinement identifiers, from which they are retrieved when needed. This seems
the only efficient way of using query simplification in TILDELDS.

While query simplification becomes harder to use in TILDELDS, this al-
ternative implementation creates other opportunities for optimization of the
querying process. It is now easier to pass information about a single example
from one refinement to another (vertically, in Figure 7.3). Note that each test
is of the form Q,conj;, so that a large part of the test (Q) is the same for
each refinement. Since the refinements are all tested on the same example, all
answer substitutions for @ could be computed once, and then for each refine-
ment one only need test conj;, with its variables instantiated according to the

152 CHAPTER 7. SCALING UP TiLDE

/* alternative for the second for each loop in Figure 7.2 */
for each refinement < Q; of + Q:
conj; == Q —Q;
S := set of all cony;
for each answer substitution 0 for + Q:
for each conj; in S:
if conj,;0 succeeds
then remove conj; from S
increase counter[N, ¢, true] by 1
for each conj; in S: increase counter[N,i,false] by 1

Figure 7.4: Interleaved computation of answer substitutions for @@ and the
success of each refinement on a single example.

answer substitutions for Q.

We refer to this technique of storing answer substitutions for later use as
caching. Note that this technique is similar to tabling, as used in logic program-
ming. We use the more general term caching because tabling might suggest
that partial results are stored and retrieved when needed within the execution
of one single query. This is not the case in our implementation; partial results
are propagated from one query to another similar one.

The caching technique as described above has the disadvantage that the
size of one set of answer substitutions can be very large. Moreover, unless
the set is stored in an indexed structure, retrieving answer substitutions still
takes time linear in the size of the set. Fortunately, it is possible to avoid
storing the substitutions explicitly, by interleaving the computation of answer
substitutions ; for @ and the computation of the truth value of cony;8;; i.e.,
starting with a set S of all conj;, the system finds one answer substitution 6;
for @), computes truth values for all conj;#;, removes from S all conj; for which
conj;01 is true, then continues looking for 62, applies it to the smaller S, and so
on until all answer substitutions for have been found. The conjunctions that
are still in S at that moment are those that fail on the example. Figure 7.4
gives an algorithm.

This technique provides the advantage of our caching technique (the answer
substitutions of @ are only computed once) without having to store a large
set of data, and is also faster because a linear search in the list of answer
substitutions is avoided. It may incur some overhead, depending on the exact
implementation; to make it maximally efficient it should be implemented at
the level of the Prolog execution engine.

Note that, in order to use this caching technique in TILDEclassic, it would be

7.3. OPTIMIZATIONS 153

TILDEclassic TILDELDS

simplified query easy feasible
caching not feasible easy
both not feasible feasible

Table 7.1: Overview of the different optimizations.

necessary to store an array of sets of answer substitutions indexed by example
identifiers. Given the potentially large size of one set of answer substitutions
and the potentially huge number of examples, this is clearly infeasible.

A summary of all this is given in Table 7.1. Leaving the feasibility of
loading all data into main memory out of consideration, the choice between
TiLDEclassic and TILDELDS should be based on which optimization is expected
to work best: query simplification or caching.

It is possible, but rather complicated, to combine the two optimizations.
Instead of one @), there are then k < R different simplified queries Q' for
which answer substitutions are to be computed (with R the total number of
refinements). A possible procedure is: compute Q' for each refinement, store
the different Q! together with a set S; of all the refinement indexes for which
they are relevant, and apply the algorithm in Figure 7.4 for each S; (mutatis
mutandis; Q becomes @' etc. in the algorithm).

Whether computing the answer substitutions for k simpler queries is more
efficient than computing the answer substitutions for one more complex query,
depends on k and on how much simpler the simplified queries are. This is
domain-dependent.

The possibility of avoiding recomputation of the answer substitutions of Q
is an important advantage of TILDELDS, and may in itself offset the advantage
that TiLDEclassic has by computing a simplified query. Moreover, TILDELDS
is the only implementation that in principle allows either optimization, or even
both together. In their current implementations, TILDEclassic exploits query
simplification, while TILDELDS can employ either the caching technique or the
alternative algorithm in Figure 7.4.

We can draw some interesting conclusions from this discussion. First of all,
in the propositional learning field the difference between the classical version of
TDIDT and the level-wise version is not so important, except when the data set
is not loaded in main memory. In the ILP context, this is quite different: due to
the interaction between the conjunction in a node and the associated query of
a node, optimization opportunities are very different for both implementations
(and it seems that the level-wise version offers the better opportunities).

Second, the optimizations we have identified should also be applicable to
other ILP systems. Many ILP systems are structured so that the example
loop is inside the refinement loop. Switching the loops might yield significant

154 CHAPTER 7. SCALING UP TiLDE

speed-ups in some cases. This certainly applies to systems that learn from
interpretations (CLAUDIEN (De Raedt and Dehaspe, 1997), ICL (De Raedt
and Van Laer, 1995)). For systems learning from entailment the optimization
seems harder to accomplish but is probably not impossible; a system such as
ProcoL (Muggleton, 1995) might benefit from it.

7.4 Experiments

In this experimental section we try to validate our claims about time complexity
empirically, and explore some influences on scalability. More specifically, we
want to:

e validate the claim that when the localization assumption is exploited,
induction time is linear in the number of examples (ceteris paribus, i.e.,
we control for other influences on induction time such as the size of the
tree);

e study the influence of localization on induction time (by quantifying the
amount of localization and investigating its effect on the induction time);

e investigate how the induction time varies with the size of the data set
in more practical situations (if we do not control other influences; i.e. a
larger data set may cause the learner to induce a more complex theory,
which in itself has an effect on the induction time).

These experiments have been performed in co-operation with Nico Jacobs.

7.4.1 Data Sets

We briefly describe the data sets that are used in these experiments; for a more
detailed description see Appendix A.

RoboCup

This set contains data about soccer games played by software agents training
for the RoboCup competition (Kitano et al., 1997). It contains 88594 examples
and is 100MB large. Each example consists of a description of the state of the
soccer terrain as observed by one specific player on a single moment. This
description includes the identity of the player, the positions of all players and
of the ball, the time at which the example was recorded, the action the player
performed, and the time at which this action was executed.

While this data set would allow rather complicated theories to be construc-
ted, for our experiments the language bias was very simple and consisted of
a propositional language (only high-level commands are learned). This use of

7.4. EXPERIMENTS 155

the data set reflects the learning tasks considered until now by the people who
are using it, see (Jacobs et al., 1998). It does not influence the validity of
our results for relational languages, because the propositions are defined by
the background knowledge and their truth values are computed at runtime,
so the query that is really executed is relational. For instance, the proposi-
tion have_ball, indicating whether some player of the team has the ball in its
possession, is computed from the position of the player and of the ball.

Poker

The Poker data sets are artificially created data sets where each example is a
description of a hand of five cards, together with a name for the hand (pair,
three of a kind, ...). The aim is to learn definitions for several poker concepts
from a set of examples. The classes that are considered here are nought, pair,
two_pairs, three_of_a kind, full house, flush and four_of_a kind. This
is a simplification of the real poker domain, where more classes exist and it
is necessary to distinguish between e.g. a pair of queens and a pair of kings;
but this simplified version suffices to illustrate the relevant topics and keeps
learning times sufficiently low to allow for reasonably extensive experiments.

An interesting property of this data set is that some classes, e.g. four_-
of _a_kind, are very rare, hence a large data set is needed to learn these classes
(assuming the data are generated randomly).

Mutagenesis

For the description of the Mutagenesis data set we refer to Section 6.7.1 or
Appendix A. In these experiments we used Background By, i.e., only structural
information about the molecules (the atoms and bonds occurring in them) is
available.

7.4.2 Materials and Settings

All experiments were performed with the two implementations of TILDE we
discussed: TILDEclassic and TILDELDS. These programs are implemented in
Prolog and run under the MasterProLog engine. The hardware we used is
a Sun Ultra-2 at 168 MHz, running the Solaris system (except when stated
otherwise).

Both TiLDEclassic and TILDELDS offer the possibility to precompile the
data file. We exploited this feature for all our experiments. For TILDELDS this
raises the problem that in order to load one example at a time, a different object
file has to be created for each example (MasterProLog offers no predicates
for loading only a part of an object file). This can be rather impractical.
For this reason several examples are usually compiled into one object file; a

156 CHAPTER 7. SCALING UP TiLDE

parameter called granularity (G, by default 10) controls how many examples can
be included in one object file. Object files are loaded one by one by TILDELDS,
which means that G examples (instead of one) at a time are loaded into main
memory. Because of this, G has an influence on the efficiency of TILDELDS; in a
sense it affects the amount of localization in the data. This effect is investigated
in our experiments.

7.4.3 Experiment 1: Time Complexity
Aim of the Experiment

As mentioned before, induction of trees with TILDELDS should in principle
have a time complexity that is linear in the number of examples. With our first
experiment we empirically test whether our implementation indeed exhibits
this property. We also compare it with other approaches where the locality
assumption is exploited less or not at all.

We distinguish the following approaches:

e loading all data at once in main memory without exploiting the locality
assumption (the standard ILP approach);

e loading all data at once in main memory, exploiting the locality assump-
tion (this is what TILDEclassic does);

e loading examples one at a time in main memory; this is what TILDELDS
does.

To the best of our knowledge all ILP systems that do not learn from in-
terpretations follow the first approach (with the exception of a few systems
that access an external database directly instead of loading the data into main
memory, e.g. RDT/DB (Morik and Brockhausen, 1996); but these systems still
do not make a locality assumption). We can easily simulate this approach with
TILDEclassic by specifying all information about the examples as background
knowledge. For the background knowledge no locality assumption can be made,
since all background knowledge is potentially relevant for each example.

The performance of a Prolog system that works with a large database is
improved significantly if indexes are built for the predicates. On the other
hand, adding indexes for predicates creates some overhead with respect to the
internal space that is needed, and a lot of overhead for the compiler. The
MasterProLog system by default indexes all predicates, but this indexing can
be switched off. We have performed experiments for the standard ILP approach
both with and without indexing (thus, the first approach in the above list is
actually subdivided into “indexed” and “not indexed”).

7.4. EXPERIMENTS 157

Methodology

Since the aim of this experiment is to determine the influence of the number of
examples (and only that) on time and space complexity, we want to control as
much as possible other factors that might also have an influence. We have seen
in Section 6.6.1 that these other factors include the number of nodes n, the
average number of tests per node ¢t and the average complexity of performing
one test on one single example ¢. ¢ depends on both the complexity of the
queries themselves and on the example sizes.

