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Abstract Business Process Management (BPM) has emerged as one of
the abiding systematic management approaches in order to design, ex-
ecute and govern organizational business processes. Traditionally, most
attention within the BPM community has been given to studying control-
flow aspects, without taking other contextual aspects into account. This
paper contributes to the existing body of work by focusing on the partic-
ular context of geospatial information. We argue that explicitly taking
this context into consideration in the modeling and execution of business
processes can contribute to improve their effectiveness and efficiency. As
such, the goal of this paper is to make the modeling and execution as-
pects of BPM location-aware. We do so by proposing a Petri net mod-
eling extension which is formalized by means of a mapping to coloured
Petri nets. Our approach has been implemented using CPN Tools and a
simulation extension was developed to support the execution and valida-
tion of location-aware process models. We also illustrate the feasibility of
coupling business process support systems with geographical information
systems by means of an experimental case setup.
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systems, location-aware processes, process modeling, process execution,
coloured petri nets

1 Introduction

Throughout the past two decades, Business Process Management (BPM) has
emerged as one of the abiding systematic management approaches in order to
align organizational business processes and workflows to the needs of clients [1].
Traditionally, most attention within the BPM community has been focused on
studying control-flow aspects of business processes, i.e. the aspects governing the
flow of business activities (i.e. the sequence in which activities can be performed).
In recent years, however, integrating other perspectives and “contexts” within
this view has received increased attention, as support systems which adopt a
control-flow view only are unable to adequately capture human behavior due to
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lack of descriptions of possible constraints against activity modeling. As such,
many scholars have shifted towards studying various approaches that integrate
control-flow with other contexts. In this paradigm, processes can be rapidly
changed and adapted to a new external data-governed context (e.g., location,
weather, etc.).

This paper contributes to the existing body of work by focusing on the par-
ticular context of geospatial information. We argue that taking this context into
account in the various life cycle steps of BPM can contribute to improve the
effectiveness and efficiency of process management. Especially in environments
were a need arises to apply both process-aware and Geographical Information
Systems (GIS), it makes sense to combine and integrate these two perspectives
instead of keeping them isolated. Such an approach would help to increase under-
standability and objectiveness of designed process models, govern and constrain
control-flow and process behavior based on location driven constraints, and al-
low for better location based monitoring and feedback support during execution
of such processes. The goal of this paper is thus to make the modeling and ex-
ecution aspects of BPM “location-aware”. We do so by proposing a Petri net
modeling extension which incorporates location aspects and ways to constrain
the execution of activities based on location-based constraints. Next, we formal-
ize the execution semantics of our extension by describing a mapping to coloured
Petri nets. Finally, we have implemented our approach using CPN Tools [2]; a
simulation extension was developed to support the execution and validation of
models created using our approach and to illustrate the feasibility of coupling
business process support systems with geographical information systems.

The remainder of this paper is structured as follows. Section 2 provides an
overview of related work and preliminaries. Section 3 outlines a running example
which will be used to illustrate the developed artifacts. Next, Section 4 intro-
duces the Petri net modeling extension to model location-aware processes, after
which Section 5 discusses the execution semantics of such models by means of a
mapping to coloured Petri nets. Section 6 discusses the developed implementa-
tion. Section 7 concludes the paper.

2 Preliminaries

2.1 Related Work

We regard location as one of the key variables in the wider context of a business
process. In the layered process context model proposed by Rosemann et al. [3],
location describes an important variable situated in the environmental context
layer, which describes process-related variables that reside beyond the business
network in which an organization is embedded, but still pose a contingency effect
on the business processes. Scholars have argued that the inclusion of location
contextual variables in business process management practices help to improve
dependency aspects (constraining activity executions based on location aspects,
for instance) [4], increase the adaptability and flexibility of running processes
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(by reconfiguring and modifying models and tasks based on location aspects) [5],
and improve the efficiency (performance and cost-effectiveness) of organizational
processes [6].

However, works around the connection of location services with principles
of business process management are scarce in the literature. Many researchers
focus on on connecting spatial-based information with scientific workflows [7,
8,9, 10, 11] (i.e. describing a series of scientific-oriented computational or data
manipulation steps), but not with business workflows. As a notable exception,
[12] discusses map metaphors that are used to visualize work items and resources
in process-aware information systems (using the YAWL workflow language). This
technique specifies that users could check geographical positions and distances
based on a geographical map, but does not indicate how geographical aspects
can influence the behavioral aspects of the process. Decker et al. [4, 13] have
defined location constraints for individual workflow activities when modeling a
workflow schema to restrict the location where an activity can be performed,
but the location constraints lack comprehension and expressiveness.

