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Abstract Ground vibrations induced by railway traffic are often studied by means
of two-and-half dimensional (2.5D) models that are based onthe longitudinal in-
variance of the track geometry. In this paper, a 2.5D methodology is used where
the finite element method is combined with a boundary elementmethod, based on a
regularized boundary integral equation. In the formulation of the boundary integral
equation, the Green’s functions of a layered elastic halfspace are used, so that no
discretization of the free surface or the layer interfaces is required. The methodol-
ogy is applied to two cases. In the first case, two alternativemodels for a ballasted
track on an embankment are compared. In the first model, the ballast and the em-
bankment are modelled as a continuum using 2.5D solid elements, whereas a sim-
plified beam representation is adopted in the second model. Avery large difference
is found for the free field mobility of both models, which demonstrates the need for
detailed 2.5D modelling of the embankement. In the second case, the efficiency of
a vibration isolating screen is studied. A vibration isolating screen is a soft or stiff
wave barrier. Due to the impedance contrast between the isolating screen and the
soil, incident waves are reflected. As a result, the vibration levels behind the screen
are effectively reduced. Both examples demonstrate that the use of detailed 2.5D
models result in a better insight in the mechanical behaviorof the coupled soil-track
system.

1 Introduction

For the prediction of railway induced vibrations, the geometry of the track-soil sys-
tem is often assumed to be invariant in the longitudinal direction [7]. This allows
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for a Fourier transform of the coordinate in the longitudinal direction of the track
and leads to a solution in the frequency-wavenumber domain where the original
three-dimensional (3D) problem is replaced by a two-dimensional (2D) problem for
each wavenumber. This two-and-half dimensional (2.5D) methodology results in a
considerable reduction of the computation time [2, 7] compared to full 3D models.

Recently, a novel 2.5D FE-BE methodology has been proposed by François et al.
[2]. The 2.5D FE-BE methodology combines the classical 2.5DFE method with a
novel 2.5D BE method, based on a regularized boundary integral equation in terms
of the Green’s functions of a layered halfspace.

In this paper, the 2.5D coupled FE-BE models is applied to theprediction of
railway traffic induced vibrations. Two cases are considered. In the first case, two
alternative models for a ballasted track on an embankment are compared. The 2.5D
BE-FE method is used to model the ballast and the embankment as an elastic con-
tinuum, as an alternative to simplified ballast and embankment models used in the
literature [5, 7]. In the second case, the efficiency of a vibration isolating screen is
studied.

2 Methodology

The dynamic interaction between a railway track and the underlying soil is a prob-
lem of dynamic soil–structure interaction. A domain decomposition method is used
to solve the problem, where the subdomainΩb represents the structure and the sub-
domainΩs the soil (figure 1). It is assumed that the geometry of the track is invariant
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Fig. 1 The geometry of the coupled soil-structure system.

with respect to the coordinatey in the longitudinal direction. The soil is modelled
as a horizontally layered halfspace and, therefore, invariant with respect to they-
direction as well. The dynamic track-soil interaction problem is assumed to be linear
and all equations are elaborated using virtual work in the frequency domain.
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The equilibrium equation for the dynamic soil-structure interaction problem is
formulated in a variational form. For any virtual displacement fieldvb imposed on
the structureΩb, the sum of the virtual work of the internal and the inertial forces is
equal to the virtual work of the external loads:

−ω2
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whereub is the displacement vector in the structure,ρbbb denotes the body force
in the domainΩb, andtnb

b = σb ·nb is the traction vector on a boundary with unit
outward normal vectornb (figure 1). Tractionstnb

b are imposed on the boundaryΓbσ .
Accounting for the equilibrium of stresses on the interfaceΣbs and using a 2.5D

finite element formulation for the interpolation of the displacement field with respect
to the coordinatesx andz, equation (1) can be elaborated as [2]:
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whereK0
bb, K1

bb, K2
bb, K3

bb andK4
bb are the stiffness matrices,Mbb is the mass ma-

trix, ˜
¯
fb(ky,ω) is the external load vector, andKs

bb(ky,ω) represents the dynamic soil
stiffness matrix. A tilde above a variable denotes its representation in the frequency-
wavenumber domain. The finite element matricesMbb andK0

bb to K4
bb in equation

(2) are independent of the wavenumberky and the frequencyω and are only assem-
bled once.

The dynamic soil stiffness matrixKs
bb(ky,ω) is computed by means of a 2.5D

boundary element method, where a regularized version [2] ofthe 2.5D boundary
integral equation is applied. In the formulation of the boundary integral equation, the
Green’s functions of a layered elastic halfspace [6] are used, so that no discretization
of the free surface or the layer interfaces is required. Boththe 2.5D finite element
and boundary element methods have been implemented in MATLAB using a C++
mex interface.