When varying the number of examples for our experiments, we want to
keep these factors constant. This means that first of all the refinement operator
should be the same for all the experiments. This is automatically the case if the
user does not change the refinement operator specification between consecutive
experiments.

The other factors can be kept constant by ensuring that the same tree is
built in each experiment, and that the average complexity of the examples does
not change. In order to achieve this, we adopt the following methodology. We
create, from a small data set, larger data sets by including each single example
several times. By ensuring that all the examples occur an equal number of
times in the resulting data set, the class distribution, average complexity of
testing a query on an example etc. are all kept constant. In other words, all
variation due to the influence of individual examples is removed.

Because the class distribution stays the same, the test that is chosen in
each node also stays the same. This is necessary to ensure that the same tree
is grown, but not sufficient: the stopping criterion needs to be adapted as well
so that a node that cannot be split further for the small data set is not split
when using the larger data set either. In order to achieve this, the minimal
number of examples that have to be covered by each leaf (which is a parameter
of TILDE) is increased proportionally to the size of the data set.

By following this methodology, the mentioned unwanted influences are filtered
out of the results.

Materials

We used the Mutagenesis data set for this experiment. Other materials are as
described in Section 7.4.2.

Setup of the Experiment

Four different versions of TILDE are compared:
e TILDEclassic without locality assumption, without indexing

e TILDEclassic without locality assumption, with indexing

158 CHAPTER 7. SCALING UP TiLDE

e TILDEclassic with locality assumption
e TILDELDS

The first three “versions” are actually the same version of TILDE as far as
the implementation of the learning algorithm is concerned, but differ in the way
the data are represented and in the way the underlying Prolog system handles
them.

Each TILDE version was first run on the original data set, then on data sets
that contain each original example 2" times, with n ranging from 1 to 9.

For each run on each data set we have recorded the following:

e the time needed for the induction process itself (in CPU-seconds)

e the time needed to compile the data (in CPU-seconds). The different
systems compile the data in different ways (e.g. according to whether
indexes need to be built). As compilation of the data need only be done
once, even if afterwards several runs of the induction system are done,
compilation time may seem less relevant. Still, it is important to see
how the compilation scales up, since it is not really useful to have an
induction method that scales linearly if it needs a preprocessing step
that scales super-linearly.

Discussion of the Results

Table 7.2 gives an overview of the time each TILDE version needed to induce a
tree for each set, as well as the time it took to compile the data into the correct
format. Some properties of the data sets are also included.

Note that only TILDELDS scales up well to large data sets. The other
versions of TILDE had problems loading or compiling the data from a multi-
plication factor of 16 or 32 on.

The results are shown graphically in Figure 7.5. Note that both the number
of examples and time are indicated on a logarithmic scale. Care must be
taken when interpreting these graphs: a straight line does not indicate a linear
relationship between the variables. Indeed, if logy = n % logz, then y =
z™. This means the slope of the line should be 1 in order to have a linear
relationship, while 2 indicates a quadratic relationship, and so on. In order to
make it easier to recognize a linear relationship (slope 1), the function y = z
has been drawn on the graphs as a reference; each line parallel with this one
indicates a linear relationship.

The graphs and tables show that induction time is linear in the number of
examples for TILDELDS, for TiLDEclassic with locality, and for TiLDEclassic
without locality but with indexing. For TILDEclassic without locality or index-
ing the induction time increases quadratically with the number of examples.

7.4.

Induction time (CPU-seconds)

Compilation time (CPU-seconds)

Figure 7.5: Scaling properties of TILDELDS in terms of number of examples.

EXPERIMENTS
le+06 T . . —
LDS —+—
classic ---x---
8B No locality, indexing ---*---
100000 |

10000

1000

100 |

10

No locality, no indexing - 8- -
YT

10 100
Multiplication factor

1000

10000 ¢

1000 |

100 |

10 |

LDS —+—

classic ---x---

No locality, indexing ------
No locality, no indexing -
y=X -

ok

10 100

1000
Multiplication factor

160 CHAPTER 7. SCALING UP TiLDE

Properties of the example sets

mult.factor 1 2 4 8 16 32 64 128 256 512
#examples 188 376 752 1504 3k 6k 12k 24k 48k 96k
F#facts 10512 21k 42k 84k 168k 336k 673k 1.3M 2.7TM 5.4M
size (MB) 0.25 0.5 1 2 4 8 16 32 65 130
Compilation time (CPU-seconds)
LDS 3 6.3 12.7 25 50 97 194 391 799 1619
classic 6.8 13.7 27 54 110 217 - - - -
—loc, +ind 20.6 293 572 1640 5381 18k - - - -
—loc, —ind 2.8 5.9 12.2 25.5 52.3 - - - - -
Induction time (CPU-seconds)

LDS 123 245 496 992 2026 3980 7816 16k 33k 76k
classic 26.3 42.5 75.4 149 296 - - - - -

—loc, +ind 26.1 45.2 83.9 177 - - - - - -
—loc, —ind 2501 12k 52k 208k - - - - - -

Table 7.2: Comparison of different TILDE versions on Mutagenesis: TILDELDS,
TILDEclassic, TILDEclassic without localization but with indexing (-loc, +ind)
and TILDEclassic without localization and without indexing (—loc, —ind).

This is not unexpected, as in this setting the time needed to run a test on one
single example increases with the size of the data set.

With respect to compilation times, we note that all are linear in the size
of the data set, except TILDEclassic without locality and with indexing. This
is in correspondence with the fact that building an index for the predicates in
a deductive database is an expensive operation, super-linear in the size of the
database.?

Furthermore, the experiments confirm that TILDEclassic with locality scales
as well as TILDELDS with respect to time complexity, but for large data sets
runs into problems because it cannot load all the data.

Conclusions

Observing that without indexing induction time increases quadratically, and
with indexing compilation time increases quadratically, we conclude that the
locality assumption is indeed crucial to our linearity results, and that loading
only a few examples at a time in main memory makes it possible to handle
much larger data sets.

7.4.4 Experiment 2: The Effect of Localization
Aim of the experiment

In the previous experiment we studied the effect of the number of examples on
time complexity, and observed that this effect is different according to whether

31t is not clear to what extent the expensiveness of the operation is typical for the Mas-
terProLog compiler, and to what extent it is inherent to the indexing task itself.

7.4. EXPERIMENTS 161

the locality assumption is made. In this experiment we do not just distinguish
between localized and not localized, but consider gradual changes in localiza-
tion, and thus try to quantify the effect of localization on the induction time.

Methodology

We can test the influence of localization on the efficiency of TILDELDS by
varying the granularity parameter G in TILDELDS. G is the number of examples
that are loaded into main memory at the same time. Localization of information
is stronger when G is smaller.

The effect of G was tested by running TILDELDS successively on the same
data set, under the same circumstances, but with different values for G. In these
experiments G ranged from 1 to 200. For each value of G both compilation
and induction were performed ten times; the reported times are the means of
these ten runs.

Materials

We have used three data sets: a RoboCup data set with 10000 examples, a

Poker data set containing 3000 examples, and the Mutagenesis data set with

a multiplication factor of 8 (i.e. 1504 examples). The data sets were chosen to

contain a sufficient number of examples to make it possible to let G vary over

a relatively broad range, but not more (to limit the experimentation time).
Other materials are as described in Section 7.4.2.

Discussion of the Results

Induction times and compilation times are plotted versus granularity in Fig-
ure 7.6. It can be seen from these plots that induction time increases approxim-
ately linearly with granularity. For very small granularities, too, the induction
time can increase. We suspect that this effect can be attributed to an over-
head of disk access (loading many small files, instead of fewer larger files). A
similar effect is seen when we look at the compilation times: these decrease
when the granularity increases, but asymptotically approach a constant. This
again suggests an overhead caused by compiling many small files instead of one
large file. The fact that the observed effect is smallest for Mutagenesis, where
individual examples are larger, increases the plausibility of this explanation.

Conclusions

This experiment clearly shows that the performance of TILDELDS strongly
depends on G, and that a reasonably small value for G is preferable. It thus
confirms the hypothesis that localization of information is advantageous with
respect to time complexity.

162 CHAPTER 7. SCALING UP TiLDE

9000

Poker —+—
Mutagenesis ---x-—-
8000 - Robocup ---%--- .7

7000
6000
5000
4000

3000 f

Induction time (CPU-seconds)

2000 |

1000

Granularity

3500

Pol‘<er —
* Mutagenesis ---x---
3000 F Robocup ---%---

2500 g
2000 | i E
1500

1000 |

Induction time (CPU-seconds)

400

350 - Robocup -

300 |

200
150 % 1

.
100 KKK KKK Koo S +

Compilation time (CPU-seconds)

50 f 1

0 50 100 150 200
Granularity

Figure 7.6: The effect of granularity on induction and compilation time.

7.4. EXPERIMENTS 163

7.4.5 Experiment 3: Practical Scaling Properties
Aim of the experiment

With this experiment we want to measure how well TILDELDS scales up in
practice, without controlling any influences. This means that the tree that is
induced is not guaranteed to be the same one or have the same size, and that a
natural variation is allowed with respect to the complexity of the examples as
well as the complexity of the queries. This experiment is thus meant to mimic
the situations that arise in practice.

Since different trees may be grown on different data sets, the quality of
these trees may differ. We investigate this as well.

Methodology

The methodology we follow is to choose some domain and then create data sets
with different sizes for this domain. TILDELDS is then run on each data set,
and for each run the induction time is recorded, as well as the quality of the
tree (according to different criteria, see below).

Materials

Data sets from two domains were used: RoboCup and Poker. These domains
were chosen because large data sets were available for them. For each domain
several data sets of increasing size were created.

Whereas induction times have been measured on both data sets, predictive
accuracy has been measured only for the Poker data set. This was done using a
separate test set of 100,000 examples, which was the same for all the hypotheses.
For the RoboCup data set no test set was constructed, because interpretability
of the hypotheses by domain experts is the main evaluation criterion for this
application (these theories are used for verification of the behavior of agents,
see (Jacobs et al., 1998)).

The RoboCup experiments have been run on a SUN SPARCstation-20 at
100 MHz; for the Poker experiments a SUN Ultra-2 at 168 MHz was used.

Discussion of the Results

Table 7.3 shows the consumed CPU-times in function of the number of ex-
amples, as well as the predictive accuracy. These figures are plotted in Fig-
ure 7.7. Note that the CPU-time graph is again plotted on a double logarithmic
scale.

With respect to accuracy, the Poker hypotheses show the expected behavior:
when more data are available, the hypotheses can predict very rare classes (for
which no examples occur in smaller data sets), which results in higher accuracy.

