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This work compares various numerical methods to robustify periodic optimal control problems using the paradigm of Lyapunov ditfer-
ential equations. In this paradigm, estimates for state-covariance are obtained by solving the periodic Lyapunov equations for the a
system linearised along a to-be-optimized trajectory, and are added to objective or constraints of the original optimal control problem.
For non-trivial dynamical systems, method details were found to be critical to obtain algorithms with reasonable time complexity. An
application for time-optimal quadcopter flight is worked out numerically with the optimal-control tool CasADi, which was extended by

the author to solve discrete periodic Lyapunov equations using the SLICOT library.
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I'= pendulum example (n = 2. .. 4 states) Numerical: N = 20, 3"-order Radau, IPOPT with BFGS
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