
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering

Raising the level of Abstraction in
Behavioral Modeling, Programming
Patterns and Transformations

Geert Delanote

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

April 2014

Raising the level of Abstraction in Behavioral Mod-
eling, Programming Patterns and Transformations

Geert DELANOTE

Examination committee:
Prof. dr. ir. Y. Willems, chair
Prof. dr. ir. E. Steegmans, supervisor
Prof. dr. ir. W. Joosen
Prof. dr. D. De Schreye
Prof. dr. Serge Demeyer

(Universiteit Antwerpen)
Prof. dr. ing. J. Boydens

(Kulab, Oostende)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

April 2014

© 2014 KU Leuven – Faculty of Engineering
Uitgegeven in eigen beheer, Geert Delanote, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

ISBN 978-94-6018-810-7
D/2014/7515/34

Don’t hesitate to travel a di�cult path
if that is the direction your heart is leading.

Dankwoord

Het dankwoord, het laatste stukje tekst dat moet ingevuld worden, het ogen-
blik waarop je terugblikt op de afgelegde weg en je vaststelt dat dit proefschrift
nooit mogelijk was geweest zonder de fantastische steun van heel veel mensen.
De weg was veel langer en vooral veel moeilijker dan initieel gedacht. De weg
die ik volgde leek naarmate de tijd verstreek alsmaar verder af te dwalen van
mijn vooropgestelde doel, ettelijke keren heb ik geworsteld met het dilemma
“ermee ophouden of toch nog doorzetten”. Alhoewel . . . het was mijn rationele
ik die mij aan het twijfelen bracht en mij veel te vaak aan opgeven deed den-
ken. In mijn hart heb ik nooit een halve seconde getwijfeld, het proefschrift
dat u nu in handen hebt is wat ik altijd écht wou. Zonder de fantastische
steun van familie, vrienden, collega’s en begeleiders had ik mijn doel nooit
bereikt. Dankzij hen heb ik de juiste weg gevonden en ben ik heel trots dat ik
dit project succesvol heb kunnen afronden. Ik wil graag iedereen die op een
of andere manier zijn of haar steentje bijgedragen heeft bedanken. Een aantal
mensen wil ik toch graag extra in de schijnwerper plaatsen.

Ik zou in de eerste plaats mijn promotor, professor Eric Steegmans, van
harte willen bedanken voor zijn begeleiding en onze inspirerende gesprekken
die dit doctoraat mee vorm gegeven hebben. Eigenlijk moet ik hem nog veel
meer bedanken voor zijn geloof in mijn kunnen en zijn eindeloze geduld en
begrip tijdens de talloze keren dat ik fysiek of mentaal in de lappenmand lag.
Eric was ook de begeleider van mijn master-thesis die ik, na een woelige en
moeilijke studieperiode, pas na veel vallen en opstaan afgerond kreeg. Groot
was mijn verrassing toen ik na de presentatie van mijn master-thesis de vraag
en kans kreeg om als onderzoeker te starten in zijn onderzoeksgroep, Soft-
wareontwikkelingsmethodologie. Omdat ik mijn studies aangevat heb aan de
KULAK, heb ik nooit mogen ervaren hoe het was om les te krijgen van Eric,
winnaar van ontelbare gouden krijtjes, de onderscheiding voor beste prof. Als
medewerker kreeg ik de kans om met hem samen te werken als assistent bij ver-
schillende van zijn vakken. Ik heb hem dan ook leren kennen als een ontzettend

1

gepassioneerd docent. Door hem heb ik ontdekt dat doceren, mensen coachen
en begeleiden iets is wat ik ook heel erg doe. Ik heb de vakken object-gerichte
analyse en object-gericht programmeren altijd met heel veel enthousiasme on-
dersteund. Mocht ik de kans krijgen om te doceren, hoop ik dat ik ooit half
zo goed word als hij is.

De overige leden van de begeleidingscommissie, professor Wouter Joosen
en professor Danny De Schreye, alsook de overige juryleden professor Serge
Demeyer en professor Jeroen Boydens, ben ik dankbaar om mijn werk aan
hun kritische blik te onderwerpen. Hun opmerkingen hebben ongetwijfeld de
kwaliteit van de tekst verbeterd.

Ik heb het voorrecht gehad om met heel fijne collega’s in de onderzoeks-
groep Softwareontwikkelingsmethodologie te mogen samenwerken.

Pieter Bekaert begeleidde mij eerst bij mijn master-thesis en was nadien
degene die mij wegwijs maakte op het departement Computerwetenschappen.
Zijn enthousiasme voor object-gerichte analyse en programmeren, zowel als
assistent als als onderzoeker, heeft mij zeker positief bëınvloed. Hij was ook
de drijvende kracht achter de eerste publicatie waar mijn naam als co-auteur
op vermeld staat.

Van Frank Devos heb ik geleerd: “Doctoreren es vele schriv’n”. Ik ben
heimelijk nog altijd een beetje jaloers op zijn talent om dingen pragmatisch
en krachtdadig aan te pakken. Ik hoor hem nog altijd zeggen (ondertussen
ruim 10 jaar geleden): “Als ik vanaf nu elke dag 1 blad schrijf, dan is mijn
thesis binnen 200 dagen klaar”. 200 dagen later stonden we op de receptie
te toosten ter ere van zijn promotie. Frank loodste mij ook binnen bij zijn
toenmalige zaalvoetbalploeg waar ik daarna 13 jaar lang heel ontspannende
en fijne momenten beleefd heb.

Jeroen Boydens kwam Frank aflossen als collega met West-Vlaamse roots.
Nog altijd begrijp ik niet waar hij al zijn energie vandaan haalde (en haalt):
hij combineerde namelijk zijn onderzoekswerk met lesgeven aan de KHBO en
een gezin. Bovendien mocht je hem altijd advies of hulp vragen, ik denk niet
dat hij eenmaal “nee” gezegd heeft. Elke donderdag trotseerde hij de files
of vertragingen van de NMBS om naar Leuven te komen om te vergaderen
en tussendoor, nadat we (soms vruchteloos) Sven De Labey wakker gemaakt
hadden, een ViaVia-Spaghetti met de collega’s te nuttigen.

Sven De Labey heb ik eerst mogen begeleiden bij zijn master-thesis. Al
heel snel was ik overtuigd van zijn kwaliteiten en vertelde ik Eric dat Sven
een aanwinst voor de onderzoeksgroep zou zijn. Aangezien Sven voor zichzelf
ook al beslist had dat hij bij de onderzoeksgroep wou komen, was dat een heel

kort gesprek en werd hij een jaar later collega. In die periode zonk ik mentaal
steeds verder weg in het moeras, en al heel snel werden de rollen van mentor
en “ondersteunde” omgewisseld. Meer dan eens hebben tot ’s nachts heel laat
via instant messaging eerst gepraat over waarom ik steeds moeizamer vooruit
geraakte met mijn onderzoek waarna hij mij op zijn manier hielp. Sven heeft
namelijk een uitzonderlijk talent om teksten overtuigend en aangenaam om
lezen te schrijven. Zonder zijn hulp was de Pluto-publicatie nooit tot stand
gekomen. Ook in de laatste fase van dit doctoraat heeft hij een heel belangrijke
rol gespeeld.

Zonder te willen beweren dat dit hun enige verdienste was, wil ik ook nog
Jan Dockx, Jamal Said, Stefan Van Baelen, Bart Swennen, Nele Smeets, Marko
van Dooren en Koen Vanderkimpen bedanken voor de aangename werksfeer.
Na een onderbreking van een aantal jaar, kreeg ik bij Sam Michiels een bureau
om mijn doctoraat af te werken: ik wil hem zeker ook bedanken voor het
aangename gezelschap.

In september 2000 ben ik begonnen als onderzoeker, nu bijna 14 jaar later
kan ik het werk eindelijk succesvol afronden. De weg was (te) lang en vol on-
voorziene hindernissen. Mijn weg liep blijkbaar via een diep en donker moeras
waar ik zonder het te bese↵en steeds dieper in vast geraakt ben. Initieel rea-
liseerde ik mij enkel mijn steeds hardnekkigere fysieke ongemakken. Gelukkig
kwam ik vrij snel bij Ronny Massa terecht die mij ontelbare keren via shiatsu-
massages zo goed en zo kwaad als hij kon oplapte. Naast het verlichten van
de fysieke klachten, ondersteunde hij me ook mentaal, maar ik besef nu dat
ik zijn inzichten toen niet altijd even goed begrepen heb. Eind 2007 liep mijn
contract aan de KULeuven af. Tot september 2011 bleef mijn onderzoekswerk
onaangeroerd. Ongewild. Ik had er gewoon de mentale kracht niet voor. Ik
was helemaal geblokkeerd. En ik wilde het toch zó graag. Ik ging elke dag een
beetje meer kapot. Mentaal. En fysiek. In september 2011 ben ik bij Synergeia
binnengestapt en sindsdien heb ik mij met hun hulp stapje voor stapje kunnen
bevrijden uit dat donkere gat waar ik in terecht gekomen was. Bedankt Pieter
Lanoye om mij geleidelijk aan van mijn fysieke klachten af te helpen. Ik heb
er vertrouwen in dat je mij in de toekomst terug fit krijgt. Ik ben er zeker van
dat de yoga-sessies van Ronny Massa en fascia-behandelingen van Johan Van
Welden ook een cruciale rol gespeeld hebben. Jos Van Pelt en Patricia Wich-
man, beiden ook verbonden aan Synergeia, startten tegelijk met het mentale
oplapwerk. Jos, de sessie van 12 december vergeet ik nooit meer. Je dacht
out-of-the-box, ik wist gevoelsmatig onmiddellijk dat je er boenk opzat met
je visie. Na voorbereidende ondersteuning van Ronny Massa, kon ik met de

hulp van Leo Vulsteke in het voorjaar van 2012 een heel belangrijk keerpunt
realiseren. Bedankt Leo. De volgende fase was om mijn doctoraatswerk terug
op te pakken. Jona den Aantrekker was en is mijn kompas tijdens het laatste
stuk van de weg. Jona, het belang van jouw bijdrage kan niet genoeg bena-
drukt worden. Jij helpt me keer op keer om de dingen beter in perspectief
te zetten. Samen met Kaat Timmerman, heb jij er ook voor gezorgd dat ik
mezelf eindelijk beter begrijp.

En als laatste maar niet minder belangrijk wil ik mijn vrienden en fami-
lie bedanken. Veel vrienden hebben mij de afgelopen jaren op verschillende
manieren fijne en aangename momenten bezorgd. In het bijzonder wil ik heel
graag Norman & Chantal, Tom & Mie en Michael & Griet bedanken.

Mijn schoonfamilie, Marleen, Catharina, Stijn en Marc, wil ik bedanken
voor alle steun tijdens de afgelopen jaren. De blijk van interesse door me
regelmatig te vragen hoe het nu was met mijn doctoraat was hartverwarmend.

Bert Hellinger schreef1: “Er gebeurt iets prachtigs wanneer mensen naar
hun ouders kijken en de bron van het leven herkennen. De liefde eist dat de
ontvanger zowel het geschenk als de gever ervan respecteert. Wie het leven
liefheeft en respecteert, heeft ook de gevers van het leven lief.” Gilbert en
Magda, ik ben blij dat jullie erbij zijn wanneer ik dit werk presenteer.

De vier mooiste dagen van mijn leven waren de vier geboortedagen van
mijn lieve kinderen. Alexander, Lucas, Arend en Soetkin, jullie zijn mijn zon,
maan en sterren tegelijk. Altijd kunnen jullie een glimlach op mijn gezicht
toveren.

Natasja, je bent al 20 jaar mijn steun en toeverlaat. Niemand gelooft meer
in mijn kunnen dan jij. Al was het vaak niet eenvoudig om de juiste stimulans
te vinden om mij weer op pad te helpen, jij bleef onvermoeibaar zoeken. Afge-
lopen jaren was ik te vaak afwezig, moest jij de kar te vaak alleen trekken. Nu
ik dit werk afgerond heb, beloof ik dat ik ook terug het voortouw zal nemen,
zodat jij zorgeloos kunt meedrijven op mijn golf. Eindelijk kunnen we terug
naar de toekomst kijken en onze dromen verder verwezenlijken. Wodka!

Tenslotte zou ik dit proefschrift ook willen opdragen aan mijn nonkel
Christian. Je hebt ons al even verlaten, maar toch voel ik nog elke dag je
aanwezigheid.

Veel leesplezier,
Geert Delanote
Leuven, April 2014

1De verborgen dynamiek van familiebanden – Bert Hellinger

When I was 17, I read a quote that went something like: “If you live each

day as if it was your last, someday you’ll most certainly be right.” It made

an impression on me, and since then, for the past 33 years, I have looked in

the mirror every morning and asked myself: “If today were the last day of

my life, would I want to do what I am about to do today?” And whenever

the answer has been “No” for too many days in a row, I know I need to

change something.

—Steve Jobs, Stanford Commencement Speech 2005

Aan mijn allerliefste Natasja,

Alexander, Lucas, Arend en Soetkin.

Abstract

Since the very beginning of software development there was an unstoppable
demand for higher productivity, better quality and more complex software
systems. If the problem to be solved by the software system has a high com-
plexity, solving it will inevitably also be complex. This inherent complexity is
often referred to as essential complexity. The way software is developed how-
ever also causes some complexity. Better software development processes and
better software building techniques, for example (programming) languages,
reduce this complexity. Lower expressiveness and less abstraction introduce
unnecessary and avoidable challenges that is often referred to as accidental
complexity.

The goal of this work is to contribute to the reduction of accidental com-
plexity of building software systems. Improvements on three di↵erent places
in the development process are proposed:

• Programming Patterns: properties and associations are typically accom-
panied with requirements restricting the values properties or objects an
object can be associated with. Three di↵erent types of requirements
are identified to facilitate the (re-)definition of requirements at di↵erent
positions in the class hierarchy. Value Requirements restrict the val-
ues independent of the state of the object. State Requirements restrict
allowed combinations of values of di↵erent properties and associations.
Transition Requirements restrict transitions to new values in view of
current values. A separation of concerns between the development of
methods describing requirements and the methods describing the state
changes is reached by encapsulating the description of the requirements
in their own inspectors. A family of patterns describes how all methods
describing the state and behavior of a property or association collab-
orate. Finally, a first step towards a language extension to avoid the
technical code of the patterns is presented.

i

ii

• Behavioral Modeling : conceptual models introduce accidental complex-
ity when they contain technical aspects in order to describe real-world
facts. Such complexity is introduced by enforcing (“locking in”) deci-
sions that should have been made in a later activity in the software
development process. UML and OCL lack expressive constructs to rea-
son about event occurrences, even more so when the historical aspect of
such occurrences becomes important. This work presents a new oper-
ator, the #-operator, that allows analysts to treat events as first-class
citizens. By assigning a property, that represents the execution time, to
events, it becomes possible to model historical event information with-
out the need to introduce irrelevant facts in the conceptual model. A
conceptual model never describes the whole universe, but is always a
description of a subset of real-world facts. The decision to model a
given fact as an object or as an event depends on the selected subset of
real-world facts. A guiding principle assists the analyst in his decision-
making: if the lifetime of a fact is of importance then the fact should be
modeled as an object. Otherwise, if the fact is instantaneous, the fact
should be modeled as an event.

• Transformations: generally, multiple languages are used during the de-
velopment of a software system. Each language is formally defined by a
metamodel. These metamodels serve as the basis to define transforma-
tions between the di↵erent models. Di↵erent metamodels mostly have
common structural constructs and associated functionality: a frame-
work o↵ering constructs to build hierarchical composition structures is
developed to avoid the need repeat this work over and over again. A
distinction is made between parent/child relations to specify interdepen-
dencies and dependee/dependant relations to specify unidirectional de-
pendencies. Next to these constructs, the framework o↵ers a metamodel-
independent transformation approach. The knowledge of how to trans-
form concrete metamodel elements is decoupled from the managing al-
gorithm. Developers of a transformation provide strategies to transform
concrete model elements, while the framework is responsible for tasks as
execution order, managing cross-model consistency, model validity,. . .

Beknopte samenvatting

Sinds het prille begin van software ontwikkeling, was er een niet te stoppen
vraag naar hogere productiviteit, betere kwaliteit en complexere software sys-
temen. Als het probleem, dat door het software systeem opgelost moet worden,
een hoge complexiteit heeft, dan zal het oplossen onvermijdelijk ook complex
zijn. Deze inherente complexiteit wordt vaak aangeduid als essentiële com-
plexiteit. De manier waarop software ontwikkeld wordt, veroorzaakt echter
ook complexiteit. Betere software ontwikkelingsprocessen en betere technie-
ken om software te bouwen, bijvoorbeeld programmeertalen, verminderen deze
complexiteit. Lagere expressiviteit en minder abstractie introduceren onno-
dige en vermijdbare uitdagingen wat vaak aangeduid wordt als accidentiële
complexiteit.

Het doel van dit werk is bij te dragen tot een reductie van accidentiële
complexiteit bij het bouwen van software systemen. Verbeteringen op drie
verschillende plaatsen in het ontwikkelingsproces worden voorgesteld:

• Programmeerpatronen: Kenmerken en relaties worden typisch vergezeld
door vereisten die de waarden die kenmerken kunnen krijgen of de mo-
gelijke objecten, waarmee een object geassocieerd kan worden, beper-
ken. Drie verschillende soorten vereisten worden gëıdentificeerd om de
(her)definitie van de vereisten mogelijk te maken op verschillende plaat-
sen in de klasse hiërarchie. Waarde Vereisten beperken de waarden onaf-
hankelijk van de toestand van het object. Toestand Vereisten beperken
toegelaten combinaties van waarden van verschillende kenmerken en re-
laties. Overgang Vereisten beperken de overgangen naar nieuwe waarden
ten opzichte van de huidige waarden. Een scheiding van belangen tussen
de ontwikkeling van methodes, die de vereisten beschrijven, en de me-
thodes, die de toestand veranderen, wordt bereikt door de beschrijving
van de vereisten in hun eigen inspectoren te kapselen. Een familie van
patronen beschrijft hoe alle methodes, die de toestand en het gedrag van

iii

iv

een kenmerk of een relatie beschrijven, samenwerken. Tenslotte wordt
een eerste aanzet van een taaluitbreiding, om de technische code van de
patronen te vermijden, voorgesteld.

• Modelleren van gedrag : conceptuele modellen introduceren accidentiële
complexiteit als ze technische aspecten bevatten om feiten van het pro-
bleemdomein te beschrijven. Deze complexiteit wordt gëıntroduceerd
door beslissingen door te drukken die in een latere activiteit van het
software ontwikkelingsproces zouden genomen moeten worden. UML en
OCL missen expressieve constructies om te redeneren over voorkomens
van gebeurtenissen, zelfs nog meer wanneer het historische aspect van
zon voorkomens belangrijk wordt. Dit werk stelt een nieuwe operator
voor, de #-operator, die analisten toelaat om gebeurtenissen te behan-
delen als volwaardige constructies. Door een eigenschap, die het tijdstip
van voorkomen voorstelt, toe te kennen aan gebeurtenissen, wordt het
mogelijk om informatie in verband met de geschiedenis van gebeurte-
nissen te modelleren zonder irrelevante feiten in het conceptuele model
te moeten voeren. Een conceptueel model beschrijft nooit het volledige
universum, maar is altijd een beschrijving van een deelverzameling van
het universum. De beslissing om een gegeven feit te modelleren als een
object of een gebeurtenis hangt af van de geselecteerde deelverzameling
van het universum. Een leidraad helpt de analist in zijn besluitvorming:
als de levensduur van een feit belangrijk is, dan moet dat feit als een
object gemodelleerd worden. Als het feit echter geen levensduur heeft,
dan moet dat feit als een gebeurtenis gemodelleerd worden.

• Transformaties: over het algemeen worden meerderen talen gebruikt tij-
dens de ontwikkeling van een software systeem. Elke taal wordt formeel
gedefinieerd door een metamodel. Deze metamodellen dienen als basis
om transformaties tussen verschillende modellen te definiëren. Verschil-
lende metamodellen delen meestal vaak voorkomende structurele con-
structies met bijhorende functionaliteit: er wordt een raamwerk ont-
wikkeld, dat constructies aanbiedt om hiërarchische compositie struc-
turen te bouwen en zo repetitief werk te vermijden. Een onderscheid
wordt gemaakt tussen ouder/kind relaties om wederzijdse afhankelijk-
heid te specificeren en tussen eigenaar/afhankelijke relaties om unidi-
rectionele afhankelijkheden te specificeren. Bovenop deze constructies
biedt het raamwerk een metamodel-onafhankelijke aanpak voor trans-
formaties aan. De kennis om concrete metamodel elementen te trans-

v

formeren wordt los gekoppeld van het sturend algoritme. Ontwikkelaars
van een transformatie voorzien strategieën om concrete model elementen
te transformeren, terwijl het raamwerk verantwoordelijk is voor taken
zoals uitvoeringsvolgorde, beheren van de consistentie tussen modellen,
validatie van het model, . . .

vi

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Software Engineering . 2
1.1.2 Software Development Process 4
1.1.3 Software Development Techniques 7
1.1.4 No Silver Bullet . 10

1.2 Contributions . 11
1.3 Overview of the Text . 13

2 A Pattern-based Approach towards Expressive Specifications
of Properties and Associations 15
2.1 Preamble . 16
2.2 Introduction . 17
2.3 Motivation . 19

2.3.1 Software Quality . 19
2.3.2 Patterns . 20
2.3.3 Language Support . 21

2.4 Principles and Notation . 22
2.4.1 Design By Contract principle 23
2.4.2 Command-Query Separation principle 24
2.4.3 Liskov Substition Principle 24
2.4.4 Open-Closed Principle 25
2.4.5 No-Choice Principle . 26
2.4.6 Notation . 26

2.5 Requirements . 27
2.5.1 Value Requirements . 27
2.5.2 State Requirements . 28
2.5.3 Transition Requirements 28

vii

viii CONTENTS

2.6 Properties . 28
2.6.1 Representation . 29
2.6.2 Value Requirements . 30
2.6.3 State Requirements . 32
2.6.4 Invariant . 33
2.6.5 Transition Requirements 34
2.6.6 Construction . 34
2.6.7 Inheritance . 38
2.6.8 Language Construct . 42

2.7 Associations . 45
2.7.1 Unidirectional Associations 46

2.7.1.1 Representation 46
2.7.1.2 Value Requirements 47
2.7.1.3 State Requirements 47
2.7.1.4 Invariant . 50
2.7.1.5 Transition Requirements 50

2.7.2 Bidirectional Associations 50
2.7.2.1 Value Requirements 51
2.7.2.2 State Requirements 52
2.7.2.3 Invariant . 53
2.7.2.4 Transition Requirements 55
2.7.2.5 Language Construct 62

2.8 Another Approach? . 63
2.9 Conclusion . 66

3 Concepts for Abstracting away Object Reification at the level
of Platform Independent Models (PIMs) 69
3.1 Preamble . 70
3.2 Introduction . 71
3.3 Principles for Conceptual Modeling 73

3.3.1 Principle of Uniqueness 73
3.3.2 Principle of No Redundancy 73
3.3.3 Principle of Completeness 74
3.3.4 Principle of Preciseness 75
3.3.5 Principle of Minimalism 75
3.3.6 Principle of No History 76

3.4 Platform Independent Models 76
3.4.1 Running Example . 76
3.4.2 PIM Using Properties 77

CONTENTS ix

3.4.3 PIM Using Reification 79
3.4.3.1 PIM With UML2.0 79
3.4.3.2 Method Class 80

3.4.4 Conclusion . 82
3.5 The Base PIM . 84

3.5.1 Semantics Of The # Operator 84
3.5.2 The Example Revisited 84

3.6 Transformation from PIM to PSM 86
3.6.1 PIM Using Properties 86
3.6.2 PIM Using Reification 90

3.7 Objects as Arguments . 91
3.7.1 Life cycle of an object 92
3.7.2 Evolving state of an object 94

3.8 Object or event? . 96
3.9 Conclusion . 98

4 A Framework for Executing Cross-Model Transformations
Based on Pluggable Metamodels 101
4.1 Preamble . 102
4.2 Introduction . 103
4.3 Motivation . 104
4.4 Design Goals . 105
4.5 The Pluto Framework – Overview 107
4.6 Designing Concrete Metamodels as Pluto Extensions 109

4.6.1 Reusable Composition Concepts 109
4.6.2 Reusable Dependency Management 111

4.7 Model Transformations . 113
4.7.1 Decorating Model Elements with Transformation

Strategies . 114
4.7.2 Pluto’s Generic Algorithm for Transforming Model Ele-

ments . 115
4.7.3 Illustration . 117

4.8 Related Work . 119
4.9 Conclusion . 120

5 Conclusion 121
5.1 Summary and Contributions . 121
5.2 Directions for Future Work . 124

x CONTENTS

Appendix A Property Pattern 129

Appendix B Unidirectional Association Pattern 133

Appendix C Bidirectional Association Pattern 139

List of Figures

2.1 A bidirectional association with existential dependency 45
2.2 The two generic setters for associations with restricted multiplicity 56
2.3 Another approach to develop complex mutators. 65

3.1 PIM using Properties. 77
3.2 PIM using Reification. 80
3.3 The Method Class. 81
3.4 PIM using Method Class. 81
3.5 The Base PIM using the #-Operator. 85
3.6 Specification of the Di↵erent Transformation Steps. 88
3.6 Specification of the Di↵erent Transformation Steps. (Ctd) . . . 89
3.7 The PIM using Properties. 91
3.8 A query for retrieving all readers of a book. 93
3.9 EROOS Class: population and archive. 93
3.10 The partition notation for a query retrieving all readers. 94
3.11 The @-operator. 95
3.12 Definition of the @-operator. 96
3.13 The same fact “transfer” modeled given two di↵erent sets of

real-world facts. 98

4.1 Overview of the Pluto framework for metamodeling 107
4.2 Parent/child and dependee/dependant relations in Pluto 110
4.3 Transformation Overview . 113
4.4 Reusable Transformation Concepts 114
4.5 Strategies interact with the Pluto transformation algorithm . . 116
4.6 Illustration of Pluto’s transformation algorithm 118

5.1 Shorthand to reduce the set of occurrences. 125

xi

xii LIST OF FIGURES

List of Listings

2.1 Representation of the property balance 30
2.2 Value Requirement of the property credit limit 31
2.3 State Requirement between balance and credit limit 33
2.4 Invariant from the property balance 35
2.5 Transition requirement of the property balance 36
2.6 Advanced mutator withdraw 36
2.7 Basic setter for the property balance 37
2.8 Construction of a bank account 38
2.9 ClassObject inner class for the class BankAccount 39
2.10 Redefinition of the Value Requirement of the property balance 40
2.11 ‘Dynamic binding’ of a ‘class method’ 41
2.12 A State Requirement involving the balance and the upper limit 41
2.13 The class of bank accounts . 42
2.14 The class of junior bank accounts 43
2.15 Value Requirement for a unidirectional association. 48
2.16 State Requirement for a unidirectional association. 49
2.17 Value Requirement for the association between savings accounts

and current accounts . 52
2.18 State Requirement for the association between savings accounts

and current accounts . 54
2.19 Invariant for the association between savings accounts and cur-

rent accounts in class CurrentAccount 55
2.20 Setter in the controlling class SavingsAccount (see figure 2.2b) 57
2.21 Transition Requirement in the controlling class

SavingsAccount (see figure 2.2b) 58
2.22 Basic setter for a bidirectional association in the non-controlling

class . 59
2.23 Transition Requirement and Setter in the class CurrentAccount

(see figure 2.2b) . 60

xiii

xiv LIST OF LISTINGS

2.24 Transition Requirement in the controlling class
SavingsAccount (see figure 2.2a) 61

2.25 The association between current and savings accounts (1/2) . . 62
2.26 The association between current and savings accounts (2/2) . . 63
2.27 Transition Requirement without invariants 64
A.1 The pattern for a properties ↵ and � 129
B.1 The pattern for a unidirectional association Foo referring Bar:

class Foo . 133
B.2 The pattern for a unidirectional association Foo referring Bar:

class Bar . 137
C.1 The pattern for an association Foo Bar 139
C.2 The pattern for an association Foo Bar 145

There is only one thing that makes a dream
impossible to achieve: the fear of failure.

