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Abstract 

Current models aiming to simulate contemporary sediment yield (SY) implicitly assume that 

tectonic effects are either irrelevant or are reflected by catchment topography. In this study we 

analyse the relation between SY and seismic activity, a component of tectonic processes. 

Results show a spatial correlation between SY and seismic activity expressed as the estimated 

Peak Ground Acceleration (PGA) with a 10% exceedance probability in 50 years. PGA has a 

significant impact on the spatial variation of SY, even after correcting for cross-correlations 

with topography, lithology or other factors that may influence SY. Based on three distinct 

datasets, we demonstrate that this effect is significant both for small catchments in Europe 

(0.3 – 3,940 km²) and large river systems worldwide (1,580 – 6.15 x 106 km²) and that seismic 

activity may be even more important for explaining regional variation in SY than land use or 
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many other commonly considered factors (e.g. catchment area, climate). We show that 

explicitly considering seismic activity may lead to SY-estimates that easily deviate a factor 2 

or more compared to estimates that do not consider seismic activity. This is not only the case 

for highly seismically active regions: also in regions with a weak to moderate seismic regime 

seismic activity helps explaining regional patterns in SY. We argue that these findings have 

important implications for a better understanding of SY and its sensitivity to human impacts, 

as well as for our comprehension of sediment fluxes at longer timescales. 

  

Keywords  

Sediment yield, peak ground acceleration, Europe, human impact, land use, climate, 

topography 

  

I Introduction 

Understanding the factors and processes controlling contemporary catchment sediment yield 

(SY, [t km-2 y-1]; i.e. the mass of sediment annually leaving a catchment per unit of catchment 

area) is crucial for numerous environmental and economical issues (e.g. Owens et al., 2005; 

Vanmaercke et al., 2011a) as well as to comprehend biogeochemical cycles, fluvial 

sedimentary archives and human impacts on sediment fluxes at various spatial and temporal 

scales (e.g. Meybeck, 2003; Walling, 2006; Syvitski and Milliman, 2007). At present, 

predictions of contemporary SY are largely based on empirical models that combine the 

impact of external drivers (i.e. climate and human activity) with the current state of a 

catchment (i.e. topography and lithology) while tectonic forcings are not explicitly accounted 

for (e.g. Milliman and Syvitski, 1992; Merrit et al., 2003; de Vente and Poesen, 2005; 

Syvitski and Milliman, 2007). It has been argued that this is not necessary as tectonic uplift 

will result in a steeper topography, leading to an increase in sediment production (e.g. 

Milliman and Syvitski, 1992; Montgomery and Brandon, 2002; Syvitski and Milliman, 2007).  

We argue that catchment topography does not fully incorporate the effects of tectonic forcings 

on SY. Firstly, variations in uplift rates are only partly reflected in catchment topography: 

studies show that topography in mountain areas is constrained by a limiting steepness 

threshold (Montgomery and Brandon, 2002; Larsen and Montgomery, 2012). For catchments 
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where topography approaches this threshold, a further increase in tectonic uplift will result in 

an increase in erosion rates, while overall catchment steepness remains unchanged. In areas 

with topography below this limiting steepness threshold, tectonic uplift can initiate river 

incision, leading to an increase in SY which is not entirely reflected by the overall catchment 

topography (e.g. Whittaker et al., 2010). Secondly, impacts of tectonic forcings on SY may 

not be limited to uplift alone.  Earthquakes can trigger mass movements, leading to additional 

mobilization of sediments and increased sediment yields (Dadson et al., 2004; Hovius et al., 

2011). The effects of mass movements due to large earthquakes on landscape evolution and 

sediment fluxes can persist over thousands of years (Antinao and Gosse, 2009; Parker et al., 

2011). However, also earthquakes with a relatively low magnitude (M > 4.3) can induce 

landslides (Malamud et al., 2004) which may potentially contribute to catchment SY.  In 

addition, seismic activity and its associated rock fracturing can result in a direct increase in 

weathering rates and sensitivity to erosion (Molnar et al., 2007; Cox et al., 2010; Dühnforth et 

al., 2010; Portenga and Bierman, 2011, Koons et al., 2012). 

The effects of seismicity on SY have only been quantified for a limited number of highly 

tectonically active mountain regions (e.g. Dadson et al., 2004; Hovius et al., 2011; Howarth et 

al., 2012). These studies indicate that earthquake-triggered landslides may cause significant 

pulses in SY, but the overall importance of earthquakes for SY remains poorly understood 

(e.g. Huang and Montgomery, 2012). Furthermore, the potential importance of seismicity on 

SY in regions with a more moderate topography and/or tectonic regime has not yet been 

explored.  

The major objectives of this paper are therefore (i) to explore the hypothesis that seismicity 

has a significant and overall impact on contemporary SY which is not reflected by the 

catchment state (topography and lithology) and (ii) to present a first model to simulate 

regional variations in SY that incorporates seismicity.  

