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Abstract

Current models aiming to simulate contemporaryreedt yield (SY) implicitly assume that
tectonic effects are either irrelevant or are mfld by catchment topography. In this study we
analyse the relation between SY and seismic agti@tcomponent of tectonic processes.
Results show a spatial correlation between SY arsihsc activity expressed as the estimated
Peak Ground Acceleration (PGA) with a 10% exceedamobability in 50 years. PGA has a
significant impact on the spatial variation of S/en after correcting for cross-correlations
with topography, lithology or other factors thatymafluence SY. Based on three distinct
datasets, we demonstrate that this effect is sogmf both for small catchments in Europe
(0.3 — 3,940 km2) and large river systems worldwiti&80 — 6.15 x 10km?) and that seismic

activity may be even more important for explainnegional variation in SY than land use or
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many other commonly considered factors (e.g. catéciinarea, climate). We show that
explicitly considering seismic activity may lead 3¢ -estimates that easily deviate a factor 2
or more compared to estimates that do not consiiemic activity. This is not only the case
for highly seismically active regions: also in regs with a weak to moderate seismic regime
seismic activity helps explaining regional patteimsSY. We argue that these findings have
important implications for a better understandif@¥ and its sensitivity to human impacts,
as well as for our comprehension of sediment fllatdenger timescales.

Keywords

Sediment vyield, peak ground acceleration, Europgman impact, land use, climate,

topography

| Introduction

Understanding the factors and processes contratiomgemporary catchment sediment yield
(SY, [t kmi? yY]; i.e. the mass of sediment annually leaving ahluaent per unit of catchment
area) is crucial for numerous environmental ancheoocal issues (e.g. Owens et al., 2005;
Vanmaercke et al., 2011la) as well as to compreheiedeochemical cycles, fluvial
sedimentary archives and human impacts on sediffluxeis at various spatial and temporal
scales (e.g. Meybeck, 2003; Walling, 2006; Syvitakid Milliman, 2007). At present,
predictions of contemporary SY are largely basedeompirical models that combine the
impact of external drivers (i.e. climate and hunwtivity) with the current state of a
catchment (i.e. topography and lithology) whiletoeic forcings are not explicitly accounted
for (e.g. Milliman and Syvitski, 1992; Merrit et.al2003; de Vente and Poesen, 2005;
Syvitski and Milliman, 2007). It has been arguedttthis is not necessary as tectonic uplift
will result in a steeper topography, leading to iaorease in sediment production (e.g.
Milliman and Syvitski, 1992; Montgomery and Brand@002; Syvitski and Milliman, 2007).

We argue that catchment topography does not fatigriporate the effects of tectonic forcings
on SY. Firstly, variations in uplift rates are orpartly reflected in catchment topography:
studies show that topography in mountain areasoisstcained by a limiting steepness

threshold (Montgomery and Brandon, 2002; LarsenModtgomery, 2012). For catchments
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where topography approaches this threshold, adurtitrease in tectonic uplift will result in
an increase in erosion rates, while overall catelirsteepness remains unchanged. In areas
with topography below this limiting steepness thidd, tectonic uplift can initiate river
incision, leading to an increase in SY which is ewotirely reflected by the overall catchment
topography (e.g. Whittaker et al., 2010). Seconufhpacts of tectonic forcings on SY may
not be limited to uplift alone. Earthquakes cagger mass movements, leading to additional
mobilization of sediments and increased sedimegitlyi(Dadson et al., 2004; Hovius et al.,
2011). The effects of mass movements due to laagiguakes on landscape evolution and
sediment fluxes can persist over thousands of y@arsnao and Gosse, 2009; Parker et al.,
2011). However, also earthquakes with a relatively magnitude (M > 4.3) can induce
landslides (Malamud et al., 2004) which may potdlyticontribute to catchment SY. In
addition, seismic activity and its associated réelcturing can result in a direct increase in
weathering rates and sensitivity to erosion (Moktaal., 2007; Cox et al., 2010; Dihnforth et
al., 2010; Portenga and Bierman, 2011, Koons g2@l.2).

The effects of seismicity on SY have only been gtiad for a limited number of highly
tectonically active mountain regions (e.g. Dadsbal.e 2004; Hovius et al., 2011; Howarth et
al., 2012). These studies indicate that earthquadgered landslides may cause significant
pulses in SY, but the overall importance of eartkgs for SY remains poorly understood
(e.g. Huang and Montgomery, 2012). Furthermore pitbtential importance of seismicity on
SY in regions with a more moderate topography antiotonic regime has not yet been

explored.

The major objectives of this paper are therefoyrdo(iexplore the hypothesis that seismicity
has a significant and overall impact on contempoi@Y which is not reflected by the
catchment state (topography and lithology) and tfi)present a first model to simulate

regional variations in SY that incorporates seistyiic

This paper is structured as follows. Section llsprds the analyses of the relationship
between seismic activity and SY for a dataset afistarbed European catchments. Section
[l explores to what extent differences in land us&y override a potential seismic control on
SY, while section IV investigates if a potentialsseic control on SY is also apparent in very
large river systems worldwide. Building on thessuits, Section V aims to provide a first

quantification of the importance of explicitly caodsring seismic activity when simulating



Final paper available at: http://ppg.sagepub.contéot/38/2/145.short

SY at a regional scale. Section VI discusses th@idations of our findings and provides a

scope for further research.

Throughout our study, we used the Global Seismizakth Assessment Program (GSHAP)
spatial database (Shedlock et al., 2000) to asisestegree of seismic activity. This dataset is
based on large inventories of historical and meamb@arthquakes. For each catchment that
we studied, we extracted the area-weighted avePagk Ground Acceleration (PGA, [M]s
that has a 10% exceedance probability in 50 yéagsire 1 shows an extract of this dataset
for Europe, the main focus area of this study. SIRGA heavily depends on the magnitude of
earthquakes (Shedlock et al., 2000) and the frexyuand intensity of smaller earthquakes is
generally strongly correlated with the magnitudehef largest earthquake events (e.g. Bak et
al., 2002; Turcotte and Malamud, 2004), it can hpeeted that PGA provides a good
measure of the overall seismic activity in a regiOne should note that seismic activity does
not perfectly capture all effects that tectonicciog may have on SY. For instance, while
strong tectonic uplift is usually characterizeddgnificant seismic activity (e.g. Parker et al.,
2011), earthquakes do not necessarily generateveelack uplift. Thus, by using PGA, we
use a measure that is only an indicator of thengitg of tectonic processes.

