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Abstract Ground vibrations induced by railway traffic are often sattby means
of two-and-half dimensional (2.5D) models that are basedherlongitudinal in-
variance of the track geometry. In this paper, a 2.5D metloggyois used where
the finite element method is combined with a boundary elemmexthod, based on a
regularized boundary integral equation. In the formutattbthe boundary integral
equation, the Green’s functions of a layered elastic hatfsmre used, so that no
discretization of the free surface or the layer interfase®quired. The methodol-
ogy is applied to two cases. In the first case, two alternativdels for a ballasted
track on an embankment are compared. In the first model, tfessband the em-
bankment are modelled as a continuum using 2.5D solid elessywhereas a sim-
plified beam representation is adopted in the second modednAlarge difference
is found for the free field mobility of both models, which demstrates the need for
detailed 2.5D modelling of the embankement. In the secosd,dhe efficiency of
a vibration isolating screen is studied. A vibration ismlgtscreen is a soft or stiff
wave barrier. Due to the impedance contrast between thatiisglscreen and the
soil, incident waves are reflected. As a result, the vibrelgwels behind the screen
are effectively reduced. Both examples demonstrate tleatigle of detailed 2.5D
models result in a better insight in the mechanical behafitite coupled soil-track
system.

1 Introduction

For the prediction of railway induced vibrations, the getmef the track-soil sys-
tem is often assumed to be invariant in the longitudinalaiom [7]. This allows
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for a Fourier transform of the coordinate in the longitudigi@ection of the track
and leads to a solution in the frequency-wavenumber doméaierevthe original
three-dimensional (3D) problem is replaced by a two-dinere (2D) problem for
each wavenumber. This two-and-half dimensional (2.5Dhodblogy results in a
considerable reduction of the computation time [2, 7] coragdo full 3D models.

Recently, a novel 2.5D FE-BE methodology has been proposEdamcois et al.
[2]. The 2.5D FE-BE methodology combines the classical ZZ&Dmethod with a
novel 2.5D BE method, based on a regularized boundary isteguation in terms
of the Green'’s functions of a layered halfspace.

In this paper, the 2.5D coupled FE-BE models is applied topttesliction of
railway traffic induced vibrations. Two cases are considehe the first case, two
alternative models for a ballasted track on an embankmerd@npared. The 2.5D
BE-FE method is used to model the ballast and the embankreent alastic con-
tinuum, as an alternative to simplified ballast and embamtmedels used in the
literature [5, 7]. In the second case, the efficiency of aatibn isolating screen is
studied.

2 Methodology

The dynamic interaction between a railway track and the tyidg soil is a prob-
lem of dynamic soil-structure interaction. A domain decosippon method is used
to solve the problem, where the subdom@inrepresents the structure and the sub-
domainQs the soil (figure 1). Itis assumed that the geometry of thektimmvariant

Fig. 1 The geometry of the coupled soil-structure system.

with respect to the coordinatein the longitudinal direction. The soil is modelled
as a horizontally layered halfspace and, therefore, iamanvith respect to thg-
direction as well. The dynamic track-soil interaction desh is assumed to be linear
and all equations are elaborated using virtual work in tegdiency domain.
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The equilibrium equation for the dynamic soil-structuréenaction problem is
formulated in a variational form. For any virtual displacamfieldvy, imposed on
the structurey, the sum of the virtual work of the internal and the inertaides is
equal to the virtual work of the external loads:
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whereuy, is the displacement vector in the structupgh, denotes the body force
in the domainQy, andtgb = Op - Np is the traction vector on a boundary with unit
outward normal vectam, (figure 1). Traction%ﬂb are imposed on the bounddny.

Accounting for the equilibrium of stresses on the interfaggand using a 2.5D
finite element formulation for the interpolation of the degement field with respect
to the coordinates andz, equation (1) can be elaborated as [2]:

[ M + KB, — ikyK g — KK+ IGK B+ KK B+ K B (kys )] T (y, )
= f-b(k)h w) ()

whereKp,, Ki, K2, K3, andK{, are the stiffness matrice®lpy, is the mass ma-
trix, fy(ky, w) is the external load vector, aikd (ky, w) represents the dynamic soil
stiffness matrix. A tilde above a variable denotes its repngation in the frequency-
wavenumber domain. The finite element matribeg, andK 2, to K¢, in equation
(2) are independent of the wavenumbkgand the frequencg and are only assem-
bled once.

The dynamic soil stiffness matrik}, (ky, ) is computed by means of a 2.5D
boundary element method, where a regularized version [2h@2.5D boundary
integral equation is applied. In the formulation of the bdary integral equation, the
Green’s functions of a layered elastic halfspace [6] ard us®that no discretization
of the free surface or the layer interfaces is required. Bo¢h2.5D finite element
and boundary element methods have been implemented in MBTlg\ng a C++
mex interface.