This paper is structured as follows. Section II presents the analyses of the relationship 

between seismic activity and SY for a dataset of undisturbed European catchments. Section 

III explores to what extent differences in land use may override a potential seismic control on 

SY, while section IV investigates if a potential seismic control on SY is also apparent in very 

large river systems worldwide. Building on these results, Section V aims to provide a first 

quantification of the importance of explicitly considering seismic activity when simulating 
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SY at a regional scale. Section VI discusses the implications of our findings and provides a 

scope for further research.  

Throughout our study, we used the Global Seismic Hazard Assessment Program (GSHAP) 

spatial database (Shedlock et al., 2000) to assess the degree of seismic activity. This dataset is 

based on large inventories of historical and measured earthquakes. For each catchment that 

we studied, we extracted the area-weighted average Peak Ground Acceleration (PGA, [m s-2]) 

that has a 10% exceedance probability in 50 years. Figure 1 shows an extract of this dataset 

for Europe, the main focus area of this study. Since PGA heavily depends on the magnitude of 

earthquakes (Shedlock et al., 2000) and the frequency and intensity of smaller earthquakes is 

generally strongly correlated with the magnitude of the largest earthquake events (e.g. Bak et 

al., 2002; Turcotte and Malamud, 2004), it can be expected that PGA provides a good 

measure of the overall seismic activity in a region. One should note that seismic activity does 

not perfectly capture all effects that tectonic forcing may have on SY. For instance, while 

strong tectonic uplift is usually characterized by significant seismic activity (e.g. Parker et al., 

2011), earthquakes do not necessarily generate relative rock uplift. Thus, by using PGA, we 

use a measure that is only an indicator of the intensity of tectonic processes.  

 

II Sediment yield under baseline conditions 

II.1 Data selection and analysis 

We selected 146 small (0.33 – 3,940 km²) undisturbed catchments based on an extensive 

literature review in combination with GIS-analyses (figure 2). We did this to avoid 

confounding a possible seismic signal by other factors known to affect SY (i.e. human 

impacts, glaciers, lakes; e.g. Walling, 2006; Syvitsksi and Milliman, 2007). A catchment was 

considered to be undisturbed if (i) it was not affected by canals, extensive drainage or mining; 

(ii) no significant natural glaciers, lakes or man-made reservoirs were present (i.e. less than 

10% of the catchment area is potentially affected by lakes or reservoirs); and (iii) the areal 

fraction of disturbed land (i.e. arable land, permanent crops and built-up area) was less than 

20%. This 20% threshold is more conservative than the one used in earlier studies (e.g. 

Dedkov and Moszherin, 1992; Walling, 1999) where a threshold of 30% was used.  60 

catchments had a forest cover of at least 80% during the monitoring period. The undisturbed 

areas of the 86 remaining catchments (partly) corresponded with other types of natural 
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vegetation, such as (alpine) pasture, shrubland, or heathland. Pasture and heathland may also 

be affected by human activity but, due to their large vegetation cover, the effect of this 

disturbance on sediment production and yield can be expected to be generally limited (e.g. 

Ward et al., 2009; Cerdan et al., 2010; Maetens et al., 2012). Overall, these selected 

catchments represent a wide range of topographic, lithological and tectonic conditions in 

Europe (figure 1 and 2). Table 1 gives an overview of the selected data, their original sources 

and information on the measuring procedures used.  

For each catchment a number of catchment characteristics that potentially explain differences 

in SY were determined by means of GIS-analyses and from information provided in the 

original data sources (table 2). Most of these variables (or similar ones) are commonly used in 

studies investigating the controlling factors of SY at catchment scale (e.g. Syvitski and 

Milliman, 2007; de Vente et al., 2011). Topographic factors included total relief (R [m]), 

Mean Local Relief (MLR, [m]; where the local relief was determined within a radius of 5 

km), average catchment slope (S, [°]) and indices describing average channel steepness. A 

lithology factor (L, [-]) was derived for each catchment describing the overall lithological 

susceptibility to erosion, following the same procedure as Syvitski and Milliman (2007). 

Climatic variables (e.g. average annual rainfall (P, [mm]), rainfall erosivity (MFI, [mm]), 

annual runoff potential (RI, [mm]), average air temperature (T, [°C])) and variables 

describing the land cover and SY-measuring method were also included in the analyses. To 

estimate the degree of seismic activity an area-weighted PGA-value was calculated for each 

catchment based on the GSHAP dataset (Shedlock et al., 2000; figure 1). 