Il Sediment yield under baseline conditions
[I.1 Data selection and analysis

We selected 146 small (0.33 — 3,940 km?) undistirb&chments based on an extensive
literature review in combination with GIS-analysé&ure 2). We did this to avoid
confounding a possible seismic signal by otherodiactknown to affect SY (i.e. human
impacts, glaciers, lakes; e.g. Walling, 2006; S3kst and Milliman, 2007). A catchment was
considered to be undisturbed if (i) it was not etiéel by canals, extensive drainage or mining;
(i) no significant natural glaciers, lakes or maade reservoirs were present (i.e. less than
10% of the catchment area is potentially affectgdaltes or reservoirs); and (iii) the areal
fraction of disturbed land (i.e. arable land, pemera& crops and built-up area) was less than
20%. This 20% threshold is more conservative than dne used in earlier studies (e.g.
Dedkov and Moszherin, 1992; Walling, 1999) wher¢heeshold of 30% was used. 60
catchments had a forest cover of at least 80% duhie monitoring period. The undisturbed

areas of the 86 remaining catchments (partly) spoeded with other types of natural
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vegetation, such as (alpine) pasture, shrublantieathland. Pasture and heathland may also
be affected by human activity but, due to theigéawvegetation cover, the effect of this
disturbance on sediment production and yield caexpected to be generally limited (e.g.
Ward et al.,, 2009; Cerdan et al., 2010; Maetenslet2012). Overall, these selected
catchments represent a wide range of topograpitmldgical and tectonic conditions in
Europe (figure 1 and 2). Table 1 gives an overwéwhe selected data, their original sources

and information on the measuring procedures used.

For each catchment a number of catchment charstitsrthat potentially explain differences
in SY were determined by means of GIS-analyses feord information provided in the
original data sources (table 2). Most of thesealdes (or similar ones) are commonly used in
studies investigating the controlling factors of &Y catchment scale (e.g. Syvitski and
Milliman, 2007; de Vente et al., 2011). Topograpfactors included total relief (R [m]),
Mean Local Relief (MLR, [m]; where the local reliafas determined within a radius of 5
km), average catchment slope (S, [°]) and indicescdbing average channel steepness. A
lithology factor (L, [-]) was derived for each chtoent describing the overall lithological
susceptibility to erosion, following the same pmhae as Syvitski and Milliman (2007).
Climatic variables (e.g. average annual rainfall [(Bm]), rainfall erosivity (MFI, [mm]),
annual runoff potential (RI, [mm]), average air fmrature (T, [°C])) and variables
describing the land cover and SY-measuring methecewalso included in the analyses. To
estimate the degree of seismic activity an aregwed PGA-value was calculated for each
catchment based on the GSHAP dataset (Shedlotk 20@0; figure 1).

As SY and many of the variables considered rangext several orders of magnitude, the
data were first logarithmically transformed withetlexception of temperature (T) and the
categorical variables LGM, LOAD, LK and LC (table ®sing this (log-transformed) dataset
of catchment characteristics and SY-values, we wcted normal and partial correlation
analyses, based on both Pearson (r) and Spearmiar{rgacorrelation coefficients. Partial

correlation measures the degree of associationdegiviwo considered variables, with the
effect of other controlling variables removed (fesh1924; Steel and Torrie, 1960). This is
done by conducting a regression between each otdhsidered variables and the control
variables and by then calculating the correlatiogtiwvieen the residues of these two

regressions.
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[1.2 Results

Results indicate that observed differences in S¥He undisturbed dataset are best explained
by Peak Ground Acceleration (PGA,; figure 3a), ageraatchment slope (S; figure 3b) and
catchment lithology (L; figure 3c). While PGA, SpdaL correlate significantly with the
observed variation in SY, they also correlate sigantly with each other (with the exception
of S and L; see Table 3; figure 3d). Nonetheleagjal correlation analyses show that each of
these three variables remain significantly coreglatvith SY after controlling for the other
two variables. Therefore, the significance of tHieas found for each of the 3 variables
cannot be attributed to confounding. Partial catieh analysis further indicates that, for this
dataset, average catchment slope explains thestgoget of the observed variation, while the
contribution of lithology and PGA is similar (tal®g.

After correcting for S, catchment area showed gaiBcant correlation with SY. Likewise,
we found no meaningful correlations between SY a@mylof the considered climatic variables
(table 2). Annual runoff observations were avagafidr 90 of the considered catchments:
statistical analyses indicated that runoff contielsuvery little in explaining the variability of
SY. This concurs with the results of earlier stgsdim SY in undisturbed environments (e.g.
Aalto et al., 2006). Also on longer time scalesndliic variables often exert only a limited

influence on erosion rates (e.g. Riebe et al., 001

I1.3 A baseline sediment yield model

Based on the results of our (partial) correlatioalgses (section 11.2), we constructed the

following log-linear multiple regression model:
SYmode= 5.938LMPGA®  (Eq. 1)

Where S¥qoqel is the predicted sediment yield in t Kng'*. Calibration results show that our
model explains about 56% of the variation in obsdrsediment yields (figure 4). Circa 97%
of the simulated SY-values deviate by less than order of magnitude from their

corresponding measured value, while 85% of the diexéate by less than a factor 5.

Additional analyses showed that the overall pertoroe of the model (Eg. 1) or the
significance of the incorporated variables is nighigicantly affected by the relative short

measuring period of some of the SY-values usede(tap Also, our model could not be
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further improved by including any other considevadable (table 2). A weak correlation was
found between the categorical LOAD variable and ehedsiduals (r? = 0.04, p = 0.02). This
indicates that SY-values calculated from both tlesl land suspended load are indeed
somewhat higher than values derived from suspelu@deldmeasurement only, but the effect is
limited. Likewise, a weak but significant corretati was found between the categorical
variable describing land cover (LC) and model resld (r2 = 0.05, p = 0.008). However, it is
unclear whether this small residual effect is beeanf actual differences in vegetation cover
or because of auto-correlations between LC andr dtiveonsidered) factors. Therefore we

did not further consider the effect of LC in theabyses of this dataset.

We tested the robustness of our model (Eq. 1) usiegfollowing procedure. A random
number of catchments (between 5 and 141) was raydsetected from the original dataset
(table 1; figure 2) and used for calibration. Thsulting alternative model was then applied to
simulate the SY of the remaining catchments. Thixgdure was repeated 1,000 times. For
each validation the Model Efficiency (ME; Nash ahatcliffe, 1970) was calculated:

n

>(@-Ry
ME =1- —=L . (Eq. 2)

Z,n :1(Oi - Omean)2

with n the number of observations; @e logarithm of the measured SY-value;tke

corresponding logarithm of the simulated SY-valagd Qneanthe logarithm of the mean
observed SY-value. ME can range from to 1 and indicates the part of the observed
variance the model accounts for. A perfect modal #tcounts for all the observed variation
has a ME of 1. Negative ME-values indicate thatrtfoelel induces more variation than could
be observed.