3 A ballasted track on an embankment

In this section, the proposed 2.5D FE-BE model is used toigrdte transfer func-
tions between the track and free field at a site in Reugny @ejesituated along the
high speed railway line LGV Atlantique. The track in Reugsyiclassical ballasted
track, situated on top of an embankment. The continuouslgledeUIC60 rails are
supported by rail pads and fixed with clips on twin block catersleepers with a
spacing ofd = 0.60m. The concrete twin block sleepers have a leihgth 2.41m
and are composed of two tied concrete blocks with a lehgta 0.84m. The total
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mass of the sleepermsy = 250kg. The track is supported by a ballast layer with a
thicknes, = 0.30 m and a densitg, = 1400 kg/m3. The embankment has a width
We1 = 6m at the top supporting the railway track, a widiky = 13 m at the soil’s
surface, and a height = 2m.

Two alternative track models are considered. In the firsteh@iure 2a), the
ballast and the embankment are modelled as an elastic oontinsing 2.5D solid
elements. The second model (figure 2b) is a simplified moddrevithe ballast
is represented by distributed springs and dampers whilertiigankment is mod-
elled as an Euler-Bernoulli beam. Similar simplified mod&lshe ballast and the

embankment are frequently used for the prediction of railmaluced vibrations
[5, 7].

_ 1o U2 aj
-

,,,,,, e ! Baliast hp

ZHFFHR

X embankment
FF02z he

(a) . Wez
x We1
I i Tsi !
T 1 X1 % 1
T U2 g
G % (Glong
7 ailast hp
embankment
e
Belte
| 7 ]
(b) Wez

Fig. 2 Cross section of (a) model 1 and (b) model 2 of the ballastakton the embankment.

In both models, the rails are represented by Euler-Beritmegims. The positions
of the rail are determined by = 1.145m andxy; = 2.580m, withx, — x; equal
to the track gaugey. The internal energy dissipation in the rail is modelled by
a loss factom, = 0.05. The rail pads are modelled as continuous spring-damper
connections. The rail pad stiffneks, of a single rail pad is used to calculate an
equivalent stiffneskrp = kp/d = 130x 10°N/m?. A loss factomy, = 0.23 is used
to account for internal energy dissipation in the rail pad.

The concrete sleepers are assumed to be rigid in the plarteedfdck cross
section and are modelled as a uniformly distributed rmagss- mg/d of 417 kg/m.
The sleeper’s rotational inertjayl s = psils;/d has been estimated as 298 k?gmm
taking into account the excentric position of the two blacks

In model 1, the ballast bed is modelled as an elastic continwsing 88 2.5D
solid elements [2]. The ballast has a Young's modiiys= 111x 10°N/m?, a
Poisson’s ratia, = 0.36, a densitypp, = 1550 kg/m3, and a loss factom, = 1.00.
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The embankmentis modelled as an elastic continuum using 5Z8solid elements
and has A Young’s modulug. = 170x 10° N/mz, Poisson’s ratioe = 0.36, and a
densitype = 1400 kg/m®.

In model 2, the ballast is represented by a set of distriblibe@r springs and
dampers. The smeared ballast stiffnigsis computed from the vertical spring stiff-
nessk, per sleeper [N/m] ay/d and equal to 306 10°N/m?. The loss factor
Np = 1.00. The equivalent ballast masy is computed from the ballast mass
situated under each sleeperrag/d. The ballast massy, is estimated from the
heighthy, of the ballast layer and a widthy,, = I andwy, = 3m at the top and
the bottom of the ballast layer, respectively,ras= 0.5pph(Wp1 + Wp2)bp. This
leads to a value of 608 Kan for the equivalent ballast mass. The embankmentis
represented by an Euler-Bernoulli beam, which implies thatross section of the
embankment is assumed to be rigid.

The soil is modelled as a horizontally layered elastic Ipalé®, with a single
layer with a thickness of .2m and a shear wave velociG = 211 mys on top
of a halfspace with a shear wave velocity of 408mThese properties have been
obtained from a S?ectral Analysis of Surface Waves test ten he density is
equal to 1400kgm® for the top layer and equal to 2650}@3 for the underlying
halfspace. The Poisson’s ratids 0.36 for the top layer and.Q6 for the halfspace.
The material damping ratif in both deviatoric and volumetric deformation has a
value of 005 and 006 for the top layer and the halfspace, respectively.
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Fig. 3 Free field mobility at (a) 2 m, (b) 12 m, (c) 32 m, and (d) 72 m friva outer rail computed
from model 1 (dark grey line), model 2 (grey line), and modelithout embankment (light grey
line).
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Figure 3 compares the free field mobility at a distance of 22m132m, and
72m from rail 2 as computed with both models. The point lodae2 m from the
outer rail is situated on the embankment.

A very large difference is found between both results. Tiselaption of an Euler
Bernoulli model for the embankment leads to high tractioearrthe edges of the
embankment, whereas in the case of the solid embankment nioel&ractions are
distributed more smoothly along the interface. As expecteatel 1 leads to more
accurate results as it allows for a better approximatiormefdtress distribution at
the interface between the embankment and the soil.