164 CHAPTER 7. SCALING UP TiLDE

1e+06 —

Induction —+—
Compilation ---%---

100000

10000

1000

Time (CPU-seconds)

100

10 |

100 1000 10000 100000
examples

Accuracy —+—

0.998

0.996

0.994

Predictive accuracy

0.992

0.99 |

0.988
100 1000 10000 100000

examples

Figure 7.7: Consumed CPU-time and accuracy of hypotheses produced by
TILDELDS in the Poker domain, plotted against the number of examples.

7.4. EXPERIMENTS

165

#examples 300 1000 3000 10000 30000 100000
compilation (CPU-s) 1.36 4.20 12.36 41.94 125.47 402.63
induction (CPU-s) 288 1021 3231 12325 33394 121266
accuracy 0.98822 0.99844 0.99844 0.99976 0.99976 1.0

Table 7.3: Consumed CPU-time and
TILDELDS in the Poker domain.

accuracy of hypotheses produced by

#examples 10k 20k 30k 40k 50k 60k 70k 80k 89k
compilation 274 522 862 1120 1302 1793 1964 2373 2615
induction 1448 4429 7678 9285 6607 13665 29113 28504 50353

+44 +83 +154 +552

+704 +441 +304 +657 +3063

Table 7.4: Consumed CPU-time of hypotheses produced by TILDELDS in the
RoboCup domain; for induction times standard errors are added.

60000 T T T T

50000

40000

30000

Time (CPU-seconds)

20000

10000

T T
Induction —+—
Compilation ---x---

0
10000 20000 30000 40000 50000

60000 70000 80000 90000

examples

Figure 7.8: Consumed CPU-time for TILDELDS in the RoboCup domain, plot-

ted against the number of examples.

166 CHAPTER 7. SCALING UP TiLDE

The graphs further show that in the Poker domain, TILDELDS scales up
linearly, even though more accurate (and slightly more complex) theories are
found for larger data sets.

In the RoboCup domain, the induced hypotheses were the same for all runs
except the 10000 examples run. In this single case the hypothesis was more
simple and, according to the domain expert, less informative than for the other
runs. This suggests that in this domain a relatively small set of examples
(20000) suffices to learn from.

It is harder to see how TILDELDS scales up for the RoboCup data. Since
the same tree is returned in all runs except the 10000 examples run, one would
expect the induction times to grow linearly. However, the observed curve does
not seem linear, although it does not show a clear tendency to be super-linear
either. Because large variations in induction time were observed, we performed
these runs 10 times; the estimated mean induction times are reported together
with their standard errors. The standard errors alone cannot explain the ob-
served deviations, nor can variations in example complexity (all examples are
of equal complexity in this domain).

A possible explanation is the fact that the Prolog engine performs a num-
ber of tasks that are not controlled by TILDE, such as garbage collection. In
specific cases, the Prolog engine may perform many garbage collections before
expanding its memory space (this happens when the amount of free memory
after garbage collection is always just above some threshold), and the time
needed for these garbage collections is included in the measured CPU-times.
The MasterProLog engine is known to sometimes exhibit such behavior (cf.
Bart Demoen, personal communication).

In order to sort this out, TILDELDS would have to be reimplemented in
a language of lower level than Prolog in order to have full control over all
computations that occur. Such a reimplementation is planned (but not within
this thesis work).

Conclusions

We stress that any results concerning the evolution of tree complexity and
accuracy when more data become available are necessarily domain-dependent,
and one should be cautious when generalizing them. It seems safe, though, to
conclude from our experiments that the linear scaling property has at least a
reasonable chance of occurring in practice.

7.5 Related Work

The text of this chapter is based on (Blockeel et al., 1998a).

7.5. RELATED WORK 167

This work is closely related to efforts in the propositional learning field to
increase the capability of machine learning systems to handle large databases.
It has been influenced more specifically by a tutorial on data mining by Usama
Fayyad, in which the work of Mehta and others was mentioned (Mehta et al.,
1996; Shafer et al., 1996). They were the first to propose the level-wise tree
building algorithm we adopted, and to implement it in the SLIQ (Mehta et al.,
1996) and SPRINT (Shafer et al., 1996) systems. The main difference with
our approach is that SLIQ and SPRINT learn from one single relation, while
TILDELDS can learn from multiple relations.

Related work inside ILP includes the RDT/DB system (Morik and Brock-
hausen, 1996), which presents the first approach to coupling an ILP system
with a relational database management system (RDBMS). Being an ILP sys-
tem, RDT/DB also learns from multiple relations. The approach followed is
that a logical test that is to be performed is converted into an SQL query and
sent to an external relational database management system. This approach
is essentially different from ours, in that it exploits as much as possible the
power of the RDBMS to efficiently evaluate queries. Also, there is no need
for preprocessing the data. Disadvantages are that for each query an external
database is accessed, which is slow, and that it is less flexible with respect to
background knowledge. Some of the issues involved in coupling ILP systems
with relational databases are discussed in (Blockeel and De Raedt, 1996).

We also mention the KEPLER system (Wrobel et al., 1996), a data mining
tool that provides a framework for applying a broad range of data mining
systems to data sets; this includes ILP systems. KEPLER was deliberately
designed to be very open, and systems using the learning from interpretations
setting can be plugged into it as easily as other systems.

Of the systems using the learning from interpretations setting (De Raedt
and Van Laer, 1995; De Raedt and Dehaspe, 1997; Dehaspe and De Raedt,
1997), the WARMR system (finding association rules over multiple relations;
see also (Dehaspe and Toivonen, 1998)) is most closely related to the work
described in this chapter, in the sense that there, too, an effort was made to
adapt the system for large databases.

More loosely related work inside ILP would include all efforts to make ILP
systems more efficient. Since most of this work concerns ILP systems that
learn from entailment, the way in which this is done usually differs substan-
tially from what we describe in this paper. For instance, the PROGOL system
(Muggleton, 1995) has recently been extended with caching and other efficiency
improvements (Cussens, 1997). Another direction of work is the use of sampling
techniques, see e.g. (Srinivasan, 1998; Sebag, 1998).

168 CHAPTER 7. SCALING UP TiLDE

7.6 Conclusions

We have argued and demonstrated empirically that the use of ILP is not limited
to small databases, as is often assumed. Mining databases of over a hundred
megabytes was shown to be feasible, and this does not seem to be a limit.

The positive results that have been obtained are due mainly to the use of
the learning from interpretations setting, which makes the link with proposi-
tional learning more clear. This made it easier to upgrade the work by Mehta
et al. (1996), which turned out to be crucial for handling large data sets. In-
corporating the same technique in a system that uses the classical ILP setting
seems much more difficult.

The currently available results suggest that the alternative implementation
may be preferable to the original one, even for data sets that can be handled
by the latter. First of all, it uses less memory and second, it offers interesting
optimization opportunities. Such opportunities would also become available for
other ILP systems if they were re-implemented in a similar fashion as TILDE.

Although we obtained our results only for a specific kind of data mining
(induction of decision trees), the results are generalizable not only to other
approaches within the classification context (e.g. rule based approaches) but
also to other inductive tasks within the learning from interpretations setting,
such as clustering, regression and induction of association rules.

Chapter 8

Conclusions

This work started out from the observation that many sophisticated techniques
for machine learning and data mining exist, but most of them are set in the
attribute value learning framework. This limits the application of these tech-
niques to those domains where the data can be represented as vectors of fixed
length, and hypotheses are essentially propositional.

Inductive logic programming, on the other hand, provides a richer descrip-
tion language for both data and hypotheses, namely first order predicate logic.
However, the field is younger and many of the techniques existing in attribute
value learning do not have a counterpart in inductive logic programming.

The aim of this work was to port some of the techniques in attribute value
learning to inductive logic programming. The techniques we focused on are all
decision tree based techniques. To achieve our goal, we have worked in several
steps:

e We have formulated a general framework for predictive induction that we
call predictive clustering, and that encompasses more specific techniques
such as classification, regression, unsupervised learning and flexible pre-
diction. We have furthermore shown that induction of decision trees can
be defined at this general level, and that this technique reduces to the
classical approaches for building classification or regression trees by in-
stantiating a few parameters.

e While propositional rule sets have a first order counterpart in the form
of Prolog programs, propositional decision trees do not have such a coun-
terpart. For that reason, we have defined and studied first order logical
decision trees.

¢ Finally, we have used these first order logical decision trees to upgrade
the predictive clustering framework to inductive logic programming. This

169

170 CHAPTER 8. CONCLUSIONS

has resulted in the implementation of the multi-purpose inductive logic
programming system TILDE, which can perform classification, regression,
and several kinds of clustering.

We have evaluated our approach by running TILDE on a broad range of
applications, empirically studying its performance with respect to the predictive
accuracy of the hypotheses it finds, the simplicity and understandability of
these hypotheses, and the efficiency with which they can be induced.

Our main conclusions are that the sophisticated attribute learning tech-
niques that we have focused on can indeed be upgraded to the inductive lo-
gic programming framework. The upgraded versions inherit many desirable
properties of their propositional counterparts, such as the ability to induce
hypotheses of high quality (with respect to both predictive accuracy and sim-
plicity), high efficiency and good scalability properties. This is reflected by
the fact that TILDE can compete with many current state-of-the-art systems
for inductive logic programming, even though most of these are more oriented
towards specific tasks and can handle only a subset of the tasks TILDE can
handle.

An interesting side-result of this research is that several first order rep-
resentation formalisms have been related to one another with respect to their
expressiveness. It turns out that in the first order context decision lists and
decision trees have an advantage over flat logic programs in this respect.

Further work can be identified in several directions. First of all, the cluster-
ing and regression subsystems can be improved. They are trivial instantiations
of our general predictive clustering approach. While this general approach
provides a sound basis, and indeed its trivial instantiations work quite well
already, in order to achieve the same performance as highly specialized sys-
tems more specialized techniques should be incorporated.

A second direction for future work is a further study of the predictive clus-
tering framework. We have argued that this framework suggests several inter-
esting opportunities for improving the behavior of inductive learners, but these
have not been studied in detail yet. A lot of work can be done in this area.

Finally, we plan to implement a version of the TILDE system in C or some
other low-level language. The current system is written in Prolog. This has
enabled a fast development of the system and created an ideal environment
for testing different versions and making it highly parametrized. However, an
implementation in C would enable a better comparison with other inductive
learners with respect to efficiency, and may also yield more precise experimental
results.

Bibliography

[Agrawal et al., 1996] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A.1. Verkamo. Fast discovery of association rules. In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 307-328. The MIT Press, 1996.