3 A ballasted track on an embankment

In this section, the proposed 2.5D FE-BE model is used to predict the transfer func-
tions between the track and free field at a site in Reugny (France) situated along the
high speed railway line LGV Atlantique. The track in Reugny is a classical ballasted
track, situated on top of an embankment. The continuously welded UIC60 rails are
supported by rail pads and fixed with clips on twin block concrete sleepers with a
spacing ofd = 0.60m. The concrete twin block sleepers have a lengthlsl = 2.41m
and are composed of two tied concrete blocks with a lengthlbl = 0.84m. The total
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mass of the sleepersmsl = 250kg. The track is supported by a ballast layer with a
thicknesshb = 0.30m and a densityρb = 1400kg/m3. The embankment has a width
we1 = 6m at the top supporting the railway track, a widthwe2 = 13m at the soil’s
surface, and a heighthe = 2m.

Two alternative track models are considered. In the first model (figure 2a), the
ballast and the embankment are modelled as an elastic continuum using 2.5D solid
elements. The second model (figure 2b) is a simplified model where the ballast
is represented by distributed springs and dampers while theembankment is mod-
elled as an Euler-Bernoulli beam. Similar simplified modelsof the ballast and the
embankment are frequently used for the prediction of railway induced vibrations
[5, 7].
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Fig. 2 Cross section of (a) model 1 and (b) model 2 of the ballasted track on the embankment.

In both models, the rails are represented by Euler-Bernoulli beams. The positions
of the rail are determined byx1 = 1.145m andx2 = 2.580m, withx2 − x1 equal
to the track gaugerd. The internal energy dissipation in the rail is modelled by
a loss factorηr = 0.05. The rail pads are modelled as continuous spring-damper
connections. The rail pad stiffnesskrp of a single rail pad is used to calculate an
equivalent stiffnesskrp = krp/d = 130×106N/m2. A loss factorηrp = 0.23 is used
to account for internal energy dissipation in the rail pad.

The concrete sleepers are assumed to be rigid in the plane of the track cross
section and are modelled as a uniformly distributed massmsl = msl/d of 417kg/m.
The sleeper’s rotational inertiaρslIsl = ρslIsl/d has been estimated as 298kgm2/m
taking into account the excentric position of the two blocks.

In model 1, the ballast bed is modelled as an elastic continuum, using 88 2.5D
solid elements [2]. The ballast has a Young’s modulusEb = 111× 106N/m2, a
Poisson’s ratioνb = 0.36, a densityρb = 1550kg/m3, and a loss factorηb = 1.00.
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The embankment is modelled as an elastic continuum using 5282.5D solid elements
and has A Young’s modulusEe = 170× 106N/m2, Poisson’s ratioνe = 0.36, and a
densityρe = 1400kg/m3.

In model 2, the ballast is represented by a set of distributedlinear springs and
dampers. The smeared ballast stiffnesskb is computed from the vertical spring stiff-
nesskb per sleeper [N/m] askb/d and equal to 300× 106N/m2. The loss factor
ηb = 1.00. The equivalent ballast massmb is computed from the ballast massmb

situated under each sleeper asmb/d. The ballast massmb is estimated from the
heighthb of the ballast layer and a widthwb1 = lsl andwb2 = 3m at the top and
the bottom of the ballast layer, respectively, asmb = 0.5ρbhb(wb1+wb2)bbl. This
leads to a value of 608kg/m for the equivalent ballast massmb. The embankment is
represented by an Euler-Bernoulli beam, which implies thatthe cross section of the
embankment is assumed to be rigid.

The soil is modelled as a horizontally layered elastic halfspace, with a single
layer with a thickness of 2.0m and a shear wave velocityCs = 211m/s on top
of a halfspace with a shear wave velocity of 403m/s. These properties have been
obtained from a Spectral Analysis of Surface Waves test on site. The densityρ is
equal to 1400kg/m3 for the top layer and equal to 2650kg/m3 for the underlying
halfspace. The Poisson’s ratioν is 0.36 for the top layer and 0.16 for the halfspace.
The material damping ratioβ in both deviatoric and volumetric deformation has a
value of 0.05 and 0.06 for the top layer and the halfspace, respectively.
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Fig. 3 Free field mobility at (a) 2 m, (b) 12 m, (c) 32 m, and (d) 72 m fromthe outer rail computed
from model 1 (dark grey line), model 2 (grey line), and model 2without embankment (light grey
line).
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Figure 3 compares the free field mobility at a distance of 2m, 12m, 32m, and
72m from rail 2 as computed with both models. The point located at 2 m from the
outer rail is situated on the embankment.

A very large difference is found between both results. The assumption of an Euler
Bernoulli model for the embankment leads to high tractions near the edges of the
embankment, whereas in the case of the solid embankment model, the tractions are
distributed more smoothly along the interface. As expected, model 1 leads to more
accurate results as it allows for a better approximation of the stress distribution at
the interface between the embankment and the soil.