– Paulo Coelho

Chapter 1

Introduction

The March 1949 issue of Popular Mechanics [16] wrote: “Where a calculator
like ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons,
computers in the future may have only 1000 vacuum tubes and perhaps weigh
only 11⁄2 tons.” This quote is only sixty five years old and originates from a time
where the very first computers were constructed. The quote must remind us
of what a spectacular evolution computer science has passed through. Today
computers are everywhere. Nearly everything connected to some sort of energy
source (electricity, batteries, gasoline,. . .) contains a microchip and software:
airplanes, cars, televisions, cell phones or toys. In his talk “The Promise, The
Limits, The Beauty of Software”, Grady Booch said that the 2010s will be
the age of the transparency (software will become more and more invisible)
and the 2020s will be the age of total dependence (living and working without
touching software will become almost impossible) [14].

The automotive industry is an excellent example to illustrate this evolu-
tion [61, 65]. In 1977, the first electronic control unit (ECU), containing only
a few kilobytes of software, was used for electronic spark timing in the General
Motors Oldsmobile Toronado. The first applications were designed directly in
machine code or C. In 1981, GM produced cars with already about 50.000 lines
of code. Current cars have ECUs about anywhere containing tens of millions of
lines of software code controlling everything from brakes to the volume of your
radio. The Mercedes-Benz S-class radio and navigation system requires over
20 million lines of code alone. With software, functionality deemed impossible
before can now be added to the car. A car can now monitor its own state and
is aware of the world around it making it possible to give tra�c information or
to provide parking assistance. In 1983, GM engineer Jonas Bereisa predicted

1

2 Introduction

that “software development will become the single most important considera-
tion in new product development engineering” [37]. Broy et al. [61] estimate
that 80% of innovations in a car come from computer systems. Electronics and
software take 35 to 40 percent of the cost of a car, with software development
contributing about 13 to 15 percent of that cost [65].

The automotive example perfectly proves the big challenges software de-
velopers faced and still face. Namely, since the very beginning of software
development there was an unstoppable demand for (i) higher productivity,
(ii) better quality and (iii) larger and more complex software systems. To be
able to respond to that demand, the way software systems are built had to
evolve rapidly and adequately. Both processes and techniques used to develop
software systems needed to evolve to enable building larger and more complex
systems. Software engineering is the research field that studies these processes
and techniques.

In an interview with the CHIPS magazine [38], Grady Booch summarized
how software engineering responded: “The history of software engineering
has been one of growing levels of abstraction – we see this in our languages
(assembly to FORTRAN to Ada to Java), our methods (structured analysis and
design to object-oriented design), and our platforms (programming running on
raw iron to basic operating systems to platforms such as .NET and J2EE). This
growth has occurred simply as a meaningful engineering response to the growth
in complexity in the kinds of software systems we as an industry are asked to
create. Ours is a ruthless industry: it has its fads, but ultimately, those things
that do not add value are quickly discarded. Building quality software-intensive
systems that matter is fundamentally hard, and just as Fred Brooks observes,
I don’t see any development in the near future that will change that. Software
development is fundamentally hard, and the way we counter that complexity is
by abstraction.”

1.1 Background

1.1.1 Software Engineering

In the early years of computer science, software didn’t get much attention.
Hardware problems claimed nearly all attention: it was not yet possible to
build a reliable, functioning computer. Moreover, hardware was also by far
the most expensive part of a computer. During the 1960s, a huge turnaround
took place: hardware became more reliable, powerful and also a lot cheaper. In
1965, Moore wrote in his article Cramming more components onto integrated

1.1 Background 3

circuits [107]: “The complexity for minimum component costs has increased
at a rate of roughly a factor of two per year.” Ten years later, he adjusted this
observation to a doubling every two year. Today, this prediction is known as
Moore’s law, which states simplified that the processing power of computers
will double every two years.

The increased processing power made it possible to run more complex soft-
ware. Together with the rapidly decreasing cost for hardware and increasing
cost for building software, this caused the attention shift from hardware to
software. Developing more complex software appeared to be far from easy
and the same problems kept resurfacing in software projects. These problems
were threefold: (1) software projects exceeded estimated budgets, (2) software
projects ran over time, (3) software lacked the required quality (ine�cient,
missing features, bugs). In The Humble Programmer [79], Edsger Dijkstra
called this the software crisis: “The increased power of the hardware, to-
gether with the perhaps even more dramatic increase in its reliability, made
solutions feasible that the programmer had not dared to dream about a few
years before. And now, a few years later, he had to dream about them and,
even worse, he had to transform such dreams into reality! Is it a wonder that
we found ourselves in a software crisis?”

In 1968 a NATO conference [108] was organized to discuss these problems
and adopted the term software engineering as “its (deliberately provocative)
title” [115]. Until then developing software was merely a craft. Adopting
engineering principles, proven to be successful in other disciplines, was the
proposed solution to the software crisis. Developing software had to adopt
a more methodical and industrial approach. In Computer: A History of the
Information Machine [63] Campbell-Kelly and Aspray described it as follows:
“The Garmish conference began a major cultural shift in the perception of
programming. Software writing started to make the transition from being a
craft for a long-haired programming priesthood to becoming a real engineering
discipline. It was the transformation from an art to a science.”

Software engineering consists of two major components. On the one hand,
software development methodologies or processes define the way software must
be built. Professionalizing software engineering implies developing better
methodologies to increase productivity. On the other hand, software building
techniques used to construct the software must be improved. Better tech-
niques imply amongst others increased productivity and higher quality. The
next sections explain both parts in more detail.

4 Introduction

1.1.2 Software Development Process

The software development process or methodology is structured into a number
of activities to cope with the complexity of producing and maintaining soft-
ware. IEEE defines software development [132] as follows : “The process by
which user needs are translated into a software product. The process involves
translating user needs into software requirements, transforming the software
requirements into design, implementing the design in code, testing the code,
and sometimes, installing and checking out the software for operational use.
Note: These activities may overlap or be performed iteratively.” The most
common activities are analysis, architectural design, design, implementation,
deployment, verification & validation and maintenance.

• Analysis. The goal of this activity is twofold: (1) the requirements
phase is the process of identifying, specifying and validating the require-
ments of the system. These requirements comprise both the functional
and nonfunctional1 requirements that must be solved by the software
system. (2) The domain analysis phase is the process of studying the
real world, also called the problem domain.

To be able to describe the (functional and nonfunctional) requirements
precisely, the real world must first be understood very well because the
requirements of the software system are based upon the facts and events
that can occur in the real world. We agree with the claim of Devos say-
ing that functional requirements cannot be precisely described without
detailed knowledge of the real world [75]. The study of the real world
results in a conceptual model. The conceptual model is a complete and
formal description of the problem domain containing facts (e.g. bank
accounts), behavior (e.g. depositing money on a bank account) and
business rules (e.g. the balance of a bank account may not drop below
the credit limit). It’s important to stress that the conceptual model
must be unambiguous, because when developers at later phases in the
development process need to make assumptions about the model, they
will most likely end up with false assumptions leading to problems with
the software system.

This activity is a particularly critical stage as errors at this stage in-
evitably lead to problems. The later (in the software development pro-

1Although nonfunctional requirements (security, performance,. . .) are an important part
of a software system, these requirements are outside the scope of the research and not handled
in the remainder of this text.

1.1 Background 5

cess) the mistake is detected, the higher the cost to repair it. It can be
compared to knitting a sweater: the sooner you detect a missed stitch,
the easier to repair it.

• Architectural design. The architectural design phase identifies the
overall structure, or architecture, of the system, the principal compo-
nents (sometimes called sub-systems or modules), their relationships,
and how they are distributed [126]. The result of this phase is an archi-
tectural model. The architectural model is used as an aid in discussions
with the system stakeholders. This phase investigates if the system can
meet the non-functional requirements, for example redundant compo-
nents and fault-tolerance mechanisms can be added to improve avail-
ability or safety-critical features can be identified and put in a dedicated
subsystem.

• Design. The components identified in the architectural model are fur-
ther elaborated. The requirements identified during the analysis phase
are transformed into software elements. Software quality factors and
non-functional requirements steer the decisions made during this phase.
The result of this phase is a design model. The design model must
contain all details about the software system to be built. This phase
is a very intensive phase that requires lots of decisions. Decisions the
designer has to make are for example which software libraries or com-
ponents can be (re)used, which software patterns are suitable, what are
the needed substructures, what elements belong to the interface, which
classes are needed, . . . To facilitate this decision-making process the de-
sign model is built in steps by gradually adding details to it. In a first
step, a high-level design model is elaborated followed by one or more
lower level design models resulting in a design model that serves as basis
for the next phase, the implementation phase.

• Implementation. In this phase, the software system described by the
design model is transformed into executable code. Although one may
think the opposite, developing the executable code with a programming
language is often not only labor intensive but also has its own challenging
problems. Executable code must be precise, formal and detailed enough
to enable a machine to understand it. More details must be added to
the design model to make this possible. The executable code is the
ultimate model expressing how the requirements are transformed into
a software system. Therefore, it is important that code is written in a

6 Introduction

clean way because a software engineer other than the author who wants
to understand every detail of the software system will at some point have
to look at the code too.

• Deployment. During deployment, the software is brought into use.
The software system is installed in a production environment. Some
customization may be performed by setting some parameters to let the
software system behave the way the customer wants.

• Verification and Validation. While analysis, architectural design,
design, implementation and deployment are activities that can also be
identified as a phase during the development process, this activity can
not. The activity of verifying and validating must be performed at the
level of each before mentioned phase or activity. The goal of this ac-
tivity is to guard that the di↵erent models meet the proposed criteria.
Executing conceptual models can aid in detecting errors or deficiencies
at the analysis level [48]. Testing a piece of (executable) code verifies if
the code is conform to specification [128].

• Maintenance. Maintenance is a twofold activity: on the one hand er-
rors detected after deployment must be corrected, and on the other hand
the requirements might change in time and the software system needs
to be adjusted. This activity is somewhat special as its performance
mostly triggers the execution of all previous described activities. The
most challenging task of this activity is to keep all models synchronized
and consistent.

The process of software development is the way in which we produce soft-
ware through combining the di↵erent activities in a some way. A good process
is as important as good methodology for each individual activity. Di↵erent
processes have been used over the years.

Waterfall model. Royce presented the first software development pro-
cess model [117]. The process identifies all above activities and presents them
as a cascade where each activity flows into the next like a waterfall. Each
activity is actually also a phase and each phase results in models that must
be committed before the next phase is allowed to start. More precisely, first
the analysis phase is completely performed and approved before the design
phase starts. Analogously, the design phase must be completed and approved
before implementation starts. Testing starts after implementation and when
done the maintenance phase starts. In practice, this strict separation is re-
laxed and phases can overlap to allow feedback between consecutive phases.

1.1 Background 7

Design deficiencies discovered during the implementation phase may trigger
adjustments of the design model. Although not strictly sequential, at some
point each phase is closed, often leading to undesired behavior of the software
system. This process should only be used when the requirements are well
known in advance and expected to be stable.

Incremental Development. Instead of following a linear path, most
software development processes follow an iterative, incremental approach. In-
cremental development is based on the idea of developing an initial version
of the software system, followed by several intermediate versions until the fi-
nal version of the system is developed [126]. In an incremental development
process, the di↵erent activities are interleaved with rapid feedback across the
activities. Developing di↵erent versions of the software systems facilitates
customer feedback. Generally, it is easier for customers to give meaningful
comments on a working piece of software than on the di↵erent models. When
a given version does not meet the expectations of the customer only the last
increment has to be revised. Moreover, intermediate versions can often al-
ready be used by the customer. An incremental approach also adapts easier
to changing requirements. On the other hand, an incremental development
process is more di�cult to manage because the overall progress is less clear.
And more important, the overall structure of the system can become poor
making it harder and harder to incorporate next increments.

Incremental development is now the most common approach and is very
well suited for small and medium-sized software systems [126]. Large and
complex systems require a good overall structure or architecture and therefore
a combination of both approaches is advised. The architecture is developed
before the di↵erent increments. If the requirements are known and under-
stood from the beginning these increments can also be defined in advance, the
approach is then said to be plan-driven. In the other case, a value-driven or
agile approach [80], also known as Extreme Programming [46], namely the
individual increments are not defined in advance, can be used.

1.1.3 Software Development Techniques

(Programming) languages. To enable higher productivity and better qual-
ity, the techniques used to build software systems must have a high quality too.
Raising the level of abstraction of (programming) languages has been the core
strategy to achieve that goal. The first generation programming language, also
known as machine language, was very low level and platform specific. Because
developing programs was very di�cult and error prone, quickly a second gen-

8 Introduction

eration programming language arose, the assembly language [90]. Although
still platform specific, they were easier to use and understand. Third genera-
tion programming languages, also know as high-level programming languages,
are machine independent. The constructs of these programming languages are
closer to the human way of thinking and need to be compiled into a number of
machine-level instructions. Fourth generation programming languages aim to
be even closer to human language and are designed for a specific purpose, for
example MATLAB [27] is a fourth generation language. Finally, there are also
fifth generation programming languages. These languages try to step away
from actual programming an algorithm to solve a problem and try to solve the
problem by describing constraints. Fifth generation languages are for example
used in the domain of artificial intelligence.

Third generation programming languages like Java also raised their level
of abstraction in their evolution from the first version to their current version
through introducing new constructs. Ways the Java programming language
itself is improved are among others the introduction of new elements like a
new keyword (for example assert in version 1.4 [3]), new language features
(for example generics in version 5.0 [7] or lambda expressions in version 8 [26]),
small changes to improve the ease of use (for example autoboxing/unboxing
or enhanced for loops [9]) and new or improved libraries or frameworks (for
example the Swing framework [2] or the JDBC API [10]). Research to keep
improving languages is still going on (for example anchored exceptions [135]).

The Unified Modeling Language (UML) [36] is a modeling language that
can be used at di↵erent stages prior to implementation. The UML is the
result of a joined e↵ort of the Three Amigos. Rumbaugh, Booch and Jacobson
attempted to reconcile their methods, respectively OMT [119], Booch [56] and
OOSE [92], into a Unified Method. The result of their e↵ort was not a method
but a modeling language: the Unified Modeling Language. Their goal was not
to formulate a new language, but to bring together the best of their methods
because each was quite good at some area but none covered the whole process.
An outstanding value of the UML is its standardization.

Patterns. Next to improving (programming) languages, experience leads
to guidelines and best practices for certain kinds of problems. Those solutions
can be reused by other people by imitating the patterns. Since Gamma et
al. published a catalog of design patterns [83] the use of patterns is a well-
accepted practice in software development. Design patterns are the result of
the experience of developers and by describing them in a structured way new-
comers can benefit from insights. Applying patterns means applying proven

1.1 Background 9

good solutions. Design patterns don’t necessarily work in all circumstances,
but have the advantage of being flexible. Developers can tune a pattern to fit
in a concrete situation. This advantage is at the same time a disadvantage
because a pattern is only available as a recipe. Sometimes, a pattern can grow
to a language feature (for example the Typesafe enum pattern described by
Bloch [54] became in Java 5 a language feature [9]). Patterns often illustrate
the shortcomings of programming languages.

Model Driven Development. Today, there is a growing trend towards
using models instead of code and informal diagrams. Model Driven Develop-
ment (MDD) [123] is a software paradigm that emphasizes the use of models
as the primary artifact in all phases of the development life-cycle. The im-
plementation can then be generated (automatically or semi-automatically) by
transforming the higher-level models to lower-level models and in the end to
executable code. Each transformation adds more platform specific details to
the model. This approach certainly values the models at the higher levels
better.

The Object Management Group (OMG) [1] proposed a standardized ap-
proach to MDD: Model-Driven Architecture (MDA) [59, 82, 94]. MDA is
built around several OMG standards. The Meta-Object Facility (MOF) [33]
is a four-layered architecture for meta-modeling. MOF is used to define the
Unified Modeling Language (UML) [96, 120], the general-purpose modeling
language used to develop the models at the higher levels of abstraction. The
Object Contraint Language (OCL) [32, 143] describes rules (constraints or
behavior) in for example UML models. The principles of Design by Contract
(DBC) [106] o↵er an approach to define the behavior.

MDA defines two kinds of models: the Platform Independent Model (PIM)
is the more abstract model providing a formal specification of the software
system abstracting away platform specific details, and the Platform Specific
Model (PSM) augments the PIM with technical details from a specific imple-
mentation technology. A PIM can be transformed into several PSM’s. The
process can be further subdivided by providing more layers of abstraction:
there can be multiple PIM’s and PSM’s at di↵erent levels of abstraction. Im-
portant benefits claimed by the MDA are that the development of a software
system is protected against advancing technology and changing requirements
are better supported. The knowledge about the system is captured in the PIM
and by defining new transformations new technology can be used. When busi-
ness rules change, those changes are made to the PIM and propagate (almost)
seamless to the lower-level models.

10 Introduction

1.1.4 No Silver Bullet

Not only are there no silver bullets now in view, the very nature
of software makes it unlikely that there will be any – no inven-
tions that will do for software productivity, reliability, and simplic-
ity what electronics, transistors, and large-scale integration did for
computer hardware I believe the hard part of building software to be
the specification, design, and testing of this conceptual construct,
not the labor of representing it and testing the fidelity of the rep-
resentation. If this is true, building software will always be hard.
There is inherently no silver bullet.

In his article, No Silver Bullet [60], Brooks di↵erentiates between essential
complexity and accidental complexity. Accidental complexity is caused by
the way software is developed. These problems are in some sense created by
the software developers, but can be solved by advancing and improving tech-
nology. Better software development processes and better software building
techniques reduce this complexity step by step. In the early years of software
development, when software was written in assembler, this complexity was
obviously bigger.

Essential complexity is caused by the problem to be solved by the software
system. If the problem has a high complexity, solving it will also be complex.
No matter how good our tools or techniques are, the inherent complexity of
a problem will not go away. In a talk about the software crisis, Dijkstra says
that the software crisis arose from the given that “programming is apparently
much harder than we think” [144].

One can ask if the software crisis was not more a matter of perception
and of managing realistic expectations. Aren’t we just ever pushing the limit
of what is possible? And aren’t we doing a very good job? By reducing
the accidental complexity through the building of better tools, better meth-
ods, better techniques,... the productivity and quality of software has grown
tremendously. Moreover very complex and large software systems can be built
today. Di�cult problems from the past became trivial problems today. By
continuing to reduce accidental complexity, we succeed at solving problems
with ever more essential complexity.

Software is perceived as something infinitely malleable. This is a charac-
teristic no other engineering discipline working with “real, physical” materi-
als has. This characteristic must not lead to the expectation that changing
software should be easy. For sure, editing code files is easy but that is not

1.2 Contributions 11

exactly the same as changing the software system. Changing software in the
first place means changing essential complexity and one should never under-
estimate that complexity. That complexity can never be removed. Changing
software however also introduces accidental complexity, for example maintain-
ing consistency between all models. A realistic goal is to reduce this accidental
complexity as much as possible.

The goal of this dissertation is to contribute to the reduction of the acci-
dental complexity of building software systems.

1.2 Contributions

This dissertation contributes on three di↵erent places in the development pro-
cess to reduce the accidental complexity. The first contribution proposes im-
provements at implementation stage by presenting new techniques in the form
of patterns and a language construct. The second contribution is situated
at the analysis stage and/or the highest levels of the design phase. Another
language construct is proposed as a new technique. Finally, the third contribu-
tion proposes techniques to improve transformation form higher-level models
to lower-level models.

The contributions of this dissertation are threefold :

• Approach to implement properties and associations. Typical
properties and associations are accompanied with requirements restrict-
ing the values of properties or objects an object can be associated with.
These requirements can be divided in three di↵erent types : (1) re-
quirements restricting the values independent of the state of the object
(2) requirements restricting allowed combinations of values of di↵erent
properties and associations (3) requirements restricting transitions to
new values in view of current values. Implementing properties or as-
sociations with respect to these requirements in a clean way avoiding
errors, code duplication and facilitating redefinition in subclasses is not
straightforward. A first objective of this dissertation is to introduce a
family of patterns that allow the developer to implement properties and
associations and their requirements in a correct way. A second objective
of this dissertation is to set a first step towards a language extension to
avoid the technical code of the patterns.

• Improving behavioral modeling in conceptual models. The goal
of a conceptual model is to describe the real world as it is observed

12 Introduction

and not yet the software system that needs to be developed. Because
analysts are mostly familiar with building software systems, they are
sometimes tempted to use techniques used to build software when build-
ing the conceptual model. These techniques are however not always a
proper solution. When describing behavior with respect to the history,
the technique of reifying is often used because the modeling language
lacks expressive power to reason about events. A third objective of this
dissertation is to extend the expressive power to model behavioral facts
through introducing a new construct to allow the analyst to model these
behavioral facts in an elegant way.

• Transformation tool. From the start of the development, models are
used to describe the software systems. In general, these models are
worked out using di↵erent modeling languages. The chosen modeling
languages can also vary from project to project (for example to describe
database structures Entity-Relationship (ER) diagrams [45] are an often
used alternative for UML). These di↵erent modeling languages mostly
share common generic composition structures. Transformations from the
higher-level models (the conceptual model is the highest level) to lower-
level models and at some stage to source code can be (semi-)automated.
A fourth objective of this dissertation is to build a prototype transfor-
mation tool that o↵ers constructs for building composition structures
in modeling languages and concepts for defining transformations that
benefit from these constructs.