Some existing BPM tool suites allow for the definition and capture of ad-
ditional variables in the modeling of business processes [14, 15]. Such attribute
fields could be used to capture location-based information, but only in the form
of secondary constructs or text-based annotations for readers to understand
the graphical diagram, which do not impact the semantics or execution of the
modeled process in a direct way. Our approach aims to make location-based
constructs first-class citizens in the modeling and execution of process models.

2.2 Definitions and Notations

This section outlines some preliminary concepts and definitions which will be
utilized in the remainder of the paper. We assume readers to be familiar with
the concept of Petri nets [16, 17] and their execution semantics. A particular
subclass of Petri nets which we utilize hereafter are called WorkFlow nets (or
WF-nets) [18]. A WF-net specifies the behavior of a single process instance in
isolation and is defined as follows.

Definition 1. WF-net [18]. A Petri net (P, T, F) is a WF-net iff:

— There is a single source place i € P such that ei = ();

— There is a single sink place o € P such that oe = ();

— The net (P,TU{t'},F U{(o,t'),(t',4)}) is strongly connected, i.e. every
x € PUT lies on a path from i to o.

To define the execution semantics of our Petri net modeling extension, we will
provide a formalized mapping to coloured Petri nets (CPN) [2]. CPNs are an
extension of Petri net which allow for tokens of multiple types (“colors”), add
guard transitions to constrain the execution of transitions and add arc expression
to govern the input and output flow of tokens.

Definition 2. Coloured Petri net (see [2]). A CPN is a tuple (P, T, A,
X,C,V,N,G,E,M,I) with P the set of places, P = {p1,p2,...,pp|}; T the
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set of transitions, T = {t1,ta,...t|;p} with PNT = (; A the set of arcs,
A ={ay,az,...,a14)}; X the set of color sets defined within the model; V' the set
of variables used in the model, V = {vy,va,...,vjy|}; C: PUV — X returning
the color set associated to a place or a variable; N : A — P xTUT x P mapping
arcs to a place-transition or transition-place flow. G : T — {GExpr} is the guard
expression function mapping a transition t € T to a boolean expression GExpr,
denoting whether the transition is permitted to fire. Evaluating this expression
yields a boolean result GExpr* € {true, false}. E : A — {AExpr} is the arc
expression function mapping an arc a € A to an expression AFExpr. Fvaluating
an arc expression yields a multiset of tokens, AExpr}, ¢ to be produced (transi-
tion to place arcs) or consumed (place to transition arcs). M : p € P — C(p)ms
is the marking function, returning the multi set of tokens contained in a place
with ¥p € P: Vo € M(p) : [0 € C(p)]] and I : P — {IExpr} is the initializa-
tion function, initializing places in the model with a state, expressed as colored
tokens. The evaluation of an IExpr yields a token multi set: IExpry,q with
Vp e P: Vo € IExpriq : [0 € C(p)]].

The execution semantics of a CPN differ from those of a regular Petri net. For
a transition ¢ € T to be enabled, all expressions of the incoming arcs should
be satisfied and the guard condition of the transition must evaluate to true,
G(t)* = true. When firing an enabled transition, output and input places are
updated accordingly given the input and output arc expressions.

Next, we shift our attention to the formalization of locations. The definition
of our concept of location corresponds with a so called “feature” as applied by
most geographical information systems [19]. A feature is describes something
that can be drawn on a map, i.e. something in the real world—a monument,
a landmark or even moving objects such as cars or trains. Additionally, it is
reasonable to group certain features together if they share a number of properties.
For example, China, Belgium and Germany can all be regarded as features of
the type “Country”. In addition, apart from a semantic description (a name and
other properties), features can also be represented in physical terms, i.e. as a
mathematical expression of an object’s location in terms of points, lines, paths
(multiple line segments) or polygons, associated with a well-defined coordinate
reference system.