[Aha et al., 1991] D. Aha, D. Kibler, and M. Albert. Instance-based learning
algorithms. Machine Learning, 6:37-66, 1991.

[Bain and Muggleton, 1992] M. Bain and S. Muggleton. Non-monotonic learn-
ing. In S. Muggleton, editor, Inductive logic programming, pages 145-161.
Academic Press, London, 1992.

[Bergadano and Giordana, 1988] F. Bergadano and A. Giordana. A knowledge
intensive approach to concept induction. In Proceedings of the 5th Interna-
tional Workshop on Machine Learning. Morgan Kaufmann, 1988.

[Bergadano et al., 1997] F. Bergadano, D. Gunetti, F. Neri, and G. Ruffo. ILP
data analysis in adaptive system and network management, December 1997.

In Periodic Progress Report of ESPRIT LTR Project 20237 (ILP2).

[Bisson, 1992a] G. Bisson. Conceptual clustering in a first order logic rep-
resentation. In Proceedings of the 10th European Conference on Artificial
Intelligence, pages 458-462. John Wiley & Sons, 1992.

[Bisson, 1992b] G. Bisson. Learning in FOL with a similarity measure. In
Proceedings of the 9th National Conference on Artificial Intelligence (AAAI-
92). AAAT Press, 1992.

[Blockeel and De Raedt, 1996] H. Blockeel and L. De Raedt. Relational know-
ledge discovery in databases. In Proceedings of the 6th International Work-
shop on Inductive Logic Programming, volume 1314 of Lecture Notes in Ar-
tificial Intelligence, pages 199-212. Springer-Verlag, 1996.

171

172 BIBLIOGRAPHY

[Blockeel and De Raedt, 1997] H. Blockeel and L. De Raedt. Lookahead and
discretization in ILP. In Proceedings of the 7th International Workshop on
Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial
Intelligence, pages 77-85. Springer-Verlag, 1997.

[Blockeel and De Raedt, 1998a] H. Blockeel and L. De Raedt. Isidd: An inter-
active system for inductive database design. Applied Artificial Intelligence,
12(5):385-421, July-August 1998.

[Blockeel and De Raedt, 1998b] H. Blockeel and L. De Raedt. Top-down in-
duction of first order logical decision trees. Artificial Intelligence, 101(1-
2):285-297, June 1998.

[Blockeel et al., 1998a] H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen.
Scaling up inductive logic programming by learning from interpretations.
Data Mining and Knowledge Discovery, 1998. To appear.

[Blockeel et al., 1998b] H. Blockeel, L. De Raedt, and J. Ramon. Top-down in-
duction of clustering trees. In Proceedings of the 15th International Confer-
ence on Machine Learning, pages 5563, 1998. http://www.cs.kuleuven.-
ac.be/"ml/PS/ML98-56.ps.

[Bloedorn and Michalski, 1996] E. Bloedorn and R. Michalski. The AQ17-DCI
system for data-driven constructive induction and its application to the ana-
lysis of world economics. In Z. Ras and M. Michalewicz, editors, Foundations
of Intelligent Systems, volume 1079 of Lecture Notes in Artificial Intelligence,
pages 108-117. Springer-Verlag, 1996.

[Bostrém, 1995] H. Bostrom. Covering vs. divide-and-conquer for top-down
induction of logic programs. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, 1995.

[Bowers, 1998] A.F. Bowers. Early experiments with a higher-order decision-
tree learner. In J. Lloyd, editor, Proceedings of the JICSLP ’98 post-
conference workshop and CompulogNet Area Meeting on Computational Lo-
gic and Machine Learning, pages 42—49, 1998.

[Bratko, 1990] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, 1990. 2nd Edition.

[Breiman et al., 1984] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J.
Stone. Classification and Regression Trees. Wadsworth, Belmont, 1984.

[Breiman, 1996] L. Breiman. Some properties of splitting criteria. Machine
Learning, 24:41-47, 1996.

BIBLIOGRAPHY 173

[Buntine and Niblett, 1992] W. Buntine and T. Niblett. A further comparison
of splitting rules for decision tree induction. Machine Learning, 8:75-85,
1992.

[Catlett, 1991] J. Catlett. On changing continuous attributes into ordered dis-
crete attributes. In Yves Kodratoff, editor, Proceedings of the 5th European
Working Session on Learning, volume 482 of Lecture Notes in Artificial In-
telligence, pages 164-178. Springer-Verlag, 1991.

[Chapman and Kaelbling, 1991] D. Chapman and L.P. Kaelbling. Input gener-
alization in delayed reinforcement learning: An algorithm and performance
comparisons. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, 1991.

[Clark and Niblett, 1989] P. Clark and T. Niblett. The CN2 algorithm. Ma-
chine Learning, 3(4):261-284, 1989.

[Clocksin and Mellish, 1981] W.F. Clocksin and C.S. Mellish. Programming in
Prolog. Springer-Verlag, Berlin, 1981.

[Cohen and Page, 1995] W.W. Cohen and D. Page. Polynomial learnability
and inductive logic programming: Methods and results. New Generation
Computing, 13, 1995.

[Cohen, 1995] W.W. Cohen. Pac-learning recursive logic programs: Negative
results. Journal of Artificial Intelligence Research, 2:541-573, 1995.

[Cussens, 1997] J. Cussens. Part-of-speech tagging using progol. In Proceedings
of the Tth International Workshop on Inductive Logic Programming, Lecture
Notes in Artificial Intelligence, pages 93-108. Springer-Verlag, 1997.

[De Raedt and Blockeel, 1997] L. De Raedt and H. Blockeel. Using logical
decision trees for clustering. In Proceedings of the 7th International Workshop
on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial
Intelligence, pages 133—141. Springer-Verlag, 1997.

[De Raedt and Bruynooghe, 1993] L. De Raedt and M. Bruynooghe. A theory
of clausal discovery. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 1058-1063. Morgan Kaufmann, 1993.

[De Raedt and Dehaspe, 1997] L. De Raedt and L. Dehaspe. Clausal discovery.
Machine Learning, 26:99-146, 1997.

[De Raedt and Dzeroski, 1994] L. De Raedt and S. Dzeroski. First order jk-
clausal theories are PAC-learnable. Artificial Intelligence, 70:375-392, 1994.

174 BIBLIOGRAPHY

[De Raedt and Van Laer, 1995] L. De Raedt and W. Van Laer. Inductive con-
straint logic. In Klaus P. Jantke, Takeshi Shinohara, and Thomas Zeugmann,
editors, Proceedings of the 6th International Workshop on Algorithmic Learn-
ing Theory, volume 997 of Lecture Notes in Artificial Intelligence, pages 80—
94. Springer-Verlag, 1995.

[De Raedt et al., 1995] L. De Raedt, L. Dehaspe, W Van Laer, H. Blockeel,
and M. Bruynooghe. On the duality of CNF and DNF, or how to learn CNF
using a DNF learner. Unpublished, 1995.

[De Raedt et al., 1997] L. De Raedt, P. Idestam-Almquist, and G. Sablon. 6-
subsumption for structural matching. In Proceedings of the 9th European
Conference on Machine Learning, pages 73-84. Springer-Verlag, 1997.

[De Raedt et al., 1998] L. De Raedt, H. Blockeel, L. Dehaspe, and
W. Van Laer. Three companions for first order data mining. In S. DzZeroski
and N. Lavrag, editors, Inductive Logic Programming for Knowledge Discov-

ery in Databases, Lecture Notes in Artificial Intelligence. Springer-Verlag,
1998. To appear.

[De Raedt, 1996] L. De Raedt, editor. Advances in Inductive Logic Program-
ming, volume 32 of Frontiers in Artificial Intelligence and Applications. I0S
Press, 1996.

[De Raedt, 1997] L. De Raedt. Logical settings for concept learning. Artificial
Intelligence, 95:187-201, 1997.

[De Raedt, 1998] L. De Raedt. Attribute-value learning versus inductive lo-
gic programming: the missing links (extended abstract). In D. Page, editor,
Proceedings of the 8th International Conference on Inductive Logic Program-
ming, volume 1446 of Lecture Notes in Artificial Intelligence, pages 1-8.
Springer-Verlag, 1998.

[Dehaspe and De Raedt, 1997] L. Dehaspe and L. De Raedt. Mining associ-
ation rules in multiple relations. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes
in Artificial Intelligence, pages 125-132. Springer-Verlag, 1997.

[Dehaspe and Toivonen, 1998] L. Dehaspe and H. Toivonen. Frequent query
discovery: a unifying ILP approach to association rule mining. Data Mining
and Knowledge Discovery, 1998. To appear.

[Dietterich et al., 1997] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez.
Solving the multiple-instance problem with axis-parallel rectangles. Artificial
Intelligence, 89(1-2):31-71, 1997.

BIBLIOGRAPHY 175

[Dolsak and Muggleton, 1992] B. Dolsak and S. Muggleton. The application of
Inductive Logic Programming to finite element mesh design. In S. Muggleton,
editor, Inductive logic programming, pages 453-472. Academic Press, 1992.

[Domingos, 1996] P. Domingos. Unifying instance based and rule based induc-
tion. Machine Learning, 24(2):141-168, 1996.

[Domingos, 1998] P. Domingos. Data mining with RISE and CWS. In F. Es-
posito, R.S. Michalski, and L. Saitta, editors, Proceedings of the Jth Inter-
national Workshop on Multistrategy Learning, pages 1-12, 1998.

[Dougherty et al., 1995] J. Dougherty, R. Kohavi, and M. Sahami. Super-
vised and unsupervised discretization of continuous features. In A. Prieditis
and S. Russell, editors, Proc. Twelfth International Conference on Machine
Learning. Morgan Kaufmann, 1995.

[Dzeroski et al., 1998] S. Dzeroski, S. Schulze-Kremer, K. R. Heidtke,
K. Siems, D. Wettschereck, and H. Blockeel. Diterpene structure elucid-
ation from 13C NMR spectra with inductive logic programming. Applied
Artificial Intelligence, 12(5):363-384, July-August 1998.

[Dzeroski et al., 1992] S. Dzeroski, S. Muggleton, and S. Russell. PAC-
learnability of determinate logic programs. In Proceedings of the 5th ACM
workshop on Computational Learning Theory, pages 128-135, 1992.

[Dzeroski et al., 1998] S. Dzeroski, L. De Raedt, and H. Blockeel. Relational
reinforcement learning. In Proceedings of the 15th International Conference
on Machine Learning. Morgan Kaufmann, 1998.