Besides the research described in this dissertation, some work has been done
in the context of the EROOS method. EROOS, Entity-Relationship Object-
Oriented Specifications, is an object-oriented analysis method developed at
the research group on Software Development Methodology of the department
of Computer Science of the KU Leuven. It has served as a framework for
ongoing research on object-oriented research on object-oriented software de-
velopment [48, 50, 51, 75, 76, 77, 78, 122, 134]. The contribution resulted in
this publication: P. Bekaert, G. Delanote, F. Devos, and E. Steegmans. Spe-
cialization/generalization in object-oriented analysis: strengthening and mul-
tiple partitioning. In J.-M. Bruel and Z. Bellahsene, editors, Advances in
Object-Oriented Information Systems, pages 34-43, 2002 [49].

1.3 Overview of the Text 13

1.3 Overview of the Text

This dissertation is organized in 5 chapters. In addition to this introduction,
the remainder of this dissertation is organised in the following chapters:

Chapter 2, A Pattern-based Approach towards Expressive Specifications
of Properties and Associations, proposes a family of patterns to implement
properties and bidirectional associations. A language construct is proposed
as an alternative for the patterns. First, a number of principles are presented
that steered the development of the patterns. Next, a taxonomy for the
requirements that typical accompany properties and associations is presented.
Finally, the family of patterns is presented, first for properties and then for
associations. The code samples are written in Java. The work of this chapter
is (partially) presented in G. Delanote, J. Boydens, and E. Steegmans. A
pattern-based approach towards expressive specifications for property concepts.
In L. Lavazza, R. Oberhauser, A. Martin, J. Hassine, M. Gebhart, and
M. J’antti, editors, ThinkMind // ICSEA 2013, The Eighth International
Conference on Software Engineer- ing Advances, pages 249-257, 2013 [72].

Chapter 3, Concepts for Abstracting away Object Reification at the level
of Platform Independent Models (PIMs), proposes a language construct to
model behavior at the level of conceptual models (or the higher-level design
models). The chapter starts with the presentation of key principles for
conceptual modeling. Problems with UML to model behavior in the context
of history are described, and a solution is presented via the proposal of a
new operator: the #-operator. Finally, a guideline on when to use that
operator is defined. The work of this chapter is (partially) presented in G.
Delanote and E. Steegmans. Concepts for abstracting away object reification
at the level of platform independent models (PIMs). In R. Machado, J.
Fernandes, M. Riebisch, and B. Schätz, editors, Proceedings of The Third
International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, pages 94-102, 2006 [74].

Chapter 4, A Framework for Executing Cross-Model Transformations
Based on Pluggable Metamodels, proposes a prototype for a framework for
metamodels and model transformations. Generally, a metamodel is built
using a meta-metamodel. But developing a metamodel benefits also from a
concrete framework for metamodels that o↵ers generic structural constructs.
Such a framework not only eases the building of a metamodel, the definition

14 Introduction

of transformation algorithms can also favor from it. Generic transformation
logic can also be o↵ered in a transformation framework. The work of this
chapter is presented in G. Delanote, S. De Labey, K. Vanderkimpen, and E.
Steegmans. A framework for executing cross-model transformations based on
pluggable metamodels. In Proceedings of the Second International Conference
on Software and Data Technologies (ICSOFT07), pages 315-325, 2007 [73].

Last, we conclude this dissertation in Chapter 5 with a summary and
overview of the major contributions and identify some directions for future
work.

Intellectueel proberen een ervaring te begrijpen is
zoiets als proberen een vlam vast te pakken.

Als je probeert om dergelijke dingen intellectueel te
snappen, dan heb je van het vuur alleen de as te

pakken.

– Bert Hellinger

Chapter 2

A Pattern-based Approach
towards Expressive
Specifications of Properties
and Associations

Chapter Summary

Properties and associations are typically accompanied with requirements re-
stricting properties ascribed to objects or associations of objects with other
objects. Three di↵erent types of requirements are identified to facilitate the
(re-)definition of requirements at di↵erent positions in the class hierarchy:
Value Requirements, State Requirements and Transition Requirements. A sep-
aration of concerns between the development of methods describing require-
ments and the methods describing the state changes is reached by encapsu-
lating the description of the requirements in their own inspectors. A family
of patterns describes how all methods describing the state and behavior of a
property or association collaborate. Finally, a first step towards a language
extension to avoid the technical code of the patterns is presented.

15

16 A Pattern-based Approach for Properties and Associations

2.1 Preamble

The research of this chapter started in 2002 in the context of the course Object-
Oriented Programming [127]. The course turns concepts and principles un-
derlying the object-oriented paradigm into concrete coding advices and coding
rules. Both specification and implementation are equally important.

At that time, there were di↵erent trends concerning object-oriented pro-
gramming. One trend was built around Smalltalk [85], the first true object-
oriented programming language, and focused especially on implementing
adaptable and extendible software systems. Techniques like reflection and
meta-programming [66] originated from this trend. Another trend was built
around strongly typed languages where Ei↵el [22] had a pioneering role. Ei↵el
di↵ers from other object-oriented programming languages in the sense that
the language itself is not only a programming language, but also a software
development method, based on a small number of key ideas from software
engineering and computer science [104]. Essential to Ei↵el is Meyer’s relia-
bility mechanism, Design by Contract [106], which is an integral part of both
the method and language. New languages, like Java [24] and C# [18], were
influenced by both Smalltalk and Ei↵el. Both languages however have poor
support for Design by Contract.

With regard to the software development process, this research is situated
in the implementation activity.

Discussions with students and mentors in the context of the course learned
that programming properties and associations with their inherent require-
ments is far from an easy task. Mostly, the problems arose from the inability to
di↵erentiate between the di↵erent kinds of requirements, or, in other words,
from trying to handle all requirements uniformly. Some requirements must
hold at all times, while other requirements must only hold to be allowed to
evolve to the next state. Some requirements are related to a single characteris-
tic (property or association), while other requirements are related to multiple
characteristics at the same time. This led for example very often to code du-
plication. Students generally have trouble to see the di↵erence between those
requirements and to put the required checks at the right places.

Requiring adaptability and extendibility in both dimensions, time and
space, makes this task even harder. Redefinition in the dimension time means
that certain requirements change at a later point in time, while redefinition in
the dimension space means that certain requirements need to change at the
level of a subclass. Writing correct specification that leaves room for redefini-
tion has proven to be very di�cult.

2.2 Introduction 17

The patterns are the result of a growing understanding of the problem. The
first important insight was to encapsulate the requirements in their own meth-
ods, inspectors and extract that code and specification from the mutators. In
a next step, requirements that must always hold, and thus describe the class
invariants, were separated from the requirements restricting transitions. Both
were described in their own dedicated inspector. This intermediate version of
the patterns was used in the implementation of the framework presented in
chapter 4. Requirements involving multiple characteristics still often led to
code duplication and therefore requirements related to a single characteristic
were separated from requirements related to multiple characteristics. At this
stage, the patterns worked well for properties but still struggled with associa-
tions because multiple classes were involved.

The results of this research are partially presented in November 2013 in
The Eighth International Conference on Software Engineering Advances [72].

Recently, languages start to support properties better but don’t pay much
attention to their requirements. Concerning associations, o↵ered techniques
like reference semantics and data structures are insu�cient. van Dooren [137]
proposed a code inheritance relation for reusing general purpose classes as
components for other classes. Verification of code has become an important
topic [91]: structuring requirements in well defined manner certainly facilitates
verification.

2.2 Introduction

Object-oriented languages were built to increase the quality of software appli-
cations [81]. Encapsulation, inheritance, polymorphism and dynamic binding
incontestable increase the quality of software. Encapsulation hides technical
details of a class. Internal data of a class is shielded from unwanted, direct
access from a random place in the program. Declarative descriptions of the
behavior of objects hide operational details. Inheritance benefits the reusabil-
ity and adaptability of code. The use of a class can be extended and code
duplication can often be avoided. Inheritance makes it possible to extend and
to specialize existing code. Polymorphism and dynamic binding reduce com-
plexity by allowing an object to take more than one form and still show the
correct behavior.

Object-oriented programming languages use classes as abstract data types.
A class is a blueprint for a collection of objects with identical characteristics
and behavior. Characteristics comprise both properties and associations. An

18 A Pattern-based Approach for Properties and Associations

example of a property is the balance of a bank account, while the relation
between a person and a bank account representing the holdership is an example
of an association. Generally several requirements have to be enforced for
those characteristics. Examples of requirements for the property balance of
a bank account are (i) the balance is represented with an (e↵ective) decimal
number and is rounded to two significant numbers after the decimal point
and (ii) the balance must never be below the credit limit. Requirements for
an association are for example (i) each bank account must have exact one
(e↵ective) holder and (ii) holdership can only be transferred to a relative.
Current object-oriented programming language constructs lack expressiveness
to describe those requirements in an integrated way.

Although properties and associations with their inherent requirements are
ubiquitous in software applications, no standardized solution exists to imple-
ment them. In this chapter, we present a pattern to implement characteristics
with their requirements. Using software patterns is an important way to in-
crease the quality of software systems [83, 105]. Gamma et al. write in the
introduction of Design Patterns, Elements of Reusable Object-Oriented Soft-
ware [83]: Designing object-oriented software is hard, and designing reusable
object-oriented software is even harder. Your design should be specific to the
problem at hand but also general enough to address future problems and re-
quirements. You also want to avoid redesign, or at least minimize it. Patterns
solve specific design problems and make object-oriented designs more flexible,
elegant, and ultimately reusable. We identify three di↵erent kinds of require-
ments. The pattern tackles each kind in an appropriate way. The ideas and
concepts in the pattern to develop properties versus associations are very sim-
ilar, but because the realization of the pattern for associations is significantly
more complex we present them separately.

Although using patterns is a significant step forward, Meyer says in Object-
Oriented Software Construction [104]: “To go beyond their mere pedagogical
value, patterns must go further. A successful pattern cannot just be a book
description.” Di↵erent strategies exist to overcome the disadvantages of pat-
terns. The best known strategies are software components [43, 104], language
support [57, 64, 84] and tool support [62, 64]. We will indicate where tools
can support the usage of the pattern. But as we also firmly believe in more
expressive language concepts to improve the quality of software systems, we
illustrate also how a new language construct can replace the pattern.

2.3 Motivation 19

Overview

In section 2.3, the context and motivation to develop a family of patterns is
described. The principles that steered the development of the patterns are
presented in section 2.4. Section 2.5 investigates the di↵erent kinds of require-
ments that describe the business rules that restrict properties and associations.
In section 2.6, the patterns are built step by step for properties. Next, in sec-
tion 2.7 the patterns are first developed for unidirectional associations and then
extended to bidirectional associations. The used approach in the patterns is to
enforce requirements before changing some characteristics, section 2.8 presents
an alternative approach. Finally, we conclude in section 2.9.

2.3 Motivation

2.3.1 Software Quality

Why is software quality so important? In [100], Mann notes: “In the last 15
years alone, software defects have wrecked a European satellite launch, delayed
the opening of the hugely expensive Denver airport for a year, destroyed a
NASA Mars mission, killed four marines in a helicopter crash, induced a U.S.
Navy ship to destroy a civilian airliner, and shut down ambulance systems in
London, leading to as many as 30 deaths.” It’s evident that software quality
is important, but it’s not so easy to define software quality. Meyer states
that software quality is best described as a combination of several factors.
Of all quality factors modularity (extendibility and reusability) and reliability
(correctness and robustness) stand out [104].

We have centered the specification and development of our pattern along
the following quality factors.
O1 - Correctness. Software must perform its task as defined by the specifi-
cation. The pattern defines specific methods to work out the di↵erent aspects
of the implementation of a characteristic forcing the developer to think about
each aspect in isolation.
O2 - Extendibility. Software must be adaptable to future changes of the
specification. These changes can be in space (through adding a subclass that
redefines some aspects) or in time (changes to the specification in the future).
The pattern provides the necessary hook methods to be able to change the
specification easily. The pattern also guides the developer to specify and im-
plement each aspect only once.
O3 - Testability. Testing the correctness of software must be as easy as pos-

20 A Pattern-based Approach for Properties and Associations

sible. Di↵erent aspects of the implementation of a characteristic are worked
out in separate methods. The methods are designed in such a way that they
can be tested in isolation.
O4 - Understandability. A programmer must understand as easy as possi-
ble the source code of a software system. Dividing a big problem into smaller
problems is a well-known strategy to make a problem easier to understand.
The pattern separates the code, the developer has to write, from boilerplate
code to make the code more readable.
O5 - Reusability. Software should be usable in di↵erent applications. Ex-
tendibility already mentions the provided hook methods to change the spec-
ification easily. These methods make it also easy to reuse the software in a
(slightly) adapted form in another application.
O6 - Expressiveness. The ease for a developer to write software. By forc-
ing the developer to implement the di↵erent methods, the pattern also guides
the developer through the di↵erent aspects of implementing the characteristic.
This way the developer can think more on what must be implement instead
of on how he can accomplish it.

We raise the ambition level for each of these objectives when compared to
the current state of the practice.

2.3.2 Patterns

Patterns have been introduced by Christopher Alexander in the field of ar-
chitecture. In [40], Alexander writes ‘Each pattern describes a problem that
occurs over and over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice.”.

In the mid-nineties, the idea of design patterns was introduced in the
field of (object-oriented) software development [83, 114]. A design pattern
names and describes a recurring design problem and provides a reusable so-
lution to that problem. Gamma et al. define a design pattern as follows:
“A design pattern names, abstracts, and identifies the key aspects of a com-
mon design structure that make it useful for creating a reusable object-oriented
design” [83, p.3].

A design pattern results from the experience of software developers. A
key quality for each design pattern in Gamma et al. [83] is the fact that it
is a proven design solution preventing us from reinventing the wheel again
and again [141]. The pattern presented in this chapter is built on the expe-
rience gained from discussing pieces of code from and with students in the

2.3 Motivation 21

context of the course Object-Oriented Programming [127]. We observed stu-
dents struggling over and over again with the same question: “How and where
do I implement this (kind of) requirement without having to duplicate the
code or refactor my code in a later stage when new requirements are added?”

It is generally claimed that applying design patterns yields better soft-
ware [43, 53, 64, 105]. Bishop [53] says design patterns are one of the most
successful and recognizable abstraction tools that software engineers have at
their disposal. Prechelt [113] says following advantages for design patters are
claimed:

1. Using patterns improves programmer productivity and program quality.
2. Novices can increase their design skills significantly by studying and

applying design patterns.
3. Patterns encourage best practices, even for experienced designers.
4. Design patterns improve communication, both among developers and

from developers to maintainers.

Ampatzoglou et al. [41] nuance these claims. They studied the e↵ect of the
Gamma et al. patterns [83] on software quality and concluded “Patterns are
about trade-o↵s. Design patterns enhance one quality attribute in the expense
of another.”

The pattern presented in this chapter di↵ers in a crucial way with the
Gamma et al. patterns: where the latter act at the level of classes or objects,
the former concentrates on characteristics from classes. The number of classes
involved is restricted to one for properties and two for bidirectional associa-
tions. We will describe how the presented pattern enhances the quality factors
listed in section 2.3.1.

2.3.3 Language Support

Although patterns are a valuable instrument, they have their drawbacks. Am-
patzoglou et al. [41] also included some metrics in their study. Using patterns
had for example never a positive e↵ect on the number of code lines (LOC).
We consider software quality factors like modularity and reliability far more
important. Tool support can be a powerful aid in reducing the implementation
overhead because patterns typically contain a significant amount of boilerplate
code. In Eclipse [21], custom templates can be defined to generate skeletons
of methods.

When considering reusability a design pattern o↵ers a design solution that
can be used over and over again. But this also means, you cannot reuse a

22 A Pattern-based Approach for Properties and Associations

worked-out solution in terms of code. Gamma et al. [83] provide a step-by-
step approach on how to apply a design pattern, the last step says: “7. Imple-
ment the operations to carry out the responsibilities and collaborations in the
pattern. The Implementation section o↵ers hints to guide you in the imple-
mentation.” Meyer [104] summarizes it as follows: A successful pattern cannot
just be a book description; it must be a software component. In [64], Chambers,
Harrison, and Vlissides debate about whether design patterns should be sup-
ported by tools rather than by languages. Chambers advocates language de-
signers should study design patterns to gain inspiration in developing new
abstraction mechanisms in their languages.

The pattern presented in this chapter covers properties and associations
which are the core of a class. As almost every characteristic comes with
specific requirements, we believe that it’s reasonable to add a new construct
to programming languages to cover the goal of the pattern.

2.4 Principles and Notation

We follow the principles and notations introduced in the book Object Oriented
Programming with Java [127]. The programmer can choose between three dif-
ferent paradigms to deal with exceptional circumstances: nominal, defensive
and total programming.
Nominal programming uses preconditions to prohibit method invocations
under exceptional conditions. Methods only guarantee their e↵ect when the
conditions described in the preconditions are met, if those conditions are vio-
lated the e↵ect of the method is undefined. As an example, consider a method
for withdrawing money from a bank account. Trying to withdraw a negative
money amount from a bank account can be seen as an exceptional case. With
the nominal programming paradigm a precondition stating that only positive
money amounts are valid for withdrawal may be added.
Defensive programming uses exceptions to signal that methods have been
invoked under exceptional conditions. When the normal e↵ect of the method
cannot be achieved, an exception is thrown to signal the exceptional case to
the caller. The state of all involved objects remains unchanged compared to
the state upon entry of the method throwing the exception. As an example, a
method for withdrawing money from a bank account may throw an exception
when invoked with a negative money amount to withdraw.
Total programming turns exceptional conditions into normal conditions.
All methods always end in a normal way. The developer must handle all pos-

2.4 Principles and Notation 23

sible conditions under which a method can be invoked, or in other words a
method must be able the handle all possible combinations of values of its ar-
guments. As an example, a method for withdrawing money must also end in
a normal way when invoked with a negative money amount. The developer
could choose to leave the balance of the bank account unchanged when the
method is called with a negative money amount.

In the remainder of this chapter, the examples are worked out in using the
defensive programming paradigm. Transformation to the other paradigms
is straightforward. The next sections introduce some important principles
that steered the development of the pattern for implementing properties and
associations.

2.4.1 Design By Contract principle

The Design By Contract approach (DBC) is developed by Bertrand Meyer as
part of the Ei↵el programming language [22, 104, 106]. Design by Contract
is an approach to specify and implement object-oriented software components
based on precisely defined contracts between them. The key concepts of DBC
are preconditions, postconditions (introduced by Hoare [89]) and invariants.
These concepts are used to provide the interfaces of the software components
with formal and precise specifications. In general, a contract implies obliga-
tions and benefits for both parties, the supplier and the client. Software com-
ponents collaborate with each other on the basis of mutual obligations and
benefits. The client of a software component, the caller, has the obligation to
ensure the preconditions to obtain the benefit, namely to be guaranteed of the
postconditions. On the other hand, the supplier, the callee, has the obligation
to fulfill the postconditions. The supplier has the benefit he may assume the
preconditions.

Commonly used languages like Java, C++ [98] and C# [18] have no sup-
port for DBC. However several third-party tools have been developed for those
languages. Tools for java are for example: Contract4J [19], JContractor [93].
The Java Modeling Language [97] is a behavioral interface specification lan-
guage that can be used to specify the behavior of Java modules. Object-
oriented languages with native support for DBC are for instance Sather [34],
Nice [35] and Spec# [31].

24 A Pattern-based Approach for Properties and Associations

2.4.2 Command-Query Separation principle

The command-query separation principle (CQS-principle) was devised by
Bertrand Meyer [104]. The principle states that we should make a clear dis-
tinction between queries and commands. In this text, we use the terms in-
spector instead of query and mutator instead of command. Inspectors return
information about the state of some objects. Mutators change the state of
some objects. The CQS-principle prohibits methods to combine both aspects:
inspectors should not change the observable state of one or more objects and
mutators should not return a result. Meyer defines this rule informally as
asking a question should not change the answer [104, p. 751]. Following the
CQS-principle leads to simple and readable code and tremendously helps reli-
ability, reusability and extendibility. The CQS-principle also benefits Design
By Contract [106] because inspectors can be used in the assertions specifying
the semantics of the class.

We further distinguish between basic queries and derived queries. A basic
query returns part of the state of an object. The (observable) state of an
object is determined by the set of all basic queries. This set must be minimal,
which means that it may not be possible to leave out a basic inspector from
the set and still be able to retrieve the full (observable) state of the object.
The result of derived queries and the e↵ect of mutators is always directly or
indirectly specified in terms of basic queries.

2.4.3 Liskov Substition Principle

Creating class hierarchies through inheritance is an important instrument for
writing programs. Subclasses are allowed to extend or change functionality
of superclasses. However, it’s important to avoid undesired e↵ects in the be-
havior: the definition of an overriden method may not contradict with the
definition of the method at the level of the superclass. The Liskov Substitu-
tion Principle [99] (LSP-principle) is the guiding principle to describe which
changes are allowed when overriding a method. Broadly speaking, the princi-
ple states that it must always be possible to substitute in a transparent way
objects of a superclass by objects of its subclasses. The LSP-principle is a
behavioral subtyping principle that guides developers in building solid class
hierarchies by demanding that subclasses preserve behavior from superclasses
completely.

Preconditions and postconditions are the main instruments to describe the
definition of a method. Preconditions state the conditions that must hold each

2.4 Principles and Notation 25

time a method is called. It’s the responsibility of a client to satisfy the imposed
preconditions when invoking a method. Postconditions state the conditions
that the method must satisfy when it returns. It’s the responsibility of the
developers of a method to satisfy the stated postconditions. When a subclass
overrides a method, the definition in the subclass must still comply with the
definition of the superclass. The LSP-principle states that preconditions can
only be weakened at the level of a subclass. A method at the level of a subclass
may only require less or weaker conditions from a client and is not allowed to
increase those conditions. The LSP-principle states that postconditions can
only be strengthened at the level of a subclass. A method at the level of a
subclass may only add or increase e↵ects to the method and is not allowed
to remove or decrease e↵ects. Strengthening postconditions is only possible if
the definition of the method at the level of the superclass is not completely
determined. If the definition of a method is not completely determined, the
method is said to be non-deterministic.

The LSP-principle has also an impact on other ingredients in the definition
of a class. The LSP-principle describes how class invariants, representation
invariants, exceptions, return types, formal arguments and access rights can
be changed at the level of the subclass. For a more detailed description of the
LSP-principle we refer to work from Meyer [104] and Steegmans [127].

2.4.4 Open-Closed Principle

One of the typical characteristics of software is that it evolves, requirements
frequently change over time. It is almost impossible to foresee all required
functionality: new or changed functionality often needs to be added to the
application. The application must be open for future changes or extensions.
On the other hand clients using an application need the guarantee that the
definition of the functionality will not change over time. Thus, once available
for clients the contracts of an application must be closed. The open-closed
principle [101] was introduced by Meyer [104] and says that software entities
should be open for extension, but closed for modification. Once a class is
published or made available for clients, the only reason to modify it should
be to correct errors. Inheritance is the key technique to extend or tune a
class towards a specific context. The principle however does not imply that
new methods can no longer be added to a class. A class is allowed to o↵er
new behavior over time, as long as this behavior does not interfere with the
existing code. This principle is an essential requirement to reach a high level
of reusability.

26 A Pattern-based Approach for Properties and Associations

2.4.5 No-Choice Principle

Devos [75] defined the principle of no-choice at the level of conceptual mod-
elling as the principle of no-choice states that a given set of real-world facts S
can be only represented by just one model. A method should not allow di↵erent
equivalent alternatives for expressing a given set of real-world facts. It is not
the responsibility of the analyst to decide how to model reality. An analyst has
to concentrate on the requirements and the real-world facts themselves. The
same applies at the implementation level. A programmer should spend his
time on solving (real) problems and not on technical issues. As an example
consider the GOTO-statement. Early programs using the goto-statement are
mostly very hard to read and understand, they consist of so-called “spaghetti-
code”. To solve those problems, at first, programming patterns were used
to structure the technical code and to write the problem solving code at the
right place. Step by step, better (more expressive) language features appeared
which made the GOTO-statement always a worse alternative before it disap-
peared from most programming languages. The programming language and
the programming principles must enable the programmer to write clean and
readable code, by giving them the right tools and guidelines to focus on the
unique problem they have to solve.

2.4.6 Notation

In Java, the contract of a class is worked out in documentation comments,
which can be processed by javadoc [25]. Tags structure the di↵erent pieces
of the specification in the documentation. The specification of a class is de-
scribed both formally and informally. The informal specification is written in
natural language, while Java boolean expressions are used to write the formal
specification.

The following tags are used in the code snippets throughout this chapter:
- @basic: denotes a basic query
- @e↵ect: specifies the semantics of a mutator in terms of another mutator
- @invar: denotes a class invariant
- @post: specifies a postcondition of a mutator
- @return: specifies the result of a derived query
- @throws: specifies the exception that must be thrown when the specified
assertion evaluates to true

2.5 Requirements 27

2.5 Requirements

This chapter focuses on properties of classes, e.g. the balance of a bank ac-
count, and associations between classes, e.g. the association between a person
and a bank account describing the holdership relation. Properties and associa-
tions are almost always restricted by business rules. For example, the balance
of a bank account may never drop below the credit limit or the holder of a
bank account must always be an adult person.