Definition 3. Feature, feature type. Our definition of location corresponds
with a so called feature. Features are defined in terms of a geometry, a feature
type, and an arbitrary number of additional attributes (such as a human-readable
name). Let FTy, be a set of feature types, FT1, = {ft1, fta, ..., ftipr|} ; let FL
be a set of features, Fr, = {f1, f2, ..., fir|} ; let Type : Fr, — FTy, be a function
mapping features to a type. We will also denote this using the shorthand f : ft
with f € F and ft € FTy. Let Geometry : f € Fr — g be a function which
returns the geometry (g) for a given location with g a point, line, path or polygon
and let f* indicate some attribute a associated with a feature f € Fr. This can
be data of any type, e.g. a name or even other features.

In our definition, a feature is only represented by one geometry type only, al-
though this can be easily extended (and is already supported in an indirect
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manner by construction of additional features which serve as attributes for the
feature at hand).

Finally, we introduce the concept of a “geospatial relationship”. By defining
the concept of a geometry and establishing relationships over them, we are able
to answer queries such as “Is one feature contained in another?” Many definitions
for such relationships exist, but many of the most widely used GIS toolkits, e.g.
GeoTools, PostGIS, ArcGIS, SQL Server etc., define geospatial relationships
based on the “Topic 8 standard proposed by the OpenGIS Consortium (OGC)
[19]. We will also utilize these relationships towards the construction of location
constraints, as will be illustrated later. Note that, in some cases, geospatial
relationships are categorized in separate sets, such as topological, measurement,
sequential or complex relationships [6, 20], but for the sake of simplicity, we use
one global moniker (a “geospatial relationship”) in this work.

3 Running Example

To illustrate our location-aware Petri net modeling extension and its execution
semantics, we will utilize a running example throughout this paper, inspired on
the case examples provided in [13]. The basic WF-net is depicted in Fig. 1. The
example process describes a technical maintenance service, which is executed as
follows. The process is started once a customer call is received in a particular
call center (Receive Customer Call, RCC and Accept Customer Call, ACC). The
call center evaluates the complaint, based on which the user is remotely assisted
(Remote Assist, RAS) or an inspector is dispatched from the call center to the
customer’s location to investigate the problem on-site (Dispatch, DIS). Based on
the results of the investigation (On-site Inspection, OSI), the inspector can solve
the problem whilst investigating, or calls-in a mobile repair team to perform on-
site repair work (Call Repair Team, CRT and On-site Work, OSW). If the repair
cannot be performed on-site, the repair team heads to a repair shop to perform
repairs there (Shop-floor Repair, SFR), before returning to the customer and
continuing the on-site work (this can occur multiple times). After the repair is
finished, the repair team is called back (Release Repair Team, RTT). Finally,
independent of the nature of the solution offered, some administrative follow-up
work (Follow-up Administration, FUA) needs to be performed to close the case.

(D350

RAS

©—REC}-+O—{ACT}+O

Fig. 1. WF-net model of “repair” process used as a running example throughout the
paper.



6 X. Zhu, G. Zhu, S. vanden Broucke, J. Vanthienen and B. Baesens

The description of this process highlights some locational aspects which can
not be captured by control-flow alone. In particular, we list the following loca-
tional concerns which need to be adhered to:

— Call centers may only handle customer calls when the customer is located
within the region a call center is responsible for;

— The call center performing the follow-up work should be situated in a different
region then call center handling the customer call;

— Requests can only be made to repair teams which are located in the customer’s
region or 50km around it. Naturally, a repair team which is already working
for another customer cannot be requested;

— Shop-floor repairs should be made in the repair station closest to the cus-
tomer’s location; this should be based on navigational routing information,
not on beeline distance.

4 Location-Aware Workflow Modeling

This section discusses our proposed Petri net modeling extension to model
location-aware processes. OQur methodology includes two main extensions, namely
location dependent transitions and location constraints.

Fig. 2 shows the running example modeled using our location-aware exten-
sion. Location dependent transitions are indicated with a flag (™), together with
the feature name and type for the location which will be bound to the transition
after executing. The shaded boxes represent location-aware constraints, used to
constrain the locations which can be bound to a location dependent transition.
Visually, the constraints are connected with all the transitions which bound lo-
cation will be used as an input in the constraint, and with one transition which
is bounded by the constraint (using dashed arcs).