As SY and many of the variables considered ranged over several orders of magnitude, the 

data were first logarithmically transformed with the exception of temperature (T) and the 

categorical variables LGM, LOAD, LK and LC (table 2). Using this (log-transformed) dataset 

of catchment characteristics and SY-values, we conducted normal and partial correlation 

analyses, based on both Pearson (r) and Spearman rank (rs) correlation coefficients. Partial 

correlation measures the degree of association between two considered variables, with the 

effect of other controlling variables removed (Fisher, 1924; Steel and Torrie, 1960). This is 

done by conducting a regression between each of the considered variables and the control 

variables and by then calculating the correlation between the residues of these two 

regressions. 
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II.2 Results 

Results indicate that observed differences in SY for the undisturbed dataset are best explained 

by Peak Ground Acceleration (PGA; figure 3a), average catchment slope (S; figure 3b) and 

catchment lithology (L; figure 3c). While PGA, S, and L correlate significantly with the 

observed variation in SY, they also correlate significantly with each other (with the exception 

of S and L; see Table 3; figure 3d). Nonetheless, partial correlation analyses show that each of 

these three variables remain significantly correlated with SY after controlling for the other 

two variables. Therefore, the significance of the effects found for each of the 3 variables 

cannot be attributed to confounding. Partial correlation analysis further indicates that, for this 

dataset, average catchment slope explains the largest part of the observed variation, while the 

contribution of lithology and PGA is similar (table 3). 

After correcting for S, catchment area showed no significant correlation with SY. Likewise, 

we found no meaningful correlations between SY and any of the considered climatic variables 

(table 2). Annual runoff observations were available for 90 of the considered catchments: 

statistical analyses indicated that runoff contributes very little in explaining the variability of 

SY. This concurs with the results of earlier studies on SY in undisturbed environments (e.g. 

Aalto et al., 2006). Also on longer time scales climatic variables often exert only a limited 

influence on erosion rates (e.g. Riebe et al., 2001). 

 

II.3 A baseline sediment yield model 

Based on the results of our (partial) correlation analyses (section II.2), we constructed the 

following log-linear multiple regression model: 

SYmodel = 5.93S1.01L1.01PGA0.55  (Eq. 1) 

Where SYmodel is the predicted sediment yield in t km-2 y-1. Calibration results show that our 

model explains about 56% of the variation in observed sediment yields (figure 4). Circa 97% 

of the simulated SY-values deviate by less than one order of magnitude from their 

corresponding measured value, while 85% of the data deviate by less than a factor 5.  

Additional analyses showed that the overall performance of the model (Eq. 1) or the 

significance of the incorporated variables is not significantly affected by the relative short 

measuring period of some of the SY-values used (table 1). Also, our model could not be 
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further improved by including any other considered variable (table 2). A weak correlation was 

found between the categorical LOAD variable and model residuals (r² = 0.04, p = 0.02). This 

indicates that SY-values calculated from both the bed and suspended load are indeed 

somewhat higher than values derived from suspended load measurement only, but the effect is 

limited. Likewise, a weak but significant correlation was found between the categorical 

variable describing land cover (LC) and model residuals (r² = 0.05, p = 0.008). However, it is 

unclear whether this small residual effect is because of actual differences in vegetation cover 

or because of auto-correlations between LC and other (unconsidered) factors. Therefore we 

did not further consider the effect of LC in the analyses of this dataset.  

We tested the robustness of our model (Eq. 1) using the following procedure. A random 

number of catchments (between 5 and 141) was randomly selected from the original dataset 

(table 1; figure 2) and used for calibration. The resulting alternative model was then applied to 

simulate the SY of the remaining catchments. This procedure was repeated 1,000 times. For 

each validation the Model Efficiency (ME; Nash and Sutcliffe, 1970) was calculated: 
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with n the number of observations; Oi the logarithm of the measured SY-value; Pi the 

corresponding logarithm of the simulated SY-value; and Omean the logarithm  of the mean 

observed SY-value. ME can range from -∞ to 1 and indicates the part of the observed 

variance the model accounts for. A perfect model that accounts for all the observed variation 

has a ME of 1. Negative ME-values indicate that the model induces more variation than could 

be observed. 

Results show that our model is robust: as long as ~30 or more catchments are used for 

calibration, ME-values are similar to those obtained for the model based on all observations 

(figure 5). On the other hand, the prediction quality may seem low when the model is 

validated on a limited number of observations (i.e. when more than 80% of the data is used 

for the calibration). This can be explained by the fact that, for some of these simulations, the 

variation in observed SY will be low. As a result, the overall deviations between observed and 

simulated values will be relatively large, which results in lower ME values (Eq. 2). The 

validations further showed that S, L and PGA generally remain significant when more than 30 
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catchments are used for calibration. We calculated probability ranges for the fitted parameters 

values using all calibrations obtained with ≥ 30 catchments. The 2.5-97.5% probability ranges 

are relatively large (S-exponent: 0.53 – 1.46; L-exponent: 0.39 – 1.75; PGA-exponent: 0.12 – 

1) but do not include zero. Thus, the significance of L, PGA, or S as explanatory variables for 

SY clearly does not depend on particular observations in the dataset used.  