We have identified three di↵erent types of requirements and discuss each
of them in the next sections : (1) Value Requirements, (2) State Requirements
and (3) Transition Requirements.

2.5.1 Value Requirements

These requirements are used to specify the most basic kind of business rules
in that they restrict the range of values that a characteristic, property or
association, can have. Meeting its Value Requirements is a necessary condition
for an object to be in a steady state, or in other words to meet its invariants. A
Value Requirement never takes into account other characteristics of the class
at stake.

For properties a Value Requirement restricts the set of values o↵ered by
its type further. A Value Requirement is for instance used to enforce that the
credit limit of a bank account always needs to be below 0.

For associations a Value Requirement restricts the kind of objects (type)
that can participate in the association. At the level of the definition of an
association, the only decision that needs to be made is whether non-e↵ective
objects (null values) are acceptable. Prohibiting non-e↵ective objects in an
association with restricted multiplicity (zero or one), means declaring the mul-
tiplicity to one. This type of requirement is also know as existential depen-
dency. Considering generalization/specialization, a redefinition, that restricts
the kind of objects a specialization can be linked with, is also a Value Re-
quirement. The requirement that a savings account always needs to be linked
with a current account is a Value Requirement (existential dependency). The
requirement that junior current accounts and junior savings accounts, special-
izations of current account and savings account respectively, are attached to
the right specialization is enforced with a Value Requirement.

28 A Pattern-based Approach for Properties and Associations

2.5.2 State Requirements

Mostly, business rules restrict possible values for a characteristic when consid-
ered in combination with values from other characteristics. State requirements
are by nature symmetric. A State Requirement involving characteristics ↵ and
� is always a State Requirement for both characteristics. Meeting its State
Requirements is the other necessary condition for an object to be in a steady
state. The union of all Value Requirements and State Requirements describe
all the invariants of a class. The business rule stating that the balance of
a bank account must never be below the credit limit is specified by a State
Requirement. In the context of associations, the business rules requiring that
a bank card attached to a blocked bank account is itself also blocked and that
the credit limit of a bank account is restricted to -1.000 euro when the holder
of the bank account is not an adult person are also State Requirements.

2.5.3 Transition Requirements

These very specific requirements specify the business rules that restrict the
evolution of values of characteristics. It’s perfectly possible that a (new) value
for a characteristic meets all value and State Requirements but is not accept-
able because of the current state of the object. The business rule imposed by
a bank limiting the amount of money that can be withdrawn from a bank ac-
count is a Transition Requirement. Although 1.000 euro is a correct balance,
it’s not an acceptable balance after a withdraw operation when the current
balance is 10.000 euro and the withdraw limit is 5.000 euro. As an example for
associations, consider marriage as a relation between two persons. Two per-
sons can meet all requirements to be allowed to be married with each other,
for example both being adult, but can not really marry as long as at least one
of them is married (to someone else).

2.6 Properties

In this section, we build the pattern for properties step by step. These steps
give a good indication of what an iteration of the development process can
consist of. It is possible to elaborate the di↵erent requirements independent
of each other. Typically a pattern contains boilerplate code, we will highlight
those parts in the code listings. A code editor should be able to generate this
code. In Eclipse [21], custom templates can be defined to generate skeletons
of methods.

2.6 Properties 29

In the examples illustrating the di↵erent parts of the pattern, we mostly
omit the informal specifications in this text to reduce the size of the code
snippets. This doesn’t mean informal specification, specification in natural
language, is less important. In particular, informal specification increases the
readability or understandability of the code.

The example used throughout the next paragraphs describes a class of
bank accounts. Each bank account has two characteristics, namely a balance
and a credit limit. Both characteristics are decimal values and the balance
must never be less than the credit limit. The amount of money that can be
deposited or withdrawn in a single transaction must be restricted to 1000 euro.
To explain the pattern in the context of inheritance, we introduce a class of
junior bank accounts, a subclass of bank accounts. The balance and credit
limit of junior bank accounts are restricted to integer values. At the level of
the subclass, two new characteristics are introduced: each junior bank account
has an integer value as upper limit and a blocked state (boolean). While the
credit limit can no longer be less than -1.000 euro, the upper limit must at
least be 1.000 euro and must not exceed 10.000 euro. The upper limit is an
immutable characteristic. Of course, the balance is not allowed to exceed the
upper limit.

2.6.1 Representation

Each observable characteristic is part of the state of an object and is revealed
by a basic query. The basic query can be compared with the getter from En-
terprise JavaBeans (EJB) [23, 118]. The return type of the basic query reveals
the chosen type for the characteristic. The characteristic can internally be
stored using one or more instance variables with the same or di↵erent types.
The implementation of the basic query has to perform necessary transforma-
tions between stored and observable information. Like EJB, we introduce also
a setter to change the characteristic to a given value. The basic query and
this setter are the only two methods that are allowed to access the instance
variables that represent the characteristic. By consequence, we limit the pos-
sible transformations between internal representation and observed value of
a characteristic to these methods. This decision has a direct positive impact
on quality factors like correctness, adaptability, testability. If at some point
the internal representation needs to be changed, these changes are very local
which clearly improves the adaptability of the code. The chance for errors is
also reduced because the transformation from internal to observable state is
not repeated over and over in di↵erent places, preventing the developer from

30 A Pattern-based Approach for Properties and Associations

forgetting to update an occurrence of the transformation for example. Finally,
restricting the number of methods to test clearly makes testing easier and more
reliable.

When clients of a class are not allowed to change the value of a character-
istic directly and need to manipulate the characteristic through more complex
mutators, the latter mutators must be implemented in terms of this setter.
When there exists a default value for the characteristic then that value is al-
ways explicitly added to the declaration, even if that value is the default value
of the type of the internal representation. Thus, absence of a default value
in the declaration means this characteristic must always be initialized during
construction.

1 private BigDecimal ba lance=BigDecimal .ZERO;
2
3 /∗∗
4 ∗ Return the ba lance o f t h i s bank account
5 ∗/
6 @Basic
7 public BigDecimal getBalance (){
8 return balance ;
9 }

10
11 /∗∗
12 ∗ Set the g i ven ba lance as the ba lance o f
13 ∗ t h i s bank account
14 ∗ @post new . getBa lance () == ba lance
15 ∗/
16 public void se tBa lance (BigDecimal ba lance){
17 this . ba lance = balance ;
18 }

Listing 2.1: Representation of the property balance

Listing 2.1 illustrates the internal representation with default value, basic
query and setter for the characteristic balance. As the stored and observed
values are equal the implementation of both methods is trivial.

2.6.2 Value Requirements

For each property a Boolean inspector is introduced to validate the Value Re-
quirements. This inspector is the only place where these requirements are
specified and implemented. Because the result of this inspector is by defini-
tion independent of the state of the object, the inspector is a class method

2.6 Properties 31

(static in Java). By convention the name of the inspector checking the Value
Requirement for a property ↵ is isProperValueFor↵(T ↵).

According to the principle of completeness, all business rules must be en-
forced in the application. Calling the setter with an actual argument that
violates the Value Requirement is an exceptional situation and must be sig-
naled. The setter is adapted accordingly.

1 /∗∗
2 ∗ @return i f ((c r e d i tL im i t==nu l l) | | (c r e d i tL im i t . signum () > 0))
3 ∗ then r e s u l t == f a l s e
4 ∗/
5 public stat ic boolean i sProperValueForCred i tL imit (
6 BigDecimal c r ed i tL im i t){
7 return (c r ed i tL im i t != null) && (c r ed i tL im i t . signum () <= 0) ;
8 }
9

10 /∗∗
11 ∗ @post new . ge tCred i tL imi t () == cr ed i tL im i t

12 ∗ @throws I l l e ga lArgumentExcep t ion

13 ∗ ! i sProperValueForCredi tLimit (c r e d i tL im i t)

14 ∗/
15 public void s e tCred i tL imi t (BigDecimal c r ed i tL im i t)
16 throws I l l ega lArgumentExcept ion {
17 i f (! i sProperValueForCred i tL imit (c r ed i tL im i t))

18 throw new I l l ega lArgumentExcept ion () ;

19 this . c r ed i tL im i t = c r ed i tL im i t ;
20 }

Listing 2.2: Value Requirement of the property credit limit

Listing 2.2 illustrates the inspector and setter for the characteristic credit
limit. The specification of the inspector is worked out in a non-deterministic
way. It specifies only which values are certainly not acceptable as value for
the credit limit of a bank account. Notice however that the signature of the
inspector isProperValueForCreditLimit() implies that only true or false
can be returned as result. This way subclasses can decide to further restrict
possible values or to explicitly confirm what values are always acceptable. If
the developer of a class wants to prevent subclasses from redefining the Value
Requirement, the specification must be made deterministic.

Using boolean inspectors to encapsulate requirements is a key technique
throughout the pattern. The technique improves the quality of the code in
multiple ways.

32 A Pattern-based Approach for Properties and Associations

Firstly, it improves the testability of code. Unit tests don’t have to change
the state of an object to test the implementation of requirements. Thus,
the result of these tests can not be influenced by code changing the state of
an object. In the case of Value Requirements, an object isn’t even required
because these inspectors are static by definition.

Secondly, avoiding code duplication improves adaptability. These inspec-
tors can be used in all places (e.g. constructor, setter, advanced mutator,...)
where (value) requirements need to be checked. When requirements change,
only the inspector encapsulating the requirements needs to be adapted.

Thirdly, subclasses often want to tune requirements to their specific needs.
By isolating these requirements in inspectors, it is very clear how a subclass
must adapt requirements, namely by redefining the inspector in a Liskov-
compliant way. The pattern is developed in such a way that if only a part of
the requirements (e.g. only Value Requirements) must be redefined, the other
parts seamless can be reused. This also avoids the need to redefine the mutator
(setter) of the property and therefore also reduces the chance of introducing
errors.

Finally, it also significantly improves the readability of code. Encapsulating
this part of the problem in its own inspector prevents that readers of the code
have to search for this code hiding in mutators or other methods. As listing 2.2
already illustrates it also improves the readability of the setter.

2.6.3 State Requirements

A State Requirement describes a constraint that restricts acceptable value
combinations of characteristics. A characteristic can be involved in mul-
tiple State Requirements. Each State Requirement is also described by
a Boolean inspector. This inspector is again the only place to spec-
ify and implement the State Requirement at stake. The inspector has
an argument for each characteristic involved in the State Requirement.
Thus, this inspector is also a class method. A State Requirement is al-
ways symmetric, which means that in theory all involved properties need
an analogous inspector. The only di↵erences between those inspectors
are the actual argument and the method name. In the example, these
methods could be balanceMatchesCreditLimit(BigDecimal balance) and
creditLimitMatchesBalance(BigDecimal creditLimit). Although tex-
tual not literally, this is specification and code duplication that must to be
avoided. Each subclass that needs to redefine this State Requirements, would
need to redefine the inspector for all involved properties. To avoid this du-

2.6 Properties 33

plication, an argument is provided for each involved property. The remaining
specification and implementation of all involved properties can easily use this
inspector. An extra advantage is that this makes it also easier to test these
inspectors, because the test doesn’t need an object anymore.

Obviously, the value from each involved characteristic must meet the Value
Requirement to have an acceptable combination of values. By convention the
name of the inspector checking a State Requirement involving properties ↵
and � is isProper↵�(T1 ↵, T2 �). We will illustrate in the paragraph about
Transition Requirements how these inspectors are integrated in the setter.

1 /∗∗
2 ∗ @return i f (! isProperValueForBalance (ba lance))

3 ∗ then r e s u l t == f a l s e

4 ∗ @return i f (! i sProperValueForCredi tLimit (c r e d i tL im i t))

5 ∗ then r e s u l t == f a l s e

6 ∗ @return i f (c r e d i tL im i t . compareTo (ba lance)>0)
7 ∗ then r e s u l t == f a l s e
8 ∗/
9 public stat ic boolean i sProperBa lanceCred i tL imi t (

10 BigDecimal balance , BigDecimal c r ed i tL im i t){
11 return i sProperValueForBalance (balance) &&

12 isProperValueForCred i tL imit (c r ed i tL im i t) &&

13 (c r ed i tL im i t . compareTo (balance) <= 0) ;
14 }

Listing 2.3: State Requirement between balance and credit limit

Listing 2.3 illustrates the State Requirement between the properties bal-
ance and credit limit. The specification of this inspector is also non-
deterministic, it is however also possible to close the specification and make it
deterministic.

2.6.4 Invariant

The invariants for a class are described by the union of all Value Requirements
and State Requirements. We say that a characteristic ↵ meets its invariants if
it meets the Value Requirement and all the State Requirements it is involved
in. For each characteristic ↵ we introduce a Boolean inspector to check whether
a given value meets its invariants with respect to the current state of the
object. By convention the name of this inspector is canHaveAs↵(T ↵). As this

34 A Pattern-based Approach for Properties and Associations

method is the sum of the Value Requirement for ↵ and all State Requirements
where ↵ is involved in, this method can be generated as a whole. With respect
to the property ↵, the object is in a steady state if the current registered value
for ↵ meets its invariants. The inspector hasProper↵() specifies the invariant
for ↵. This method can also be generated.

Listing 2.4 illustrates these methods for the property balance. The inspec-
tor canHaveAsBalance is non-deterministic to allow new State Requirements
in future subclasses. If new State Requirements are undesired the developer
of this class can declare the inspector final and make the specification de-
terministic. The inspector specifying the State Requirement between balance
and credit limit will be used in both the invariant inspector for balance and
credit limit. It’s important to note that if the developer wants to prevent sub-
classes to change the invariant with respect to ↵, it does not su�ce to close the
specification of the inspector canHaveAsBalance, all inspectors checking parts
of the requirements of ↵ must also be closed or deterministic. In other words,
isProperValueFor↵() and each isProper↵�() must have a deterministic
specification.

2.6.5 Transition Requirements

A new value for a property must at least always meet the requirements de-
scribed by the invariant. But often specific requirements restrict possible
transitions when we take into account the current state of that property. The
Boolean inspector canHaveAsNew↵(T ↵) checks whether the given ↵ is an ac-
ceptable new value with respect to the current state of the object. First of all,
the new value must meet its invariants. The extra Transition Requirements
are added on top of them. The setter uses this inspector as guard for new
values.

Listing 2.5 illustrates this inspector and the adapted setter. Often a public
setter will not be desired, mutators like withdraw and deposit are preferred
above setBalance. It su�ces to change the access modifier to protected

(private doesn’t allow subclasses to define custom mutators) and custom
mutators can easily be specified in terms of this setter. Listing 2.6 shows the
definition of the mutator withdraw.

2.6.6 Construction

Construction is an event with very specific semantics. After the complete
construction process an object must be in a steady state. Because that is also

2.6 Properties 35

1 /∗∗
2 ∗ @invar hasProperBalance ()

3 ∗/
4 public class BankAccount {
5 . . .

6 /∗∗

7 ∗ @return r e s u l t==canHaveAsBalance (getBa lance ())

8 ∗/

9 public f ina l boolean hasProperBalance (){
10 return canHaveAsBalance (getBalance ()) ;

11 }
12

13 /∗∗

14 ∗@return i f (! g e tC l a s sOb j e c t () . isProperValueForBalance (ba lance))

15 ∗ then r e s u l t == f a l s e

16 ∗@return i f (! g e tC l a s sOb j e c t () . i sProperBa lanceCred i tL imi t (

17 ∗ ba lance , g e tCred i tL imi t ()))

18 ∗ then r e s u l t == f a l s e

19 ∗/

20 public boolean canHaveAsBalance (BigDecimal ba lance){
21 return getClas sObject () . i sProperValueForBalance (ba lance) &&

22 getClas sObject () . i sProperBa lanceCred i tL imi t (balance ,

23 getCred i tL imi t ()) ;

24 }
25 }

Listing 2.4: Invariant from the property balance

36 A Pattern-based Approach for Properties and Associations

1 /∗∗
2 ∗ @return i f (! canHaveAsBalance (ba lance)

3 ∗ then r e s u l t == f a l s e

4 ∗ @return l e t BigDecimal d i f f e r e n c e =
5 ∗ getBalance () . s u b t r a c t (ba lance) . abs () in
6 ∗ r e s u l t == d i f f e r e n c e . compareTo (MAXDELTA)<=0
7 ∗/
8 public boolean canHaveAsNewBalance (BigDecimal ba lance){
9 return canHaveAsBalance (balance) &&

10 (getBalance () . subt rac t (ba lance) . abs () .
11 compareTo (MAXDELTA)<=0);
12 }
13

14 /∗∗

15 ∗ @post new . getBa lance () == ba lance

16 ∗ @throws I l l e ga lArgumentExcep t ion

17 ∗ ! canHaveAsNewBalance (ba lance)

18 ∗/

19 public void se tBa lance (BigDecimal ba lance)

20 throws I l l ega lArgumentExcept ion {
21 i f (! canHaveAsNewBalance (balance))

22 throw new I l l ega lArgumentExcept ion () ;

23 this . ba lance = balance ;
24 }

Listing 2.5: Transition requirement of the property balance

1 /∗∗
2 ∗ @e f f e c t se tBa lance (getBa lance () . s u b t r a c t (ba lance))
3 ∗/
4 public void withdraw (BigDecimal ba lance)
5 throws I l l ega lArgumentExcept ion {
6 setBa lance (getBalance () . subt rac t (ba lance)) ;
7 }

Listing 2.6: Advanced mutator withdraw

2.6 Properties 37

the first state of the object we don’t have to compare the initial value of a
characteristic with its previous value (there is none). Even when there is value
assigned in the declaration to the instance variable, we don’t consider that
value as a ‘previous’ value. An immediate consequence is that we can’t use the
setter in the constructor. Because we still want to restrict the manipulation of
the instance variable(s) to a single method we need to introduce a more basic
setter: register↵(T ↵).

1 /∗∗

2 ∗ @post new . getBa lance () == ba lance

3 ∗ @throws I l l e ga lArgumentExcep t ion

4 ∗ ! isProperValueForBalance (ba lance)

5 ∗/

6 protected void r e g i s t e rBa l an c e (BigDecimal ba lance)

7 throws I l l ega lArgumentExcept ion {
8 i f (! i sProperValueForBalance (balance))

9 throw new I l l ega lArgumentExcept ion () ;

10 this . ba lance = balance ;
11 }

Listing 2.7: Basic setter for the property balance

Listing 2.7 illustrates the basic setter for the property balance. Because
this setter will be used in the constructor, only the Value Requirement can be
checked in this setter. This setter is also necessary when we want to introduce
a complex mutator that manipulates two via State Requirements related prop-
erties. The developer will have to build a custom transition checker for that
mutator, but that is a rather trivial task as all building blocks are available.
Indeed, each Value Requirement and State Requirement is specified in its own
inspector.

A steady state after construction means that all Value Requirements and
State Requirements must be met. Unfortunately, we can’t use the inspector
canHaveAs↵(T ↵) because this inspector assumes all other properties �, �,...
already have their value. As there is no order in the di↵erent assertions of
the specification, using them is impossible. So we are forced to repeat the
invariant conditions in the specification of the constructor. Fortunately, we
can describe the semantics of the constructor in terms of other mutators, more
in particular the basic setter, through the @effect-tag. This way we reduce
the complexity of the specification and implementation. So we only need to

38 A Pattern-based Approach for Properties and Associations

list all State Requirements in the @throws-clause. Listing 2.8 illustrates the
constructor for the class of bank accounts.

1 /∗∗

2 ∗ @e f f e c t r e g i s t e rBa l anc e (ba lance)

3 ∗ @e f f e c t r e g i s t e rC r e d i t L im i t (l im i t)

4 ∗ @throws I l l e ga lArgumentExcep t ion

5 ∗ ! i sProperBa lanceCred i tL imi t (ba lance , c r e d i tL im i t)

6 ∗/

7 public BankAccount (BigDecimal balance , BigDecimal c r ed i tL im i t)

8 throws I l l ega lArgumentExcept ion {
9 i f (! i sProperBa lanceCred i tL imit (balance , c r ed i tL im i t))

10 throw new I l l ega lArgumentExcept ion () ;

11 r e g i s t e rBa l an c e (ba lance) ;

12 r e g i s t e rC r ed i tL im i t (c r ed i tL im i t) ;

13 }

Listing 2.8: Construction of a bank account

2.6.7 Inheritance

On the one hand, a subclass can specialize a superclass. The subclass can
adjust the semantics of inherited features. The Liskov Substitution Principle
(LSP) acts as a guideline to describe allowed adjustments. On the other hand
a subclass can extend the superclass with new features. We will illustrate how
the pattern copes with specialization and extension.

A subclass may want to redefine the Value Requirement of a property.
This means we need to be able to override the inspector checking the Value
Requirement. Because the inspectors checking the Value Requirement are class
methods and Java doesn’t allow to override static methods, the way a Value
Requirement is implemented in the pattern needs to be adapted. Clearly, these
inspectors need to be instance methods but on the other hand they have class
semantics, as their result is defined independent of the state of the object.
Therefore, we move these methods to a static inner class. This static inner
class implements the Singleton Pattern [83]: the object of the static inner class
represents the outer class. The marker interface [55] ClassObject designates
the static inner class.

2.6 Properties 39

1 public class BankAccount {
2 public stat ic class COBankAccount implements ClassObject {
3 private stat ic COBankAccount in s t anc e ;

4

5 protected COBankAccount (){}
6

7 public stat ic COBankAccount ge t In s tance (){
8 i f (i n s t anc e == null)

9 i n s t ance = new COBankAccount () ;

10 return i n s t anc e ;

11 }
12
13 public boolean i sProperValueForBalance (. . .) { . . . }
14 public boolean i sProperValueForCred i tL imit (. . .) { . . . }
15 public boolean i sProperBa lanceCred i tL imit (. . .) { . . . }
16 }
17 }

Listing 2.9: ClassObject inner class for the class BankAccount

Listing 2.9 illustrates the inner class for the class of bank accounts. The
methods with class semantics can be moved without modification, except from
the removal of the keyword static, to the inner class. The specification
and implementation of the instance inspectors using these methods can easily
access them through the singleton object.

A first advantage of moving the inspectors with class semantics into an
inner class is that, although they are instance methods, they can easily be
identified as methods with class semantics. In other words, it supports the
understandability or readability of the code. A second advantage is that they
make it impossible for the developer to use the state of the object erroneously.
The No-Choice principle with respect to this issue is enforced by the compiler.
A third advantage is that it is still possible to test these methods without
needing an instance of the outer class. The advantage that encapsulating
these requirements in static inspectors gives, is retained.

If class B is a subclass of A, then the inner class of B must be a subclass
of the inner class of A to be able to override methods from the inner class of
A.

Listing 2.10 illustrates the redefinition of the inspector checking the Value

40 A Pattern-based Approach for Properties and Associations

1 public class JuniorBankAccount extends BankAccount{
2 public stat ic class COJuniorBankAccount extends COBankAccount{
3 /∗∗
4 ∗ @return i f (! super . isProperValueForBalance (ba lance))

5 ∗ then r e s u l t == f a l s e

6 ∗ @return i f (ba lance . s c a l e () !=0)
7 ∗ then r e s u l t == f a l s e
8 ∗/
9 @Override

10 public boolean i sProperValueForBalance (BigDecimal ba lance){
11 i f (! super . i sProperValueForBalance (ba lance))

12 return fa l se ;

13 return balance . s c a l e () == 0 ;
14 }
15 }
16 }

Listing 2.10: Redefinition of the Value Requirement of the property balance

Requirement for the property balance. An extra constraint is added on top
of the constraints defined in the class of bank accounts. The Liskov Substi-
tution Principle restricts the possible redefinitions of the inspector. Only the
undefined or non-deterministic part of the definition in the superclass can be
changed by making it partially or completely deterministic.

The application now has two versions of the inspector checking the Value
Requirement. The pattern must always use the right version. More in partic-
ular, the inspector must be invoked against the right ‘class object’. Dynamic
binding ensures using the right version of an instance method. Therefore, an
instance method is introduced to retrieve the right ‘class object’.

Listing 2.11 illustrates how the right Value Requirement inspector is in-
voked through ‘dynamic binding’.

Adding new properties to the subclass is now straightforward. If a
State Requirement involves a property ↵ from the superclass, the inspector
canHaveAs↵(T ↵) needs to be redefined at the level of the subclass. List-
ing 2.12 illustrates how the new State Requirement between the properties
balance and upper limit is added to the inspector checking the invariant
constraints for balance. Listings 2.10 and 2.12 illustrate that redefinitions are
easily developed. Value Requirements, State Requirements and Transition
Requirements can be redefined independent of each other.