Results show that our model is robust: as long 28 er more catchments are used for
calibration, ME-values are similar to those obtdifier the model based on all observations
(figure 5). On the other hand, the prediction dyainay seem low when the model is
validated on a limited number of observations (iveen more than 80% of the data is used
for the calibration). This can be explained by fhet that, for some of these simulations, the
variation in observed SY will be low. As a restitie overall deviations between observed and
simulated values will be relatively large, whictsuéts in lower ME values (Eg. 2). The
validations further showed that S, L and PGA geheramain significant when more than 30
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catchments are used for calibration. We calculptetdability ranges for the fitted parameters
values using all calibrations obtained witl80 catchments. The 2.5-97.5% probability ranges
are relatively large (S-exponent: 0.53 — 1.46; panent: 0.39 — 1.75; PGA-exponent: 0.12 —
1) but do not include zero. Thus, the significaoté&, PGA, or S as explanatory variables for

SY clearly does not depend on particular obseraatio the dataset used.

A considerable proportion of the observed variato®Y remains unexplained by the model
(Eq. 1). This implies that Egq. 1 cannot be usecexactly predict the SY of a specific
catchment, but only to provide an order of magratuadication of the expected SY. The

large proportion of unexplained variance can bebaitied to several reasons.

Firstly, the observed SY data used to calibrates tmodel are subjected to important
uncertainties. Earlier studies showed that thesenminties pose a fundamental upper limit
on the amount of variance that can be explained IB)-model (e.g. Van Rompaey et al.,
2001; Govers, 2011). These uncertainties on obdeB¥evalues are caused by errors related
to the procedures used to measure and calculate.§YPhillips et al., 1999; Verstraeten and
Poesen, 2002; Moatar et al., 2006), but also byfabethat SY is commonly subject to an
important inter-annual variability (Vanmaercke ¢t 2012) while several of the used SY

observations were measured over relative shortumiegsperiods (table 1).

Secondly, also the variables included in the m@@gl 1) involve uncertainties. These relate
not only to errors associated with the spatial sltiaused to determine S, L and PGA (table
2), but also to the fact that these variables pl@wnly a spatially lumped estimate of the
catchment topography, lithology and seismic agtivitikewise, PGA provides only a time-
averaged assessment of seismic activity which mayate from the degree of seismic

activity during the SY measuring period.

Thirdly, SY is most likely also influenced by facsothat are not considered by our model.
The lack of strong correlations between SY andaldes that relate to spatial scale, climate
or land use indicates that these factors are ohljindted importance. However, more
accurate measures to express these factors coukhtipdly make a more significant
contribution to the explained variance and, headsetter model performance.

These issues not only affect the performance ofrtbdel presented in this study (Eq. 1) but
relate to more fundamental problems that resthet prediction capacity of all empirical

models aiming at simulating erosion or SY (Mertitak, 2003; de Vente and Poesen, 2005;
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Govers, 2011 de Vente et al., in press). Thisde aldicated by the fact that the performance
of our model (Eqg. 1) is very similar to most otleerrently used regional or global SY-models
(e.g. de Vente and Poesen, 2005; Syvitski et @052Syvitski and Milliman, 2007; Delmas
et al., 2009; de Vente et al., 2011; de Vente.etrapress).

11 Human impacts, seismic activity and sediment yield

The analyses above show that seismic activity segmtly affects SY of small, undisturbed
catchments. However, in other catchments this effexy be overwhelmed by the effects of
human impacts in the catchment. To test whethenseity remains a significant predictor of
SY under a range of land use conditions, we comduatsimilar analysis as describe above
on a dataset of 139 European small (0.84 — 3,608 katchments that represent a wide

variety of land use conditions (table 4, figure 6).

These catchments were selected from an existinglé&8abase (Vanmaercke et al., 2011b)
because their SY was not significantly affectedldi§es or reservoirs and because they are
covered by the CORINE land cover dataset (EEA, 200dich allowed the extraction of
detailed land use characteristics. The land usthede catchments is highly variable with
fractions of arable land ranging between 0 and 100%mparison with the GLIMS glacier
database (Amstrong et al., 2005) showed that Gexfet catchments were partly (0.1 — 50 %)

glaciated.

We used the same variables as those calculatédeamdisturbed European catchments (see
table 2), with the exception that the categoricatiable describing the landcover of the
undisturbed catchments (LC) was replaced by theepgage of arable land (AL), as derived
from the CORINE dataset (EEA, 2010). Correlatiom gartial correlation analyses were
conducted on this dataset, using the same procedsefor the dataset of undisturbed

European catchments (section 11.1).

Of all considered variables, PGA showed again tlengest correlation with SY (r2 = 0.28;
figure 7a; table 5), followed by S (r2 = 0.19; frgu7b). Also L was significantly but weakly
correlated with SY (r2 = 0.06, figure 7c), whileetltonsidered climatic variables or the
fraction of arable land showed no significant clatiens with SY (figure 7d). Topography,
lithology and PGA were inter-correlated. Howeveart@l correlation coefficients indicate

that each of these factors explain a significant pathe variation in SY (table 5). After

9
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correcting for PGA, S and L, SY showed a significRearson partial correlation with the
fraction of arable land in each catchment, sugggdtiat land use may indeed explain some
of the variability in SY. However, this correlatias very weak and even insignificant when
the Spearman partial correlation is consideredgt&)p This indicates that the importance of
land use for explaining the observed variabilityS¥ is limited compared to that of seismic

activity, topography and lithology.

IV What about largeriver systems?

In large river basins, fluctuations in sedimentale to earthquakes have the potential to be
attenuated by alluvial sediment storage (e.g. iBBjIR003) or averaged-out by the impact of
other factors that may be dominant at this scate (8mate). We used a previously published
global dataset of 216 large (1,580 — 6.15 R li¥?) river systems covering ca. 46% of the
total global land mass, for which SY was measuretbre major dams were installed
(Syvitski et al., 2005). These catchments covertrobshe global variability in topography,
lithology, climate, land cover and seismic activifs for the European datasets (section Il
and Ill), we calculated average PGA and L-valuesfxh catchment.

Since digital elevation models with a sufficientijgh resolution to calculate S were not
available for all catchments we used Mean LocaldR¢éMLR) instead of S. Earlier studies

showed that MLR is a robust and meaningful proxySat continental and global scales (e.g.
Montgomery and Brandon 2002). The MLR of each catht was calculated based on the
GTOPO30 DEM, which has a horizontal resolution @&Bc-seconds (USGS, 2011).