A considerable proportion of the observed variation in SY remains unexplained by the model 

(Eq. 1). This implies that Eq. 1 cannot be used to exactly predict the SY of a specific 

catchment, but only to provide an order of magnitude indication of the expected SY. The 

large proportion of unexplained variance can be attributed to several reasons.  

Firstly, the observed SY data used to calibrate this model are subjected to important 

uncertainties. Earlier studies showed that these uncertainties pose a fundamental upper limit 

on the amount of variance that can be explained by a SY-model (e.g. Van Rompaey et al., 

2001; Govers, 2011). These uncertainties on observed SY-values are caused by errors related 

to the procedures used to measure and calculate SY (e.g. Phillips et al., 1999; Verstraeten and 

Poesen, 2002; Moatar et al., 2006), but also by the fact that SY is commonly subject to an 

important inter-annual variability (Vanmaercke et al., 2012) while several of the used SY 

observations were measured over relative short measuring periods (table 1). 

Secondly, also the variables included in the model (Eq. 1) involve uncertainties.  These relate 

not only to errors associated with the spatial datasets used to determine S, L and PGA (table 

2), but also to the fact that these variables provide only a spatially lumped estimate of the 

catchment topography, lithology and seismic activity. Likewise, PGA provides only a time-

averaged assessment of seismic activity which may deviate from the degree of seismic 

activity during the SY measuring period.  

Thirdly, SY is most likely also influenced by factors that are not considered by our model. 

The lack of strong correlations between SY and variables that relate to spatial scale, climate 

or land use indicates that these factors are only of limited importance. However, more 

accurate measures to express these factors could potentially make a more significant 

contribution to the explained variance and, hence, a better model performance. 

These issues not only affect the performance of the model presented in this study (Eq. 1) but 

relate to more fundamental problems that restrict the prediction capacity of all empirical 

models aiming at simulating erosion or SY (Merrit et al., 2003; de Vente and Poesen, 2005; 
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Govers, 2011 de Vente et al., in press). This is also indicated by the fact that the performance 

of our model (Eq. 1) is very similar to most other currently used regional or global SY-models 

(e.g. de Vente and Poesen, 2005; Syvitski et al., 2005; Syvitski and Milliman, 2007; Delmas 

et al., 2009; de Vente et al., 2011; de Vente et al., in press).  

 

III Human impacts, seismic activity and sediment yield  

The analyses above show that seismic activity significantly affects SY of small, undisturbed 

catchments. However, in other catchments this effect may be overwhelmed by the effects of 

human impacts in the catchment. To test whether seismicity remains a significant predictor of 

SY under a range of land use conditions, we conducted a similar analysis as describe above 

on a dataset of 139 European small (0.84 – 3,600 km²) catchments that represent a wide 

variety of land use conditions (table 4, figure 6).  

These catchments were selected from an existing SY-database (Vanmaercke et al., 2011b) 

because their SY was not significantly affected by lakes or reservoirs and because they are 

covered by the CORINE land cover dataset (EEA, 2010), which allowed the extraction of 

detailed land use characteristics. The land use of these catchments is highly variable with 

fractions of arable land ranging between 0 and 100%. Comparison with the GLIMS glacier 

database (Amstrong et al., 2005) showed that 6 of these catchments were partly (0.1 – 50 %) 

glaciated. 

We used  the same variables as those calculated for the undisturbed European catchments (see 

table 2), with the exception that the categorical variable describing the landcover of the 

undisturbed catchments (LC) was replaced by the percentage of arable land (AL), as derived 

from the CORINE dataset (EEA, 2010). Correlation and partial correlation analyses were 

conducted on this dataset, using the same procedures as for the dataset of undisturbed 

European catchments (section II.1). 

Of all considered variables, PGA showed again the strongest correlation with SY (r² = 0.28; 

figure 7a; table 5), followed by S (r² = 0.19; figure 7b). Also L was significantly but weakly 

correlated with SY (r² = 0.06, figure 7c), while the considered climatic variables or the 

fraction of arable land showed no significant correlations with SY (figure 7d). Topography, 

lithology and PGA were inter-correlated. However, partial correlation coefficients indicate 

that each of these factors explain a significant part of the variation in SY (table 5). After 
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correcting for PGA, S and L, SY showed a significant Pearson partial correlation with the 

fraction of arable land in each catchment, suggesting that land use may indeed explain some 

of the variability in SY. However, this correlation is very weak and even insignificant when 

the Spearman partial correlation is considered (table 5). This indicates that the importance of 

land use for explaining the observed variability in SY is limited compared to that of seismic 

activity, topography and lithology.  

 

IV What about large river systems? 