2.6 Properties 41

1 public class BankAccount {
2 public COBankAccount getClas sObjec t (){
3 return COBankAccount . g e t In s tance () ;

4 }
5
6 public boolean canHaveAsBalance (BigDecimal ba lance){
7 return getClas sObject () . i sProperValueForBalance (ba lance) &&

8 getClassObject () . i sProperBa lanceCred i tL imi t (balance ,
9 getCred i tL imi t ()) ;

10 }
11 }
12
13 public class JuniorBankAccount extends . . . {
14 @Override

15 public COJuniorBankAccount getClas sObjec t (){
16 return COJuniorBankAccount . g e t In s tance () ;

17 }
18 }

Listing 2.11: ‘Dynamic binding’ of a ‘class method’

1 public class JuniorBankAccount extends BankAccount{
2 /∗∗
3 ∗ @return i f (! super . canHaveAsBalance (ba lance))

4 ∗ then r e s u l t == f a l s e ;

5 ∗ @return i f (! g e tC l a s sOb j e c t () . isProperBalanceUpperLimit (
6 ∗ ba lance , getUpperLimit ()))
7 ∗ then r e s u l t == f a l s e
8 ∗/
9 @Override

10 public boolean canHaveAsBalance (BigDecimal ba lance){
11 i f (! super . canHaveAsBalance (balance))

12 return fa l se ;

13 return getClas sObject () . i sProperBalanceUpperLimit (balance ,
14 getUpperLimit ()) ;
15 }
16 }

Listing 2.12: A State Requirement involving the balance and the upper limit

42 A Pattern-based Approach for Properties and Associations

2.6.8 Language Construct

Appendix A shows that an inherent problem with patterns is that they gen-
erate quite some boilerplate code. The need for patterns signals a lack of
expressiveness of programming languages. Therefore, we present an extension
to increase that expression power. Listings 2.13 and 2.14 illustrate how the
example is completely worked out with a new language construct Property.

1 /∗∗
2 ∗ The ba lance o f t h i s bank account
3 ∗ @Value ba lance != nu l l
4 ∗ @State ba lanceExceedsCred i tL imi t
5 ∗ ba lance . compareTo (c r ed i tL im i t) >= 0
6 ∗ @Trans ba lance . s u b t r a c t (new . ba lance) . abs () .
7 ∗ compareTo (MAXDELTA) <= 0
8 ∗/
9 Property BigDecimal ba lance ;

10
11 /∗∗
12 ∗ The c r e d i t l im i t o f t h i s bank account
13 ∗ @Value c r ed i tL im i t != nu l l
14 ∗ @Value c r ed i tL im i t . signum () <= 0
15 ∗ @State ba lance . ba lanceExceedsCred i tL imi t
16 ∗/
17 Property BigDecimal c r ed i tL im i t ;

Listing 2.13: The class of bank accounts

The importance of specification is upgraded, by making it an integral part
of the construct. The specification describes the di↵erent kinds of require-
ments. They act as guards to validate values in an update operation. The
new language constructs must be an integral part of the programming language
and consequently recognized by compiler. In this dissertation, a solution that
can be compiled is not worked out, the language construct is illustrated with
javadoc tags. Three new tags are introduced to specify the semantics of a
property, one for each kind of requirement we identified in section 2.5. The
assertions used in the specification are Boolean expressions. (1) Each Value
Requirement is preceded with a @Value-tag. A Value Requirement may be
split over multiple tags. (2) Each State Requirement is preceded by a @State-
tag. Each property can be involved in an unlimited number of State Require-
ments. (3) Finally, a Transition Requirement is preceded by a @Trans-tag.

2.6 Properties 43

1 /∗∗
2 ∗ The ba lance o f t h i s j un io r bank account
3 ∗ @Value ba lance . s c a l e () == 0
4 ∗ @State upperLimit . balanceDoesNotExceedUpperLimit
5 ∗ @Trans ! i sB locked
6 ∗/
7 @Override
8 Property BigDecimal ba lance ;
9

10 /∗∗
11 ∗ The c r e d i t l im i t o f t h i s j un i o r bank account
12 ∗ @Value c r ed i tL im i t . compareTo (new BigDecimal (�1000)) >= 0
13 ∗ @Value c r ed i tL im i t . s c a l e () == 0
14 ∗/
15 @Override
16 Property BigDecimal c r ed i tL im i t ;
17
18 /∗∗
19 ∗ The b l o cked s t a t e o f t h i s . . .
20 ∗/
21 Property boolean i sB locked ;
22
23 /∗∗
24 ∗ The upper l im i t o f t h i s bank account
25 ∗ @Value upperLimit >= 1000
26 ∗ @Value upperLimit <= 10000
27 ∗ @State balanceDoesNotExceedUpperLimit
28 ∗ ba lance . compareTo (new BigDecimal (upperLimit)) <= 0
29 ∗/
30 @Immutable
31 Property int upperLimit ;

Listing 2.14: The class of junior bank accounts

A State Requirement is always symmetric, which means it applies equal
to all properties involved. To avoid the need to duplicate the specification, re-
quirements can be given a name. For value and Transition Requirements this
name is optional, for State Requirements the name is mandatory. The actual
specification is added to one of the involved properties, while the other prop-
erties refer to this specification through the name of the requirement. A name
has to be unique to a property. Names of requirements can be used unquali-
fied within their own class hierarchy as long there is no ambiguity. The fully
qualified name of a requirement is package.class.property.requirement.
By avoiding the duplication we fully support Parnas’ principle [110] saying

44 A Pattern-based Approach for Properties and Associations

that each fact must be worked out in one, and only one, place.
The specification is by definition non-deterministic. The semantics of

an assertion � in a Value Requirement, State Requirement or Transition
Requirement is:

if !(�)
then result == false

else result == Undefined

Thus, when the assertion � evaluates to false, the submitted value is not
acceptable. On the other hand, when the assertion evaluates to true the value
may be acceptable. The semantics of the Value Requirements of credit limit
in listing 2.13 is that non-e↵ective positive or zero decimal numbers are cer-
tainly not a good value for a credit limit. Negative values can be good values.
Subclasses are allowed to further specify the open part. The requirements
specified in a subclass are added to the requirements specified in the super-
class. The Value Requirement of the credit limit in the class of junior bank
accounts for instance now specifies that only strictly negative integer numbers
are acceptable values.
Evaluation So far the pattern has only been applied to academic prob-
lems. These experiments show that about 70% of the code for defin-
ing properties is boilerplate code. As an example the full definition of
class of bank accounts counts 360 lines of Java code. About 250 of
these lines are boilerplate code. The typical Java programmer is not
tempted to write all these lines in original definitions of classes. In par-
ticular, he will not be eager to encapsulate the di↵erent kinds of re-
quirements in Boolean inspectors such as isProperValueForBalance(),
canHaveAsBalance(), canHaveAsNewBalance(), etc. This either leads to du-
plicate code because the same requirement is repeated over and over again in
di↵erent parts of the class definition, or it compromises adaptability in time
and space. We therefore believe that more advanced language constructs are
needed to introduce properties in classes. We still need to experiment with
this pattern in the scope of industrial software systems. We expect the same
results with respect to the mere definition of properties in such large systems.
It is di�cult to estimate how much of a complex software system is dealing
with properties and associations. It is our experience that for such software
systems this part is about one third of the system. The pattern gives the
programmer the opportunity to focus more on the business at stake.

2.7 Associations 45

2.7 Associations

Next to properties, associations are a key instrument to develop software. In
this section, the pattern is first build for unidirectional associations. In this
text, only associations with restricted multiplicity are treated. In a second
step, the pattern is extended to bidirectional associations. A bidirectional
association can to some extent be seen as the union of two unidirectional
associations. Those two unidirectional associations are however never allowed
to behave like unidirectional associations, they are inseparable.

The structure of the pattern for associations is exactly the same as for
properties. When dealing with bidirectional associations, some specific chal-
lenges need to be solved. These challenges arise from the fact that the code
for describing a bidirectional association is spread over two classes.

10..1

0..1 1

BankAccount

CurrentAccount

JuniorSavingsAccount JuniorCurrentAccount

SavingsAccount

Figure 2.1: A bidirectional association with existential dependency

The example used throughout the next paragraphs reuses the bank account
class from the previous section. Figure 2.1 illustrates the example. Two sub-
classes of BankAccount are defined, namely one representing savings accounts
and one representing current accounts. The credit limit of savings accounts
is redefined to an immutable property with predefined value 0. A savings
account must at all times be attached to exactly one current account (exis-
tential dependency). The sum of the balances of the savings account and the
attached current account must always be at least zero. If a current account

46 A Pattern-based Approach for Properties and Associations

has no savings account attached to it, its balance is not allowed to be negative.
Both savings accounts and current accounts have a junior variant. The junior
accounts are only allowed to be attached to each other. The non-standard
inheritance arrow between the two association lines in figure 2.1 is added to
emphasize both association-lines refer semantically to the same association.
The bottom association-line describes the extra requirements concerning the
participants.

2.7.1 Unidirectional Associations

In this section, only one direction of the association between savings accounts
and current accounts is considered, namely from current accounts to savings
accounts. A current account can be attached to zero or one savings account.
To enforce the constraint concerning the sum of the balances a bidirectional
association is needed, so only the constraint forbidding a current account to
have a negative balance when not attached to a savings account is retained in
this section.

In a unidirectional association, the referred class should be unaware of
the referring class. Besides exceptional cases, when the referred class needs
functionality to observe or manipulate the association, the unidirectional as-
sociation should be made bidirectional. By consequence, all code describ-
ing the unidirectional class will be in the referring class. In the example,
CurrentAccount is the referring class.

2.7.1.1 Representation

The representation of an association with restricted multiplicity is trivial and
completely comparable with the representation of properties. As internal rep-
resentation, an instance variable is provided to store a reference to an object
of the referred class, SavingsAccount. A basic query, the getter, returns a
reference to the object and a setter is introduced to store a (new) reference.
Variables with reference semantics can also store the null reference. When con-
sidering associations with restricted multiplicity, 0..1 means the null reference
is allowed while 1..1 means the null reference must be forbidden. In the latter
case, the referring class is said to be existential dependent from the referred
class. An object of the referring class can never exist without an object of the
referred class.

2.7 Associations 47

2.7.1.2 Value Requirements

In the context of associations, a Value Requirement restricts the kind of objects
(type) that can be referred to by objects of the referring class. At the defining
level of the association, this is trivial as the return type, when well-chosen,
of the basic query defines the kind of objects that are allowed. However, a
subclass of the referring class may want to restrict the kind of objects it wants
to be attached to a subclass of the initial referred class. The decision whether
non-e↵ective values, represented by the null reference, are allowed is also Value
Requirement.

As for properties, a Boolean inspector is introduced to validate the Value
Requirements. In the context of associations, these requirements remain state-
independent. More specifically, nor the state of the referring object nor the
state of the referred object may be used in this inspector. As explained
in section 2.6.7, state-independent methods are moved to the static inner
class. By convention, the name of the inspector checking the Value Require-
ment for an association between S and R, where R is the referred class, is
isProperValueForR(R r). When a role name is available, the name of the in-
spector uses it: isProperValueForRole(R r). Role names are required when
a class has at least two associations with the same class. In the next sections,
when a class name is used in a method name, it must be in an analogous way
substituted by role names.

Listing 2.15 illustrates the inspector for the association where current ac-
counts refer to savings accounts. To explain the need for the inspector better,
inheritance is considered immediately. Listing 2.15 also shows the redefini-
tion of the inspector at the level of the subclass JuniorCurrentAccount: the
possible values a junior current account can refer to are restricted to junior
savings accounts. Thus, as explained in section 2.6.7, invoking the inspector
against the right “class object” implies the right version of the inspector will
be executed.

2.7.1.3 State Requirements

A State Requirement describes a constraint that restricts acceptable values of
characteristics based on the status of the involved object(s). In the context of
associations, two di↵erent types of State Requirements can be distinguished.
The first type describes constraints between a property of one participant and
a property of the other participant. The requirement that the sum of the
balances of a savings account and the attached current account must always

48 A Pattern-based Approach for Properties and Associations

1 public stat ic class COCurrentAccount extends COBankAccount{
2

3 /∗∗

4 ∗ @return one o f boo lean

5 ∗/

6 public boolean i sProperValueForSavingsAccount (

7 SavingsAccount sav ing s){
8 return true ;

9 }
10
11 public stat ic class COJuniorCurrentAccount
12 extends COCurrentAccount{
13 /∗∗
14 ∗ @return i f ((s av ing s != nu l l) &&
15 ∗ (! s a v ing s i n s t anc eo f JuniorSavingsAccount))
16 ∗ then r e s u l t == f a l s e
17 ∗/
18 @Override
19 public boolean i sProperValueForSavingsAccount (
20 SavingsAccount sav ings){
21 return (sav ing s == null) | |
22 (sav ings instanceof JuniorSavingsAccount) ;
23 }

Listing 2.15: Value Requirement for a unidirectional association.

be at least zero is an example of such a constraint. The second type describes
constraints between a property of a participant and the state of involvement
in the association. The requirement that the balance of a current account is
not allowed to be negative if there is no savings account attached to it is an
example of this type of constraint.

With unidirectional associations, the first type can not be enforced be-
cause the referred type is unaware of the referring type. Changing the value
of the property of the referred type can violate the constraint but the referred
type can not check the validity of new values. If the requirements contain
a constraint of this type a bidirectional association is needed. This kind of
constraint will be explained in section 2.7.2.2. Both types of constraints are
worked out in the same way as State Requirements for properties (see sec-
tion 2.6.3). An inspector isProper↵r(T ↵, R r) is introduced to check a
State Requirement of the second type.

2.7 Associations 49

1 /∗∗

2 ∗ @return i f (! isProperValueForBalance (ba lance))

3 ∗ then r e s u l t == f a l s e

4 ∗ @return i f (! isProperValueForSavingsAccount (sav ing s))

5 ∗ then r e s u l t == f a l s e

6 ∗ @return r e s u l t == matchesBalanceSavingsAccount (ba lance ,

7 ∗ sav ing s)

8 ∗/

9 public f ina l boolean i sProperBalanceSavingsAccount (

10 BigDecimal balance , SavingsAccount sav ing s){
11 i f (! i sProperValueForBalance (balance))

12 return fa l se ;

13 i f (! i sProperValueForSavingsAccount (sav ing s))

14 return fa l se ;

15 return matchesBalanceSavingsAccount (balance , sav ing s) ;

16 }
17
18 /∗∗
19 ∗ @pre isProperValueForBalance (ba lance)

20 ∗ @pre isProperValueForSavingsAccount (sav ing s)

21 ∗ @return i f (s av ing s != nu l l) && (ba lance . signum () < 0))
22 ∗ then r e s u l t == f a l s e
23 ∗/
24 protected boolean matchesBalanceSavingsAccount (BigDecimal balance ,
25 SavingsAccount sav ing s){
26 return (sav ing s !=null) | | (ba lance . signum () >= 0) ;
27 }

Listing 2.16: State Requirement for a unidirectional association.

50 A Pattern-based Approach for Properties and Associations

Listing 2.16 illustrates the State Requirement between the property
balance and the (unidirectional) association between current accounts and
savings accounts. This listing also illustrates how an extra assistant-
inspector makes it possible to provide a complete definition of the inspector
isProperBalanceSavingsAccount. This inspector is made final to under-
line that the definition is complete. Only the code to check the real problem
must be written by the developer in the assistant-inspector.

2.7.1.4 Invariant

The invariant of a unidirectional association is also described by the union
of all Value Requirements and State Requirements. The Boolean inspec-
tor checking whether a given value for the association meets its invariants is
canHaveAsR(R r), with R the name of the class or, if available, the role name.
The inspector checking if the currently registered object meets its invariants, is
hasProperR(R r). The specification and implementation is entirely analogous
with properties.

2.7.1.5 Transition Requirements

Specific requirements restricting the possible transitions for a unidi-
rectional association are also again described by a boolean inspector,
canHaveAsNewR(R r). Next to the requirement for the new value to meet
the invariants, additional constraint can be defined to restrict the allowed
transitions. Unlike State Requirements, Transition Requirements are allowed
to use the state of the referred object. A Transition Requirement could for ex-
ample describe that the balance of the new savings account, if e↵ective, must
be higher than the balance of the currently referred savings account.

The basic setter registerR(R r), setter setR(R r) and constructor are
exactly the same as for properties. Appendix B shows a complete skeleton for
the pattern for a unidirectional association.

2.7.2 Bidirectional Associations

A bidirectional association has two unidirectional associations as starting
point. In two places, the pattern for a bidirectional association di↵ers from
the “simple sum” of two unidirectional associations. Firstly, the two unidirec-
tional parts are not allowed to behave like unidirectional associations. They
are inseparable. Secondly, to be in a steady state the two involved objects
must refer to each other.

2.7 Associations 51

When defining a bidirectional association, some functionality belongs nat-
urally to the association and not to one of the participants. The participants
of the association are the obvious candidates. To improve the readability of
the code, one participant is always chosen as the “controlling” participant.
The controlling participant acts as the manager of the association. In case
one participant is existential dependent of the other, i.e. the participant must
at all times be attached to the other participant, that participant is preferably
chosen as controlling participant. It might seem counter intuitive to choose
the existential dependent participant as controlling participant. The reason
for this choice is pure technical. The choice has no influence on the o↵ered in-
terface. Choosing a controlling participant increases readability as it prevents
randomly scattering of association code between the two participants. In the
example, the class representing savings accounts will be the controlling par-
ticipant because it is existential dependent on the class representing current
accounts.

2.7.2.1 Value Requirements

Both the participants of a bidirectional association have an inspector to check
the Value Requirements of the association. Each inspector has the respon-
sibility to check the value constraint from the class it is defined in as the
referring class to the referred class. Both inspectors together describe the
Value Requirements of the association as a whole.

Listing 2.171 illustrates the inspector checking the value constraint for
the association between current and savings accounts. This inspector can be
a useful tool for clients of the classes representing the current and savings
accounts, but is not a necessary inspector for the remainder of the pattern.
Next sections will show how both parts of the Value Requirement come in a
natural way together in the necessary places.

This inspector is introduced in the “controlling class” SavingsAccount

as a “static” method, i.e. a method in the inner class COSavingsAccount.
The implicit class object for savings account can not be used because dy-
namic binding on both arguments is necessary to invoke the right version
of the Value Requirements inspector of both sides. Note that if the restric-
tion of possible participants in subclasses must redefined in a symmetric way,

1In the listing the specification is left out to reduce the size of the listing. This should
not be interpreted as if specification is less important. In this case, specification and im-
plementation are more or less copies. Because using code in examples is more common, the
code is retained.

52 A Pattern-based Approach for Properties and Associations

1 public f ina l boolean i sProperValueForSavingsAccount CurrentAccount (

2 SavingsAccount sav ings , CurrentAccount cur rent){
3 i f ((sav ing s == null) && (cur rent == null))

4 return fa l se ;

5 return ((sav ing s == null) | |
6 sav ings . ge tClas sObject () .

7 isProperValueForCurrentAccount (cur rent))

8 &&

9 ((cur rent == null) | |
10 cur rent . getClas sObjec t () .

11 isProperValueForSavingsAccount (sav ing s)) ;

12 }

Listing 2.17: Value Requirement for the association between savings
accounts and current accounts

both sides must redefine their part of restriction. In the example, junior
current and junior savings accounts can only be attached to each other, in
other words, the redefinition is symmetric. The Value Requirement inspec-
tor in the subclass JuniorSavingsAccount restricts the possible current ac-
counts to junior current accounts. Analogously, the inspector in the subclass
JuniorCurrentAccount restricts the possible savings accounts to junior sav-
ings accounts.

2.7.2.2 State Requirements

Associations introduce two kinds of State Requirements: the first type de-
scribes constraints between a property of one participant and a property of the
other participant. The second type describes constraints between a property of
a participant and the state of involvement in the association. Section 2.7.1.3
already explained the second type. Remark that requirements of this type
are always worked out in the class of the property and not necessarily in the
controlling class.

The requirement that the sum of the balances of a savings ac-
count and the attached current account must always be at least
zero is a requirement of the first type. A boolean inspector
isProper↵�(T1 ↵, T2 �, Bar.COBar classObject) is introduced in the

2.7 Associations 53

controlling class Foo. ↵ is a property of the class Foo and � a property of
class Bar. If using only the names of the properties is ambiguous, the name is
preceded by the class name or, if available, the role name: isProperFoo↵Bar�.

Each involved characteristic must meet its Value Requirement to be able
to have an acceptable combination of values. Listing 2.18 illustrates the State
Requirement for the bank account example. To be able to check if a balance for
a savings account and a balance for a current account meet the requirement,
it is necessary to say to which concrete type of savings account (or current
account) the object has. So the exact question is “Do the given balance for a
savings account of the given kind and the given balance for a current account
of the given kind meet the requirement?” The kind of current account is given
by an argument, in this example CurrentAccount or JuniorCurrentAccount,
namely the class object representing one of those classes is given. The kind of
savings account is given by the implicit argument, namely the class object the
inspector is invoked against. By using the class object, no concrete instance
of the class is needed. Given the class object for both participants, the right
version of the Value Requirement can be used to check both balance values.
An assistant-checker matches↵� is introduced to check the actual problem.

One of the followed principles is the Open-Closed Principle (see
section 2.4.4). Suppose the classes BankAccount, SavingsAccount,
CurrentAccount and JuniorSavingsAccount are published, and therefore
closed, and now the class JuniorCurrentAccount needs to be added with the
restriction that a junior current account may only be attached to a savings
account if the sum of the balances is at least 100. Because SavingsAccount

is the controlling class, the inspector matches↵� is in that class. Obviously,
introducing an “artificial” subclass of JuniorSavingsAccount to redefine the
inspector is not a proper solution. Therefore, a hook method is provided in the
other participant: matches↵�Helper(T1 ↵, S.COS classObject, T2 �).

2.7.2.3 Invariant

To meet its invariant for a bidirectional association, a class needs to meet
the invariant for the unidirectional part where it is considered as the refer-
ring class. As explained in section 2.7.1.4, this is checked by the inspector
canHaveAsR(R r). But in the context of a bidirectional association, both
unidirectional associations must be consistent to have a steady state. For a
bidirectional association, an object of a class can only be in a steady state if
(1) it is not attached to an object of the referred class or (2) it references an
object of the referred class and the referenced object references the referring

54 A Pattern-based Approach for Properties and Associations

1 public stat ic class COSavingsAccount extends COBankAccount{
2 /∗∗

3 ∗ @pre c l a s sOb j e c t != nu l l

4 ∗/

5 public f ina l boolean isProperSABalanceCABalance (

6 BigDecimal SABalance ,

7 BigDecimal CABalance ,

8 CurrentAccount . COCurrentAccount c l a s sOb j e c t){
9 i f (! i sProperValueForBalance (SABalance))

10 return fa l se ;

11 i f (! c l a s sOb j e c t . i sProperValueForBalance (CABalance))

12 return fa l se ;

13 return matchesSABalanceCABalance (SABalance , CABalance ,

14 c l a s sOb j e c t)

15 && c l a s sOb j e c t . matchesSABalanceCABalanceHelper (

16 SABalance , this , CABalance) ;

17 }
18
19 /∗∗
20 ∗ @pre c l a s sOb j e c t != nu l l

21 ∗ @pre isProperValueForBalance (SABalance)

22 ∗ @pre c l a s sOb j e c t . isProperValueForBalance (CABalance)

23 ∗ @return i f (currentBalance . add (sav ingsBa lance) . signum () < 0)
24 ∗ then r e s u l t == f a l s e
25 ∗/
26 protected boolean matchesSABalanceCABalance (
27 BigDecimal SABalance ,
28 BigDecimal CABalance ,
29 CurrentAccount . COCurrentAccount c l a s sOb j e c t){
30 return (SABalance . add (CABalance) . signum () >= 0) ;
31 }
32 }

Listing 2.18: State Requirement for the association between savings accounts
and current accounts

2.7 Associations 55

object back. This has to be repeated in both sides to enforce the invariants
concerning the bidirectional association are met by both participants. List-
ing 2.19 illustrates the invariant concerning the bidirectional association for
the class CurrentAccount.

1 public f ina l boolean hasProperSavingsAccount (){
2 return canHaveAsSavingsAccount (getSavingsAccount ()) &&

3 ((getSavingsAccount()==null) | |
4 (getSavingsAccount () . getCurrentAccount()==this)) ;

5 }

Listing 2.19: Invariant for the association between savings accounts and
current accounts in class CurrentAccount

2.7.2.4 Transition Requirements

Until now, the bidirectional association was considered as the ”sum” of two
unidirectional associations. These unidirectional associations are however not
allowed to behave as such, they should behave as one atomic whole. A logic
consequence is that there are no longer setters available to change only one
reference. The setter is obliged to set a consistent binding in two directions
for all involved objects. When setting a binding for a bidirectional association
with restricted multiplicity up to four objects can be involved. The pattern
provides two generic setters with a di↵erent strategy to leave all objects in a
steady state. The two di↵erent strategies are illustrated in figure 2.2. The
setter wants to attach savings 1 and current 2 to each other. Obviously,
savings 2 and current 1must also be left in a steady state. The first option,
illustrated in figure 2.2a, leaves them unattached. However, this option is only
available if no participant is existential dependent to the other. In the example,
objects of the class SavingsAccount must at all times be attached to an object
of the class CurrentAccount. Thus, when there is existential dependency the
second option, illustrated in figure 2.2b, must be used. This setter attaches the
“outer” objects to each other. Without existential dependency both setters
are available. While these two setters will probably cover most situations, the
developer of the bidirectional association can still elaborate another custom
setter.

