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Abstract

Many methods for multi-objective optimi-
sation exist, and there are multiple studies
in which their performance is compared in
terms of a wide range of evaluation metrics.
Usually, these studies compare the end result
of the optimisation process on given bench-
marks; they do not evaluate how fast this
end result is obtained, nor how properties of
the benchmarks affect these results. In this
paper, we investigate how the search space
dimensionality of optimisation problems af-
fects the behaviour of different methods, not
only in terms of the end result but also in
terms of how fast it is achieved. We com-
pared two particle-swarm based optimisers,
an elitist evolutionary algorithm and a scat-
ter search algorithm. Our results show that
while the PSO-based methods generally con-
verge faster or equally fast compared to the
others, they found a less diverse set of solu-
tions.

1. Introduction

In many optimisation settings the task requires the
optimisation of several objectives at once. Generally
these objectives are conflicting, as a result no single
optimal solution exists. Instead, an optimiser must
find a set of mutually non-dominating solutions, called
the Pareto-front. A solution dominates another one, if
it scores strictly better for at least one objective, and
equal or better on the other objectives, compared to
the other solution.
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Several multi-objective evolutionary algorithms
(MOEAs) have been developed in recent years to
deal with these so-called multi-objective optimisa-
tion problems. Some published work concerning
an empirical comparison of these systems does
exist (Bradstreet et al., 2007; Durillo et al., 2009;
White & He, 2012). In general, this work executes
a number of different algorithms on a number of
different benchmark problems, and reports the final
scores of several performance measures. However,
this approach disregards how the values of the per-
formance measures progress through the execution
of the algorithm. For example, algorithm A may
achieve a slightly sub-optimal solution very quickly,
while algorithm B slowly creeps toward the global
optimum. The end score reveals algorithm B having
superior performance, however if we investigate the
performance progress, we might prefer algorithm A
since we find a decent solution more quickly.

Additionally it is useful to investigate an algorithm’s
behaviour on varying problem dimensionality. Differ-
ent benchmark problems often have different dimen-
sionalities, but this alone might not explain differences
in performance of an algorithm, since the different
benchmarks might have other characteristics which in-
fluence the algorithm. A more controlled experimental
setup can provide more precise information.

In this work, we address both points. The work is
motivated by a concrete application, namely compiler
optimisation. Many compilers have a wide range of op-
timisation options, with possibly antagonistic effects
(e.g., one optimisation destroys opportunities for an-
other one). Depending on what is to be optimised
(execution speed, memory space, energy requirements,
compilation speed, . . . ), and what kind of program is
being compiled, different combinations of options may
be optimal, and finding them is nontrivial (Hoste &
Eeckhout, 2008). Multi-objective optimisation meth-
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ods can be used for this, but fitness evaluations are ex-
pensive (they require a full program compilation) and
the input space is high-dimensional. In this context,
a study of how search-space dimensionality affects the
efficiency and solution quality is useful.

In this paper we revisit several MOEAs and investi-
gate their performance progress during execution as
well as their sensitivity to varying search-space dimen-
sionality. We use the DTLZ (Deb et al., 2002b) and
WFG (Huband et al., 2005) benchmark suites since
their problems allow us to set the search-space dimen-
sionality.

The remainder of this paper is organised as follows: in
Section 2 we briefly introduce the MOEAs used in this
comparison. Section 3 explains our experimental setup
and Section 4 discusses the results of the experiments.
In Section 5 we draw conclusions on these results.

2. MOEAs

For this paper, we selected three recent MOEAs that
have shown good performance in a previous compar-
ative study (White & He, 2012), as well as NSGA-II
(Deb et al., 2002a). The first two selected algorithms
are OMOPSO (Sierra & Coello, 2005) and SMPSO
(Nebro et al., 2009). Both are multi-objective exten-
sions of particle swarm optimisation (PSO). PSO al-
gorithms are inspired by the collective behaviour of
social animals, like the collective movement of birds in
a flock. The location of individuals in the search space
is updated using a simple set of rules. Additionally
solutions might be mutated using a polynomial mu-
tation operator. The third algorithm is AbYSS (Ne-
bro et al., 2008), which is a multi-objective algorithm
based on scatter search. In scatter search, a small
population or reference set is used from which new in-
dividuals are constructed systematically. NSGA-II is a
well-known elitist genetic algorithm that uses fast non-
dominated sorting and crowding distance assignment
to select individuals which will generate the next off-
spring population. Although NSGA-II was developed
over ten years ago, it is still widely used, and other
authors have shown it is still competitive with more
recent methods (White & He, 2012). Both NSGA-II
and AbYSS use simulated binary crossover and poly-
nomial mutation operators for dealing with real-valued
parameter vectors.