In large river basins, fluctuations in sediment load due to earthquakes have the potential to be 

attenuated by alluvial sediment storage (e.g. Phillips, 2003) or averaged-out by the impact of 

other factors that may be dominant at this scale (e.g. climate). We used a previously published 

global dataset of 216 large (1,580 – 6.15 x 106 km²) river systems covering ca. 46% of the 

total global land mass, for which SY was measured before major dams were installed 

(Syvitski et al., 2005). These catchments cover most of the global variability in topography, 

lithology, climate, land cover and seismic activity. As for the European datasets (section II 

and III), we calculated average PGA and L-values for each catchment.  

Since digital elevation models with a sufficiently high resolution to calculate S were not 

available for all catchments we used Mean Local Relief (MLR) instead of S. Earlier studies 

showed that MLR is a robust and meaningful proxy for S at continental and global scales (e.g. 

Montgomery and Brandon 2002). The MLR of each catchment was calculated based on the 

GTOPO30 DEM, which has a horizontal resolution of 30 arc-seconds (USGS, 2011). 

PGA showed the strongest correlation with SY (r² = 0.39; figure 8a), while the correlation 

between SY and MLR was slightly weaker (r² = 0.34; figure 8b). L was not significantly 

correlated with SY (table 6). PGA and MLR were inter-correlated (r² = 0.54; figure 8c). 

However, partial correlation analyses showed that, also for this dataset, both MLR and PGA 

explain a significant part of the observed variation in SY (table 6). The partial correlation 

coefficients further suggest that in large river basins, PGA is more strongly correlated to SY 

than MLR (table 6). 

Evidently, variation in SY at a global scale is not controlled by topography, lithology and 

seismicity alone. Syvitski and Milliman (2007) demonstrated that sediment fluxes at a global 

scale can be related to catchment area, relief, climate (expressed by the average basin 
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temperature), runoff discharge, human impacts, the presence of glaciers and catchment 

lithology. The BQART-model considers these factors and allows fairly accurate predictions of 

sediment fluxes (for details: see Syvitski and Milliman, 2007). To test whether seismic 

activity remains a significant explaining factor of SY after taking all these factors into 

account, we applied the BQART model to our dataset, which was also used to calibrate the 

original BQART model (Syvitski and Milliman, 2007). Relative prediction residuals were 

calculated as the ratio between the observed SY and the SY simulated by the BQART-model 

(SYBQART). These residuals show a clear and significant positive (r² = 0.10, p < 0.0001) 

correlation with PGA (figure 8d). 

 

V The importance of seismicity for simulating sediment yield 

The analyses that we described above clearly show the significant control of seismicity on the 

SY of a catchment, but do not quantify its effects. To do so, we developed two grid-based 

regression models to estimate SY. Both models were calibrated on the dataset of undisturbed 

European catchments (table 1; figure 2). The first model (Eq. 3) is similar to the model 

proposed in section II.3 (Eq. 1) but uses MLR rather than S as a measure for relief. This 

resulted in the following equation (figure 9):  

SYTLS = 1.32MLR0.65L1.13PGA0.61       (Eq.3) 

The second model only considers topography (MLR) and lithology (L) to simulate the 

sediment yield (SYTL, [t km-2 y-1]). Calibration results were slightly less good for this model; 

figure 9): 

SYTL = 0.13MLR1.03L1.63        (Eq. 4) 

Lithology (L) and seismicity (PGA) datasets were both resampled at a horizontal resolution of 

30”, i.e. the same resolution as the MLR dataset. Next, we applied both models (Eq. 3 and Eq. 

4) to each pixel of the European continent and determined the ratio between SYTLS and SYTL 

(figure 10). We only retained those pixels with an SYTLS-value between 10 t km-2 y-1 and 

1000 t km-2 y-1 as this was the original range for which the model (Eq. 3) was calibrated 

(figure 9). 

The values obtained by applying Eq. 3 and Eq. 4 to the pixel scale are not necessarily 

representative for SY-values of catchments at this location (e.g. because the potential effects 
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of sediment deposition within larger catchments are not considered by this approach). 

Nonetheless, we found that for the considered dataset (table 1; figure 2), the modeled SY-

values obtained by aggregating the SYTLS-values of all pixels in the catchment corresponded 

almost perfectly with the SY-values obtained by applying Eq. 3 to spatially lumped L, PGA 

and MLR values at the catchment scale (y = 0.94x1.02; r² = 0.97; n = 146). Moreover, errors 

resulting from the assumption that each pixel corresponds to a catchment will affect both 

models.  Since figure 10 only considers the ratio of the two models, the obtained spatial 

pattern is most likely not heavily affected by the assumption that pixels are representative for 

catchments. 

Figure 10 illustrates the importance of explicitly including seismic activity in models aiming 

to simulate SY at a regional scale. Although the overall performance of the model without 

PGA (Eq. 4; r² = 0.49) was only slightly worse than that for the model including PGA (Eq. 3; 

r² = 0.53), the simulated patterns in sediment yield are clearly different. Not including 

seismicity could lead to estimations of SY that are twice as high in areas where seismic 

activity is relatively limited compared to the topography (e.g. the Alps and Pyrenees; figure 

10). On the other hand, SY in tectonically active areas (e.g. Caucasus, Anatolia and the 

Eastern Mediterranean region) may be underestimated by a similar factor. Thus, while 

accounting for seismic activity may result in small but significant improvements of prediction 

accuracy for individual catchments, taking into account these seismic effects becomes highly 

relevant when considering spatial patterns of sediment fluxes at the regional level.  