[Elmasri and Navathe, 1989] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. The Benjamin/Cummings Publishing Company, 2nd edi-
tion, 1989.

[Emde and Wettschereck, 1996] W. Emde and D. Wettschereck. Relational
instance-based learning. In L. Saitta, editor, Proceedings of the 13th Interna-
tional Conference on Machine Learning, pages 122-130. Morgan Kaufmann,
1996.

[Emde, 1994] W. Emde. Inductive learning of characteristic concept descrip-
tions. In S. Wrobel, editor, Proceedings of the 4th International Workshop
on Inductive Logic Programming, volume 237 of GMD-Studien, pages 51-70,
Sankt Augustin, Germany, 1994. Gesellschaft fiir Mathematik und Daten-
verarbeitung MBH.

176 BIBLIOGRAPHY

[Fayyad and Irani, 1993] U.M. Fayyad and K.B. Irani. Multi-interval discretiz-
ation of continuous-valued attributes for classification learning. In Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence,
pages 1022-1027, San Mateo, CA, 1993. Morgan Kaufmann.

[Fayyad et al., 1996] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining.
The MIT Press, 1996.

isher and Langle . Fisher and P. Langley. roaches to conceptua
Fish d Langley, 1985 D. Fish d P. Langley. App h ptual
clustering. In Proceedings of the 9th International Joint Conference on Arti-
ficial Intelligence, pages 691—-697, Los Altos, CA, 1985. Morgan Kaufmann.

[Fisher, 1987] D. H. Fisher. Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2:139-172, 1987.

[Fisher, 1996] D. H. Fisher. Iterative optimization and simplification of hier-
archical clusterings. Journal of Artificial Intelligence Research, 4:147-179,
1996.

[Frawley et al., 1991] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus.
Knowledge discovery in databases: an overview. In G. Piatetsky-Shapiro

and W. Frawley, editors, Knowledge Discovery in Databases, pages 1-27.
Cambridge, MA: MIT Press, 1991.

[Geibel and Wysotzki, 1997] P. Geibel and F. Wysotzki. A logical framework
for graph theoretical decision tree learning. In N. Lavra¢ and S. DzZeroski,
editors, Proceedings of the 7Tth International Workshop on Inductive Logic
Programming, pages 173-180, 1997.

[Gluck and Corter, 1985] M.A. Gluck and J.E. Corter. Information, uncer-
tainty, and the utility of categories. In Proceedings of the Seventh Annaul
Conference of the Cognitive Science Society, pages 283—-287, Hillsdale, NJ,
1985. Lawrence Erlbaum.

[Hartigan, 1975] J.A. Hartigan. Clustering Algorithms. Wiley New York, 1975.

[Helft, 1989] N. Helft. Induction as nonmonotonic inference. In Proceedings of
the 1st International Conference on Principles of Knowledge Representation
and Reasoning, pages 149-156. Morgan Kaufmann, 1989.

[Hutchinson, 1997] A. Hutchinson. Metrics on terms and clauses. In Proceed-
ings of the 9th Furopean Conference on Machine Learning, Lecture Notes in
Artificial Intelligence, pages 138-145. Springer-Verlag, 1997.

BIBLIOGRAPHY 177

[Jacobs et al., 1998] N. Jacobs, K. Driessens, and L. De Raedt. Using ILP
systems for verification and validation of multi agent systems. In Proceedings
of the 8th International Conference on Inductive Logic Programming, volume
1446, pages 145-154. Springer-Verlag, 1998.

[Karali¢ and Bratko, 1997] A. Karali¢ and I. Bratko. First order regression.
Machine Learning, 26:147-176, 1997.

[Kazakov et al., 1996] D. Kazakov, L. Popelinsky, and O. Stepankova. ILP
datasets page [http://www.gmd.de/ml-archive/datasets/ilp-res.html], 1996.

[Ketterlin et al., 1995] A. Ketterlin, P. Gancarski, and J.J. Korczak. Concep-
tual clustering in structured databases : a practical approach. In Proceedings

of KDD-95, 1995.

[Khan et al., 1998] K. Khan, S. Muggleton, and R. Parson. Repeat learning
using predicate invention. In D. Page, editor, Proceedings of the 8th Inter-
national Conference on Inductive Logic Programming, pages 165-174, 1998.

[Kietz and Morik, 1994] J.U. Kietz and K.. Morik. A polynomial approach
to the constructive induction of structural knowledge. Machine Learning,
14:193-217, 1994.

[Kirsten and Wrobel, 1998] M. Kirsten and S. Wrobel. Relational distance-
based clustering. In Proceedings of the 8th International Conference on In-
ductive Logic Programming, Lecture Notes in Artificial Intelligence, pages
261-270. Springer-Verlag, 1998.

[Kitano et al., 1997] H. Kitano, M. Veloso, H. Matsubara, M. Tambe, S. Cora-
deschi, I. Noda, P. Stone, E. Osawa, and M. Asada. The robocup synthetic
agent challenge 97. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 24-29. Morgan Kaufmann, 1997.

[Kowalski, 1979] R. Kowalski. Logic for problem solving. North-Holland, 1979.

[Kramer et al., 1998] S. Kramer, B. Pfahringer, and C. Helma. Stochastic pro-
positionalization of non-determinate background knowledge. In D. Page,
editor, Proceedings of the 8th International Conference on Inductive Logic
Programming, pages 80-94, 1998.

[Kramer, 1996] S. Kramer. Structural regression trees. In Proceedings of the
13th National Conference on Artificial Intelligence (AAAI-96), 1996.

[Langley and Sage, 1984] P. Langley and S. Sage. Conceptual clustering as
discrimination learning. In Proceedings of the Fifth Biennial Conference of
the Canadian Society for Computational Studies of Intelligence, pages 95-98,
London, Ontario, Canada, 1984.

178 BIBLIOGRAPHY

[Langley, 1996] P. Langley. Elements of Machine Learning. Morgan Kaufmann,
1996.

[Lavraé and Dzeroski, 1997] N. Lavra¢ and S. Dzeroski, editors. Proceedings
of the Tth International Workshop on Inductive Logic Programming, volume
1297 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1997.

[Lloyd, 1987] J.W. Lloyd. Foundations of logic programming. Springer-Verlag,
2nd edition, 1987.

[Manago, 1989] M. Manago. Knowledge intensive induction. In A. M. Segre,
editor, Proceedings of the 6th International Workshop on Machine Learning,
pages 151-155. Morgan Kaufmann, 1989.

[Mehta et al., 1996] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast
scalable classifier for data mining. In Proceedings of the Fifth International
Conference on Ertending Database Technology, 1996.

[Merz and Murphy, 1996]
C.J. Merz and P.M. Murphy. UCI repository of machine learning data-
bases [http://www.ics.uci.edu/"mlearn/mlrepository.html] , 1996. Irvine,
CA: University of California, Department of Information and Computer Sci-
ence.

[Michalski and Chilausky, 1980] R.S. Michalski and R.L. Chilausky. Learning
by being told and learning from examples: an experimental comparaison of
the two methods of knowledge acquisition in the context of developing an
expert system for soybean disease diagnosis. Policy analysis and information
systems, 4, 1980.

[Michalski and Stepp, 1983] R.S. Michalski and R.E. Stepp. Learning from
observation: conceptual clustering. In R.S Michalski, J.G. Carbonell, and
T.M. Mitchell, editors, Machine Learning: an artificial intelligence approach,
volume 1. Tioga Publishing Company, 1983.

[Michalski et al., 1986] R. Michalski, I. Mozeti¢, J. Hong, and N. Lavra¢. The
multi-purpose incremental learning system AQ15 and its testing application
to three medical domains. In Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI-86), pages 1041-1045, Philadelphia, PA, 1986.

[Mingers, 1989] J. Mingers. An empirical comparison of selection measures for
decision tree induction. Machine Learning, 3:319-342, 1989.

[Mitchell, 1997] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

BIBLIOGRAPHY 179

[Mooney and Califf, 1995] R.J. Mooney and M.E. Califf. Induction of first-
order decision lists: Results on learning the past tense of english verbs.
Journal of Artificial Intelligence Research, pages 1-23, 1995.

[Mooney, 1995] R.J. Mooney. Encouraging experimental results on learning
cnf. Machine Learning, 19:79-92, 1995.

[Morik and Brockhausen, 1996] K. Morik and P. Brockhausen. A multistrategy
approach to relational discovery in databases. In R.S. Michalski and Wnek
J., editors, Proceedings of the 3rd International Workshop on Multistrategy
Learning, pages 17-28, 1996.

[Muggleton and De Raedt, 1994] S. Muggleton and L. De Raedt. Inductive
logic programming : Theory and methods. Journal of Logic Programming,
19,20:629-679, 1994.

[Muggleton et al., 1996] S. Muggleton, D. Page, and A. Srinivasan. An ini-
tial experiment into stereochemistry-based drug design using inductive logic
programming. In S. Muggleton, editor, Proceedings of the 6th International
Workshop on Inductive Logic Programming, volume 1314 of Lecture Notes
in Artificial Intelligence, pages 25-40. Springer-Verlag, 1996.

[Muggleton, 1995] S. Muggleton. Inverse entailment and Progol. New Gener-
ation Computing, 13, 1995.

[Muggleton, 1996] S. Muggleton. Learning from positive data. In S. Muggleton,
editor, Proceedings of the 6th Inductive Logic Programming Workshop, 1996.

[Muggleton, 1997] S. Muggleton, editor. Proceedings of the 6th International
Workshop on Inductive Logic Programming, volume 1314 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1997.

[Nienhuys-Cheng, 1997] Shan-Hwei Nienhuys-Cheng. Distance between
herbrand interpretations: A measure for approximations to a target concept.
In Proceedings of the Tth International Workshop on Inductive Logic Pro-
gramming, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1997.

[Page, 1998] D. Page, editor. Proceedings of the 8th International Conference
on Inductive Logic Programming, volume 1446 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1998.

[Piatetsky-Shapiro and Frawley, 1991] G. Piatetsky-Shapiro and W. Frawley,
editors. Knowledge discovery in databases. The MIT Press, 1991.

[Plotkin, 1970] G. Plotkin. A note on inductive generalization. In Machine
Intelligence, volume 5, pages 153-163. Edinburgh University Press, 1970.

180 BIBLIOGRAPHY

[Quinlan, 1986] J.R. Quinlan. Induction of decision trees. Machine Learning,
1:81-106, 1986.

[Quinlan, 1990] J.R. Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5:239-266, 1990.

[Quinlan, 1993a] J. Ross Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann series in machine learning. Morgan Kaufmann, 1993.

