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Although Repeated Measures ANOVA is generally used to analyze experimental designs, this 
technique does not suffice to describe all variance in a crossed effects experiment. Responses 
are generated from the same subjects and simultaneously those responses will be collected for 
the same stimuli, exposing the independence of the observations and the generalizability of 
the results. We address this methodological concern by fitting a mixed-effects model to 
reanalyze the outcomes of an experiment in marketing communications. In that experiment, a 
RM ANOVA was used to analyze the impact of a condition and a treatment factor on the 
recall of products displayed on a computer screen and where the within-subject variance was 
a random effect (Janssens et al., 2011). Although no major impact on the fixed effects was 
identified, the interaction between the experimental condition and the treatment remained 
significant, the mixed-effects model with two random effect terms outweighs a RM ANOVA 
with only one random effect term for subject. It significantly reduces the overall variance and 
significantly improves the predictive power of the model. Additionally, the intra-class 
correlation reveals that the random effect term for the stimuli explains 49.14% of the variance 
compared to only 7.93% for the subjects.  
 

 

 

 

  



1 Introduction 
 
In marketing communication, there is a burgeoning interest in experimental approaches 
(Alhabash & Wise, 2012; Janssens et al., 2011; Krakowiak & Oliver; 2012; Mazodier et al., 
2012) which allow to detect more conclusive causal relations than it is generally the case in 
observational and survey-based research. It is common practice to use a Repeated Measures 
ANOVA (RM ANOVA) to account for the correlation or non-independence of the 
experimental outcomes. In the current study, we argue that RM ANOVA is not the technique 
best suited to analyze the results of a crossed effects experiment, since it only allows to model 
one grouping factor, generally the subjects, discarding the variance caused by the stimuli and 
hence jeopardizing the generalizability of the results, since one source of variance is excluded 
from the model. 
 We will reanalyze an existing experiment in marketing communication research (Janssens 
et al., 2011) to demonstrate that mixed-effects models (Gelman & Hill, 2007; Pinheiro & 
Bates, 2010) are better suited to analyze crossed effects experiments. That is, both subjects 
and stimuli can simultaneously be included in the model as random effect terms, next to the 
fixed effect terms representing the experimental condition and treatment factor (Baayen et al., 
2008; Quené & Van den Berg, 2008; Richter, 2006).  
 
 
2 Problem statement: sources of variance in experimental designs with crossed 

effects 
 
In a crossed effects design, all subjects participating in the experiment respond to the same set 
of stimuli. Consequently, the observations display a twofold dependency since they are 
grouped under the subjects, each subject responding to the same set of stimuli, as well as 
under the stimuli, each stimulus being responded to by all subjects participating in the 
experiment. Therefore a statistical model is required that includes both sources of variance 
simultaneously in order to generalize the results beyond the sample of subjects as well as 
beyond the sample of stimuli used in the experiment. This is impossible in a RM ANOVA 
where only one source of variance is modeled, generally the subjects. In psychological 
research, different solutions have been proposed to overcome this problem, such as the F1 and 
F2 statistics and the F’min statistic. However, all these solutions face different problems that 
can be overcome by using mixed-effects models (see Baayen et al. (2008), Quené & Van den 
Bergh (2008) and Richter (2006) for a discussion). Finally, the sphericity and 
homoscedasticity assumptions of RM ANOVA, which appear not always to be explicitly 
tested in actual research, do not apply to mixed-effects models.  
 Mixed-effects models are characterized by the combination of fixed and random effect 
terms (Gelman & Hill, 2007; Pinheiro & Bates, 2000). Fixed effect terms exhaust all levels of 
a parameter. Hence, their values cover all values in the population, such as gender whose 
values can be male or female. Random effect terms are sampled from a larger population and 
therefore only represent a sample of the actual population, that will probably differ in a 
replication study. Fixed effect terms are modeled by means of contrasts and random effect 
terms are modeled as random variables with 0 as mean and an unknown variance (N(0,σ²)). 
Mixed-effects models allow to account for the non-independence of observations by inclusion 
of random effects corresponding to the grouping variables, viz. the subjects and the stimuli in 
the experiment, so that correlations between observations are directly modeled. 
 In this contribution, we will fit a random intercept model, where a separate intercept is 
estimated for every value of the grouping variables, viz. the subjects and the stimuli in the 
experimental design. This boils down to a correction of the intercept for each subject and each 