[ ) SO » fcc:CaliCenter
7 r FUA
~ c:Customer ™ rccCallCenter = _
] RCC ACC Equas(rt 2|~ 12 ]R{ell?lx[Team

N rt:RepairTeam
CRT

[Contain: region, Contains(Buffer(rccregon, *50km™), ) } - R
+ | Contalris(recBaiontc) 'R Eauals(rsiows, “available’)

Q=
'y [ s, "onsite )]

) — Jr—

Fig. 2. The running example of Fig. 1 modeled using our location-aware extension.

Definition 4. Location-aware WF-net (LAWF-net). Formally, a location-
aware WF-net (LAWF-net) is represented as a tuple (P, T, F, F, FTy,, Ty, Cr,CFL)
with P, T and F unchanged with regards to the definition of a WF-net (places,
transitions and flows); Fr, and FTy, the sets of features and their type (see be-
fore); T, C T the set of location dependent transitions Cy, the set of location
constraints (a set of expressions); CFy, C (Tp, x Cr)U (Cr x T) a finite set of
directed arcs linking location dependent transitions to a constraint.
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We also define the function LM : T;, — F to get the feature bound to a par-
ticular location dependent transition (the location marking). Initially, i.e. before
execution of a transition, V¢ € Tr, : [LM(t) = 0]. Most location constraints are
formulated directly in the form of a geospatial relationship (when the relation-
ship returns a boolean result), but generally there are no strict criteria for the
definition of a location constraint ¢ € Cp, except for the following.

Definition 5. Location constraint. A location constraint is an expression
¢ € Cr, which evaluates to a boolean result c* € {true, false}. The expression
involves ezxactly one output transition, i.e. I(z,y) € CFp : [x = cAy € T).
Ct ={ceCr|3(z,y) € CFL : [xt =cNy=1t]} is used as a shorthand to return
all constraints defined ont € T. The expression can involve zero or more location
dependent input transitions. The feature bound to such input transitions, given
by LM will be used as an input for the expression at the time of evaluation.

As stated in the preliminaries section, we mainly apply the geospatial relation-
ships as defined by the “Topic 8 standard proposed by the OpenGIS Consor-
tium (OGCQC) [19] towards formulating location constraints. As an example, in
Fig. 2, the constraint “Contains(rcc™9™ c)” contains one output transition
(ACC) and one input transition (RCC)”. Instead of using the transition labels
in the expression, we use a short name (“rcc’ or “¢”) as a way to indicate bound
features for location dependent transitions directly. “rcc™®9*°™” should thus be
read as “the region attribute (another feature) of rcc (the feature bound to
the ACC transition). We also define a feature type for each location depen-
dent transition indicating the type of the features which can be bound to the
transition. This means that, even when no constraints are modeled, an intrinsic
“Type(LM(t)) = 2” constraint is present for any ¢t € T with © € FTy, the
defined feature type. We can thus also define Type : Ty, — FTp as a shorthand
function returning the feature type for a location dependent transition. Note
also that constraints can also be defined over a non-location dependent tran-
sition, as is the case with “Equals(rtstats ”onsite” ). Such constraints govern
the execution of non-location dependent transitions without binding a location
to them.

The execution semantics of LAWF-nets are similar to those of a normal Petri
net.

Definition 6. LAWF-net execution semantics. A transition t € T is en-
abled in a LAWF-net iff: the control-flow properties for being enabled are sat-
isfied (i.e. a token in all input places) and all constraints ¢ € C% are satis-
fied, i.e. Y € Ct ¢ [¢* = true] if t € T\Ty. If t € Tr, (i.e. t is a location-
dependent transition), evaluating the satisfyability of the constraints involves
checking whether there exists a feature which can be bound to the transition,
i.e. 3f € F, : Ve € CL : [¢* = true]].

! Naturally, when evaluating the conditions for a transition to be enabled, the cur-
rently bound feature to that tramsition reflects the previous (or unset) feature,
whereas the evaluation of the constraint satisfyability requires a location marking
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Firing a location dependent transition causes a normal token movement and

additionally brings the location marking in a new state LM; 4 LM, such that
LM>(t) = f and LMa(z) = LM, (z) for all x € T, Az # t. That is, a satisfiable
feature is bound to the location dependent transition.