[Quinlan, 1993b] J.R. Quinlan. FOIL: A midterm report. In P. Brazdil, editor,
Proceedings of the 6th European Conference on Machine Learning, Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1993.

[Quinlan, 1996] J. R. Quinlan. Learning first-order definitions of functions.
Journal of Artificial Intelligence Research, 5:139-161, October 1996.

[Ramon and Bruynooghe, 1998] J. Ramon and M. Bruynooghe. A framework
for defining distances between first-order logic objects. In Proceedings of
the 8th International Conference on Inductive Logic Programming, Lecture
Notes in Artificial Intelligence, pages 271-280. Springer-Verlag, 1998.

[Ramon et al., 1998] J. Ramon, M. Bruynooghe, and W. Van Laer. Distance
measures between atoms. In Proceedings of the CompulogNet Area Meeting
on ’Computational Logic and Machine Learning’, pages 35-41, 1998.

[Rissanen, 1978] J. Rissanen. Modeling by Shortest Data Description. Awuto-
matica, 14:465-471, 1978.

[Rivest, 1987] R.L. Rivest. Learning decision lists. Machine Learning, 2:229—
246, 1987.

[Russell and Norvig, 1995] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 1995.

[Sebag, 1998] M. Sebag. A stochastic simple similarity. In D. Page, editor,
Proceedings of the 8th International Conference on Inductive Logic Program-
ming, volume 1446 of Lecture Notes in Artificial Intelligence, pages 95—-105.
Springer-Verlag, 1998.

[Shafer et al., 1996] J.C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scal-
able parallel classifier for data mining. In Proceedings of the 22th Interna-
tional Conference on Very Large Databases, 1996.

[Sneath and Sokal, 1973] P. Sneath and R. Sokal. Numerical Tazonomy: the
Principles and Practice of Numerical Classification. Freeman San Francisco,
1973.

BIBLIOGRAPHY 181

[Srinivasan and Camacho, 1996] A. Srinivasan and R.C. Camacho. Experi-
ments in numerical reasoning with ILP. Technical Report PRG-TR-22-96,
Oxford University Computing Laboratory, Oxford, 1996. Accepted to appear
in the Journal of Logic Programming, Special Issue on ILP.

[Srinivasan and King, 1996] A. Srinivasan and R.D. King. Feature construc-
tion with inductive logic programming: A study of quantitative predictions
of biological activity aided by structural attributes. In S. Muggleton, editor,
Proceedings of the 6th International Workshop on Inductive Logic Program-
ming, volume 1314 of Lecture Notes in Artificial Intelligence, pages 89—104.
Springer-Verlag, 1996.

[Srinivasan et al., 1995] A. Srinivasan, S.H. Muggleton, and R.D. King. Com-
paring the use of background knowledge by inductive logic programming
systems. In L. De Raedt, editor, Proceedings of the 5th International Work-
shop on Inductive Logic Programming, 1995.

[Srinivasan et al., 1996] A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and
R.D. King. Theories for mutagenicity: A study in first-order and feature-
based induction. Artificial Intelligence, 85, 1996.

[Srinivasan, 1998] A. Srinivasan. A study of two sampling methods for analys-
ing large datasets with ILP. Data Mining and Knowledge Discovery, 1998.

[Stahl, 1996] 1. Stahl. Predicate invention in inductive logic programming. In
L. De Raedt, editor, Advances in inductive logic programming, volume 32 of
Frontiers in Artificial Intelligence and Applications, pages 34—47. 10S Press,
1996.

[Sterling and Shapiro, 1986] Leon Sterling and Ehud Shapiro. The art of Pro-
log. The MIT Press, 1986.

[Thompson and Langley, 1991] K. Thompson and P. Langley. Concept forma-
tion in structured domains. In D. Fisher, M. Pazzani, and P. Langley, edit-
ors, Concept formation: knowledge and experience in unsupervised learning.
Morgan Kaufmann, 1991.

[Utgoff, 1989] P.E. Utgoff. Incremental induction of decision trees. Machine
Learning, 4(2):161-186, 1989.

[Valiant, 1984] L. Valiant. A theory of the learnable. Communications of the
ACM, 27:1134-1142, 1984.

[van der Laag and Nienhuys-Cheng, 1998] Patrick R. J. van der Laag and
Shan-Hwei Nienhuys-Cheng. Completeness and properness of refinement

operators in inductive logic programming. Journal of Logic Programming,
34(3):201-225, 1998.

182 BIBLIOGRAPHY

[Van Laer et al., 1997] W. Van Laer, L. De Raedt, and S. Dzeroski. On multi-
class problems and discretization in inductive logic programming. In Zbig-
niew W. Ras and Andrzej Skowron, editors, Proceedings of the 10th Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS97),
volume 1325 of Lecture Notes in Artificial Intelligence, pages 277-286.
Springer-Verlag, 1997.

[Watanabe and Rendell, 1991] L. Watanabe and L. Rendell. Learning struc-
tural decision trees from examples. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages 770-776, 1991.

[Webb, 1996] G.I. Webb. Further experimental evidence against the utility of
occam’s razor. Journal of Artificial Intelligence Research, 4:397-417, 1996.

[Wilson and Martinez, 1997] D.R. Wilson and T.R. Martinez. Improved het-
erogeneous distance functions. Journal of Artificial Intelligence Research,
6:1-34, 1997.

[Wnek and Michalski, 1993] J. Wnek and R. Michalski. Hypothesis-driven con-
structive induction in AQ17-HCI: A method and experiments. Machine
Learning, 14(2):139-168, 1993.

[Wrobel et al., 1996] S. Wrobel, D. Wettschereck, E. Sommer, and W. Emde.
Extensibility in data mining systems. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-96).
AAAT Press, 1996.

[Yoo and Fisher, 1991] J. Yoo and D. Fisher. Concept formation over explan-
ations and problem-solving experience. In Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, pages 630 — 636. Morgan
Kaufmann, 1991.

Appendix A

Data Sets

In this appendix we describe the data sets that we have used.

A.1 Soybeans

This database (Michalski and Chilausky, 1980) contains descriptions of diseased
soybean plants. Every plant is described by 35 attributes. The plants have to
be classified into one of several classes, each class being a specific disease. A
small data set (46 examples, 4 classes) and a large one (307 examples, 19
classes) are available at the UCI data repository (Merz and Murphy, 1996). A
single example from this data set, represented in TILDE’s input format, is given
in Figure A.1.

A.2 Iris

The Iris database, available at the UCI repository, contains descriptions of
iris plants that are to be classified into one of three classes. For each class
there are 50 examples. There are 4 numerical attributes. The problem is very
easy to solve for supervised learners, hence the database is used mostly for
unsupervised learners. The evaluation criterion is then, whether the learner
finds three clusters that correspond to the classes.

Some examples of the Iris data set are shown in Figure A.2.

A.3 Mutagenesis

This database (Srinivasan et al., 1996), available at the ILP repository (Kaza-
kov et al., 1996), is probably the most popular database that has ever been used

183

184 APPENDIX A. DATA SETS

begin(model(16)).
ziekte(2).
date(5).
plant_stand(0) .
precip(0).
temp(2) .
hail(1l).
crop_hist(3).
area_damaged(3).
severity(1).
seed_tmt (1) .
germination(2).
plant_growth(1).
leaves(1).
leafspots_halo(0).
leafspots_marg(2).
leafspot_size(2).
leaf_shread(0).
leaf_malf(0).
leaf_mild(0).
stem(1) .
lodging(0) .
stem_cankers(0) .
canker_lesion(3).
fruiting_bodies(0).
external_decay(0).
mycelium(0) .
int_discolor(2).
sclerotia(1).
fruit_pods(0).
fruit_spots(4).
seed(0).
mold_growth(0) .
seed_discolor(0).
seed_size(0).
shriveling(0).

end (model (16)) .

Figure A.1: An example from the Soybeans data set.

A.3. MUTAGENESIS

begin(model(1)).
s1(5.1).
sw(3.5).
pl(1.4).
pw(0.2).
irissetosa.

end (model(1)).

begin(model(2)).
s1(4.9).
sw(3.0).
pl(1.4).
pw(0.2).
irissetosa.

end (model(2)).

begin(model(51)).
s1(7.0).
sw(3.2).
pl(4.7).
pw(l.4).
irisversicolor.

end (model(51)).

Figure A.2: Examples from the Iris data set.

185

186 APPENDIX A. DATA SETS

in ILP. It contains descriptions of molecules for which the mutagenic activity
has to be predicted (mutagenicity is the ability to cause DNA to mutate, which
is a possible cause of cancer). Originally mutagenicity was measured by a real
number, but in most experiments with ILP systems this has been discretized
into two values (positive and negative, i.e. mutagenic or non-mutagenic), so
that the task becomes a classification task.

The data set consists of 230 molecules, which are divided into two subsets:
regression-friendly (188 molecules) and regression-unfriendly (42 molecules).
The term regression in this respect refers to the use of linear regression, not
regression trees. The 42 regression-unfriendly molecules are those where pro-
positional linear regression methods did not yield good results; these are the
most interesting ones for ILP (although the set of 188 molecules has been used
more often).

Srinivasan (Srinivasan et al., 1995) introduces four levels of “background”
knowledge, each of which is a superset of its predecessor:

e Background B; contains only non-numerical structural descriptions: the
atoms and bonds in the molecules.

e In Background B; the partial charges of the atoms in the molecules are
also available.

e Background Bj3 adds to the structural description of a molecule two nu-
merical attributes called lumo and logp. These attributes are known to
be highly relevant for mutagenicity.

e Background By contains higher level submolecular structures such as ben-
zene rings, phenanthrene structures, ...

Note that we are using the term “background knowledge” somewhat inconsist-
ently here. The different backgrounds actually provide richer descriptions of
the examples, they do not only provide general domain knowledge. As men-
tioned in Chapter 4 the difference between these two is not made in the normal
ILP setting: the examples are single facts there, and all the rest is background
knowledge. That explains why the different levels of description were called
“backgrounds” in (Srinivasan et al., 1995). Due to the frequent occurrence of
these terms in the literature we use them as well.

To illustrate what a description of one molecule looks like, Figure A.3 shows
a part of such a description. The level of detail is that of Bs. Each atom fact
states the existence of a single atom, the element it belongs to (e.g. ¢ means
it is a carbon atom), its type (atoms of the same element are further classified
into different types according to their conformation) and its partial charge.
A bond literal indicates which atoms are bound, and what type of bond it is
(single, double, aromatic, ...). The atoms d1_1 to d1_6 can be seen to form a
benzene ring in this description.