Both setters are in fact composite setters: both set four references which
can be compared to setting four unidirectional associations. When defining a

56 A Pattern-based Approach for Properties and Associations

savings 1

savings 2

current 1

current 2

savings 1

savings 2

current 1

current 2

(a) Setter decoupling the
outer objects

savings 1

savings 2

current 1

current 2

savings 1

savings 2

current 1

current 2

(b) Setter coupling the outer
objects

Figure 2.2: The two generic setters for associations with restricted
multiplicity

bidirectional association, both participants define their own boolean inspec-
tor canHaveAsNewR(R r) to check the Transition Requirements seen from
their own perspective. So, this inspector is written as if the association is
unidirectional with the containing class as referring class. As explained in
section 2.7.1.5, these inspectors can use characteristics of both participants.
These inspectors are the building blocks for the transition setter that needs to
be build for each generic setter. Listing 2.20 illustrates the setter that attaches
the outer objects to each other. Listing 2.21 illustrates the new inspector
checking all four “reference” changes. The code in the listing is written as if
the association has multiplicity 0..1 - 0..1. In the example, a savings account
must at all times be attached to a current account. This makes it possible to
remove the unnecessary null-checks on lines 9 and 14 in listing 2.20 and lines 6
and 11 in listing 2.21. This setter and inspector are written in the controlling
class.

The setter uses the basic setters registerR(R r). These basic setters can
not be used outside the generic setters or the constructor. The applicability of
the basic setter in the non-controlling class CurrentAccount can be strongly
restricted by adding some preconditions to the method. This basic setter is
illustrated in listing 2.22. If the basic setter is used to set a reference to an
e↵ective savings account, a precondition requires that the reference in the
opposite direction, from the given savings account to the implicit argument of
the method, is already set (line 2). If the basic setter is used to detach the

2.7 Associations 57

1 public f ina l void setCurrentAccount (CurrentAccount cur rent)

2 throws I l l ega lArgumentExcept ion {
3 i f (! canHaveAsNewCurrentAccountSavingsAccount (cur rent))

4 throw new I l l ega lArgumentExcept ion () ;

5 CurrentAccount oldCurrentFromThis = getCurrentAccount () ;

6 SavingsAccount oldSavingsFromArgument =

7 cur rent !=null ? cur rent . getSavingsAccount () : null ;

8 r eg i s t e rCurrentAccount (cur rent) ;

9 i f (cur rent != null)

10 cur rent . r eg i s t e rSav ingsAccount (this) ;

11 i f (oldSavingsFromArgument != null)

12 oldSavingsFromArgument .

13 reg i s t e rCurrentAccount (oldCurrentFromThis) ;

14 i f (oldCurrentFromThis != null)

15 oldCurrentFromThis .

16 r eg i s t e rSav ingsAccount (oldSavingsFromArgument) ;

17 }

Listing 2.20: Setter in the controlling class SavingsAccount (see figure 2.2b)

implicit argument from its savings account, a precondition requires that the
reference in the opposite direction is already removed (line 4).

In the non-controlling class, an inspector and setter with the same seman-
tics can be provided. These methods are easier as they can be defined in terms
of the methods in the controlling class. Listing 2.23 illustrates these methods.

By describing the Transition Requirements in both sides from their own
perspective, duplication in conditions can arise. For example, suppose current
accounts can be blocked and when blocked their binding with the savings
account is not allowed to change or a bank in the world Utopia could require
that the sum of the balances of the newly attached current and savings account
is at least 5000. A Transition Requirement will however not by definition be
duplicated, the same bank in the world Utopia could also require that if a
current account is going to be attached to a savings account, the balance
of that new savings account must at least be 2500. As showed previously
in similar situations, duplication can be solved by introducing an assistant-
inspector. This inspector can be put in the controlling class and a helper

58 A Pattern-based Approach for Properties and Associations

1 public f ina l boolean canHaveAsNewCurrentAccountSavingsAccount (

2 CurrentAccount cur r ent){
3 //Associaton 1 : t h i s�curren t

4 i f (! canHaveAsNewCurrentAccount (cur rent))

5 return fa l se ;

6 i f ((cur rent != null) &&

7 (! cur rent . canHaveAsNewSavingsAccount (this)))

8 return fa l se ;

9

10 // Assoc ia t i on 2 : curren t . ge tSavingsAccount ()� getCurrentAccount ()

11 i f (cur rent != null){
12 // i f curren t == nu l l , t h e r e i s no second a s s o c i a t i o n

13 i f ((cur rent . hasSavingsAccount ()) &&

14 (! cur rent . getSavingsAccount () .

15 canHaveAsNewCurrentAccount (getCurrentAccount ())))

16 return fa l se ;

17 i f ((getCurrentAccount () != null) && (! getCurrentAccount () .

18 canHaveAsNewSavingsAccount (cur rent . getSavingsAccount ())))

19 return fa l se ;

20 }
21 return true ;

22 }

Listing 2.21: Transition Requirement in the controlling class
SavingsAccount (see figure 2.2b)

method can again be put in the other participant.
Listing 2.24 illustrates the Transition Requirement that is used by the

setter that disconnects the “outer” objects. The setter is very similar to the
one in listing 2.20, except for lines 13 and 16 where the argument of both basic
setters is replaced by null.

2.7 Associations 59

1 protected void r eg i s t e rSav ing sAccount (SavingsAccount sav ing s){
2 a s s e r t sav ing s == null | |
3 sav ing s . getCurrentAccount () == this ;

4 a s s e r t sav ing s !=null | |
5 ! this . hasSavingsAccount () | |
6 getSavingsAccount () . getCurrentAccount () != this ;

7 i f (! ge tClas sObjec t () . i sProperValueForSavingsAccount (sav ing s))

8 throw new I l l ega lArgumentExcept ion () ;

9 this . s av ing s = sav ings ;

10 }

Listing 2.22: Basic setter for a bidirectional association in the
non-controlling class

60 A Pattern-based Approach for Properties and Associations

1 public f ina l boolean canHaveAsNewCurrentAccountSavingsAccount (

2 SavingsAccount sav ing s){
3 i f (sav ing s !=null)

4 return sav ing s . canHaveAsNewCurrentAccountSavingsAccount (this) ;

5 else

6 i f (getSavingsAccount () != null)

7 return getSavingsAccount () .

8 canHaveAsNewCurrentAccountSavingsAccount (null) ;

9 else

10 // This o b j e c t i s the on ly one in vo l v ed

11 return canHaveAsNewSavingsAccount (null) ;

12 }
13

14 public f ina l void setSavingsAccount (SavingsAccount sav ing s)

15 throws I l l ega lArgumentExcept ion {
16 i f (! canHaveAsNewCurrentAccountSavingsAccount (sav ing s))

17 throw new I l l ega lArgumentExcept ion () ;

18 i f (sav ing s != null)

19 sav ing s . setCurrentAccount (this) ;

20 else

21 i f (getSavingsAccount () != null)

22 getSavingsAccount () . setCurrentAccount (null) ;

23 }

Listing 2.23: Transition Requirement and Setter in the class
CurrentAccount (see figure 2.2b)

2.7 Associations 61

1 public f ina l boolean canHaveAsNewCurrentAccountSavingsAccount (

2 CurrentAccount cur r ent){
3 // Assoc ia t i on 1 : t h i s�curren t

4 i f (! canHaveAsNewCurrentAccount (cur rent))

5 return fa l se ;

6 i f ((cur rent != null) &&

7 (! cur rent . canHaveAsNewSavingsAccount (this)))

8 return fa l se ;

9

10 // Assoc ia t i on 2 : curren t . ge tSavingsAccount ()�NULL

11 i f ((cur rent !=null) && (cur rent . hasSavingsAccount ()))

12 i f (! cur rent . getSavingsAccount () .

13 canHaveAsNewCurrentAccount (null))

14 return fa l se ;

15

16 // Assoc ia t i on 3 : getCurrentAccount ()�NULL

17 i f (getCurrentAccount () != null)

18 i f (! getCurrentAccount () . canHaveAsNewSavingsAccount (null))

19 return fa l se ;

20 return true ;

21 }

Listing 2.24: Transition Requirement in the controlling class
SavingsAccount (see figure 2.2a)

62 A Pattern-based Approach for Properties and Associations

2.7.2.5 Language Construct

For associations, a similar extension as for properties is proposed. Listings 2.25
and 2.26 illustrate how the example is worked out with the new construct
BiDirAssociation. If an association is bidirectional, two classes are involved
and they both introduced their ”view” of the association. By definition, these
views must be mirror images of each other as they represent an inseparable
whole. The part of the code in the other side representing the same association
is identified by the keyword mirroredBy followed by the name of the associ-
ation. Obviously, both parts must be defined as bidrectional. The @Value,
@State and @Trans assertions have exactly the same semantics as with prop-
erties.

1 public class CurrentAccount{
2 /∗∗
3 ∗ The ba lance o f t h i s bank account
4 ∗ @State sav ing s . Pos i t i v eBa lance I fNoSav ings
5 ∗ @State CurrentAccount . curren t . Posit iveSumOfBalances
6 ∗/
7 @Override
8 Property BigDecimal ba lance ;
9

10 /∗∗
11 ∗ The b l o cked s t a t e o f t h i s curren t account
12 ∗/
13 Property boolean blocked ;
14
15 /∗∗
16 ∗ The sav ing s account o f t h i s curren t account
17 ∗ @State Pos i t i v eBa lance I fNoSav ings
18 ∗ i f (s a v ing s == nu l l)
19 ∗ then ba lance . signum () >= 0
20 ∗ @State CurrentAccount . curren t . Posit iveSumOfBalances
21 ∗ @Trans CurrentAccountNotBlocked
22 ∗ ! b l o c ked
23 ∗/
24 BiDirAssociation SavingsAccount sav ing s mirroredBy cur rent ;
25 }

Listing 2.25: The association between current and savings accounts (1/2)

2.8 Another Approach? 63

1 public class SavingsAccount{
2
3 /∗∗
4 ∗ The c r e d i t l im i t o f t h i s bank account
5 ∗ @Value c r ed i tL im i t . signum () == 0
6 ∗/
7 @Override
8 Property BigDecimal c r ed i tL im i t ;
9

10 /∗∗
11 ∗ The ba lance o f t h i s bank account
12 ∗ @State CurrentAccount . curren t . Posit iveSumOfBalances
13 ∗/
14 @Override
15 Property BigDecimal ba lance ;
16
17 /∗∗
18 ∗ The curren t account o f t h i s sav ing s account
19 ∗ @Value curren t != nu l l
20 ∗ @State Posit iveSumOfBalances
21 ∗ ba lance . add (curren t . ba lance) . signum () >= 0
22 ∗ @Trans SavingsAccount . curren t . CurrentAccountNotBlocked
23 ∗
24 ∗/
25 BiDirAssociation CurrentAccount cur rent mirroredBy sav ings ;
26 }

Listing 2.26: The association between current and savings accounts (2/2)

2.8 Another Approach?

In this chapter, a family of patterns is presented to tackle the problem of im-
plementing properties (or associations) with their requirements. The number
of needed methods are in some sense an indication of the complexity of the
problem. The purpose of the patterns is to make sure objects are in a steady
state (meet their invariants). Except in an “intermediate” state (half way
through the change of an association between two objects), an object should
never violate its invariants. The patterns provide an inspector, hasProper↵(),
to check the invariants.

To enforce the invariants, each mutator checks through the o↵ered inspec-
tors in advance if all invariants of all involved objects in their new state will
be met and the mutator must react appropriately to the results of the check
(for example leave the state unchanged and throw an exception).

64 A Pattern-based Approach for Properties and Associations

The patterns only provide a mutator to change each property (or associ-
ation) in isolation, therefore there is only one involved object (at least two
and a maximum of four for associations) which simplifies the check. But most
software systems need to o↵er more complex mutators that change multiple
characteristics in an atomic way. For each such complex mutator, the de-
veloper has to write a new custom inspector that checks if the invariants of
all involved objects will be met in their new state. Although the pattern
is built in such a way that it o↵ers all needed building stones (for example
isProper↵�(T ↵, S�)), the development of such an inspector is not straight-
forward.

However, we believe that the complexity can be reduced dramatically if
the invariants can be checked afterwards. An essential element to be able to
develop such an approach, is that transaction support is needed. Figure 2.3
presents the general structure of mutators in this approach. The develop-
ment of the inspectors checking the value and State Requirements remains
unchanged. The inspector checking the Transition Requirements however must
not check the invariants anymore. Listing 2.27 illustrates the adapted inspec-
tor: the code that is removed is showed in comment. The implementation of
the mutators has to be extended with the use of transactions [52, 86]. This
alternative approach becomes really valuable if transaction mechanisms are
o↵ered by the programming language as First-Class Concepts as proposed by
Boydens [58].

1 public boolean canHaveAsNew↵(T ↵){
2 // i f (! canHaveAs↵(↵))
3 // re turn f a l s e ;
4 return . . . ;
5 }

Listing 2.27: Transition Requirement without invariants

This alternative approach, however, can not be generally applied. In situ-
ations where a rollback to the original situation is impossible, the invariants
must be checked before the actual changes are applied. Suppose for example
an application controlling an ATM. The signal to give money to the client must
not be sent to the machine before it has been checked wether the given bank
account code is valid and the balance of the bank account doesn’t drop below
the credit limit. Of course one can always create an artificial intermediate
state which is obviously not an elegant solution.

2.8 Another Approach? 65

Begin

Are Transition
Requirements met?

No

Yes

Update all
characteristics

Are Invariants met?
No

Yes

End

Signal Transition
Requirements are

violated

End

Rollback

Signal Transition
Requirements are

violated

End

Start
Transaction

Commit

Figure 2.3: Another approach to develop complex mutators.

66 A Pattern-based Approach for Properties and Associations

2.9 Conclusion

Although properties and associations with their inherent requirements are
ubiquitous in software applications, no standardized solution exists to imple-
ment them. In this chapter, we developed a family of patterns to implement
characteristics with their requirements. We started with outlining some im-
portant principles for implementing software systems. These principles steered
the development of the patterns.

First, we have identified three types of requirements: Value Requirements,
State Requirements, and Transition Requirements. Value requirements are
used to specify the most basic kind of business rules in that they restrict the
range of values that a characteristic, property or association, can have. A
State Requirement describes a constraint that restricts acceptable value com-
binations of (a set of) characteristics. Transition requirements, then, specify
the business rules that restrict the evolution of values. The combination of all
Value Requirements and State Requirements define the invariants of a class.
Transition requirements correspond to preconditions of mutators of a class.
Design by Contract [104, 106] only o↵ers class invariants and preconditions to
impose restrictions. Because Design by Contract does not o↵er any other con-
cepts apart from preconditions and class invariants to capture requirements,
we are convinced that any requirement is either a Value Requirement, State
Requirement or Transition Requirement.

With this taxonomy in hand, we started developing the pattern. The basic
idea was to separate the concerns of checking the validity of values for charac-
teristics from the concerns of the actual implementation of the change. All re-
quirements are encapsulated in a number of inspectors. The Command-Query
Separation Principle guarantees these inspectors can harmlessly be called as
often as needed.

The inspectors used to check Value Requirements and State Requirements
can perform their checks independent of the current state of an object and are
therefore class methods. However, when the specification is non-deterministic
a subclass is allowed to redefine the specification according to the rules de-
scribed by the Liskov Substitution Principle. In Java, class methods (static
methods) can not be overriden, hence a solution with a static inner class is
worked out that enables overriding the method definition and still makes it
possible to call the inspector without needing an object of the class. The
patterns define how all inspectors and basic mutators collaborate.

The patterns for associations introduced some specific challenges because
two objects are involved. The Open-Closed Principle caused the addition of

2.9 Conclusion 67

some helper-methods: inspectors checking requirements that involve character-
istics of both classes actually should have two implicit arguments. Java forces
us to choose a class to put the inspector in. The patterns advise to choose a
controlling class to avoid the unnecessary distribution of methods over multi-
ple classes. When a new association is set up between two objects, possibly
two more objects are involved. The patterns provide two di↵erent mutators
to make sure all involved objects are left in a steady state afterwards.

Experiments with the patterns in small academic problems show that
about 70% of the code of the patterns is boilerplate code. Because the pro-
grammer only has to rewrite and not rethink this code, the risk for bugs is
reduced. As such, the programmer can focus on the heart of the business rules
without having to think about the technical part of the implementation. In
addition, the patterns are such that they support adaptability in both dimen-
sions, space and time.

Finally, some ideas are presented to show how the patterns can be replaced
by language constructs. In the proposed idea, the specification is no longer a
simple comment. The di↵erent types of requirements that we have identified
for properties and associations now become an integral part of the definition
of the characteristic.

68 A Pattern-based Approach for Properties and Associations

Wat je streven ook is, welke droom je ook najaagt,
welke verandering je ook verlangt, vergeet niet : het

is al begonnen. Het verlangen als zodanig is de
eerste stap op weg naar verwezenlijking.

– Daphne Rose Kingma

Chapter 3

Concepts for Abstracting
away Object Reification at
the level of Platform
Independent Models (PIMs)

Chapter Summary

Conceptual models introduce accidental complexity when they contain techni-
cal aspects in order to describe real-world facts. Such complexity is introduced
by enforcing (“locking in”) decisions that should have been made in a later
activity in the software development process. UML and OCL lack expressive
constructs to reason about event occurrences, even more so when the histori-
cal aspect of such occurrences becomes important. This work presents a new
operator, the #-operator, that allows analysts to treat events as first-class cit-
izens. By assigning a property, that represents the execution time, to events,
it becomes possible to model historical event information without the need to
introduce irrelevant facts in the conceptual model.

69

70 Concepts for Abstracting away Object Reification

3.1 Preamble

The research of this chapter started in November 2004 in the context of
the FWO-funded1 project “Formal support for the transformation of soft-
ware models”. Partners of this project are the KULeuven and University
of Antwerp. On the KULeuven side, research is done related to the ques-
tion “Which concepts are needed to describe behavior of a software system
on a platform independent way?”. Research to find answers to the question
“How can transformations between models be described and managed?” is
performed at the University of Antwerp.

At the time this research started, Model Driven Architecture (MDA) was
a very popular research topic in the search for good software development
processes. The Unified Modeling Language (UML) is an important part of
MDA. UML, an OMG standard, became the standard notation for analysis
and design of software systems. The goal of MDA is to transform Platform
Independent Models to Platform Specific Models and Platform Specific Models
to code in a (semi-)automated way.

With regard to the software development process, this research is situated
in the analysis activity and/or at first stages of the design activity. In MDA
terminology, the result of the analysis activity is a Computational Indepen-
dent Model (CIM). The higher level design models are Platform Independent
Models (PIM). It is not clear what exactly the di↵erence is between the CIM
and the highest level PIM, if there is any. Therefore and because the notion
CIM isn’t often used in literature, we use the term PIM in the remainder of
this chapter. The highest level PIM corresponds to the conceptual model.

UML mainly focuses on structural aspects in models. Modeling behavior
gets less attention and therefore UML lacks high-level constructs to describe
behavior. The Object Constraint Language (OCL) is used to describe the
semantics of behavior. In our research, we promote events to first-class citi-
zens. A new operator, the #-operator, is introduced to reason about events.
Through the use of the operator all occurrences of an event against an object
can be retrieved. This collection can for example be used to specify business
rules. The first results of this research are presented in March 2006 at The
Third International Workshop on Model-Based Methodologies for Pervasive
and Embedded Software [74]. This paper served as the basis for sections 3.4
to 3.6. The remainder of the chapter presents the further research done,
namely the introduction of the @-operator. With this operator, the value of

1Fund for Scientic Research (FWO) in Flanders.

3.2 Introduction 71

a property at a given time can be retrieved. Ideas about abstract method
(similar to an abstract class, commonalities between events can be described
in a parent method) are not elaborated. The research regarding this chapter
stopped end 2006. The fact that OCL now contains the ˆˆ-operator, which
is very similar to our #-operator, proves there was a need to treat events as
first-class citizens.

Today, software systems are more and more developed in an agile matter.
Although OCL is a standardized language and in a standardized way linked
with UML, it is not very often used. UML is used for informal descriptions
of the software system. The description of the semantics is postponed to the
implementation phase.

3.2 Introduction

The object-oriented software development process is composed of a number of
subprocesses, namely analysis, design, implementation and verification. The
major purpose of the analysis process is to establish the requirements for the
software system to be developed. One of the results of the analysis process
is a conceptual model describing the problem domain in all its facets. The
conceptual model will therefore be as close as possible to the facts, as they are
observed in the external world. In the context of Model Driven Architecture
(MDA) [82, 94] the result of the analysis activities is a base Platform Indepen-
dent Model (PIM). The base PIM expresses business rules and functionality
undistorted, as much as possible, by technology [125].

During the object-oriented design process the conceptual model, or base
PIM, is transformed into an operational model, or a Platform Specific Model
(PSM). Software quality factors and other non-functional business require-
ments will influence design decisions [49]. In general, an MDA model will
have multiple levels of PIMs. Each PIM except the base model includes some
platform independent technical decisions. Transforming a PIM to a PIM at the
next level adds more technical information and makes it in this way possible
to map it more precisely to a PSM in the next step. For example, persistence
or security are aspects that can be added to a second-level PIM [125]. In the
MDA these transformations will be automated as much as possible, needing
some PSM creators to write transformation definitions [94, p.147].

Object-orientation has its roots in the programming languages Smalltalk
80 [85] and Simula 67 [68]. In the nineties, the object-oriented approach
to software development has been generalized from programming to object-

72 Concepts for Abstracting away Object Reification

oriented design and object-oriented analysis. This explains why, in the current
state-of-the-art, many conceptual models contain technical decisions, or in
other words design decisions. Indeed, in modeling artefacts from the external
world, conceptual modelers are often forced to decide how artefacts must be
supported in the ultimate software system. We believe that the sole purpose
of analysis is to describe what the software system is all about. The purpose of
design is then to decide how elements of conceptual models are to be realized
in the best possible way. We therefore claim that concepts o↵ered to model at
the higher levels of abstraction (the base PIM) must be extended or redefined.

This chapter starts from the observation that modeling facts with regard
to the history of events is not straightforward. A way to solve this problem
is to model events as objects. This technique is referred to as reification [48].
Information about the history can now be retrieved through the use of queries.
However reification is rather about how to represent an observed fact than
about modeling the observed fact. While the fact was first observed as an
event, it is still represented by an object because some properties of the fact
could otherwise not be modeled. This chapter proposes an extension of the
Unified Modeling Language (UML) [121] and the Object Constraint Language
(OCL) [12] to prevent the need of reification in base PIMs. We further show
how these base PIMs can be transformed in second-level PIMs.

Overview

The remainder of the chapter is structured in the following way: section 3.3
presents some key principles for conceptual modeling. Section 3.4 describes
two di↵erent modeling techniques that are often used to model behavior,
namely a technique using properties and a technique using reification. To im-
prove the technique of reification we introduce a new UML concept. We show
that both techniques do not have the desired level of abstraction. Therefore
we introduce a new OCL concept to model some aspects concerning behavior
at the base PIM level in section 3.5. Section 3.6 describes how base PIMs
using this concept can be transformed into two di↵erent second-level PIMs
(or PSMs). In section 3.7, we investigate the challenges introduced by objects
as arguments of events. Depending on the context, the same observed fact is
modeled in the one conceptual model as an object while in the other concep-
tual model as an event. In section 3.8, a principle that guides the analyst in
his decision making is defined. Finally, we conclude in section 3.9.

3.3 Principles for Conceptual Modeling 73

3.3 Principles for Conceptual Modeling

In this section, we present key principles for conceptual modeling that have
been proposed by Devos [75] and Van Baelen [134] in related research. In gen-
eral, they found these principles to be “quality criteria” of modeling method-
ologies: the quality is higher if (1) they obey more principles, and (2) a prin-
ciple is satisfied in a broader set of scenarios/situations. Today, no method
satisfies all principles in all situations, and probably no method will ever sat-
isfy all principles at the same time. The purpose of these principles is to
improve current methods to come closer to this ideal. The principles will be
used to evaluate the conceptual models in the next sections.