The spatial pattern that can be seen on figure 10 is subject to uncertainties. These 

uncertainties cannot be quantified exactly as they depend on unknown uncertainties in the 

data used (SY, MLR, L and PGA) as well as on uncertainties in model parameterization. We 

did test, however, whether the simulated spatial pattern of the seismic effects on SY depended 

on the presence or absence of catchments from a specific region in our dataset. This was done 

by excluding catchments from regions for which we had at least ten SY-observations (i.e. the 

Alps, Caucasus, England/Ireland and the Carpathians; see figure 2) and recalibrating both 

models (Eq. 3 and Eq. 4) using the remaining catchments.  Next, these recalibrated models 

were applied to the catchments of the excluded region. Based on these four alternative model 

calibrations, we found that leaving out a specific region had only a minor effect on the 

SYTLS/SYTL ratios (generally < 20% deviation; figure 11).  Thus, the patterns presented in 
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figure 10 are robust and do not depend on the presence or absence of SY-observations from a 

specific region. 

 

VI Conclusions and implications 

Our analyses of three distinct datasets show that seismic activity has a significant impact on 

contemporary sediment yields. This effect is robust and not attributable to inter-correlations 

with topography, lithology or other factors controlling SY. While topographical measures and 

seismicity are statistically related, their effect on SY is at least partly independent. This has 

important implications for our understanding about sediment fluxes, their sensitivity to human 

impacts, as well as for our understanding about landscape evolution. 

The signficance of human impact on SY in relation to climate, geology and topography is an 

important topic of discussion (e.g. Meybeck, 2003; Dearing et al., 2006; Walling, 2006; 

Syvitski and Milliman, 2007). This study points out that seismic activity cannot be neglected 

in this context. Even for catchments with widely varying degrees of human impact and 

climatic conditions, seismic activity shows a highly significant correlation with SY. 

Moreover, observed correlations between SY and seismicity were clearly more significant 

than between SY and land use or climate. One of the possible reasons for the persistence of 

this seismic signal may be positive interactions between land use changes and the landscape’s 

sensitivity to the effects of seismicity. For example, deforestation can lead to a significant 

increase in landsliding (e.g. Sidle et al., 2006) which may be relatively more important in 

areas subject to earthquakes compared to seismically stable areas. Likewise, gully erosion is 

often triggered by agricultural activities and stock breeding (e.g. Poesen et al., 2003). 

However, Cox et al., (2010) have shown that the distribution of Lavakas (large erosional 

gullies) in Madagascar is mainly explained by local differences in seismic activity. The 

mechanisms that explain this strong correlation are currently poorly understood (Cox et al., 

2010). Our results further indicate that the relationship between land use changes, seismic 

activity and various erosion processes should be a focus of further research.. 

A crucial issue in estimating human impacts on SY is assessing the baseline SY of a 

catchment, i.e. the SY that can be expected before the catchment was altered by human 

impacts (e.g. Syvitski et al., 2005; Dearing et al., 2006). The model presented in this paper 

(Eq. 1) allows estimating baseline SY-values for small catchments in Central and Western 
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Europe. It is also the first model to explicitly account for the effects of seismic activity on SY. 

Based on this model, we demonstrated that explicitly considering seismic activity may lead to 

SY-estimates that easily deviate 100% (factor 2) or more from estimates that do not explicitly 

consider seismic activity (figure 9). Such deviations are comparable in magnitude to what 

may be expected from human disturbance by deforestation and/or conversion to arable land 

(e.g. Verstraeten et al., 2009). 

We further showed that seismicity not only affects the SY of small catchments but also has an 

influence of large river systems worldwide. This cannot be explained by the effect of 

individual large earthquakes as the response of large river systems to such an event will be 

most likely buffered or averaged-out. However, although local shifts in seismic activity can 

occur over relatively short periods of times (e.g. Fuchs et al., 1979), spatial variation in 

average seismic activity at a (sub) continental scale may be expected to occur at timescales 

similar to that of changes in plate tectonic configurations. Such configurations can be 

considered to be stable for periods well over 20,000 years (e.g. Roberts et al., 2004). The 

alluvial sediment residence time in large river systems is estimated to be smaller than 20,000 

years (e.g. Dosseto et al., 2008). Thus, sustained regional seismic activity should also be 

reflected in the SY of large river systems, provided that the effect is sufficiently large in 

comparison to other factors. Our results show that this is indeed the case and that a SY model 

can indeed be significantly improved by including variables that describe seismic activity as 

an independent controlling factor of SY. 