A.3. MUTAGENESIS 187

begin(model(1)).
pos.
atom(dl_1,c,22,-0.117).
atom(dl_2,c,22,-0.117).
atom(d1_3,c,22,-0.117).
atom(dil_4,c,195,-0.087).
atom(d1_5,c,195,0.013).
atom(d1_6,c,22,-0.117).
...
atom(d1_25,0,40,-0.388).
atom(d1l_26,0,40,-0.388).

bond(d1_1,d1_2,7).
bond(d1_2,d1_3,7).
bond(d1_3,d1_4,7).
bond(d1_4,d1_5,7).
bond(d1_5,d1_6,7).
bond(d1_6,d1_1,7).
bond(d1_1,d1_7,1).
bond(d1_2,d1_8,1).
bond(d1_3,d1_9,1).
...)
bond(d1_24,d1_19,1).
bond(d1_24,d1_25,2).
bond(d1_24,d1_26,2).
end (model(1)).

Figure A.3: The Prolog representation of one example in the Mutagenesis data
set. The atom facts enumerate the atoms in the molecule. For each atom its
element (e.g. carbon), type (e.g. carbon can occur in several configurations;
each type corresponds to one specific configuration) and partial charge. The
bond facts enumerate all the bonds between the atoms (the last argument is
the type of the bond: single, double, aromatic, etc.). pos denotes that the
molecule belongs to the positive class (i.e. is mutagenic).

188 APPENDIX A. DATA SETS

typed_language(yes).

type(atom(id, element, type, charge)).
type(bond(id, id, bondtype)).

type(X =< X) :- X = charge.

type (X=X).

type (member(_, _)).
type(discretized(_,_,_)).

/* discretization */

discretization(bounds(100)).
to_be_discretized(atom(_, _, _, Ch), [Chl).

/* refinement operator */

rmode(20: #(230%37*T: atom(_, _, T, _), atom(A, E, T, Ch))).
rmode(20: #(230%9*E: atom(_, E, _, _), atom(A, E, T, Ch))).
rmode(20: #(1*100%*C:
(discretized(atom(_, _, _, X), [X], L), member(C, L)),
(atom(-A, E, T, Ch), Ch =< C))).
rmode(20: bond(+A1, -A2, BT)).

lookahead(bond (A1, A2, BT), #(1*6*C: member(C, [1,2,3,4,5,7]),
BT=C)).
lookahead(bond (A1, A2, BT), #(230%9%E: atom(A2, E, _, _),
atom(A2, E, _, _))).
lookahead(bond (A1, A2, BT), #(230%37*T: atom(A2, _, T, _),
atom(A2, _, T, _))).

Figure A.4: A typical settings file for the Mutagenesis data set.

Figure A.4 shows a typical settings file for running TILDE on this data set.
The settings file allows the system to make use of By: atoms, bonds, and partial
charges.

A.4 Biodegradability

This data set consists of 62 molecules of which structural descriptions and
molecular weights are given. The representation of the examples is very similar
to that used for the Mutagenesis data set.

The aim is to predict the biodegradability of the molecules. This is ex-
pressed as (we cite Kramer (1996)) “the halfrate of surface water aerobic

A.5. MUSK 189

begin(model (’MUSK-211)).
testid (’MUSK-211°).

musk.
conformation(’211_1+1’, 46, -108, -60, -69, ..., -112, 96).
conformation(’211_1+10’, 41, -188, -145, ... - R I
...
conformation(’211_1+9°, ... - e e , =113, 97).

end (model (’MUSK-2117)).

Figure A.5: A part of one example from the Musk data set: the molecule called
MUSK-211. It has several conformations, referred to as 211_1+1 etc.

aqueous biodegradation in hours”. This is a real number, but has been discret-
ized into four values (fast, moderate, slow, resistant) in most past experiments.

This data set was kindly provided to us by SaSo DZeroski and is used with
permission, but is not yet in the public domain.

A.5 Musk

Two Musk data sets are available at the UCI data repository: a small one
(320kB, 476 tuples) and a large one (4.5MB, 6600 tuples). Each tuple consists
of 166 numerical attributes. The data sets represent sets of molecules, and the
task is to predict which molecules are musk molecules and which are not.

The Musk data set was introduced to the machine learning community
by Dietterich et al. (1997), who used the problem to illustrate the so-called
multiple-instance problem: an example is not represented by a single tuple
but by a set of tuples, only one of which may be relevant. Multiple-instance
problems are hard to cope with for propositional learners due to this property.

In the case of the Musk database, molecules are represented by sets of tuples;
each tuple represents one possible conformation of the molecule. A molecule is
musk if at least one of its conformations is musk.

While the database is not a typical ILP database, because of its orientation
towards numerical data and the almost propositional representation, learning
in a multiple-instance context can be seen as the simplest form of ILP, as argued
by De Raedt (1998). The examples can easily be represented by interpretations,
each interpretation simply containing a set of tuples, as Figure A.5 illustrates.
Due to practical limitations on the arity of predicates in our Prolog engine
we could not use this representation and resorted to the one illustrated in
Figure A.6, which makes the link with the original tuples less clear.

Figure A.7 illustrates what a settings file could look like; it is taken from

190 APPENDIX A. DATA SETS

begin(model (°’MUSK-211’)).
testid (’MUSK-2117).
musk.
df1(’211_1+1’,46).
df2(’211_1+1’,-108).
df3(’211_1+1’,-60).
df4(’211_1+1’,-69).
df5(’211_1+17,-117).
df6(’211_1+1’,49).
...
df163(’211_1+1’,156).
df164(’211_1+1’,-50).
df165(’211_1+1’,-112).
df166(°211_1+1’,96).
df1(’211_1+410’,41).
df2(’211_1+10’,-188).
df3(’211_1+10’,-145).
...
df165(°211_1+9’,-113).
df166(°211_1+9°,97).

end (model (’MUSK-211)).

Figure A.6: The same molecule as shown in Figure A.6, but using a different
representation. Kach conformation is described by a single fact df; for each of
its 166 numerical attributes.

A.6. MESH 191

one of our experiments with the large Musk data set.

A.6 Mesh

This data set, introduced in the ILP community by Dolsak and Muggleton
(1992) and available at the ILP data repository (Kazakov et al., 1996), has its
origin in engineering. For many engineering applications, surfaces need to be
approximated by a finite element mesh. Such a mesh needs to be fine in some
places (in order to assure accuracy), and can be coarser in other places (which
decreases the computation cost). The task is to learn rules that predict how
fine a mesh should be, by studying a number of meshes.

The data set consists of descriptions of 5 meshes. It is a typical ILP data set
in that it contains structural information and a lot of background knowledge
is available. On the other hand, it is in essence a regression task (which is
less typical for ILP): the resolution of a mesh is a natural number. Most ILP
systems just consider the different resolutions to be different classes and learn
a classifier.

Due to the fact that the resolution of one edge may depend on its neighbors,
the localization of information is relatively bad for this data set. For our
experiments with TILDE we have put all the information in the background
and kept only the resolution of each edge in the example description itself
(together with its identification). A representative part of the data set that
is thus obtained is shown in Figure A.8. A sample settings file is shown in
Figure A.9. The tilde mode(regression) fact in the file tells TILDE that
it should perform regression (by default TILDE performs classification). The
classes setting is replaced by the euclid setting, which tells TILDE on what
variable it should perform regression.

A.7 Diterpenes

A detailed description of this application can be found in (DZeroski et al., 1998).
The task is to identify substructures in diterpene molecules by looking at the
13C NMR spectrogram of the molecule (peaks occurring in such a spectrogram
may indicate the occurrence of certain substructures). There are 23 classes.
The entire data set consists of 1503 examples.

This problem is inherently relational, but propositional attributes can be
defined (so-called engineered attributes) that are highly relevant.

This data set is not in the public domain. The data were kindly provided to
us by Steffen Schulze-Kremer and Saso Dzeroski and are used with permission.

192 APPENDIX A.

classes([musk,nonmusk]).

discretization(bounds(3)).
to_be_discretized(dfi(X, N), [N]).
...

to_be_discretized(df166(X, N), [N]).

typed_language(yes).
type(dfi(conf,int)).

...

type(df166(conf,int)).
type(findinterval(_,interval)).
type(between(int,interval)).

intervall ([A], [A, inf]) :- !.
intervall([A,B|C], [A,B]).
intervall1([A|B], X) :- intervalil(B, X).

interval([Al_], [-inf, Al).
interval(L, X) :- intervali(L, X).

findinterval(DF, Int) :-
F =.. [DF, X, Y],
discretized(F, [Y], L),
sort(L, L1),
interval(L1, Int).

between(X, [-inf, B]) :- X =< B, !.
between(X, [A, inf]) :- A =< X, !.
between(X, [A,B]) :- A =< X, X =< B.

lookahead(df1(Conf,Arg), #(1%100%I: findinterval(dfil, I),
between(Arg, I))).
...)

DATA SETS

lookahead (df166(Conf ,Arg), #(1%100%I: findinterval(df166, I),

between(Arg, I))).
rmode(5: df1(+X, Y)).
...
rmode(5: df166(+X, Y)).

root(df1(X,_)).

Figure A.7: A settings file for the Musk data set.

A.7. DITERPENES 193

begin(background) .

long(al). 1long(a34). 1long(ab4). long(b19). (...)
usual(a3). wusual(a39). usual(bil). (...)

short(a6). short(a9). short(all). short(al3d). ...)
circuit(c15). circuit(c16). circuit(cl7). (...)
half_circuit(a36). half_circuit(a37). (...)

...)

neighbour(A,B) :- neighbour_xy_r(A,B); neighbour_yz_r(A,B);
neighbour_zx_r(A,B).

neighbour(A,B) :- neighbour_xy_r(B,A); neighbour_yz_r(B,A);
neighbour_zx_r(B,A).

neighbour_xy_r(a34,a35).

neighbour_xy_r(a35,a26).

...

opp(A,B) :- opposite(A,B); opposite(B,A).

opposite(all,a3).

opposite(a9,a3d).

opposite(a31,a25).

...

end(background) .

begin(model(al)).
resolution(17).
structure(a).
mesh_id(al).

end(model(al)).

begin(model(a2)).
resolution(1).
structure(a).
mesh_id(a2).

end(model(a2)).

begin(model(a3)).
resolution(8).
structure(a).
mesh_id(a3).

end(model(a3)).

Figure A.8: Data representation in the Mesh data set.

194 APPENDIX A. DATA SETS

tilde_mode(regression).
euclid(resolution(X), X).

property(E, long(E)).
property(E, usual(E)).
property(E, short(E)).