PGA showed the strongest correlation with SY (18.89; figure 8a), while the correlation
between SY and MLR was slightly weaker (r? = 0.8¢ure 8b). L was not significantly
correlated with SY (table 6). PGA and MLR were interrelated (r2 = 0.54; figure 8c).
However, partial correlation analyses showed thla for this dataset, both MLR and PGA
explain a significant part of the observed variatin SY (table 6). The partial correlation
coefficients further suggest that in large rivesiha, PGA is more strongly correlated to SY
than MLR (table 6).

Evidently, variation in SY at a global scale is mointrolled by topography, lithology and
seismicity alone. Syvitski and Milliman (2007) demstrated that sediment fluxes at a global

scale can be related to catchment area, reliafjatd (expressed by the average basin
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temperature), runoff discharge, human impacts, ghesence of glaciers and catchment
lithology. The BQART-model considers these factmd allows fairly accurate predictions of
sediment fluxes (for details: see Syvitski and iilin, 2007). To test whether seismic
activity remains a significant explaining factor 8fy after taking all these factors into
account, we applied the BQART model to our datasbich was also used to calibrate the
original BQART model (Syvitski and Milliman, 2007Relative prediction residuals were
calculated as the ratio between the observed SWren&Y simulated by the BQART-model
(SYBoarT). These residuals show a clear and significanitipes(r? = 0.10, p < 0.0001)
correlation with PGA (figure 8d).

V Theimportance of seismicity for smulating sediment yield

The analyses that we described above clearly shewignificant control of seismicity on the
SY of a catchment, but do not quantify its effedts.do so, we developed two grid-based
regression models to estimate SY. Both models walibrated on the dataset of undisturbed
European catchments (table 1; figure 2). The fnsidel (Eq. 3) is similar to the model
proposed in section 1.3 (Eq. 1) but uses MLR ratli@an S as a measure for relief. This

resulted in the following equation (figure 9):

SYns= 1.32MLR LM 3pea’e! (Eq.3)

The second model only considers topography (MLRJ &thology (L) to simulate the
sediment yield (SY., [t km-2 y-1]). Calibration results were slightgss good for this model;
figure 9):

SYr = 0.13MLR-%3.1%3 (Eq. 4)

Lithology (L) and seismicity (PGA) datasets werehbesampled at a horizontal resolution of
307, i.e. the same resolution as the MLR datasektNve applied both models (Eg. 3 and Eqg.
4) to each pixel of the European continent andrdeted the ratio between $)% and SY_
(figure 10). We only retained those pixels with ¥ s-value between 10 t kfy™ and
1000 t kn¥ y* as this was the original range for which the mad. 3) was calibrated
(figure 9).

The values obtained by applying Egq. 3 and Eq. 4hto pixel scale are not necessarily

representative for SY-values of catchments atltduation (e.g. because the potential effects
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of sediment deposition within larger catchments aot considered by this approach).
Nonetheless, we found that for the considered daf@able 1; figure 2), the modeled SY-
values obtained by aggregating therS¥alues of all pixels in the catchment corresponded
almost perfectly with the SY-values obtained bylgimg Eq. 3 to spatially lumped L, PGA
and MLR values at the catchment scale (y = 0:84x2 = 0.97; n = 146). Moreover, errors
resulting from the assumption that each pixel gpoads to a catchment will affect both
models. Since figure 10 only considers the rafidhe two models, the obtained spatial
pattern is most likely not heavily affected by @msumption that pixels are representative for

catchments.

Figure 10 illustrates the importance of explicitigluding seismic activity in models aiming
to simulate SY at a regional scale. Although therall performance of the model without
PGA (Eq. 4; r?2 = 0.49) was only slightly worse tttaat for the model including PGA (Eg. 3;
r2 = 0.53), the simulated patterns in sedimentdyiate clearly different. Not including
seismicity could lead to estimations of SY that aséce as high in areas where seismic
activity is relatively limited compared to the tapaphy (e.g. the Alps and Pyrenees; figure
10). On the other hand, SY in tectonically activeas (e.g. Caucasus, Anatolia and the
Eastern Mediterranean region) may be underestimbiecd similar factor. Thus, while
accounting for seismic activity may result in smalt significant improvements of prediction
accuracy for individual catchments, taking into@ad these seismic effects becomes highly
relevant when considering spatial patterns of sedirfluxes at the regional level.

The spatial pattern that can be seen on figure slGubject to uncertainties. These
uncertainties cannot be quantified exactly as tthegend on unknown uncertainties in the
data used (SY, MLR, L and PGA) as well as on umagsties in model parameterization. We

did test, however, whether the simulated spatititpaof the seismic effects on SY depended
on the presence or absence of catchments fromc#isgegion in our dataset. This was done
by excluding catchments from regions for which veel lat least ten SY-observations (i.e. the
Alps, Caucasus, England/Ireland and the Carpathses figure 2) and recalibrating both

models (Eq. 3 and Eq. 4) using the remaining cagéchisn Next, these recalibrated models
were applied to the catchments of the excludedregsased on these four alternative model
calibrations, we found that leaving out a specrgion had only a minor effect on the

SY1.¢/SYr. ratios (generally < 20% deviation; figure 11). uShthe patterns presented in
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figure 10 are robust and do not depend on the pceser absence of SY-observations from a

specific region.

VI Conclusions and implications

Our analyses of three distinct datasets show #iaiméc activity has a significant impact on
contemporary sediment yields. This effect is rolarsd not attributable to inter-correlations
with topography, lithology or other factors contirmj SY. While topographical measures and
seismicity are statistically related, their effect SY is at least partly independent. This has
important implications for our understanding absediment fluxes, their sensitivity to human

impacts, as well as for our understanding aboutdeape evolution.

The signficance of human impact on SY in relatiortlimate, geology and topography is an
important topic of discussion (e.g. Meybeck, 200&aring et al., 2006; Walling, 2006;
Syvitski and Milliman, 2007). This study points dbat seismic activity cannot be neglected
in this context. Even for catchments with widelyrwag degrees of human impact and
climatic conditions, seismic activity shows a highsignificant correlation with SY.
Moreover, observed correlations between SY andrseity were clearly more significant
than between SY and land use or climate. One optssible reasons for the persistence of
this seismic signal may be positive interactionsvieen land use changes and the landscape’s
sensitivity to the effects of seismicity. For exdeypdeforestation can lead to a significant
increase in landsliding (e.g. Sidle et al., 2006)ch may be relatively more important in
areas subject to earthquakes compared to seisyngtalble areas. Likewise, gully erosion is
often triggered by agricultural activities and stobreeding (e.g. Poesen et al., 2003).
However, Cox et al., (2010) have shown that théridigion of Lavakas (large erosional
gullies) in Madagascar is mainly explained by lodédferences in seismic activity. The
mechanisms that explain this strong correlationcameently poorly understood (Cox et al.,
2010). Our results further indicate that the relaghip between land use changes, seismic

activity and various erosion processes shouldfoeus of further research..