stimulus according to the deviation of their variance to the overall variance (represented by 
the fixed intercept which is the mean of all random intercepts). 
 
 
3 Case study 
 
3.1 Original experiment 
 
The main purpose of the original experiment was to investigate whether exposure to a mating 
cue induces perceptual readiness (Janssens et al., 2011). To this end, subjects were briefly 
exposed to ten visual stimuli. Each stimulus was a display consisting of six products. 
Subsequently the subjects were instructed to list as many products as they could recall 
(Roskos-Ewoldsen & Fazio, 1992). Of the six products within a given display, one product 
was associated with a high status. The hypothesis predicts that exposure to a mating cue will 
automatically divert attention towards that object in the visual display that evokes a high 
social status and that this will be especially the case for single men as opposed to men 
involved in a committed relationship. Male subjects were exposed to either a sexily dressed 
female experimenter or a plainly dressed female experimenter before engaging in a visual 
status display task.  
 Fournier & Richins (1991) found that materialists often prefer consumption of high status 
associated goods. In a similar vein, Richins (1994) showed that people high in materialism are 
more likely to place greater importance to expensive goods and goods that communicate 
prestige than people low in materialism. Thus, it seems very reasonable that attention to high 
status goods, often expensive luxury items (Richins & Dawson, 1992; Wang & Wallendorf, 
2006), may be a suitable indicator of materialism. Therefore, a computerized visual display 
task was used to measure participants’ attention to status (Roskos-Ewoldsen & Fazio, 1992). 
This task measures the attention people have for certain displayed objects. To be more 
precise, this visual attention task was used to measure people’s attention to and interest in 
high status goods. Participants were instructed that they would be exposed to six products 
displayed on a computer screen for a short period of time and were asked to recall as many 
products as possible. They were exposed to ten different displays, each consisting of six 
different product pictures. Each display remained on the screen for one second and comprised 
one picture of a status product (e.g. Breitling watch, Porsche, exclusive mansion) and five 
pictures of functional products (e.g. stapler, towel), randomly arranged in a circle on the 
computer screen. After exposure to each display, participants had 25 seconds to write down as 
many products as possible after which they were exposed to the next display.  
 The experimental condition, viz. the presence or absence of a mating cue, was manipulated 
through the clothing of the female who led the experiment. Two conditions were created, to 
which subjects were randomly assigned: the experimenter was either plainly (control 
condition) or sexily dressed (mating cue condition).  
 To check to what extent the subjects were involved in a (serious) relationship, their 
relationship status was asked. Responses were made using a asymmetrical 7-point Likert 
scale, ranging from 1 (I am single) to 7 (I am married). Each participant received a 
dichotomous relationship status score: single (n = 72) (responses < 3) or in a committed 
relationship (n = 61) (responses > 3). Subjects who responded 3 (n = 5) were eliminated from 
the dataset. 
 One hundred and thirty-three male heterosexual students participated, varying in age from 
17 to 32 years (M = 20, SD = 1.79). Of these participants 70 (52.6%) were assigned to the 
control condition (exposed to plainly dressed young woman), and 63 (47.4%) to the mating 
cue condition (exposed to sexily dressed young woman).  