3. Experimental Setup

We compare the algorithms using the DTLZ (Deb
et al., 2002b) and WFG (Huband et al., 2005) bench-
mark suites. These benchmark suites consist of a num-
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Figure 1: The dashed lines represent the Pareto front
for two objective functions f1 and f2 in a minimisa-
tion setting. The points x(i) denote Pareto-optimal
solutions. The area bounded by the dashed and dot-
ted lines represents the hypervolume metric for this
Pareto front with respect to the reference point p.

ber of artificial functions that are designed to make
finding the Pareto-front difficult. Each algorithm is
given a population of size 100, and is given a bud-
get of 75000 function evaluations. Other algorithm
parameters are kept at their defaults as suggested by
their respective authors. All algorithms are executed
40 times on all problems. The search space for the op-
timization algorithms is exactly the parameter space of
the test problems. We vary the number of parameters,
i.e. the search space dimensionality, d of all problems
in the set d ∈ {6, 10, 15, 20, 25, 30}.

The DTLZ test problems were constructed by using a
bottom-up approach. First the desired Pareto-front
is expressed mathematically in the objective space.
The rest of the feasible objective space should be lo-
cated above this Pareto-front. This can be achieved
by multiplying the Pareto-front expressions by a term
greater than or equal to one. This term, as well as
the variables for the Pareto-front expressions, can be
constructed as a function of the input vector x, re-
sulting in an optimisation problem with the desired
Pareto-front. As an example, Equation (1) shows the
minimization problem DTLZ1 with two objectives and
n parameters.

Minimize f1(x) = 1
2x1(1 + g(x)),

Minimize f2(x) = 1
2 (1− x1)(1 + g(x)),

subject to 0 ≤ xi ≤ 1, for i = 1, . . . , n
g(x) = 100

[
n+

∑
xi∈x(xi − 0.5)2−

cos(20π(xi − 0.5))]
(1)

The WFG toolkit problems are defined by a vector of
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parameters x. This vector is derived from a vector of
working parameters z, through a series of transition
vectors. Each of these transition vectors adds com-
plexity to the problem, such as multi-modality or non-
separability. The optimisation method directly manip-
ulates z, through which x is indirectly manipulated.
The parameters in z are labelled as either position-
related or distance-related parameters. In our experi-
ments we keep the number of position-related param-
eters constant at 4. We vary the number of distance-
related parameters in the set {2, 6, 11, 16, 21, 26}, such
that the total dimensionality is varied over the same
set as for the DTLZ problems. Since the scope of
this paper is limited to search-space dimensionality,
we keep the number of objectives for all test problems
at two.

Rather than bombarding the reader with dozens of
performance metrics, we choose to base our experi-
ments on the hypervolume metric (Zitzler & Thiele,
1999) and the spread metric (Deb et al., 2002a). The
hypervolume metric measures the size of the objective
space that is enclosed between the Pareto front found
by an algorithm, and a reference point. Since the opti-
mal Pareto fronts are known for DTLZ and WFG, this
indicates how closely an algorithm is able to approxi-
mate the optimal Pareto front. Figure 1 illustrates the
concept of hypervolume.

Spread is a measure of how well spread out solutions
on the Pareto front are. A small spread measure indi-
cates solutions are distributed evenly across the Pareto
front. As larger gaps occur on the front, the spread
metric increases.

The solutions of each execution are stored in an archive
of size 200, where solutions are sorted based on Pareto
dominance and crowding distance.