A crucial issue in estimating human impacts on SYassessing the baseline SY of a
catchment, i.e. the SY that can be expected bdfmecatchment was altered by human
impacts (e.g. Syvitski et al., 2005; Dearing et 2006). The model presented in this paper

(Eq. 1) allows estimating baseline SY-values fomamatchments in Central and Western

13



Final paper available at: http://ppg.sagepub.contéot/38/2/145.short

Europe. It is also the first model to explicitlycacint for the effects of seismic activity on SY.
Based on this model, we demonstrated that explicdhsidering seismic activity may lead to
SY-estimates that easily deviate 100% (factor 2nore from estimates that do not explicitly
consider seismic activity (figure 9). Such deviaticare comparable in magnitude to what
may be expected from human disturbance by defai@stand/or conversion to arable land

(e.g. Verstraeten et al., 2009).

We further showed that seismicity not only affabis SY of small catchments but also has an
influence of large river systems worldwide. Thisnigat be explained by the effect of
individual large earthquakes as the response gelawver systems to such an event will be
most likely buffered or averaged-out. However, @lifjh local shifts in seismic activity can
occur over relatively short periods of times (efgichs et al., 1979), spatial variation in
averageseismic activity at a (sub) continental scale mayekpected to occur at timescales
similar to that of changes in plate tectonic comfagions. Such configurations can be
considered to be stable for periods well over 20,08ars (e.g. Roberts et al., 2004). The
alluvial sediment residence time in large rivertegss is estimated to be smaller than 20,000
years (e.g. Dosseto et al., 2008). Thus, sustaiegwnal seismic activity should also be
reflected in the SY of large river systems, prodidbat the effect is sufficiently large in
comparison to other factors. Our results show tiatis indeed the case and that a SY model
can indeed be significantly improved by includirgyiables that describe seismic activity as
an independent controlling factor of SY.

Since regional patterns of seismicity are generatiypstant over long time periods and
processes related to seismicity can directly affsetiment production, seismic controls on
sediment fluxes may also be relevant over longee tscales. Current long-term erosion and
landscape evolution models only consider tectorpiiftuas a controlling factor (e.g.
Montgomery and Brandon, 2002; Tucker and Hanco®d,02 However, there are several
plausible mechanisms that may causally link seisantority directly to sediment fluxes, e.g.
by triggering mass movements (e.g. Dadson et @042Parker et al., 2011; Hovius et al.,
2011; Howarth et al., 2012) and/or by weakenindaser lithology (e.g. Molnar et al., 2007;
Koons et al., 2012). As recent studies indicateg. (@arker et al., 2011), it may therefore be

worthwhile to also consider seismic activity asraiependent driver of landscape evolution.

Understanding the different mechanisms that deteenthe correlation between seismicity
and sediment fluxes remains an important challeRge.example, disentangling the roles of
14
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seismic activity and tectonic uplift will be diffitt given the fact that uplift and earthquakes
often strongly correlate in space and time. Fumkalies may improve our analyses by
explicitly considering tectonic uplift and/or altetive measures of seismic activity as a
potential controlling factor of SY. Likewise, studg sediment fluxes and landscape
evolution in areas with contrasting tectonic reginie.g. areas where uplift is due to isostatic

rebound versus areas along major strike-slip faniesy strongly increase our comprehension.

Above all, our analyses show that seismic effegisSY are not restricted to specific
geomorphic and tectonic settings. While previouslisis have shown that seismicity affects
SY in steep and tectonically highly active mountanges (e.g. Dadson et al., 2004; Hovius
et al., 2011, Howarth et al., 2012), our resultmdestrate that this is also true for areas with a
much more moderate relief and much lower levelsetdmic activity. The effect of seismicity
is present over the whole range of PGA values stdilso differences in seismicity between
catchments characterized by low to moderate seignaice reflected in different SY-values.
Recent studies have demonstrated that, due to Wasir extent, areas with a gentle to
moderate relief (i.e. MLR < 1000 m) have a dominamact on the global sediment flux to
oceans (Willenbring et al., 2013; Kirchner and fegr2013). However, the very large spatial
variability in denudation rates within these lowegions remains currently poorly understood
(Willenbring et al., 2013). As this study demonsdga regional differences in seismic activity

may be of crucial importance for this variability.
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Figure 1. Estimated Peak Ground Acceleration (PGA) that maex@eedance probability of
10% in 50 years for Europe, as derived from the BBldataset (Shedlock et al., 2000).
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Figure 2: Location of the 146 undisturbed European catchmeiitts sediment yield data
available, selected for this studjhe map indicates the outlet locations of the abersd
catchments. Original sources and characteristitiseo8Y-data are given in table 1.

24



Final paper available at: http://ppg.sagepub.contéot/38/2/145.short

(a) 104 — —— (b)104 f f f f I f
_10°7 . 10°]
T> ‘T>
o 1071 o 107
£ £
x X
= 10'7 = 10"
% oo
@ 10° T 10°1 @ y=1.9x"1
° 12 =0.44
‘10'1 T L ||||== T T 10_1 = = = = = =
0.1 1 ) 10 0O 5 10 15 20 25 30 35
PGA (ms™) S (%)
() 1o ' '
_ 10T
‘T>\
G 10° T
S
X
= 10'71
>
w
10°T
107 - I - — I = -
0 1 2 3 4 0 1 2 3 4 5

L PGA (m s?)
®A<50km?(n=45) @ 50km?<A <500km?(n=63) ©A >500km?(n=38)

Figure 3: Main results of the correlation analyses for 14@isturbed European catchments
(see figure 1 and table 1(g) Relationship between observed sediment yield (&) the
average Peak Ground Acceleration (PGA) that hasxaeedance probability of 10% in 50
years. (b) Relationship between average catchment slope 1(8) Q. (c¢) Relationship
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(2007) and SY d) Relationship between S and PGA. Symbols are shadedrding the

drainage area (A) of the catchments.
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Figure 5: Validation Model Efficiency (ME; Eg. 2) in relatioto the percentage of the
original dataset of undisturbed catchments that ugesl to recalibrate the model (see text).
Each dot (n = 1,000) represents the result of glesivalidation. The black line indicates the

moving average, calculated per ten validations.
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Figure 6. Location of the 139 European catchments with SY dathiled land use data
available, covering a wide range of land use charistics. The map indicates the outlet
locations of the considered catchments. Originatss and characteristics of the SY-data are

given in table 4.
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Figure 9: Calibration results of the two models used to giyattie effects of seismic activity
spatial variation of sediment yield in Europe. Tle& figure shows the sediment yield
simulated with Eq. 3 (Si(s) versus the observed sediment yield (SY) for thset of 146
undisturbed European catchments (table 1; figureThg right figure shows the sediment
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SYT LS