 
3.2 Data matrix adaptation 
 
The original data matrix has to be adapted since both the subjects and the stimuli have to be 
simultaneously included as parameters in the model equation in order to appropriately 
structure the crossed effects design of the experiment. In the RM ANOVA with an error term 
for subjects, an aggregate stimulus score is computed per subject over the ten stimuli by 
adding the successful recalls of the status product. This procedure suggests that every subject 
was presented only one stimulus rather than that the same ten stimuli were presented to every 
subject, as it was actually the case in the original experiment.  
 To fit a mixed-effects model, every combination of subjects and stimuli has to be made 
explicit in the data matrix to reflect the variance due to both the subjects and the stimuli. This 
results in an expanded data matrix: instead of i rows (n = 133), viz. one per subject, the matrix 
consists of i x j rows (n = 1,330), viz. one for each subject x stimulus combination. When 
generating a contingency table for subjects (row variable) and stimuli (column variable), the 
crossed effects design of the experiment – every subject responding once to every stimulus – 
now clearly shows up, as illustrated in table 1: 

      s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 
p1097   1   1   1   1   1   1   1   1   1   1 
p4420   1   1   1   1   1   1   1   1   1   1 
p5626   1   1   1   1   1   1   1   1   1   1 
p6001   1   1   1   1   1   1   1   1   1   1 
p6313   1   1   1   1   1   1   1   1   1   1 
…       …   …   …   …   …   …   …   …   …   …  

Table 1: Contingency table summarizing the crossed effects design in adapted data matrix 
 Moreover, the level of measurement of the response variable is changed from numerical 
(sum of successful recalls of the 10 high status products per subject) into binomial (success 
vs. failure for the recall of the high status product for each stimulus by each subject). 
Consequently, we need the mixed-effects variant of a logistic regression, a generalized linear 
mixed-effects model (GLMM) (Gelman & Hill, 2007), with the odds success/failure for the recall 
of the high status product as response variable. 
 
3.3 Case study reanalyzed 
 
The original study using the RM ANOVA with subjects as random effect term will be 
reanalyzed by means of a GLMM with relationship status (relation ), mating cue 
(condition ) and their interaction as fixed effect terms and subject (subject ) and 
stimulus (stimulus ) as random effect terms. The GLMMs will be fitted by means of the 
lme4  library (Bates, 2005; Bates et al., 2013) in R (R Core Team, 2012). To be more precise, 
two GLMM models will be estimated. First, a model with only subject as random effect 
(glmm1) will be fitted as non-numerical pendant of the RM ANOVA. Next, the full GLMM 
model will be fitted with both subject and stimulus as random effects (glmm2). Both models 
are random intercept models, where only the intercept can vary over the values of the random 
effect terms.  
 We start by inspecting the coefficients of the fixed effect terms. The data in table 2 show 
that the major split is caused by the removal of the aggregation over the stimuli, since the 
main effect of relation is significant in both GMLLs as opposed to the RM ANOVA. 
Furthermore, the differences between both GLMMs are limited to moderate modifications of 
the size of the regression coefficients.  

Parameter rm.anova glmm1 glmm2 



condition NS NS (0.13) NS (0.17) 
relation NS ** (0.43) ** (0.56) 
condition*relation  * * (-0.51) * (-0.66) 

Table 2: Significance (coefficients) of fixed effect terms in RM ANOVA and GLMMs 
 Although the data in table 2 seem to suggest a minor impact of the inclusion of a random 
effect term for stimulus in the model, the model statistics present a different image. First of 
all, the inclusion of the random effect term for stimulus realizes a highly significant reduction 
of the variance. An ANOVA with χ² as test statistic was computed to compare the difference 
between the deviance1 of both GLMMs. The outcome of this test yields a significant decrease 
of the residual variance (χ² = 251.53, df = 1, p < 2.2e-16). 
 These findings are corroborated by the comparison of the index of concordance (c index) 
of both models2: whereas the model with only subject as random effect term has a rather 
unsatisfactory c index of 0.5933 (95% CI = [0.5915;0.5951]), the model with two random 
effect terms displays a highly satisfactory c index of 0.8078 (95% CI = [0.8065;0.8091]).  
 The model statistics clearly support the model with both random effects (glmm2). Let us 
now have a closer look at the random part of this model, as summarized in table 3.  