4. Experimental Results

The graphs in this section all include error bars. These
represent ± one standard deviation from the mean
measured over 40 executions. Some test problem plots
showed largely equivalent characteristics to others.
These are not included separately, but are mentioned
between parentheses in the title of the equivalent plots.

4.1. Sensitivity Analysis of Search-Space
Dimensionality

In the first part of our experimental setup, we look at
the achieved hypervolume at the end of execution, in
function of varying search-space dimensionality. Fig-
ure 2 shows plots for the DTLZ test problems. Intu-
itively, we would expect to see at least a small amount
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Figure 2: Hypervolume metric in function of search-
space dimensionality for the DTLZ test problems.
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Figure 3: Spread metric in function of search-space
dimensionality for the DTLZ test problems.

of degrading performance as the dimensionality in-
creases, but this is not always the case. In fact the par-
ticle swarm based optimisers (SMPSO and OMOPSO)
seem to be largely unaffected. For the 1st, 3rd and
6th test problem, NSGA-II and AbYSS clearly shows
sensitivity to increasing dimensionality. These test
problems have multiple local Pareto-optimal fronts, a
property that does not appear in the other DTLZ test
problems. This result shows that NSGA-II and AbYSS
are particularly sensitive to increasing search-space di-
mensionality when the objective space contains local
Pareto-optimal fronts. Furthermore it is noteworthy
that the PSO-based methods have generally small vari-
ance in their performance compared to the other algo-
rithms. This indicates a more stable migration of the
population towards the optimum.

Figure 3 shows the impact of search-space dimension-
ality on the spread metric. Performance as measured
by the spread metric seems largely unaffected by in-
creasing dimensionality, with the exception of NSGA-
II’s performance on the 1st and 3rd test problems.
Since these test problems contain multiple local Pareto
fronts, it is possible not all solutions are on the same
front, thus increasing the spread metric. However for

all but the highest dimensionality setting, as well as for
all other DTLZ test problems, NSGA-II outperforms
its competitors in terms of the spread metric. Out of
the compared MOEAs, NSGA-II is the only one with
built-in preference towards a well-spread population
by means of the crowding distance assignment, which
explains these results.

Figure 4 shows plots for the hypervolume metric on
the WFG test problems. For brevity, not all plots are
reported here. In contrast to results obtained from
the DTLZ test problems, here the PSO-based meth-
ods show the highest sensitivity to increasing search-
space dimensionality, and are generally outperformed
by NSGA-II and AbYSS. While some of the WFG test
problems also incorporate multi-modality, the ”hill
size between the local fronts is 10 times higher in the
DTLZ problems, making it easier for EAs to get stuck
in a local optimum.

The contrast in performance between the two bench-
mark suites might also be explained by the structure
of the WFG test problems themselves. As mentioned
in Section 3, the parameters in the search space for
WFG problems are labelled as either position-related
or distance-related parameters. Even though in ac-
tuality, parameters can also be a mix of these two,
the crossover operators of NSGA-II and AbYSS can
exploit the distinction between position and distance
parameters. Parent solutions on or near the Pareto-
front would have roughly the same set of distance pa-
rameters. As a result, a crossover operation only sig-
nificantly modifies the position parameters, generating
offspring on different locations of the Pareto-front, fa-
cilitating a faster discovery of the Pareto-front. This
theory can also explain the difference in spread metric
between the compared methods. These results indi-
cate that the lack of a crossover operator in PSO-based
methods can in some cases result in a significant dis-
advantage compared to EAs that do incorporate one.

4.2. Performance Progress Analysis

If we take a look at Figure 2(a), we might conclude
that the performance of NSGA-II is comparable to
SMPSO for DTLZ1 up to 15 input dimensions. How-
ever upon closer inspection of the run-time progress,
we can see that this is not the case. Figure 5 shows the
progress of the hypervolume dependent on the number
of function evaluations for two dimensionalities of the
DTLZ1 test problem. From these graphs we can see
that increasing the dimensionality from 6 to 15, the
amount of necessary function evaluations for NSGA-II
to reach convergence is roughly tripled. This insight
clearly gives preference to SMPSO even for the lower
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Figure 4: Hypervolume metric in function of search-
space dimensionality for the WFG test problems.
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Figure 5: Progress of the Hypervolume metric for the
DTLZ1 benchmark. The optimal hypervolume S∗ is
also shown.

dimensionality settings. Figure 6 shows the same ef-
fect on the DTLZ6 test problem, while the final hyper-
volumes of SMPSO and OMOPSO are comparable,
SMPSO converges more slowly in higher dimensions
than OMOPSO.