Figure 10: Estimated effect of seismic activity on sedimemigiin Europe. The map shows
the ratio of predicted sediment yield, based oregrassion model that includes seismic
activity (SYy.s; Eg. 3) and a model that does not (SYEQ. 4). The model without seismic
activity implicitly assumes that tectonic effects 8Y are fully reflected by mean local relief
and lithology. This latter model overestimates &Yhe green regions and underestimates SY
in the red regions compared to the model that @ssiders seismic activity. Pixels for which
the SYy s-values are less than 10 t Kyt or larger than 1000 t kfy™ (i.e. the range of the
predicted S¥ s-values during model calibration; see figure 9)iatkcated in grey.
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Table 1: Sources and characteristics of the European sediiyield data from the 146

undisturbed catchments. The numbers (‘Nr’) corraspio the numbers indicated in figure 2.

‘# Catchments’ indicates how many SY values wergieneed from each reference.

‘Measuring Method’ indicates how the SY-values weetermined. ‘MP’ stands for the

duration of the Measuring Period. ‘A’ reports tih@nge of) catchment areas.

Nr. Reference # Catchments Measuring Method' MP (v) A (lan?)
1 Al-Ansarni et al. (1977) 1 G5 (5L) 2 163
2 Alvera and Garcia-Ruiz (2000) 1 G5 (TL) 4 0.4
3-5 Bednarczyk and Madeyska (1996) 3 G5 (SL) 4-4 19-48
6 Beyer Portner and Schleiss (1998) 1 R 25 134
7 Bogen (1996) 1 GS (SL) 3 30
8 Clymans et al. (2010) 1 GS (SL) 3 27
9 Csafordi et al. (2009) 1 R 25 10
10 Dearing et al. (1987) 1 RD ~ 3000 15
11-59 Dedkov and Mozzerin (1984) 49 G5 (SL) 2-44 66 - 3821
60 - 67 Diacomu (1969) 8 G5 (SL) 4-9 98 - 461
68 Dugjsings (1986); Cammmeraat (2002) 1 G5 (TL) 2 0.6
69 -71 Foster and Lees (1999) 3 RD ~26 - 68 32-27
72 Foster et al. (1986) 1 RD ca. 155 26
73 Foster et al. (1986): Foster et al. (1983) 1 RD =20 21
74 Garcia-Ruiz et al (2008) 1 G5 (TL) 9 0.9
75 Gergov (1996) 1 G5 (SL) 39 817
76 - 106 INHGA (2010) 31 GS (SL) 13-55 30-2844
107 - 108 Johnson (1988) 2 G5 (TL) 3-3 68-76
109 Keller and Weibel (1991) 1 GS (SL) 4 1.6
110 Lajczak (1996) Lajczak (2003) 1 R 23 1182
111 Lenzi et al. (2003) 1 G5 (TL) 16 31
112 Macaire etal. (1997) 1 RD ~ 1240 37
113 Macaire etal. (2010) 1 RD ~ 2300 27
114 Martinez-Carreras et al. (2010) 1 GS (SL) 5 27
115 Notebaert et al. (2011) 1 SB ~ 7000 797
116 Verstraeten et al. (2006) 1 R unknown (= 5) 76
117 Ridoane and Radoane (2005) 1 R 20 390
118 -122 Rickenmann (1997) 5 R 11-51 06-19
123 -125 Schrider and Theune (1984) 3 G5 (SL) 10-24 341 - 786
126 - 128 Small et al. (2003) 3 R =20 05-37
129 SMHI (2008) 1 GS (SL) 15 ER
130 Snowball and Thompson (1990); Snowball and Thompson (1992) 1 RD ~ 6000 19
131-133 Stott and Mount (2004):; Stott et al. (2001) 3 G5 (SL) 2-2 33-88
134 -143 Van Rompaey et al. (20035): Bazoffi (1987) 10 R =30 20 - 389
144 Verstraeten et al. (2009) 1 SB ~ 9500 57
145 Whate (2001) 1 R unknown (> 3) 378
146 Zolitschka (1998) 1 RD ~ 7000 22

! GS: Y was measured at a gauging station. (SL): Only suspended load was measured. (TL): Both suspended load and bedload were measured. R: §Y
was derived from contemporary sedimentation rates in reservoirs. RD: SY 1s based on historic or Holocene sedimentation rates in lakes or reservoirs for
which the period of sediment accumulation was determined with a dating method (e.g. Varve chronology, *C. *'°Pb and *'Cs dating). SB: SY is derived
from a detailed sediment budget study.
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Table 2: Overview of all variables considered in the cotieta analyses, their source and