Since regional patterns of seismicity are generally constant over long time periods and 

processes related to seismicity can directly affect sediment production, seismic controls on 

sediment fluxes may also be relevant over longer time scales. Current long-term erosion and 

landscape evolution models only consider tectonic uplift as a controlling factor (e.g. 

Montgomery and Brandon, 2002; Tucker and Hancock, 2010). However, there are several 

plausible mechanisms that may causally link seismic activity directly to sediment fluxes, e.g. 

by triggering mass movements (e.g. Dadson et al., 2004; Parker et al., 2011; Hovius et al., 

2011; Howarth et al., 2012) and/or by weakening surface lithology (e.g. Molnar et al., 2007; 

Koons et al., 2012). As recent studies indicated (e.g. Parker et al., 2011), it may therefore be 

worthwhile to also consider seismic activity as an independent driver of landscape evolution. 

Understanding the different mechanisms that determine the correlation between seismicity 

and sediment fluxes remains an important challenge. For example, disentangling the roles of 
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seismic activity and tectonic uplift will be difficult given the fact that uplift and earthquakes 

often strongly correlate in space and time. Future studies may improve our analyses by 

explicitly considering tectonic uplift and/or alternative measures of seismic activity as a 

potential controlling factor of SY. Likewise, studying sediment fluxes and landscape 

evolution in areas with contrasting tectonic regimes (e.g. areas where uplift is due to isostatic 

rebound versus areas along major strike-slip faults) may strongly increase our comprehension. 

Above all, our analyses show that seismic effects on SY are not restricted to specific 

geomorphic and tectonic settings. While previous studies have shown that seismicity affects 

SY in steep and tectonically highly active mountain ranges (e.g. Dadson et al., 2004; Hovius 

et al., 2011, Howarth et al., 2012), our results demonstrate that this is also true for areas with a 

much more moderate relief and much lower levels of seismic activity. The effect of seismicity 

is present over the whole range of PGA values studied: also differences in seismicity between 

catchments characterized by low to moderate seismicity are reflected in different SY-values. 

Recent studies have demonstrated that, due to their vast extent, areas with a gentle to 

moderate relief (i.e. MLR < 1000 m) have a dominant impact on the global sediment flux to 

oceans (Willenbring et al., 2013; Kirchner and Ferrier, 2013). However, the very large spatial 

variability in denudation rates within these lower regions remains currently poorly understood 

(Willenbring et al., 2013). As this study demonstrates, regional differences in seismic activity 

may be of crucial importance for this variability. 
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FIGURES  

 

Figure 1: Estimated Peak Ground Acceleration (PGA) that has an exceedance probability of 

10% in 50 years for Europe, as derived from the GSHAP dataset (Shedlock et al., 2000). 
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Figure 2: Location of the 146 undisturbed European catchments with sediment yield data 

available, selected for this study. The map indicates the outlet locations of the considered 

catchments. Original sources and characteristics of the SY-data are given in table 1. 



Final paper available at: http://ppg.sagepub.com/content/38/2/145.short 

 

25 

 

 

Figure 3: Main results of the correlation analyses for 146 undisturbed European catchments 

(see figure 1 and table 1). (a) Relationship between observed sediment yield (SY) and the 

average Peak Ground Acceleration (PGA) that has an exceedance probability of 10% in 50 

years. (b) Relationship between average catchment slope (S) and SY. (c) Relationship 

between the catchment lithology erodibility (L) as determined by Syvitski and Milliman 

(2007) and SY (d) Relationship between S and PGA. Symbols are shaded according the 

drainage area (A) of the catchments. 
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Figure 4: Comparison between observed sediment yield (SY) and the simulated sediment 

yield (SYmodel) using Eq. 1, for the 146 undisturbed European catchments (table 1; figure 1).  

Symbols are shaded according to the drainage area (A) of the catchments. 
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Figure 5: Validation Model Efficiency (ME; Eq. 2) in relation to the percentage of the 

original dataset of undisturbed catchments that was used to recalibrate the model (see text). 

Each dot (n = 1,000) represents the result of a single validation. The black line indicates the 

moving average, calculated per ten validations.  
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Figure 6: Location of the 139 European catchments with SY and detailed land use data 

available, covering a wide range of land use characteristics. The map indicates the outlet 

locations of the considered catchments. Original sources and characteristics of the SY-data are 

given in table 4. 
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Figure 7: Main results of the correlation analyses for 139 European catchments with variable 

land use characteristics (figure 5; table 4). (a) Relationship between observed sediment yield 

(SY) and the average Peak Ground Acceleration (PGA) with an exceedance probability of 

10% in 50 years. (b) Relationship between average catchment slope (S) and SY. (c) 

Relationship between the catchment lithology erodibility (L) as determined by Syvitski and 

