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Abstract
This work compares various numerical methods to robustify periodic optimal control problems using the paradigm of Lyapunov differ-
ential equations. In this paradigm, estimates for state-covariance are obtained by solving the periodic Lyapunov equations for the a
system linearised along a to-be-optimized trajectory, and are added to objective or constraints of the original optimal control problem.
For non-trivial dynamical systems, method details were found to be critical to obtain algorithms with reasonable time complexity. An
application for time-optimal quadcopter flight is worked out numerically with the optimal-control tool CasADi, which was extended by
the author to solve discrete periodic Lyapunov equations using the SLICOT library.

Problem statement
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Uncertainty ellipsoid
P � 0 ∈ Sn

Robustify

Goal: Robustify the path constraints in a periodic optimal con-
trol problem (OCP), using the method of Lyapunov differential
equations[2]

minimize
x(t),u(t),P (t)

J(x(•), u(•)) Objective

s.t. ẋ(t) = f (x(t), u(t)) System dynamics
x(0) = x(T ) Periodic state

0 ≤ h(x(t))+γ
tuning knob
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︸ ︷︷ ︸
Variance of h(x)

Scalar path constraint

Ṗ (t) = A(t)P (t) + P (t)AT (t)︸ ︷︷ ︸
sink

+Q(t)︸︷︷︸
source

Covariance propagation

P (0) = P (T ) Periodic covariance

Classic method: Augment state [x; vec(P )] and feed to your
favourite OCP solver (multiple shooting, direct collocation, . . . )
Upendulum example (n = 2 . . . 4 states)
D real applications (n = 10 . . . 20)

Smarter discretization[1]
Problem: Property of positive-definiteness not preserved during
integration, e.g. forward Euler:

Pk+1 = Pk + ∆t(AkPk + PkA
T
k )

= (1 + Ak∆t)Pk(1 + Ak∆t)
T−(∆t)2AkPkA

T
k

Solution: Work directly in
discrete time, using integra-
tor sensitivities ∂I

∂x(xk, uk) ≡
Ãk (automatic differentiation –
AD):

Pk+1 = ÃkPkÃ
T
k
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Better complexity O(n6)→ O(n3)

Observation: The (discrete) robustified OCP has n2N extra de-
cision variables (P•) and n2N extra (linear) constraints:

P(k+1) mod N = ÃkPkÃ
T
k + Q̃k, k = 0 . . . (N − 1)

→Non-linear problem (NLP) with dense n2 − by − n2 blocks
in constraint Jacobian, O(n6) runtime

Improvement: Eliminate P• and its constraints from the NLP:

P• = LyapSolver
(
Ã•(x•, u•), Q̃•(x•, u•)

)
→ Implemented periodic Schur decomposition solver[3], us-

ing SLICOT, O(n3) runtime

→Embedded in a CasADi expression graph, implemented
forward and adjoint mode AD

Quadcopter application

A

B

→Fly periodically A → B around obstacle
as fast as possible

→Nonlinear model (n = 17) with quater-
nions for orientation

→Linear feedback controller K• to stabilize
the system

Numerical: N = 20, 3rd-order Radau, IPOPT with BFGS

→ 1444 variables, 1548 constraints, 183739 nonzeros in Jacobian

→ 41 iterations to convergence, 2.4s for a Jacobian evaluation
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