their range for the dataset of undisturbed catchisnen

Variable Description Derived from Units Range
A Origmally reported catchment area Ongmnal soures of the 57 -data km? 0.33 -3940
Hian Mean Elevation CGIAR (2008); ERSDAC (2009 ' m 51.4-2879
Hew Mmimum Elevation CGIAR. (2008); ERSDAC (2009} - m 1-2082
Homy Maximum Elevation CGIAR (2008): ERSDAC (2009) * m 73 - 4440
R Relief (Houpy - Hyy) CGIAR (2008); ERSDAC (2009) ! m 36- 3832
H, Standard deviation of the elevation CGIAR (2008); ERSDAC (2009 m 9.1-843
HI Hypsometric Integral CGIAR (2008): ERSDAC (2009) 0.098 - 0.685
5 Average catchment zlope CGIAR (2008); ERSDAC {2009) ! = 1.44-303
Sad Standard deviation of catchment slopes CGIAR (2008); ERSDAC (2008) i " 0.79-119
: Mean Local Rehef where local relief 15 the maxiwonm heizht difference withm 2 : I L
MLR radins of 3000m CGIAR (2008): ERSDAC (2009) m 36-20515
A 5 f the catchment, weighted according to th se dist: tothe
Sogg: ode e Eiec FEgfetacotne TR mine (elnee IR CGIAR (2008} ERSDAC (20093 ! - 164 -30.96
network
Average s . weighted accordmg to the square root of the mverse distance to the
Susigne 3 hpe:ia ) . < CGIAR (2008);: ERSDAC (2009) = 1.54-31.06
mver network
Average channel gradient. weighted according to the coninbuting area of each channel 1
Srver el CGIAR (2008); ERSDAC (2009) * 071-1245
A channel gradient. d rding to the t of the contmbutm
St e i e e £ CGIAR (2008): ERSDAC (2009) | : 0.74-13.79
area of each channel prxel™
Catchment bthology erodibility factor as defined by Syvitski and Milliman 2007
Bazed on a global lithology map (Dhur et 21, 2005), 2 score was aszigned to each
hitholegy. dependmg on thewr erodibility. Scores ranped between 0.5 for erozion- 3 2 i
L resistant reck types (2.2, acudic plutonic or metamorphue rocks) and 3 for very evodible Diarr-et ol (2002 23
hithologes (= g loess). An arez-weighted zveraze score was then caleulated for each
catchment
T Average (1961-1990) annual awr temperature Mew at al. 2002} “C 134 -1214
P Average (1961-1990) annual rainfall Mewr et al. (2002} mm 420.1 - 22189
MMFT Modified Fournter Index 25 defined by Arnoldus (1580) Mew at al. (2002) mim 378-2087
Annual Runcff Index. Thes index was calculated as the sum of the monthly differences
betwesn the long-term average (1961-1990) monthly ramfall and the long-term
average monthly potential evapotranspiration (PET). Monthly PET-values were
R N al. (2002 1323 - 18418
calculated based on the Thomtwaite (1948) method, as described by Xu znd Sinzh ew et al 005 i
(2001). For months that PET exceaded the monthly rainfall the differsnce was
assumed to be zero.
" o o _— - .
LG Du.l:u:m:. \anFibse_ indicating 1f the catchment was (partly) glaciated dunng the Last Ehlers st al (2011) : Gorl
Glactal Maxinowm (1) or not (0
Dummy vanable to indicate if the 5Y-value only considers suspended load (0) or both . .
LOAD > i Origmal source of the 5Y-da - Qorl
bedload and suspended load (1) e e 2 o
Dummy vanable to mdicate if there are lakes m the upstream area of the catchment (1) ™ "
1K crniot (0). Tn the cases fht lakes are present, these lakes affect less than 109 of the Lronfle. " Harfh:-aripinal source; of the Darl
SY-data
total catchment area.
Land cover sconng vanable desenbing the land use of the undisturbed eatchment. This
ic score was set to 1 for catchments having = forest cover of =80%. to 2 for catchments Ongnal Source of the 5Y-data; 1 "
with 50-80% of forest cover and to 3 for catchments with less than 50% of forest Googlem Earth: EEA (2010) ” =leis
cover.
PGA Peak Ground Acceleration with an exceedance probability of 10% in 30 years. Gradiit st oL, (1990); Shedlocketal; o 0.13-424

(2000)

! For catchments balow §0° N, SRTM data was used (CGIAR. 2008). For catchments above 60° N. ASTEFR. GDEM data were wsed (ERSDAC. 2009). All DEMs were first
rescaled to a resolution of 100 by 100 m

2 River networks were derived from the DEM, assuming a minimnm contributing area of at least 1 km®

*For catchments smaller than 1 km® . slopes were weighted according to the distance to the catchment outlet.
* Thus varzable was only caleulated for catchments = Tkm®
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Table 3. Pearson correlation (r) and Spearman ragkc@efficients and associated p-values
between average catchment slope (S), the litholggdibility factor (L), Peak Ground
Acceleration (PGA) and observed catchment Sedinvélt (SY) for the 146 undisturbed
catchments (figure 2, table 1). For an explanatibthe variables: see table 2. The right side
of the table shows the partial Pearson and Spearamkncoefficients after controlling for the

indicated variables. Values in italic are insigraifnt at a significance level of 0.05.

Pearson correlation 1 (p-value) Partial Pearson correlation (p-value)
log (S) log (L) log (PGA) log (SY) log (SY) Controlling Variables
log (5) 1 0.11 (0.1731) 0.70 (= 0.0001) 0.66 (= 0.0001) log (5) 042(=0.0001) log (L). log (PGA)
log(L) 0.11(0.1731) 1 0.37 (< 0.0001) 0.38 (= 0.0001) log (L) 0.29(<0.0001) log (S). log (PGA)
log (PGA) 0.70 (= 0.0001) 0.37 (< 0.0001) 1 0.67(<0.0001) log (PGA) 0.27 (0.0009) log (S). log (L)
log (SY) 0.66 (< 0.0001)0.38 (< 0.0001) 0.67 (< 0.0001) 1
Spearman correlation 1, (p-value) Partial Spearman correlation (p-value)
log (5) log (L) log (PGA) log (SY) log (5Y) Coutrolling Variables
log (S) 1 0.03 (0.7138) 0.56 (= 0.0001)0.51 (= 0.0001) log (S) 0.30(0.0003) log(L). log (PGA)
log (L) 0.03(0.7138) 1 0.34 (< 0.0001) 0.37 (= 0.0001) log (L) 0.28(0.0008) log (S). log (PGA)
log (PGA) 0.56 (= 0.0001) 0.34 (< 0.0001) 1 0.65(<0.0001)  log (PGA) 041 (<0.0001)  log(S). log (L)
log (SY) 0.51 (< 0.0001)0.37 (< 0.0001) 0.65 (< 0.0001) 1
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Table 4. Sources and characteristics of the European sediiyield data from the 139
catchments with detailed land use data. The numpmirs) correspond to the numbers
indicated in figure 6. ‘# Catchments’ indicates hamany SY values were retrieved from each
reference. ‘Measuring Method’ indicates how the \&Yies were determined. ‘MP’ stands

for the duration of the Measuring Period. ‘A’ refsothe (range of) catchment areas.