At frequencies below 20Hz, the free field mobility is simifar both models,
whereas at higher frequencies the free field mobility olet@iby model 1 is larger.
This might be due to the fact that at low frequencies, the Veanggh in the soil is
large with respect to the width of the interface between tndankment and the
soil, so that the differences in the traction distributiom ribt significantly affect
the radiated wave field. At higher frequencies, the wavdlengre smaller, so that
the free field mobility is sensitive to the differences in trection distribution. The
smaller value of the free field mobility for model 2 is probable to the assumption
of a rigid cross section for the embankment, which leads ty kiggh values of the
tractions near the edges of the embankment and, therefeudystantial filtering
effect when the wavelength in the soil is of the same order agmitude as the
width of the interface.

4 Vibration isolating screen

In this section, the 2.5D coupled FE-BE methodology is aaptb study the effi-
ciency of a vibration isolating screen in the soil. A viboatisolating screen is a soft
or stiff wave barrier. Due to the impedance contrast betvileersolating screen and
the soil, waves are reflected, effectively reducing vilmmatevels behind the screen.

First, the reference case of a unit pointload on the surfé@é&omogeneous half-
space is considered. The soil has a shear wave velBgityl50ny's, a dilatational
wave velocityC, = 300nys, a densityp = 1800 kg/m® and a material damping
ratio Bs = B, = 0.05 in both deviatoric and volumetric deformation. The caseh-
ment in the soil is dominated by Rayleigh waves with cylindtiwave fronts and a
velocity Cr = 139.8m/s which corresponds to a wavelendth=Cg/f = 6.95m
at the frequencyf = 20Hz (figure 4a) andr = 3.48m at a frequency = 40Hz
(figure 4b). The penetration depth of the Rayleigh wavesdp@rtional to the wave-
length: most of the wave energy is located above a depth ofs@velength. The
embedment depth of the vibration isolating screen showddetore be larger than
the penetration depth of the Rayleigh waves.

In the present case, a concrete vibration isolating scrednavdepth of 8m
and a width of 06 m is considered, which is expected to isolate vibratiorwata
frequency of 20Hz. The concrete has a Young’s modElus 30 GPa, a Poisson’s
ratio ve = 0.2 and a densitp, = 2600 kg/ms. A vertical point source is considered
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at the surface of the halfspace at a distance of 5m from thiediere of the screen.

Figures 4c and 4d show the real part of the vertical displacdéiin the free field at

frequencies of 20Hz and 40Hz, respectively. The incidevesare reflected on the
vibration isolating screen, reducing vibration levelsibetihe screen. At 40Hz, two
lines of destructive interference between a direct andatefteRayleigh waves are
observed. As the concrete is much stiffer than the soil t& as a rigid wave barrier
and a small displacement amplitude is observed along the@®ien interface. The
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Fig. 4 Real part of the vertical displacement for a unit harmonioplead for a unit vertical point
load at the surface of a homogeneous halfspace at a frequérfay 20Hz and (b) 40Hz and at
distance of 5m from the center of the concrete vibratioreisoy screen at a frequency of (c) 20Hz
and (d) 40Hz.

Fig. 5 Vertical insertion loss Ik for a harmonic point load at a distande= 5m from the vibration
isolating screen at a frequency of (a) 20Hz and (b) 40 Hz f@reete vibration isolating screen.

efficiency of the vibration isolating screen can also be tjtiad by the insertion



8 S. Frangois, P. Galvin, M. Schevenels, G. Lombaert aridegrande
loss I, = 20Ioglo(%
z . .

the vertical displacement amplitude© (w) | and|uy™s°(w) | in the case with and
without vibration isolating screen. Figure 5 shows theiealinsertion loss at 20 Hz
and 40Hz. This indicates that the vibration isolating soreffectively reduces the
vibration levels behind the trench. At 40Hz, two lines of tdestive interference
between a direct and reflected Rayleigh waves are observed.

) of the vertical displacement, defined as the ratio of

5 Conclusion

In this paper, the prediction of vibrations from a track oneambankment and a
vibration isolating screen in the soil have been computétyus 2.5D coupled FE-
BE methodology.

Two alternative models for a ballasted track on an embankimeare been con-
sidered. In the first model, 2.5D solid elements are used thehibe ballast and the
embankment as a continuum, whereas in the second model bfi@thpepresenta-
tion is used. A considerable difference is observed in the field mobility due to a
different tractions distribution at the embankment-sui¢iface.

In the second case, a vibration isolating screen has bediedtDue to the
impedance contrast between the isolating screen and theémsiilent waves are
reflected and the vibration levels behind the screen aretafédy reduced.

These examples demonstrate that the use of detailed 2.5@RIsnagbult in a
better insight in the mechanical behavior of the couplettsack system.
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