5 Execution of Location-Aware Process Models

Our LAWF-net modeling extension provides a straightforward and understand-
able means to merge location aspects with control-flow concerns. Although we
have provided execution semantics in the section above, we also provide a map-
ping from LAWF-nets to CPN models, due to the following reasons. First, as
we will see later, mapping LAWF-nets to CPN models enables to use existing
tools to drive the execution of location-aware processes. Second, it also allows for
easier integration with existing GIS platforms. Third, by providing an approach
which is fully compatible with CPN, we can build open a large existing body of
work concerning validation of such models (i.e. ensuring the correctness of the
designed model). Finally, formulating location-aware process models in terms of
CPN models also allows for integration with other contexts, i.e. timing or social
(organizational) aspects.

Fig. 3 shows the result of the conversion of a LAWF-net to a CPN model.
The following definitions provides the formalization of this mapping.

) 6 5) 1 6
~_
FEATURE FEATUI RE\\w'-\\ ATURE FEATURE

. LAtVDEEEluaE(tl, “CallCenter")
vy andalso LA thtains(i

o

)

v, callcenter{yl|
joint(v1,vl)

LA, getAttribute(vl, "re
andalso v1 <>

LA typeEqguals(;
R

andalso vi <>

LA typeEquals(vl,"RepairTeam”)
andalso LA contains(LA.buffer(LA.getAttriby "
andalso LA attributeEquals(vl,'status”,"available”
vl andalso v1 <>""

I, RepairTeam™)
id(vl,v1)

vi
VT

Fig. 3. LAWF-net of Fig. 2 converted to a CPN model.

where the feature under consideration is bound to the location dependent transi-
tion. To resolve this, every f € Fp is evaluated under a location marking LM, ¢
such that LM, ¢(t) = f and LMs(z) = LM () for all © € Ty, Az # t. In case that
all constraints hold under this candidate location marking and this feature is chosen
to be bound, LM, ¢ will be finalized as the new marking after firing the transition.
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Definition 7. LAWF-net to CPN mapping. A LAWF-net (PL, TL, FE FL,
FTE TE,CE,CFE) is mapped to a CPN model (P,T,A,X,C,V,N,G,E, M,]I)
as follows:

- X ={U, FE} with U = {unit} (color sets);

~Vp € PV :[p e P] with C(p) = U. I(p) = {unit} iff ep =0, I(p) = 0
otherwise and ¥Vt € TT : [t € T) (control-flow places and transitions);

-Vt € TE : [pt € P] with C(p%) = FE and 1(p) = 0 (the places in the
bottom row labeled “output” in Fig. 3) (location output places);

~Vft € FTE : [p]’ € P with C(p]') = Ff and I(p]’) = {f € FF|Type(f) =
ft} (the places in the bottom row labeled “input” in Fig. 8) (location input places);

~V(z,y) € FL i [ag,) € A] with N(a@,y)) = (2,y) and E(a(g,)) = unit
(control-flow);

— v € V with C(vy) = FE and vo € V with C(vo) = FE (binding and
overriding variable);

-Vt e TL . [ainPUt’ a;‘eturn7 agutPUt, a;)verride c A] with N(ainpwf) — (pfype(t),t>,
N(ap) = (t,pp""), N(ag""™) = (t.p}) and N(ap"™") = (p.1).
E(a""") = E(aj*™™™) = E(a;""™") = v and E(af"*""®) = if |M(p})| =
0 then empty else M(p%) (this arc consumes the feature token from the output
place if it is present) (input, output, return and override arcs);

~VteTr:Gt) = /\Cecft (¢) (a congunction of all the constraints with this

transition as the output) (quards);

~VteTL:Nee CE : V(x,y) € {(z,y) € CFE|lz € TE Ay = ¢} [U(Lx’y) €
V,agz’y),a((,z’y) € A]]] with C(v(Lz’y)) = FL and with N(agm‘y)) = (p%,t) and
NSy = (t,p%). E(a{™Y) = BE(a{™) = o\"Y (constraint input arcs).