Another interesting observation is the fact that while
some methods converge prematurely, it is possible they
reach that state orders of magnitude faster than the
method that is superior in the end. Figure 7(a) demon-
strates this effect clearly for the 30-dimensional WFG1
problem. It takes NSGA-II about 30000 function eval-
uations to reach a hypervolume that the PSO-based
methods reached almost immediately. However after
that point, NSGA-II’s performance surpasses that of
its competitors. A more subtle example is given by the
30-dimensional WFG6 problem, shown in Figure 7(b).
Here the PSO-based methods double the performance
of NSGA-II, but only for the first 5000 function eval-
uations. These results show that in certain settings,
e.g. where only a limited amount of function evalua-
tions are permitted, the best choice of method might
not always be clear. On the other WFG test problems,
all algorithms converged to their maximum hypervol-



Sensitivity Analysis of Search-Space Dimensionality on Recent MOEAs

0 10000 20000 30000 40000 50000 60000 70000 80000
# evaluations

0.05

0.00

0.05

0.10

0.15

0.20

0.25
H

y
p
e
rv

o
lu

m
e

NSGA-II
SMPSO
OMOPSO
AbYSS
S ∗ =0.213

(a) DTLZ6, d = 6

0 10000 20000 30000 40000 50000 60000 70000 80000
# evaluations

0.05

0.00

0.05

0.10

0.15

0.20

0.25

H
y
p
e
rv

o
lu

m
e

NSGA-II
SMPSO
OMOPSO
AbYSS
S ∗ =0.213

(b) DTLZ6, d = 25

Figure 6: Progress of the Hypervolume metric for the
DTLZ6 benchmark. The optimal hypervolume S∗ is
also shown.

ume at roughly the same speed, therefore these plots
are not shown here.

5. Conclusion

In this paper we investigated the impact of varying
search space dimensionality on the performance of
several multi-objective evolutionary algorithms. We
showed that NSGA-II and AbYSS are particularly
sensitive to increasing dimensionality for multi-modal
problems. SMPSO and OMOPSO seem largely unaf-
fected by multi-modality or increasing dimensionality,
however the set of solutions generated by these meth-
ods are in almost all test cases less well spread out over
the objective space compared to NSGA-II and AbYSS.

Additionally we tracked the performance during the
execution of these algorithms rather than just consid-
ering the final performance measures. By investigating
the performance progress we showed that only observ-
ing a final score can be deceiving. In most compara-
tive studies, authors make sure to provide the methods
under study with enough function evaluations to reach
convergence. In some cases, what happens before this
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Figure 7: Progress of the Hypervolume metric for the
two of the WFG test problems in high search-space
dimensionality. The optimal hypervolume S∗ is also
shown.

point is also of interest, and should be considered. We
observed that in most cases, the PSO-based methods
converged after less or roughly equal amounts of func-
tion evaluations compared to the evolutionary meth-
ods. However these solutions might be suboptimal to
the ones discovered by NSGA-II or AbYSS, this was
particularly true for the WFG test problems. We the-
orised the lack of a crossover operator and the lack of
pressure from a crowding distance assignment might
be to blame for the difference in performance. This
theory can also explain why SMPSO and OMOPSO
consistently perform worse in terms of their spread
metric compared to NSGA-II and AbYSS. However
additional research is warranted in order to validate
this theory. In future work PSO-based methods could
be extended with a mechanism to pressure particles in
the swarm to be better spread out over the Pareto-
front.

Existing comparative studies generally do not perform
this type of analysis. They focus on the performance
only at the end of an algorithm’s execution, and do not
vary the search-space dimensionality of test problems.
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Our results show that including these analyses can lead
to additional and more detailed insights.
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