Random effects: 
 Groups       Name        Variance Std.Dev. 
 subject     (Intercept)  0.18367  0.42857  
 stimulus    (Intercept)  1.13734  1.06646  
Number of obs: 1330, groups: subject, 133; stimulus , 10 

Table 3: Random effects in glmm2 
In order to gage the proportion of the total variance explained by the random effects, we will 
compute the intra-class correlation coefficient (ρ) for both random effects. Again, the figures 
show that the impact of the subjects (ρ = 0.0793) is outreached by the impact of the stimuli (ρ 
= 0.4914), which are responsible for almost half of the variance in the model. It is common in 
experimental research that random effects account for substantial proportions of the overall 
variance, but generally it are the subjects rather than the stimuli who account for the major 
part of the variance.  
 The effect of both random parameters is shown in figure 1, where the random intercepts of 
the subjects (plot above) and the stimuli (plot below) are visualized with their 95% CI in grey. 
Please notify that the random effects rather than the coefficients of the intercepts are plotted, 
which implies that they identify the deviations from the overall intercept (dotted black line in 
both plots) which is the mean of all the random intercepts and equals 0 (cf. section 2). In the 
plot above, we can observe that the subjects display moderate variance and that all CIs cross 
the overall intercept, indicating that the average recall rate of no subject significantly differs 
from the overall baseline recall rate. In line with the above-mentioned results, more clear-cut 
differences emerge from the plot below. First, the intercept of 6 out of 10 stimuli significantly 
differs from the overall intercept: stimuli s01, s03 and s08 entail average recall rates that are 
significantly higher than the overall baseline, whereas the average recall rates of stimuli s06, 
s07 and s09 are significantly lower than the overall baseline recall rate. Second, two distinct 
clusters of stimuli with significantly different random intercepts arise: s01, s03 and s08 
display significantly higher recall rates than stimuli s02, s04, s05, s06, s07, s09 and s10.  

                                                           

1
 The deviance equals -2 * log likelihood of a model and follows a chi-squared distribution. 

2 The c index computes the area under the Receiver Operating Characteristic curve, that plots 
the true positive rate against the true negative rate. When interpreting the c index (c ∈ 
[0.5;1.0]), c ≥ 0.8 is considered to be indicative of a very good model. 



 

Figure 1: Deviations of random intercepts for subjects and stimuli from overall intercept 
 
 
4 Discussion 
 
The present research hypothesized that RM ANOVA is not the technique best suited to model 
variance in an experiment with crossed effects. Although coefficients and their p-values 
hardly differ, the inclusion of the second random effect term for the stimuli significantly 
improved the descriptive and predictive power of the model due to the further structuring of 
the error term. Results show that the baseline values for the stimuli display significant 
differences from the overall baseline value of the model and that baseline values of the stimuli 
mutually differ significantly. These findings are overlooked in a RM ANOVA with a random 
effect for subjects only. Furthermore, the high intra-class correlation for the stimuli clearly 
proves that the subjects’ responses show a high degree of intra-group closeness: observations 
for the same stimulus are similar on different subjects and simultaneously different from the 
observations for other stimuli. In short, the GLMM has unveiled a significant effect of the 
stimulus on the successful recall of high status goods, suggesting an impact of the screen 
position of that good. 
 Future research will proceed along the following lines. First, it will be tested whether the 
present GLMM model can be improved by including random slopes allowing the fixed effect 
terms to vary across subjects and stimuli. Second, to fully understand the role of the stimuli, 
the impact of the display position on the successful recall rate will be further investigated. 
 The results argue for a well-considered selection of the statistical technique in 
experimental research in order to represent the characteristics, especially the non-
independence of the observations, of the research design to obtain the best fitting model and 
to maximize the generalizability of the results. 
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