3.3.1 Principle of Uniqueness

Devos [75] and Van Baelen [134] define the Principle of Uniqueness, also known
as the Principle of No-Choice, as follows: a given set of real-world facts can
only be represented by exactly one conceptual model, except for trivial isomor-
phisms. There should not exist equivalent alternatives for modeling a given
set of real-world facts. An analysis method must o↵er the analyst a palette
of modeling concepts and guidelines such that he does not have to spend time
and energy on the question how to model certain real-world facts. The task
of collecting, understanding and representing the relevant real-world facts is
already hard enough and deserves the full attention of the analyst. Avoiding
(almost) equivalent models from the same set of real-world facts, also pre-
vents the need for interpretation of the conceptual model in the next phases
of software development. A method must investigate and evaluate all possi-
ble alternative concepts and make sure a well-balanced set of concepts and
guidelines at the right level of abstraction is o↵ered.

This unique representation mapping must be true in both directions: a
given set of relevant real-world facts can only be represented by one conceptual
model, but a given conceptual model can also only represent one unique set of
real-world facts. Van Baelen identifies this observation as a distinct principle:
the Principle of Unambiguity [134, 87]. In this dissertation, we don’t rely on
the principle of Unambiguity.

3.3.2 Principle of No Redundancy

Devos [75] and Van Baelen [134] define the Principle of No Redundancy as
follows: a real-world fact should only be represented once and at one place in

74 Concepts for Abstracting away Object Reification

the conceptual model. It should be very clear which modeling concept reflects
a real-world fact. This traceability must be present in both directions: it must
be clear how to map a real-world fact to the conceptual model and it must also
be easy to trace back from a conceptual model fact to the real-world fact. This
promotes the adaptability of the conceptual model because when a real-world
fact changes, it is obvious which parts of the conceptual model need to be
adapted. It also avoids unnecessary complexity because the analyst does not
need to be concerned about the consistency of the conceptual model. Similar
to the principle of uniqueness, this eases the task of the developers in the next
phases because they don’t need to search the conceptual model for multiple
concepts that actually represent only one real-world fact.

3.3.3 Principle of Completeness

Devos [75] and Van Baelen [134] define the Principle of Completeness [147]
as follows: all relevant real-world facts must be represented in the conceptual
model. Developers in the next phases of the software development process
should never be forced to focus on identifying missing real-world facts or busi-
ness rules. If some facts are not present, the conceptual model is considered
incomplete. This will almost certainly lead to errors or arbitrary decisions in
later phases and eventually result in a software system that does not corre-
spond to the initial set of real-world facts and requirements. Developers in
later phases of the software process should never be required to interpret or
complement a conceptual model. If vague or ambiguous parts of the concep-
tual model are observed in later phases, the analyst should be asked to clarify
or complete the conceptual model. This should not be confused with chang-
ing requirements or missing information. It is of utmost importance that the
stakeholders provide the analysts with all relevant facts. Imprecise, incom-
plete and non-exhaustive information can lead to serious problems and failures
in the system being developed. Changing or new requirements lead to another
set of relevant real-world facts and by consequence to an adapted conceptual
model.

Construct deficit, defined by Wand as the given that a real-world fact can
not be represented by any modeling construct [142], implies the impossibility
to always deliver a complete conceptual model.

3.3 Principles for Conceptual Modeling 75

3.3.4 Principle of Preciseness

Devos [75] and Van Baelen [134] define the Principle of Preciseness as follows:
all relevant real-world facts must be modeled in a formal way [69]. Natural
language elements should only be added to further clarify parts of the con-
ceptual model. These textual additions must always be able to be removed
without removing any representation of a real-world fact. Representation in
natural language often leaves room for interpretation and is by consequence
by definition ambiguous.

3.3.5 Principle of Minimalism

Devos [75] and Van Baelen [134] define the Principle of Minimalism as fol-
lows: only the relevant real-world facts must be represented in the conceptual
model. A conceptual model should not contain elements that are not relevant
with respect to the requirements. Extra elements are considered as noise and
add unnecessary complexity to the conceptual model. One of the goals of
conceptual modeling is to bridge the gap between the complexity of the real
world and the aimed simplicity of the software system. Therefore, it is very
important for the analyst to guard the boundaries of the problem domain.
Although it is often the habit of analysts to anticipate future extension of
the problem domain through modeling irrelevant real-world facts, they should
not. This habit mostly only results in oversized software systems. This is also
postulated by the agile software development community and expressed in the
Agile Manifesto [47, 102] as the principle of “Simplicity is Essential” [134].
In [46], Beck writes: “Extreme Programming is making a bet. It is betting
that it is better to do a simple thing today and pay a little more tomorrow to
change it if it needs it, than to do a more complicated thing today that may
never be used anyway.” The idea is: model only what is in the requirements.
Don’t develop a framework for the future, you might never need it. It only
adds complexity to the model.

On the other hand, the modeling concepts should not force the analyst to
model or express facts they don’t want to. For example, if the problem domain
does not require to specify the upper bound multiplicity of an association end,
the analyst should not be forced to provide an upper bound only because the
model construct requires an upper bound.

Hayes et al. [87] refer to this principle when they claim “notations should
be abstract”.

76 Concepts for Abstracting away Object Reification

3.3.6 Principle of No History

Devos [75] and Van Baelen [134] define the Principle of No History as follows:
a conceptual model must be independent of the order in which real-world
facts are added. In other words, if the relevant real-world facts were added in
a di↵erent order the same conceptual model must be obtained. The history
of discovering and adding real-world facts to the model is totally irrelevant
for the later phases in the development process. The Principle of Uniqueness
implies this Principle, because if a given set of real-world facts can only be
represented by a single conceptual model, it can by definition not contain any
modeling order information. However, no method accomplishes the Principle
of Uniqueness, often quite some alternatives are possible to model the same
real-world fact. As long as this is true, the Principle of No History is an
important principle on its own. The order of adding real-world facts can for
example be the cause of unnecessary complexity. It is possible that the analyst
has to reconsider earlier modeling decisions to obtain the “best possible” model
given the set of real-world facts.

3.4 Platform Independent Models

In the conceptual model, or base PIM, we strive for a high level of abstraction.
In this section we show through an example that a problem domain with the
need to reason about (occurrences of) an event can be modeled in two di↵erent
ways using the concepts of UML2.0. We show that both models have their
drawbacks resulting from the fact that they do not reach the desired level of
abstraction.

3.4.1 Running Example

The example that will be used throughout this chapter concerns a small part
of a library system. We only consider the concept book. In this example, we
assume that a book has no relevant properties. We model one event, expressing
that books can be loaned for a certain period (loan(period)). The argument
period refers to the actual loan period. We further model three queries to
ask (i) how many times a book is loaned (nbLoans()), (ii) when the last loan
for a book started (latestLoan()) and (iii) the average2 loan period of a
book (avgLoanPeriod()). For simplicity, the examples in this chapter will

2We choose to define the average of an empty set as 0. This means that the average loan
period of a book that never has been loaned, is defined as the period with duration 0.

3.4 Platform Independent Models 77

not model constraints, such as the constraint stating that di↵erent loans of
the same book are not allowed to overlap.

In the next sections, this example is first developed with two existing mod-
eling techniques: in section 3.4.2 the example is worked out with properties.
Section 3.4.3 uses reification to model the example. Thereafter, the model is
developed with the proposed extension in section 3.5.

3.4.2 PIM Using Properties

Figure 3.1 illustrates a possible conceptual model for the example. The main
issue is that we use properties to model the problem domain. Besides the event
and the queries, three properties are introduced to calculate the result of the
queries.

Figure 3.1: PIM using Properties.

The query nbLoans() uses the property nbLoans. A postcondition is added
to the event loan(period) to specify the appropriate update of the property
after each occurrence.

Analogously, the query latestLoan() uses the property latestLoan. A
second postcondition is added to the event loan(period) to specify the ap-

78 Concepts for Abstracting away Object Reification

propriate update of this property after each occurrence. The precondition of
this query (this query is only meaningful after the first loan of the book) is
specified through the property nbLoans.

The result of the query avgLoanPeriod() cannot be defined using a single
property that is updated after each occurrence of the event loan(period).
Indeed, to specify the average of a collection of periods we need to know the
sum of all periods (totalLoanPeriod) and the number of periods (nbLoans)
in that collection.

Evaluation. An advantage of the approach using properties is that the
resulting conceptual model is compact: we do not introduce extra concepts
(classes). However, while only the average loan period is of interest, it is
necessary to model the total loan period. In other words, artefacts that are
not directly relevant need to be modeled. Moreover, each time a new property
is introduced a postcondition needs to be added to the appropriate event which
leads to a bad maintainability of the conceptual model. In other words, the
conceptual model is not easily adaptable nor extendible. The complexity of a
class grows as the number of properties grows. At a certain point, a conceptual
model using reification is probably a better solution. The next section presents
the conceptual model using reification.

There are several (equivalent) alternatives to this model using the same
technique, namely using properties to store (history) information. Another
analyst could have chosen to introduce a property avgLoanPeriod, and to
recalculate the value with each occurrence of the event loan. Yet another
analyst could have opted to store all loan periods in a multivalued property
and calculate the result of the queries nbLoans and avgLoanPeriod with this
new property. This clearly means that there is more than one conceptual model
to represent the given set of real-world facts. Moreover, no real guidelines are
available to the analyst to help him decide which model needs to be delivered.
Thus, the Principle of Uniqueness is certainly violated.

The Principle of No Redundancy is also violated. Consider for example the
query latestLoan, the definition of that query is distributed over three places:
it uses the property nbLoans and the specification of the event loan must also
be adapted appropriately. This introduces complexity and the need for the
analyst to make sure all elements stay consistent. Suppose the requirements
change and the query latestLoan is no longer needed, then the analyst has
not only to remove the query but he is also forced to check if each of the used
properties is still needed in the model.

This approach also violates the Principle of Minimalism. The analyst has

3.4 Platform Independent Models 79

introduced a property totalLoanPeriod while this property is irrelevant with
respect to the requirements3. Queries related to history of events will often
require to store information in a property that is not directly required.

The Principle of No History is in this small example not violated, but using
properties in the context of history can easily introduce history or order in the
conceptual model. Suppose the query totalLoanPeriod() was also required,
then both this query and avgLoanPeriod() can be written in terms of the
properties totalLoanPeriod and nbLoans. But they can also both be written
in terms of the properties avgLoanPeriod and nbLoans. It’s reasonable to
assume that the order of adding will influence the choice.

3.4.3 PIM Using Reification

In this section a conceptual model using reification is presented. In para-
graph 3.4.3.1 the conceptual model is developed using UML2.0. We identify
some technical problems in that solution which we try to solve by introducing
a new UML concept in paragraph 3.4.3.2.

3.4.3.1 PIM With UML2.0

Figure 3.2 illustrates an alternative conceptual model for the example using
reification. The model introduces the class Loan as a reification of the event
loan(period) in the class of books. Each time the event loan(period) occurs
an object of the class Loan must be created.

The query nbLoans() counts the objects of the class Loan associated
with the book at stake. The query latestLoan() gives the most recent
creationTime4. The specification of the query avgLoanPeriod() is also
straightforward. However, figure 3.2 contains even more specification. This
specification is necessary because we need to specify the one-to-one map-
ping between the objects of the class Loan and the occurrences of the event
loan(period). We also need to specify that the value of the argument period
must be the same as the value of the property period in the class Loan. More-
over, the value of this property must never change. The postcondition of the
event loan(period) states that there must be a new Loan-object with a cor-
rect value for the property period after an occurrence of the event. On the

3In this example, the analyst could also have decided to introduce the property
avgLoanPeriod to avoid irrelevant properties, but this option is only available because the
query nbLoans() happens to be required too.

4We assume the presence of the property creationTime for every object. The time at
which an object has come into existence is registered in this property.

80 Concepts for Abstracting away Object Reification

Figure 3.2: PIM using Reification.

other hand the postcondition of the constructor Loan(period,book) states
that there must have been an occurrence of the event loan(period). In
OCL 1.4.2 [13, Sect.8], it was not possible to write the above specification,
this problem is solved in OCL 2.0 [12]. We should also specify that the de-
struction time of each Loan-object must be the same as the destruction time
of the Book-object it is associated with. This is not possible in OCL 2.0. To
solve this problem and to avoid the need for the above “technical” specifica-
tion (representing the pattern to model reification) we propose a new UML
concept introduced in the next paragraph.

3.4.3.2 Method Class

Figure 3.3 illustrates the new UML concept. The concept is used to express a
tight bond between a class, referred to as a Method Class, and an operation of
another class. The concept can be compared with association classes in UML.
Association classes reify associations between two classes; method classes reify
operations of classes.

The semantics of a method class is as follows. For each occurrence of
event() of the class Class there must be exactly one object of the class
Event and, the other way around, for each object of the class Event there
must be exactly one occurrence of event(). Every parameter of an event has
a corresponding immutable property in the method class. The same is true

3.4 Platform Independent Models 81

Figure 3.3: The Method Class.

for the result of an event, if any. The destruction time of each object of the
class Event is the same as the destruction time of the corresponding object
of the class Class. Finally, the execution time of an event is reflected in the
property creationTime ascribed to objects of (method) classes.

Figure 3.4 shows that using the concept of a Method Class makes the PIM
using reification more readible.

Figure 3.4: PIM using Method Class.

Evaluation. The most important problem with this approach is the vi-
olation of the Principle of Minimalism. While the fact “Loan” is conceived
as an instantaneous event with respect to the given set of real-world facts,
the analyst is forced to model the fact as an object to be able to model the
required queries. As a consequence, the analyst is forced to think about the
lifetime of the fact and to invent a meaningful sense for the destructor. In this
example, one could argue that the lifetime of the object can coincide with the
period specified in the argument. But this depends on the semantics of the

82 Concepts for Abstracting away Object Reification

argument, the class Loan reflects the actual loan of a book, so its lifetime can
reflect the actual duration of the loan and the destruction time can reflect the
actual returning of the book. The argument period however doesn’t necessar-
ily match with the actual duration, it can also refer to the intended duration
of the loan while the actual duration can be shorter or longer. Moreover, most
events don’t have a period argument reflecting some duration, for example
the event withdraw in the class BankAccount.

The principle of No Redundancy is also violated. The specification of the
same fact, “loan”, is distributed over a class and an event. The use of the
method class reduces the amount of overhead specification, but a single fact
still requires two di↵erent constructs.

Consider the following example, a class of bank accounts with a bal-
ance, two events, one to withdraw money and one to deposit money, and
a query to return the number of occurrences of the event withdraw. If the
analyst first models the withdraw with the related query, he must introduce
a class BankAccount and a class Withdraw for the reified event. The class
BankAccount will introduce two queries, nbOfWithdraws and getBalance().
There is no need to introduce a property to reflect the balance because it can
be derived from the argument of the event withdraw (modeled as a property
of the class Withdraw). To model the event deposit, the analyst adds an event
to the class BankAccount, but also a property. If that property reflects the
deposited amount, then the Principle of Minimalism is violated because an
irrelevant fact is modeled. Moreover, this results in a strange model where
two equivalent facts are modeled di↵erently. If the analyst decides to let the
property reflect the real balance, the Principle of No Redundancy is violated
because the specification of withdraw needs to be extended to update the
property. The analyst can also decide to reify deposit, but this means there
are two ways to model the same set of real-world facts and thus violates the
Principle of Uniqueness. Finally, traces of history are possibly violating the
Principle of No History : the semantics of the needed property in the class
BankAccount can be di↵erent for example.

3.4.4 Conclusion

In this section we illustrated two di↵erent ways of modeling issues concerning
events.

The first approach uses properties resulting in compact models. On the
other hand, the complexity grows rapidly as the number of properties grows.
This approach tends to violate the following principles: Principle of Unique-

3.4 Platform Independent Models 83

ness, Principle of No Redundancy, Principle of Minimalism and Principle of
No History.

The second approach reifies the event. In models using reification, we are
obliged to specify the tight connection between the event and the constructor
of the reified event and between the arguments of the event and the prop-
erties of the reified event. We introduced the Method Class to decrease the
complexity of the specification. The occurrence of an event always coincides
with the creation of an object. In principle, each event can be reified. As a
result, the only remaining events in a conceptual model would be construc-
tors and destructors of classes. In particular, all properties are by definition
immutable. Van Gestel developed MOOSE [138] that follows this approach.
This approach has the advantage of o↵ering very clear modeling guidelines.
Practice has however proven that using reification to the limit gives rise to
excessively complex conceptual models. Moreover, objects and events are nat-
urally di↵erent from each other. An event can not always straightforward
being conceived as an object. The most critical di↵erence lies in the lifetime
of an object, in particular it is not always easy to perceive semantics of the
destruction of an object representing a reified event. There reification as a
general technique does not satisfy.

By consequence, the modeler always has to make the trade-o↵ between us-
ing properties and using reification when modeling aspects concerning events.
Bekaert o↵ers a number of criteria to indicate when to use reification and when
not to do so [48]. Although in some situations one technique is clearly prefer-
able above the other, there is a region where it is not clear which technique is
better used. The decision is often made on the basis of quality requirements
of the software system: when compactness (number of classes) is important
properties will be chosen; when adaptability or extendibility is important reifi-
cation will be chosen. However, at the level of the base PIM these requirements
are not in order.

In our opinion, the main reason for this trade-o↵ is that UML does not
o↵er appropriate concepts to reason about behavior. The concepts used in
this section lack expressiveness to model the problem domain at a desirable
high level of abstraction. Both models suggest in some way a design (and
implementation). In other words, the PIMs presented in this section belong
at the lower levels but not at the base level.

84 Concepts for Abstracting away Object Reification

3.5 The Base PIM

In this section we elaborate a new way to express issues related to events
at the level of the base PIM. In its current form, OCL only supports the
application of events and queries against objects and classes. The language
has only few facilities to reason about occurrences of events and queries. We
therefore introduce a new OCL-operator: the #-operator. We first describe
the semantics of the operator and then illustrate its use in the example.

3.5.1 Semantics Of The # Operator

The OCL expression obj#event() denotes a collection of all occurrences of
the event event() against the object obj. The evaluation of the left operand
of the operator must yield an instance of a class. The event after the # must
be an event of the class to which the object obj belongs. The shorthand
for collect [12, sect. 7.6.2] is also applicable: when we apply an event to a
collection of objects, then it will automatically be interpreted as a collect over
the members of the collection with the specified event.

Elements of the collection resulting from the #-operator are thus event
occurrences. To some extent, event occurrences are similar to plain objects.
Arguments involved in event occurrences can be retrieved by means of the tra-
ditional dot operator. Assume an event e with arguments a and b, the OCL ex-
pression obj#e.a yields a collection of values supplied as the actual argument
in invoking that event against the given object. We also assume the presence of
the default property executionTime (analogously to the creationTime prop-
erty of an object), which returns the time the event occurred. If the event is
a query, the result of the query can be obtained by means of the result()

operator [12, sect. 7.7.2].
This operator is probably an example of an operator that will only be used

at the level of base PIMs.

3.5.2 The Example Revisited

In figure 3.5, the base PIM is worked out for the small part of the library
system, introduced in section 3.4.1. The base PIM uses the #-operator, elim-
inating the need to reify the event loan(period) or to introduce properties.

The specification of the introduced queries is straightforward. In the spec-
ification of the query nbLoans we only need a standard operation on a col-

3.5 The Base PIM 85

Figure 3.5: The Base PIM using the #-Operator.

lection. The specification of the query latestLoan uses the default property
executionTime of an event. Finally, the query avgLoanPeriod uses the dot-
operation to retrieve the value of the argument of an occurrence of an event.

At the base PIM level we also assume the presence of useful functions
like avg (average) and max (maximum). These functions are of course only
available if the type of elements of the collection is appropriate.

Evaluation. In our opinion this model is a more abstract representation
of the problem domain than the models in figures 3.1 and 3.4. The #-operator
gives us the possibility to specify the semantics of the di↵erent queries with-
out the need to think about how to model the queries. This model has the
advantages of both models, namely it is compact, adaptable and extendible.

The lack of expressive power forces the analyst to add irrelevant facts
in the model with properties (extra properties) or the model using reification
(lifetime and destructor for instantaneous fact), in this model only the relevant
facts are present. Thus, this model obeys the Principle of Minimalism.

The specification of each modeled fact is not distributed over multiple
places. There is for example no need to insert a postcondition or a property
to add a query. When one of the queries has to be removed from the model,
the analyst does not have to change other model elements to keep the model
consistent. Therefore, the model also obeys the Principle of No Redundancy.

Traces of history in the models with properties or using reification are

86 Concepts for Abstracting away Object Reification

especially unwanted if they are reflected in irrelevant model elements (for ex-
ample irrelevant properties). However, it is not always that clear whether
or not we introduce unwanted history in our model. Suppose the query
totalLoanPeriod() is also required in the example of the library. The spec-
ification of the query avgLoanPeriod() can then be written in terms of the
queries totalLoanPeriod() and nbOfLoans() or using the avg()-function as
done in figure 3.5. One could argue that choosing for the definition in terms
of the other queries is a trace of history. We dont fully agree with this state-
ment. Indeed, the general principle of divide and conquer is still a valuable
approach in building high-level models. In general, the approach suggests to
solve complex problems in terms of several subproblems. Applied to the spec-
ification of behavior in high-level models, the principle suggest to introduce
auxiliary functions in specifying more complex functions. This is not the same
as introducing history traces in models.

3.6 Transformation from PIM to PSM

One of the main objectives of MDA is to transform a (base) PIM into one or
more PSMs. As stated in [125] an MDA model will have multiple levels of
PIMs. The base PIM is transformed in second-level PIM(s). In the current
state of the art, most transformations cannot be fully automated and probably
we will never reach a state where full automation is possible. In that context,
it is important to keep PIMs of di↵erent levels (and PSMs) consistent, by
maintaining traceability.

In this section we will show that base PIMs, as described in section 3.5,
can be transformed into two di↵erent second-level PIMs: the first PIM uses
properties (cfr. figure 3.1) and the second PIM uses reification (cfr. figure 3.4).
In this context, transforming a base PIM to a second-level PIM means elimi-
nating the more abstract #-operator.

3.6.1 PIM Using Properties

In the first transformation, we generate a PIM using properties to specify the
result of the queries. In the next paragraphs we describe the algorithm to
transform the specification of a query using the #-operator in a specification
involving properties.

The first step in the transformation is a normalization process. All the
queries in the specification at the level of the base PIM are transformed into

3.6 Transformation from PIM to PSM 87

queries that either do not involve the #-operator in their specification, or into
queries that can be transformed into an attribute (a stored property). We refer
to the latter kind of queries as attributable queries. A query is attributable if
its specification involves a set, and the result of the query can be specified in
terms of the result of that query applied to a single element, combined with
the result of the query applied to the remaining elements. A precondition
is considered as an anonymous query. When its specification contains the
#-operator, the query is made explicit and treated in the same way as the
other queries.

In the base PIM for the library system, the query nbLoans() is at-
tributable. Indeed, the size of the set of event occurrences is equal to the size
of a set with one event occurrence plus the size of the set of remaining event
occurrences. The same is true for the query latestLoan(). The maximum
of the set of execution times is equal to the maximum of a single execution
time, and the maximum of the remaining execution times. The precondition
of latestLoan() is made explicit in the attributable query loanIsExecuted.
The query avgLoanPeriod on the other hand is not attributable. We therefore
expand the definition of the average function in the specification, yielding an-
other query totalLoanPeriod. It is easy to see that this query is attributable.
After normalization, we get the query specifications shown in figure 3.6a.

The second step in the transformation is to introduce attributes for each
of the attributable queries. The specification of the queries is now written in
terms of the introduced attributes. The specification of each attribute contains
a semantics clause specifying unambiguously the meaning of the attribute
and, if possible, an intial value for the attribute. The attribute can initially
be undefined, meaning that the result of every query using this attribute in its
specification is initially undefined. These queries are non uniform services.

In the example, this leads to four attributes. The query nbLoans() intro-
duces an attribute nbLoans. The initial value for this attribute is straightfor-
ward since the size of an empty set is zero. On the other hand, the attribute
latestLoan is initially undefined. Indeed, there is no maximum of an empty
set. The specification of these two attributes (the specification of all attributes
can be viewed in figure 3.7) is shown in figure 3.6b.

The last step in the transformation is to add postconditions to the event
on which the #-operator is applied. In particular, a postcondition is added for
each query that has been transformed into an attribute. We start with post-
conditions stating that upon completion of the event, each of the attributes
must store a value that is consistent with the specification of the attributed

88 Concepts for Abstracting away Object Reification

Context Book :: nbLoans() : NATURAL
post : result = self#loan() ! size()

Context Book :: latestLoan() : DATE
pre : self.loanIsExecuted()
post : result = self#loan().executionT ime ! max()

Context Book :: loanIsExecuted() : BOOLEAN
post : result = self#loan() ! notEmpty()

Context Book :: avgLoanPeriod() : DURATION
post : result = if nbLoans() = 0

then 0
else totalLoanPeriod()/nbLoans()

Context Book :: totalLoanPeriod() : DURATION
post : result = self#loan().period ! sum()

(a) Step 1: Normalization.

Context Book :: property NATURAL nbLoans
Initial value : 0
Semantics : self#loan() ! size()

Context Book :: property DATE latestLoan
Initial value : undefined
Semantics : self#loan().period ! max()

(b) Step 2: Introduction of Attributes for the
Attributable Queries.