Nr. Reference # Catchments Measuring Method' MP (v) A (ki)
1-5 Barlow and Thomson (2000) 5 R 73-146 0.84-895
6 Batucca and Jordaan (2000) 1 R 30 254
7-9 Bayer. L{H (2002) 3 GS (SL) 13-22  406-2125
10 Becvar (2007) 1 GS (SL) 10 316
11 Bednarczyk and Madeyski (1998) 1 GS (SL) 22 218
12-14 Bogardi et al. (1983) 3 R 24-52 24-52
15-16 Branski and Banasik (1996) 2 GS (SL) 34-34 2092 - 3516
17 Bronsdon and Naden (2000) 1 GS (SL) 2 1500
18-21 Butcher et al_ (1993) 4 R 36-85 216-211
22 Cravero and Guichon (1989) 1 R 10 3600
23-36 de Vente et al. (2005) 14 R 7-98 31-469
37 Dedkov and Mozzherin (1984) 1 GS (SL) 11 442
38-40 Diaconu (1969) 3 GS (SL) 4-8 131 -1164
41-43 Foster and Lees (1999) 3 R 75-205 2.56 -4.04
44 - 49 Gergov (1996) 6 GS (SL) 3.38 220-330
50 Habersack (1996) 1 R 17 160
51 Harlow et al (2006) 1 GS (SL) 10 226
52 Hasholt (1983) 1 GS (SL) 2 12
53 Holliday et al. (2003) 1 R 64 17.8
54 - 64 INHGA (2010) 11 GS (SL) 14-53 44 - 666
65-83 Tansky (1992); Haigh et al. (2004) 19 R unknown (>1)  2-28
84 -85 Taoshvili (2002) 2 GS (SL) unknown (> 1) 224-339
86 Kadlec et al. (2007) 1 GS (SL) 10 374
87-88 Krasa et al. (2005) 2 R 4-13 32-339
89 Labadz et al (1991) 1 R 12 12
90-92 Lajczak (1996); Lajezak (2003) 3 R unknown (> 1) 208 - 1124
03 Lemin et al. (1987) 1 GS (SL) 1 190
94 Rodzik et al. (2007) 1 GS (SL) 6 8.6
95 - 100 Schrader and Theune (1984) [ R 1-10 14 - 260
101 - 106 Small et al. (2003) 6 R unknown (> 20) 2.85-9.31
107 Tschada and Hofer (1990) 1 GS (SL) 25 60.6
108 - 126 Van Rompaey et al. (2005) 19 R unknown (> 30) 14.3 -352
127 -137 VMM (2008) 11 GS (SL) 1-5 171-1072
138 Walling and Webb (1988); Harlow et al. (2006) 1 GS (SL) 10 262
139 Whate (2001) 1 R 15 148

' GS: SY was measured at a gauging station. (SL): Only suspended load was measured. (TL): Both suspended load and bedload were measured. R: SY
was derived from contemporary sedimentation rates in reservoirs.
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Table 5: Pearson correlation (r) and Spearman ragkc@efficients and associated p-values

between average catchment slope (S), the litholeagibility factor (L), Peak Ground

Acceleration (PGA), the fraction of Arable Land (AkBnd observed catchment Sediment

Yield (SY) for the 139 European catchments withialale land characteristics(figure 6, table

4). The right side of the table shows the partediBon and Spearman rank coefficients after

controlling for the indicated variables. Valuedtalic are insignificant at a significance level

of 0.05.
Pearson cormrelation r (p-value) Partial Pearson correlation (p-value)
log (S) log (L) log (PGA) AL log (SY) log (SY) Controlling Variables
log (S) 1 -0.10(0.2556) 0.41 (= 0.0001) -0.66 (= 0.0001) 0.43 (= 0.0001) log (5) 034 (0.0003) log(L). log (PGA). AL
log (L) -0.10(0.2550) 1 0.23 (0.0074)  0.22 (0.0088)  0.24 (0.0033) log (L) 0.19(0.0213) log(S). log (PGA). AL
log (PGA) 0.41(=0.0001) 0.23 (0.0074) 1 -0.02 (0.8347) 0.52 (= 0.0001) log (PGA) 0.30 (0.0004) log (). log (L). AL
AL -0.66 (< 0.0001) 0.22 (0.0088) -0.02 (0.8347) 1 -0.07 (0.4134) AL 0.17 (0.0399) log (S). log (L). log (PGA)
log (SY) 0.43 (=0.0001) 0.24 (0.0053) 0.52(=0.0001) -0.07 (0.4134) 1
Spearman correlation 1, (p-value) Partial Spearman correlation (p-value)
log (S) log (L) log (PGA) AL log (SY) log (SY) Controlling Variables
log (S) 1 -0.08 (0.3659)  0.46 (< 0.0001) -0.58 (< 0.0001) 0.41 (< 0.0001) log(S)  0.29(0.0006) log(L). log (PGA). AL
log (L) -0.08 (0.3659) 1 020 (0.0205)  0.21 (0.0136)  0.29 (0.0005) log (L) 027(0.0014) log(S). log (PGA). AL
log (PGA) 046 (<0.0001) 0.20 (0.0205) 1 0.04 (0.6409)  0.50 (= 0.0001) log (PGA) 0.27 (0.0018) log (S). log (L). AL
AL -0.58 (=0.0001) 021(0.0136) 0.04 (0.6409) 1 -0.02 (0.8138) AL 0.12 (0.1496) log (8). log (L). log (PGA)
log (SY) 0.41(-0.0001) 0.29 (0.0005) 0.50 (<0.0001) -0.02(0.8138) 1
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Table 6: Pearson correlation (r) and Spearman ragkc@efficients and associated p-values
between Mean Local Relief (MLR), the lithology eitmtity factor (L), Peak Ground
Acceleration (PGA) and observed catchment Sediviettl (SY) for 216 large river systems
worldwide. The right side of the table shows thetiph Pearson and Spearman rank
coefficients after controlling for the indicatedriables. Values in italic are insignificant at a

significance level of 0.05.

Pearson correlation 1 (p-value) Partial Pearson correlation (p-value)
log (MLR) log (L) log (PGA) log (SY) log (SY) Controlling Variables
log (MLR) 1 -0.07 {0.2828) 0.74 (< 0.0001) 0.58 (< 0.0001) log MLR) 0.25(0.0003) log (L), log (PGA)
log (L) -0.07 (0.2828) 1 0.0I (0.8980)  0.07 {0.3334) log(L) 0.1I(0.1114) log (MLR), log (PGA)
log (PGA) 0.74 (<= 0.0001) 0.0 (0.5950) 1 0.63 (= 0.0001) log (PGA) 0.35 (= 0.0001) log (MLR), log (L)
log (SY) 0.58(=00001) 0.070.3334) 0.63 (= 0.0001) 1
Spearman correlation 1, (p-value) Partial Spearman correlation (p-value)
log (MLR) log (L) log (PGA) log (SY) log (5Y) Controlling Variables
log (MLE) 1 -1 (6.0963) 0.79 (=0.0001) 0.62(=0.0001) log (MLR) 0.27 (= 0.0001) log (L). log (PGA)
log(L) -0.110.0963) 1 -0.01 (0.9299)  -0.01 (0.8914) log (L) 0.04 (0.5373) log (MLR). log (PGA)
log (PGA) 0.79 (< 0.0001) -0.01(0.9209) 1 0.63 (= 0.0001) log (PGA) 0.28 (= 0.0001) log (MLR). log(L)
log (SY) 0.62(=0.0001) -0.010.8914) 0.63(=0.0001) 1
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