6 Implementation and System Integration

The converted running example shown in Fig. 3 was implemented as a CPN
model using CPN Tools [2]. Note that, due to the limitations of this tool, the
CPN model in contains some additional constructs which are not part of the
formalization. First, the addition of “dummy” invisible transitions before CRT
and OSW. This is due to the fact that CPN Tools only performs a check for
enabling tasks immediately after a marking change, and does not repeat this
check when the user requests to execute a particular transition. Therefore, the
invisible transitions are used as a workaround to force CPN Tools to perform the
check again. Second, we can modify the arc expression of output arcs a?“t for
any t € T* which still returns a multiset of tokens equal to vy, but also triggers
external events. This might be useful for logging purposes, or—as we do here—
fire an event to an underlying GIS system which sends a repair team on their
way. Third, as it is impossible to formulate the expression for the a2?¢"" arcs
using CPN Tools, we instead initialize each location output place with a dummy
(empty) placeholder, and add constraints to prevent this dummy feature to be
used as an input (we also explicitly perform a feature type check in the guard
of each location dependent transition, but this is just for the sake of clarity).
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Modelers are free to extend a converted CPN model. If so desired, for in-
stance, modelers might opt to use one global location input pool place instead
of creating an input place per feature type. Such system would make it possible
for instance to allow more than one feature type to become bound to loca-
tion dependent transitions. Secondly, end users might opt to remove overriding
agverrideares for some location dependent transition, for example to keep track of
multiple bound transitions in the case of recurrent transitions. Finally, modelers
might also desire for location dependent (or any) transitions to output other
features apart from the one being bound to the location dependent transition.
This can also easily be achieved by adding more output places and formulating
appropriate arc expressions.

The question remains how the various location constraints were implemented
in the CPN model. To do so, a simulation extension was developed using CPN
Tools RPC (remote procedure call) functionality. The reason this approach was
chosen instead of using CPN Tools’ built-in SML language is twofold. First,
both practitioners and academics are more familiar with Java (the language of
the simulation extension) than SML, allowing for easier understanding and ex-
tension. Second, this approach allows to easily integrate location-aware business
process models with existing GIS systems, both for evaluating the geospation
relationships (constraining and driving the process) and to react to activities
as they are being executed (within the GIS system). To illustrate this, we have
created an experimental set-up using the GeoTools Java package?. Fig. 4 shows
the running CPN model running with a GIS system. A map is shown based on
real-life shapefiles which were imported in the set-up. As illustrated, the GIS
system is able to impose geospatial constraints restricting the control-flow of the
process (some activities can only be started once the repair team is on-site, for
instance). Vice versa, execution of transitions in the process also drives changes
in the GIS system, e.g. sending out a request to a repair team causes this repair
team to head to the customer’s location using the shortest route available (as
is shown in Fig. 4). This illustrates the feasibility and validity of our proposed
methodology®.

7 Conclusion

For the most part, the modeling and execution of business process models has
been studied and performed in practice in a rather limiting environment, dealing
mainly with control-flow aspects only, without taking other contextual aspects
into account. In this paper, we have focused our attention towards making the
modeling and execution of business processes location-aware, i.e. on the par-
ticular context of geospatial information. A Petri net modeling extension was

2 See: http://geotools.org. This toolkit offers support for all geospatial relationships
defined by the “Topic 8” standard proposed by the OpenGIS Consortium (OGC) [19].

3 Full source code of the developed implementation can be found at: http://
processmining.be/locationaware.
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Fig. 4. CPN model running in tandem with a GIS system. The GIS system is able
to impose geospatial constraints restricting the control-flow of the process. Vice versa,
execution of activities can impose effects on features in the GIS system.

proposed which incorporates location aspects and ways to constrain the execu-
tion of activities based on location constraints. This approach was formalized by
means of a formalized mapping to coloured Petri nets and implemented in com-
bination with an experimental GIS setup to illustrate the feasibility of coupling
business process support systems with geographical information systems.

We believe our contribution to be a first valuable step towards incorporating
location aspects in business processes, hence allowing stake holders to execute
such processes in a more effective and efficient manner, with application areas
in logistics, transportation and others. Indeed, the ability to make processes
flexible and adaptive in terms of their ability to react to road, traffic or weather
conditions is put forward as a promising area of study. Therefore, in future work,
we plan to set up a number of case studies to elaborate on the feasibility and
robustness of our approach. In addition, we plan to expand on our methodology,
both by investigating more location-based patterns which play a role in business
process environments (the focus here was mainly on geospatial constraints) and
how these aspects can be combined with other contextual aspects other than
geographical information as well.
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