...

property(E, two_side_loaded(E)).
property(E, cont_loaded(E)).

/* lookahead specifications */

lookahead (opp(E1,E2), X) :- property(E2, X).
lookahead (neighbour(E1,E2), X) :- property(E2, X).
lookahead(eq(E1,E2), X) :- property(E2, X).

rmode(5: long(+E)).

rmode(5: usual(+E)).

...

rmode(5: two_side_loaded(+E)).
rmode(5: cont_loaded(+E)).

rmode(5: neighbour(+E, -E2)).
rmode(5: opp(+E, -E2)).
rmode(5: eq(+E, -E2)).
root(mesh_id(E)).

Figure A.9: A typical settings file for the Mesh data set. The task is defined
as regression on the first argument of the resolution predicate.

A.8. ROBOCUP 195

A.8 RoboCup

This is a data set containing data about soccer games played by software agents
training for the RoboCup competition (Kitano et al., 1997). It contains 88594
examples and is 100MB large. Each example consists of a description of the
state of the soccer terrain as observed by one specific player on a single moment.
This description includes the identity of the player, the positions of all players
and of the ball, the time at which the example was recorded, the action the
player performed, and the time at which this action was executed. Figure A.10
shows one example.

The classes are high-level representations of the actions of the agents; they
are not represented explicitly in an example but computed from the description
of the example.

A.9 Poker

The Poker application was first used in (Blockeel et al., 1998a). It consists of
several data sets of different size, all generated automatically using a program
that mimics the way in which cards are assigned to hands (i.e. the class dis-
tributions are as they really occur in Poker games). In the classification prob-
lem we consider, there are 7 classes: pair, double_pair, three_of_a kind,
full house, flush, four_of_a kind, nought. This is a simplification of the
real poker domain, where one distinguishes e.g. pair of kings and pair of eights,
etc.

Using a program that randomly generates examples for this domain has the
advantage that one can easily create multiple training sets of increasing size, an
independent test set, etc., which offers a lot of flexibility for experimentation.

An interesting property of this data set is that some classes are very rare,
hence a large data set is needed to learn these classes (assuming the data are
generated randomly).

Figure A.11 illustrates how one example in the Poker domain can be rep-
resented. An example of a typical settings file is given in Figure A.12.

196 APPENDIX A. DATA SETS

begin(model(e71)).
player (my,1,-48.804436,-0.16494742,339) .
player (my,2,-34.39789,1.0097091,362) .
player (my,3,-32.628735,-18.981379,304) .
player(my,4,-27.1478,1.3262547,362) .
player(my,5,-31.55078, 18.985638,362) .
player(my,6,-41.653893,15.659259,357) .
player (my,7,-48.964966,25.731588,352) .
player (my,8,-18.363993,3.815975,362) .
player (my,9,-22.757153,32.208805,347) .
player(my,10,-12.914384,11.456045,362) .
player(my,11,-10.190831,14.468359,18).
player (other,1,-4.242554,11.635328,314) .
player (other,2,0.0,0.0,0).
player (other,3,-13.048958,23.604038,299) .
player(other,4,0.0,0.0,0).
player (other,5,2.4806643,9.412553,341) .
player (other,6,-9.907758,2.6764495,362) .
player(other,7,0.0,0.0,0).
player (other,8,0.0,0.0,0).
player (other,9,-4.2189126,9.296844,339) .
player (other,10,0.4492856,11.43235,158) .
player (other,11,0.0,0.0,0).
ball(-32.503292,0.81057936,362) .
mynumber (5) .
rctime(362).
turn(137.4931640625) .
actiontime(362) .

end (model (e71)) .

Figure A.10: The Prolog representation of one example in the RoboCup data
set. A fact such as player (other,3,-13.048958,23.604038,299) means that
player 3 of the other team was last seen at position (-13,23.6) at time 299. A
position of (0,0) means that that player has never been observed by the player
that has generated this model. The action performed currently by this player
is turn(137.4931640625): it is turning towards the ball.

A.9. POKER

begin(model(4)).
card(7,spades) .
card(queen,hearts) .
card(9,clubs).
card(9,spades) .
card(ace,diamonds) .
pair.

end(model(4)).

Figure A.11: An example from the Poker data set.

classes([nought,pair,double_pair,three,full_house,flushl,four]).

typed_language(yes).
type(card(rank,suit)).
type(X \= X).

rmode(card(-X,-Y)).
rmode (+X \= +Y).

max_lookahead(2).
lookahead(card(X,Y), card(-U,-V)).
lookahead(card(X,Y), X \= +Z).
lookahead(card(X,Y), Y \= +Z).
lookahead((X \= Y), (+U \= +V)).

Figure A.12: A typical settings file for the Poker data set.

197

Index

d-correctness 85
@-subsumption 105, 107
x2-test 53

construct 110

accuracy 20

agglomerative clustering methods 22
analysis of variance 52

ANOVA 52

APRIORI 143

AQ 58

artificial intelligence 1

associated query 94

ASSOCIATE procedure 95
attribute-value learning 68

between-subset variation 52

BEST_TEST function 147, 149

Biodegradability data set 128, 136,
188

C0.5 141
C4.5 49, 54, 117

— pruning strategy 55
caching 152
CART 49, 52, 143
category utility 31
characteristic description 23
Chebyshev distance 10
chemical database example 75, 78
class entropy 51, 114
classification tree 47
classification 17, 20
CLAUDIEN 87

198

cluster 14
cluster assignment function 18
clustering 16
— task definition 16
conceptual — 24
descriptive — 29
extensional flat — 13
extensional hierarchical — 14
intensional flat — 15
intensional hierarchical — 15
predictive — 18, 29
clustering flexibility 26
clustering space 16
clustering tree 48
CN2 54, 58
CNF 62
COLA 41
COLT 85
computational learning theory 85
concept learning 67
conceptual clustering 24
conjunctive normal form 62
covering approach 58
cross-validation 129

data mining 3

decision list 56

decision tree 46

deduction 4

definite logic program 94

DERIVE_LOGIC_PROGRAM procedure
95

descriptive ILP 86

descriptive quality of clusterings 31

INDEX

discretization 114
discriminant description 23
disjunctive normal form 62
distance 10
— between sets 12
Diterpenes data set 128, 131, 134,
191
divide-and-conquer 48
divisive clustering methods 22

DNF 62

equality distance 11
FEuclidean distance 10
explanatory ILP 86
expressiveness results

for first order formalisms 97

for propositional formalisms 100
extensional clustering system 23
extensional description 14
extensional flat clustering 13
extensional hierarchical clustering 14

feature construction 71
—in ILP 74

FFoiL 58, 81, 99

FINES example 75

first order logical decision tree 93

flat logic program 98

flexibility 26

flexible prediction 32

flexible prediction tree 47

FoipL 58, 81, 99

FoiL 58, 79, 99, 111

FOLDT 93

Fors 79

Fruit& Vegetables example 17, 23,
24, 34, 41, 47, 48, 56, 57,
66

F-test 54

gain ratio 51
Gini heuristic 51

199

granularity 156
GROW _RULE procedure 58
GROW_TREE procedure 50, 106

Hamming distance 11
hybrid approaches 42
hypothesis 5

ICL 54, 58, 87, 114, 143

ID3 54

ideal prototype function 13

ILP 5

INDUCE_RULESET procedure 58
induction 2

inductive logic programming 5
INFO 49, 54, 117, 119, 120
information 38

information gain 51

information gain ratio 51
instance-based learning 33
intensional clustering space 66
intensional clustering system 23
intensional clustering task 66
intensional description 14
intensional flat clustering 15
intensional hierarchical clustering 15
INTERPRETATIONS procedure 78
Iris data set 127, 138, 183

KATE 91

KEPLER 167

KBG 143

k-nearest neighbor 33
knowledge discovery 2

language bias 27
layered logic program 98
lazy evaluation 110
learning 1
— from entailment 81
— from interpretations 72, 86
— from multiple relations 74
linear piece-wise regression 21

200

locality assumption 79
logic programming 4
lookahead 112
lookahead setting 113

machine learning 2

machines example 92

Mahalanobis distance 11

Manhattan distance 10

MasterProLog 105, 155

MDL principle 53, 115

mean squared prediction error 21

minimal Herbrand model 71

minimal description length 53, 115

Minkowski distances 11

ML-SMART 91

MSE 21

multiple-instance problem 128

Mesh data set 128, 132, 191

Musk data set 128, 130, 134, 189

Mutagenesis data set 127, 129-142,
155, 157-162, 183

noise handling 41
nonmonotonic ILP 84
normal logic program 94
normal semantics 79
numerical taxonomy 24

OPTIMAL_SPLIT 49, 51, 117, 119
optimization opportunities 150-154
outlier detection 44

PAC-learning 85

partition utility 31

pattern completion 32

Poker example 65, 69-83

Poker data set 155, 161-166, 195
post-pruning 55

predicate invention 74

TARGET procedure 46
predictability 31

prediction 20

INDEX

PREDICT procedure 46, 94
predictive accuracy 20
predictive clustering 18
predictiveness 31
predictive quality of clusterings 31
predictor 20
probably approximately correct 85
Procor 58, 79, 81, 99, 111, 114,
167

Prolog 4
ProLog-by-BIM 105
prototype 13

— function 13

ideal — 13
PRUNE 49, 55, 117, 119, 121
PRUNE_TREE procedure 118
pruning 55

quasi-order 107
query simplification 126

RDT/DB 156, 167

refinement operator 106, 107
regression tree 47

regression 17, 21

relative error 31

RIBL 144

rmode setting 106

RoboCup data set 154, 161-166, 195
rule sets 56

sample complexity 85

scarce class information
learning from — 41

separate-and-conquer 58

significance tests 53

SIMPLIFY procedure 127

SLIQ 167

SORT procedure 46

Soybeans data set 127, 138—-140, 183

splitting heuristics 51

SPRINT 167

SRT 43, 49, 52, 79, 91, 99, 143

INDEX

STOP_CRIT 49, 53, 117, 119, 120
stopping criteria 53

STRUCT 49, 91, 99, 143
supervised learning 37

syntactic variants 107

target function 20
TDIDT 48
TDIDT procedure 50
TIC 121
TILDE 103-
procedure 106
TILDEclassic 146
TILDELDS 148
procedure 149
TILDE-RT 119
time complexity 85
— of TDIDT 125
top-down induction of decision trees
48
total variation 52
tractable 85
TRrITOP 91, 99
Tweety 71
typed_language setting 109
type setting 109

unsupervised learning 37

validation set 55
— based pruning 55

WACE function 147
WARMR 143, 167
within-subset variation 52

201