At frequencies below 20Hz, the free field mobility is similarfor both models,
whereas at higher frequencies the free field mobility obtained by model 1 is larger.
This might be due to the fact that at low frequencies, the wavelength in the soil is
large with respect to the width of the interface between the embankment and the
soil, so that the differences in the traction distribution do not significantly affect
the radiated wave field. At higher frequencies, the wavelengths are smaller, so that
the free field mobility is sensitive to the differences in thetraction distribution. The
smaller value of the free field mobility for model 2 is probably due to the assumption
of a rigid cross section for the embankment, which leads to very high values of the
tractions near the edges of the embankment and, therefore, asubstantial filtering
effect when the wavelength in the soil is of the same order of magnitude as the
width of the interface.

4 Vibration isolating screen

In this section, the 2.5D coupled FE-BE methodology is applied to study the effi-
ciency of a vibration isolating screen in the soil. A vibration isolating screen is a soft
or stiff wave barrier. Due to the impedance contrast betweenthe isolating screen and
the soil, waves are reflected, effectively reducing vibration levels behind the screen.

First, the reference case of a unit point load on the surface of a homogeneous half-
space is considered. The soil has a shear wave velocityCs = 150m/s, a dilatational
wave velocityCp = 300m/s, a densityρ = 1800kg/m3 and a material damping
ratio βs = βp = 0.05 in both deviatoric and volumetric deformation. The displace-
ment in the soil is dominated by Rayleigh waves with cylindrical wave fronts and a
velocityCR = 139.8m/s which corresponds to a wavelengthλR = CR/ f = 6.95m
at the frequencyf = 20Hz (figure 4a) andλR = 3.48m at a frequencyf = 40Hz
(figure 4b). The penetration depth of the Rayleigh waves is proportional to the wave-
length: most of the wave energy is located above a depth of onewavelength. The
embedment depth of the vibration isolating screen should therefore be larger than
the penetration depth of the Rayleigh waves.

In the present case, a concrete vibration isolating screen with a depth of 8m
and a width of 0.6m is considered, which is expected to isolate vibrations above a
frequency of 20Hz. The concrete has a Young’s modulusEc = 30GPa, a Poisson’s
ratio νc = 0.2 and a densityρc = 2600kg/m3. A vertical point source is considered
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at the surface of the halfspace at a distance of 5m from the centerline of the screen.
Figures 4c and 4d show the real part of the vertical displacement in the free field at
frequencies of 20Hz and 40Hz, respectively. The incident waves are reflected on the
vibration isolating screen, reducing vibration levels behind the screen. At 40Hz, two
lines of destructive interference between a direct and reflected Rayleigh waves are
observed. As the concrete is much stiffer than the soil, it acts as a rigid wave barrier
and a small displacement amplitude is observed along the soil-screen interface. The

(a) (b)

(c) (d)

-1 -0.5 0 0.5 1

×10-9

Fig. 4 Real part of the vertical displacement for a unit harmonic point load for a unit vertical point
load at the surface of a homogeneous halfspace at a frequencyof (a) 20Hz and (b) 40Hz and at
distance of 5m from the center of the concrete vibration isolating screen at a frequency of (c) 20Hz
and (d) 40Hz.
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Fig. 5 Vertical insertion loss ILz for a harmonic point load at a distanced = 5m from the vibration
isolating screen at a frequency of (a) 20Hz and (b) 40Hz for a concrete vibration isolating screen.

efficiency of the vibration isolating screen can also be quantified by the insertion
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loss ILz = 20log10(
|uuniso

z (ω)|

|uiso
z (ω)|

) of the vertical displacement, defined as the ratio of

the vertical displacement amplitudes|uiso
z (ω) | and|uuniso

z (ω) | in the case with and
without vibration isolating screen. Figure 5 shows the vertical insertion loss at 20Hz
and 40Hz. This indicates that the vibration isolating screen effectively reduces the
vibration levels behind the trench. At 40Hz, two lines of destructive interference
between a direct and reflected Rayleigh waves are observed.

5 Conclusion

In this paper, the prediction of vibrations from a track on anembankment and a
vibration isolating screen in the soil have been computed using a 2.5D coupled FE-
BE methodology.

Two alternative models for a ballasted track on an embankment have been con-
sidered. In the first model, 2.5D solid elements are used to model the ballast and the
embankment as a continuum, whereas in the second model a simplified representa-
tion is used. A considerable difference is observed in the free field mobility due to a
different tractions distribution at the embankment-soil interface.

In the second case, a vibration isolating screen has been studied. Due to the
impedance contrast between the isolating screen and the soil, incident waves are
reflected and the vibration levels behind the screen are effectively reduced.

These examples demonstrate that the use of detailed 2.5D models result in a
better insight in the mechanical behavior of the coupled soil-track system.
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