Milliman (2007) and SY (d) Relationship between the percentage of arable land in the 

catchment (AL) and SY. Symbols are shaded according the drainage area (A) of the 

catchments. 
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Figure 8: Main results of the correlation analyses for 216 large catchments worldwide. (a) 

Relationship between observed sediment yield (SY) and the average Peak Ground 

Acceleration (PGA) with an exceedance probability of 10% in 50 years. (b) Relationship 

between Mean Local Relief (MLR) and SY. (c) Relationship between PGA and MLR (d) 

Relationship between PGA and the residues of the BQART model. Residues were calculated 

as the ratio between SY and sediment yield values simulated by the BQART-model 

(SYBQART). Symbols are shaded according the drainage area (A) of the catchments. 
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Figure 9: Calibration results of the two models used to quantify the effects of seismic activity 

spatial variation of sediment yield in Europe. The left figure shows the sediment yield 

simulated with Eq. 3 (SYTLS) versus the observed sediment yield (SY) for the dataset of 146 

undisturbed European catchments (table 1; figure 1). The right figure shows the sediment 

yield simulated with Eq. 4 (SYTL) versus SY for the same dataset.  
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Figure 10: Estimated effect of seismic activity on sediment yield in Europe. The map shows 

the ratio of predicted sediment yield, based on a regression model that includes seismic 

activity (SYTLS; Eq. 3) and a model that does not (SYTL; Eq. 4). The model without seismic 

activity implicitly assumes that tectonic effects on SY are fully reflected by mean local relief 

and lithology. This latter model overestimates SY in the green regions and underestimates SY 

in the red regions compared to the model that also considers seismic activity. Pixels for which 

the SYTLS-values are less than 10 t km-2y-1 or larger than 1000 t km-2y-1 (i.e. the range of the 

predicted SYTLS-values during model calibration; see figure 9) are indicated in grey. 
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Figure 11: Comparison between the modelled effects of seismic activity on catchment 

sediment yield when the entire dataset of 146 undisturbed catchments is considered 

(SYTLS/SYTL Full Dataset) and the same modelled effect when catchments from one specific 

region (i.e. the Alps, Carpathians, Caucasus or England/Ireland) are not considered for the 

model calibration (SYTLS/SYTL Excluded Region). Each time, SYTLS/SYTL–ratios are plotted 

for the catchments in the region that was not considered for the model recalibration. 
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TABLES 

Table 1: Sources and characteristics of the European sediment yield data from the 146 

undisturbed catchments. The numbers (‘Nr’) correspond to the numbers indicated in figure 2. 

‘# Catchments’ indicates how many SY values were retrieved from each reference. 

‘Measuring Method’ indicates how the SY-values were determined. ‘MP’ stands for the 

duration of the Measuring Period. ‘A’ reports the (range of) catchment areas. 

 



Final paper available at: http://ppg.sagepub.com/content/38/2/145.short 

 

35 

 

Table 2: Overview of all variables considered in the correlation analyses, their source and 

their range for the dataset of undisturbed catchments. 
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Table 3: Pearson correlation (r) and Spearman rank (rs) coefficients and associated p-values 

between average catchment slope (S), the lithology erodibility factor (L), Peak Ground 

Acceleration (PGA) and observed catchment Sediment Yield (SY) for the 146 undisturbed 

catchments (figure 2, table 1). For an explanation of the variables: see table 2. The right side 

of the table shows the partial Pearson and Spearman rank coefficients after controlling for the 

indicated variables. Values in italic are insignificant at a significance level of 0.05. 
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Table 4: Sources and characteristics of the European sediment yield data from the 139 

catchments with detailed land use data. The numbers (‘Nr’) correspond to the numbers 

indicated in figure 6. ‘# Catchments’ indicates how many SY values were retrieved from each 

reference. ‘Measuring Method’ indicates how the SY-values were determined. ‘MP’ stands 

for the duration of the Measuring Period. ‘A’ reports the (range of) catchment areas. 
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Table 5: Pearson correlation (r) and Spearman rank (rs) coefficients and associated p-values 

between average catchment slope (S), the lithology erodibility factor (L), Peak Ground 

Acceleration (PGA), the fraction of Arable Land (AL) and observed catchment Sediment 

Yield (SY) for the 139 European catchments with variable land characteristics(figure 6, table 

4). The right side of the table shows the partial Pearson and Spearman rank coefficients after 

controlling for the indicated variables. Values in italic are insignificant at a significance level 

of 0.05. 
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Table 6: Pearson correlation (r) and Spearman rank (rs) coefficients and associated p-values 

between Mean Local Relief (MLR), the lithology erodibility factor (L), Peak Ground 

Acceleration (PGA) and observed catchment Sediment Yield (SY) for 216 large river systems 

worldwide. The right side of the table shows the partial Pearson and Spearman rank 

coefficients after controlling for the indicated variables. Values in italic are insignificant at a 

significance level of 0.05. 

 

 

 