Context Book :: loan(period : DURATION) : void
post : self.nbLoans = self#loan() ! size()
post : self.latestLoan = self#loan().executionT ime ! max()
post : self.totalLoanPeriod = self#loan().period ! sum()
post : self.loanIsExecuted = self#loan() ! notEmpty()

(c) Step 3a: Introduce for each Attribute a Postcondition.

Figure 3.6: Specification of the Di↵erent Transformation Steps.

3.6 Transformation from PIM to PSM 89

Context Book :: loan(period : DURATION) : void
post : self.nbLoans = (self#loan()@pre [

self#loan()@current) ! size()
post : self.latestLoan = (self#loan()@pre.executionT ime [

self#loan()@current.executionT ime) ! max()
post : self.totalLoanPeriod = (self#loan()@pre.period [

self#loan()@current.period) ! sum()
post : self.loanIsExecuted = (self#loan()@pre [

self#loan()@current) ! notEmpty()

(d) Step 3b: Split o↵ the Current Occurrence.

Context Book :: loan(period : DURATION) : void
post : self.nbLoans = self#loan()@pre ! size()

+ self#loan()@current ! size()
post : self.latestLoan =

if self#loan()@pre.executionT ime ! isEmpty()
then self#loan()@current.executionT ime ! max()
else{self#loan()@pre.executionT ime ! max(),

self#loan()@current.executionT ime ! max()} ! max()
post : self.totalLoanPeriod = self#loan()@pre.period ! sum() +

self#loan()@current.period ! sum()
post : self.loanIsExecuted = self#loan()@pre ! notEmpty() OR

self#loan()@current ! notEmpty()

(e) Step 3c: Distribute the Application of the Query.

Context Book :: loan(period : DURATION) : void
post : self.nbLoans = self.nbLoans@pre + 1
post : self.latestLoan = if (not(self.loanIsExecuted@pre))

then now
else (this.latestLoan@pre, now) ! max()

post : self.totalLoanPeriod = self.totalLoanPeriod@pre + period
post : self.loanIsExecuted = self.loanIsExecuted@pre OR true

(f) Step 3d: Simplify the Postconditions.

Figure 3.6: Specification of the Di↵erent Transformation Steps.
(Ctd)

90 Concepts for Abstracting away Object Reification

query. This yields the specification for the event loan() as shown in fig-
ure 3.6c.

Because each of the queries is attributable, their results can be specified
in terms of a single element combined with the result of the query applied
to all other elements. This property is essential in arriving at a specification
in which the value of the attribute upon completion of the event is specified
in terms of the value of that attribute upon entry combined with the specific
characteristics of the current occurrence of that event. In a first step, the
current occurrence of the event (obj#event()@current) is split of from all
past occurrences (obj#event()@pre). This yields the postconditions as shown
in figure 3.6d.

The next step is to distribute the application of the query over the current
occurrence of the event and all past occurrences. This yields specifications in
which the result of the query is specified in terms of its result applied to all
past occurrences and in terms of its result applied to the current occurrence.
The resulting specifications are shown in figure 3.6e.

The last step is to simplify the postconditions. The result of the query
applied to the current occurrence is straightforward and the result of the query
applied to all past occurrences is the value of the attribute before the current
occurrence. The simplified specification is shown in figure 3.6f.

In the second postcondition we observed that the condition could be sub-
stituted by an attribute. This is subject for further research but we think that
we will always be able to do such substitutions; if not, there will probably be
an incomplete specification in the PIM.

Some postconditions can even be further simplified. The result of the whole
process is the PIM shown in figure 3.7.

To facilitate maintaining consistency between PIMs of di↵erent levels, some
extra semantic information is added to the PIM in figure 3.7. Each property
has a semantics-clause. This information indicates the connection between
this property and the query in the base PIM. However, this concept must
still be further refined : the link between a non-attributable query from the
base PIM and the introduced properties at the second-level PIM can be made
clearer for example.

3.6.2 PIM Using Reification

The second transformation from the base PIM in figure 3.5 to a PIM using
reification (using the method class) is straightforward. This second-level PIM
is shown in figure 3.4. The model introduces the method class Loan as a reifi-

3.7 Objects as Arguments 91

Figure 3.7: The PIM using Properties.

cation of the event loan(period) in the class of books. In specifications of
events and queries, each occurrence of an expression of the form obj#event()

is transformed into the expression obj.event. When the base PIM uses the
default property executionTime, the second-level PIM uses the default prop-
erty creationTime of the method class.

The presence of the method class at this level is a clear trace that this
concept represents the reification of an event from the base PIM. In this way,
the method class helps maintaining the consistency between the base PIM and
second-level PIMs.

3.7 Objects as Arguments

The example used in the previous sections has only one argument. The argu-
ment, period, is a value and is thus by consequence immutable. It doesn’t

92 Concepts for Abstracting away Object Reification

matter when the value of the argument of a given occurrence of the event
loan() is requested, the result will always be the same value. Values have
by definition no lifetime, they are perpetual. However, events can also have
objects as arguments. The event loan(period) can for example have reader
as a second argument, representing the reader, an instance of the class Person,
of the book who loans the book from the library.

Opposed to values, instances of classes or objects, do have a life cycle.
Each object comes into existence at a some point in time, and ceases to exist
at a some later (or potentially the same, but certainly never earlier) point in
time. Objects have a restricted lifetime. Moreover, objects have a state. That
state is determined by the properties assigned to it (such as for instance the
weight of a person) and the associations it is involved in (such as for instance
the membership relation between a person and a library). Generally, the state
of an object evolves over time (e.g. the weight of most people goes up and
down through time).

The impact of both facts, namely that objects have a lifetime and a evolv-
ing state during that lifetime is investigated in more details in the next sec-
tions. Section 3.7.1 investigates the impact of the life cycle of an object, while
section 3.7.2 treats the evolving state.

3.7.1 Life cycle of an object

Quite often, when reasoning about objects in conceptual modeling the main
focus is on the living objects. Although there are no mechanisms like garbage
collection at the conceptual level, objects that cease to exist often disappear
from the view because they become unreachable from other living objects, i.e.
the object that ceased to exist is no longer involved in one or more associations
with a living object.

With the availability of the #-operator, objects become reachable in yet
another way from other objects. As soon as a given object is involved in an
event at least once as an argument, the given object can be reached from the
object the event is invoked against. While it is often reasonable to accept
that objects that cease to exist no longer participate in associations, it is not
reasonable to expect that also all objects, that have an event where the object
that ceases to exist once was an argument of, also cease to exist. Suppose a
library wants to send an invitation for a happening to all readers that loaned
a book. Figure 3.8 illustrates the query to retrieve all readers of a book using
the #-operator. This query returns a set of persons regardless if they are still
living or not. However, the library probably only wants to send invitations to

3.7 Objects as Arguments 93

Book

loan(period:DURATION, reader : Person) : void
allReaders() : set of Person

Context Book::allReaders() : set of Person
 post: result = self#loan().reader->asSet()

Figure 3.8: A query for retrieving all readers of a book.

living readers. Thus, the modeler needs to be able to distinct between living
objects and objects that ceased to exist. This need is even more urgent in the
case when departing from this set of all readers an event is invoked on each
reader that changes the state of that reader. Once an object ceased to exist,
its state should not change anymore.

EROOS5 [44, 129] is a conceptual modeling method that di↵erentiates be-
tween living objects and objects that ceased to exist. The collection of all
objects of a class is partitioned in two disjunct sets: the population and the
archive. From the moment it comes into existence an object resides in the
population until the moment it ceases to exist and moves to the archive. Fig-
ure 3.9 shows the detailed graphical representation of a class that shows the
population and archive explicitly. The inner rectangle with the character ‘�’

Class Name

°
†

Figure 3.9: EROOS Class: population and archive.

in it represents the population, while the rectangle with the character ‘†’ rep-
resents the archive. Next to a constructor, EROOS also provides in each class
a destructor and an implicit property Destruction Timestamp reflecting the

5EROOS was originally an acronym for “Entity-Relationship Object-Oriented Specifica-
tions”, but is currently considered to be a proper noun. [134]

94 Concepts for Abstracting away Object Reification

moment an object ceases to exist. The partitioning in population and archive
also gives the modeler more expression power concerning associations because
he can explicitly state to which partition a participant must belong. The char-
acters representing the population (‘�’) and archive (‘†’) can also be used in
the specification of functionality. When no explicit notation of the population
or archive made, the population is assumed to be the targeted partition.

We claim that UML should be extended with a similar distinction be-
tween population and archive. Using the EROOS characters to denote both
partitions the specification of the query allReaders() in figure 3.8 is a short-
hand for: post: result = self#loan().reader�->asSet(). Figure 3.10

Context Book :: allLivingReaders() : bag of Person
post : result = self#loan().reader�

Context Book :: allDeadReaders() : bag of Person
post : result = self#loan().reader†

Context Book :: allReaders() : bag of Person
post : result = self#loan().reader�†

Figure 3.10: The partition notation for a query retrieving all
readers.

illustrates the three di↵erent possibilities to write the query to retrieve all
readers of a book. The first query returns a bag (a person can read a book
more than once) of all readers still alive at the moment the query is exe-
cuted. The second query returns a bag of all readers that are dead at the
moment the query is executed and the third query returns the union of both
previous bags. A mutator changing the value of a property may only be
used together with objects residing in the population. In other words, given
the queries allDeadReaders() and allReaders() an event is not allowed
to use these queries and execute a mutator to change a property of each of
the retrieved readers. For example the following specification is not allowed
post: self#loan().reader�†.changeTitle(‘Mr./Mrs.’).

3.7.2 Evolving state of an object

Using the #-operator, information about the past can be obtained through
retrieving occurrences of an event (see figure 3.5). When objects are involved
as arguments of that event, the state of that object can become part of the
required information. However, the state of an object generally evolves during
the lifetime of the object. As a consequence, the modeler should be able to

3.7 Objects as Arguments 95

indicate which state must be used. In other words, the value of a property at
a given time should be able to be retrieved.

The expression obj.x@t gives the value of the property x of the object
obj at the moment in time t. The result of this expression is by definition
undefined if the moment in time t lies in the future (now < t) or lies before the
creation timestamp of the object obj (t < obj.creationTime). Figure 3.11

balanceAt(t : TIME) : integer

balance : integer

Context BankAccount::balanceAt(t : TIME) : integer
 post: result = self.balance@t

BankAccount

Figure 3.11: The @-operator.

illustrates the @-operator in a simple example. There is no problem if the
moment in time t lies between the destruction time of the object and now
(obj.destructionTime < t < now) because objects in the archive can still
be queried.

The @-operator is however not really a new operator. Expressions with
the same semantics can be written with the #-operator. The @-operator is
actually introduced as syntactical shorthand for a complex expression that
will occur often enough to justify the introduction of this operator. Especially
in business applications, history information is often needed.

The value of a property can only change through the execution of an event,
or more precisely a mutator. Typical mutators for the balance of a bank
account are withdraw() and deposit(). A more straightforward mutator
changeBalance() is also possible. All these mutators have in common that
at some point in their specification is written “set the value of the property
balance to someValue”. Or in other words, the more complex mutator (for
example withdraw()) invokes at some point the basic mutator setBalance().
In general, we assume that each property ↵ of a class is by definition accom-
panied by a basic mutator set↵(). The expression obj.↵ = value is just
another syntactical notation of set↵(value).

Given this insight, it is clear that the value of a property ↵ at a given

96 Concepts for Abstracting away Object Reification

time t equals to the value of the argument of the last occurrence before t of
the basic mutator set↵(T new↵). If we further assume that the default value
of property at creation time of the object is also set by this basic mutator, there
will always be at least one occurrence of that basic mutator. Figure 3.12 shows

obj.x@t
⌘

if ((now < t) or (t < obj.creationT ime))
then Undefined
else
let setXBeforeT = obj#setX(x) ! select(s | s.executionT ime  t) in

let latestExecutionT ime = setXBeforeT.executionT ime ! max() in
obj#setX(x) ! select(s | s.executionT ime = latestExecutionT ime).x

Figure 3.12: Definition of the @-operator.

the definition of the @-operator in terms of the #-operator. If the given t lies
outside the valid range then the result of the expression is Undefined. On the
other hand, when t lies within the lifetime of the object obj the result is the
argument of the last occurrence of setX(x). First the set of all occurrences of
the basic mutator setX() is reduced to only those occurrences that happened
before the given time t resulting in the set setXBeforeT. Because the basic
mutator is also used to set the default value, this set can not be empty. Next,
the highest executionTime from the reduced set of occurrences is selected.
And finally, the basic mutator with that executionTime is selected. This
selection always returns exactly one occurrence of the mutator. The value of
a property can never be set to two new values at exactly the same time. The
argument of that occurrence is the required value.

Associations are almost similar to properties: participants are also set
through a basic mutator. The only di↵erence is that a property has always
a value, while an object does not always have to participate in a relation
when the multiplicities allow it. When an object does not participate in an
association at a given moment t, the result of the expression, for example
account.holder@t, is an empty set.

3.8 Object or event?

The Principle of Uniqueness states that a given set of real-world facts must
lead to a unique conceptual model. With the #-operator, the need to reify

3.8 Object or event? 97

events because of technical reasons is eliminated. However, this does not mean
that a given real-world fact will always be modeled as an event (or vice versa as
an object). The way a given real-world fact must be modeled depends on the
complete set of relevant real-world facts. The way a given real-world fact must
be modeled depends on the complete set of relevant real-world facts. First, a
principle is defined to guide the developer in his decision making and then the
principle is illustrated with an example. The principle is a refinement of the
well-known rule of thumb that in informal descriptions of the external world
nouns correspond to objects and verbs correspond to events [39, 42, 126, 129].

Guiding Principle.
[Object] If the lifetime, and consequently also the destructor, of a
fact is of importance for the software system, then the fact should
be modeled as an object.
[Event] If a fact is instantaneous, in other words the lifetime
nor destructor are of importance for the software system, the fact
should be modeled as an event.

Figure 3.13 illustrates an example of a single real-world fact modeled in
two di↵erent ways because the set of relevant real-world facts di↵er, more in
particular the relevant properties of the fact di↵er. Suppose the goal is to
model a software system to manage locations of persons and their transfers.
In both systems, it’s irrelevant how (by plane, car,...) these transfers are
performed. In the first system, modeled in figure 3.13a, two properties of the
fact “transfer” are relevant: (1) the changing coordinate and (2) the total
number of transfers. In the second system, modeled in figure 3.13b, three
properties are relevant: (1) the changing coordinate, (2) the total number of
transfers and (3) the total transfer time. The time a single transfer takes is
only known when a person arrives at the destination.

In the first system, the fact “transfer” is modeled as an event. With respect
to the set of relevant real-world facts, it is irrelevant that a transfer in reality
takes some time. In the given context, it is observed as an instantaneous event
and thus is also modeled as an event.

In the second system, the fact “transfer” is modeled as an object. With
respect to the set of relevant real-world facts, the time a transfer takes is
relevant, or in other words each transfer has a lifetime. The construction of
an object of the class Transfer has a clear meaning. But more importantly,
the destructor also has a clear and relevant meaning, namely it reflects the

98 Concepts for Abstracting away Object Reification

Person

transferTo(destination:COORDINATE) : void
nbOfTransfers() : NATURAL

Context Person::transferTo(destination:COORDINATE) : void
 post: self.position = destination

Context Person::nbOfTransfers() : NATURAL
 post: result = self#transferTo()->size()

position:COORDINATE

(a) Transfer modeled as an event.

Person

nbOfTransfers() : NATURAL
totalTransferTime() : DURATION

Context Person::nbOfTransfers() : NATURAL
 post: result = self.transfer->size()

Context Person::totalTransferTime() : DURATION

 post: result = self.transfer†->collect(destructionTime-creationTime).sum()

Transfer
destination:COORDINATE {frozen}initialPosition:COORDINATE {frozen}

(b) Transfer modeled as an object.

Figure 3.13: The same fact “transfer” modeled given two di↵erent
sets of real-world facts.

moment a person arrives at his destination6.

3.9 Conclusion

In this chapter, we identified some problems with base platform independent
models (PIMs) as they are developed today. More in particular, as illustrated
in this chapter, base PIMs often contain design decisions. In this chapter,
we focused on aspects concerning modeling behavior. More in particular, we
focused on situations where the use of reification is often used as modeling
technique.

We have started our research from the observation that UML has no ap-

6Similarly to the property creationTime, we assume the presence of the property
destructionTime for every object in the archive. The time at which an object ceased to
exist is registered in this property.

3.9 Conclusion 99

propriate facilities to reason about event occurrences, more in particular when
elements of the history are important. Based on this observation, we have
reviewed two common techniques to circumvent this lack of expressiveness:
(1) PIMs based on Properties (section 3.4.2) and (2) PIMs based on Reifi-
cation (section 3.4.3). Both techniques solve the original problem, but they
do so by introducing new challenges. PIMs based on properties often need to
introduce irrelevant facts, Moreover the specification tends to get spread over
several elements in the model leading to problems of consistency, adaptability
and maintainability. PIMs based on reification lead to overly complex mod-
els. Moreover, representing events as objects is not always straightforward
because an object always has a lifetime and therefore the construction and
destruction of that object must have a significant meaning. The method class
(section 3.4.3.2) solves some technical issues related to reification.

We believe however that both these modeling techniques do not belong
at the level of the base PIM, but at the level of lower level PIMs. Hence,
we defined a new operator, the #-operator, to be able to model facts con-
cerning history related to events. Using the #-operator, the collection of all
occurrences of an event for a given object can be retrieved. Models using the
#-operator do not have the disadvantages identified in the models based on
properties or reification. We further showed how base PIMs containing the
#-operator can be transformed into the second-level PIMs based on proper-
ties or reification. Next to values, events can have objects as arguments. To
be able to treat objects properly with respect to their lifecycle, we claimed
that UML should be extended with notations similar to the population and
archive presented in EROOS. To ease the specification to retrieve information
about the evolution of the state of an object, we defined a new operator, the
@-operator. The @-operator is defined in terms of the #-operator. We fin-
ished the work with reflecting on a guideline when to use objects and when to
use events in building high-level models.

So far the use of the #- and @-operators have only been applied to aca-
demic problems. We still need to experiment with these operators in the
scope of larger software systems. We expect that the operators will especially
be useful when history or evolution of values is of importance.

100 Concepts for Abstracting away Object Reification

I was always looking outside myself for strength and
confidence but it comes from within.

It was there all the time.
– Anna Freud

Chapter 4

A Framework for Executing
Cross-Model Transformations
Based on Pluggable
Metamodels

Chapter Summary

Di↵erent metamodels mostly have common structural constructs and associ-
ated functionality: a framework o↵ering constructs to build hierarchical com-
position structures is developed to avoid the need repeat this work over and
over again. Next to these constructs, the framework o↵ers a metamodel-
independent transformation approach. The knowledge of how to transform
concrete metamodel elements is decoupled from the managing algorithm. De-
velopers of a transformation provide strategies to transform concrete model
elements, while the framework is responsible for tasks as execution order, man-
aging cross-model consistency, model validity,. . .

101

102 A Framework for Executing Cross-Model Transformations

4.1 Preamble

The research of this chapter started beginning of 2006 in the context of the
IWT-funded1 project “AspectLab”. Our part of the research is related to the
section “Model Transformations”.

The rise of Model-Driven Architecture (MDA) [82] triggered the devel-
opment of tools supporting transformations between models. Unfortunately,
most of those tools failed to surpass the stage of generating skeletons of code.
The core of the code still had to be worked out after the transformation. Some
research to improve the transformation results started from formal models:
transformations are defined in mathematical way [139]. Other research used
an operational approach based on patterns and frameworks. This work used
the operational approach.

The rise of MDA also encouraged the attention for metamodeling and
metaprogramming. The best known example is the metamodel of UML, de-
scribing UML using its own constructs. A metamodel is an extremely useful
starting point to build tools to support software development [135]. The frame-
work developed in this work is situated at the metamodel level and defines a
language-independent transformation approach.

With regard to the software development process, this research is situated
within and between all activities. In MDA terminology, Platform Independent
Models (PIM) are first transformed to lower level Platform Independent Mod-
els and then to Platform Specific Models. The modeling language used for
the source model and target model can be the same, but can also be di↵erent.
The base idea was to develop a metamodel-independent transformation tool
that supports transformations between models designed in di↵erent modeling
languages. The implementation of the framework is worked out with a mix of
Java 1.4 [4] and Java 5 [8] and therefore doesn’t (fully) use the possibilities of
techniques like generics [7], lambda expressions [26], defender methods [26], . . .

The result of this research is a prototype implementation that was pre-
sented in July 2007 at Second International Conference on Software and Data
Technologies (ICSOFT) [73]. The research regarding this chapter stopped end
of July 2007. The prototype proved the value of the followed approach, but
further research and development is needed to investigate on more specialized
aspects of transformations.

1Agency for Innovation by Science and Technology

4.2 Introduction 103

4.2 Introduction

In the previous two chapters, we introduced some new concepts to facilitate
the development of complex software systems. However, the design of com-
plex enterprise applications also imposes new challenges on tools supporting
model-driven software design. Such complex designs are typically created us-
ing di↵erent modeling languages, where each language focuses on a specific
aspect of the enterprise application. Aligning software with business require-
ments, for instance, is typically done using workflow modeling languages such
as the Business Process Execution Language (BPEL) [5]. The technical re-
alization of each identified BPEL process is then modelled using UML inter-
action diagrams, whereas the back-end database persisting the state of that
BPEL process is designed using Entity-Relationship (ER) or Relational (RDB)
database models. The heterogeneity of these modeling languages imposes new
challenges on modeling tools. For example, Platform Independent Models
crafted in earlier stages of the design process must be transformable to models
written in di↵erent modeling languages, thus creating a need for cross-model
transformations [82]. Also, general design decisions to be respected by the
whole project must be communicated to models written in di↵erent modeling
languages, as such creating a need for cross-model communication in order to
guarantee cross-model consistency [116].

Current tool support can hardly cope with the increased complexity intro-
duced by heterogeneous modeling languages as the majority of modeling tools
rely on hardwired, vendor-specific metamodels. By hardwiring their metamod-
els, such tools disable transformations to other modeling languages. Further-
more, by relying on proprietary metamodels, transformation tools obstruct
metamodel reuse in other modeling tools because those competing tools rely
on ad hoc metamodels that are in turn proprietary and hence incompatible.

Being convinced that a lack of support for cross-model transformations
and vendor lock-in are serious limitations of today’s modeling tools, we have
designed and partially implemented a transformation framework with support
for pluggable metamodels. By making metamodels interchangeable, this tool
allows modellers to introduce a metamodel for their own modeling language
and it provides a basis for executing horizontal, cross-model transformations.

104 A Framework for Executing Cross-Model Transformations

Overview

In this chapter, we focus on the design of Pluto, a framework providing reusable
concepts for (1) building concrete metamodels and (2) for transforming con-
crete models between di↵erent modeling languages. The remainder of this
text is structured as follows. Section 4.3 elaborates on current tool support
for model transformations and discusses a number of limitations, leading to
a list of design goals, as described in section 4.4. Section 4.5 introduces our
framework, Pluto, and section 4.6 shows how Pluto eases the implementation
of new metamodels. Section 4.7 shows how Pluto models can be transformed
to target models written in other modeling languages. Finally, section 4.8
discusses related work and section 4.9 concludes.

4.3 Motivation

Tools for designing and transforming models do not fully support the func-
tionality required for developing complex software systems [67, 88, 145]. One
notable MDA implementation is the EMF (Eclipse Metamodel Framework)
tool [20, 130]. This tool is widely used by research projects and provides a
good means of quickly supporting a metamodel. However, EMF does not scale
up for large models, does not provide any workgroup support, and is generally
not used as a basis for industrial tools. EMF does not fully comply with the
MOF standard [28]. Other tools like AndroMDA [17] and Enterprise Archi-
tect [29] seem to have the same problems. We have identified a number of
disadvantages that have led to the design goals enumerated in section 4.4:

• Limited Applicability. Transformation tools are often shipped con-
taining a hardwired metamodel of a single modeling language so as to
(vertically) transform models within that same language. Although com-
plex models may be realized using such tools, it is impossible to design
models in any other modeling language than the one supported. This
forces modellers to use a di↵erent tool for each modeling language they
are willing to use. Threatened by the risk to scatter their designs over
incompatible tools, developers are tempted to stick with a single, general
modeling language such as UML, even though specialized modeling lan-
guages are often better suited for modeling specific parts of a software
system.

• Limited Interoperability. Next to being hardwired in modeling tools,

4.4 Design Goals 105

embedded metamodels often contain proprietary constructs, for exam-
ple, to increase the performance of the transformation tool in which they
are embedded. Although economically feasible for the tool supplier, who
achieves a vendor lock-in, such proprietary constructs are awkward for
the end users of that tool because it becomes very hard to reuse their
designs in other modeling applications. Indeed, the latter will not be
able to understand the format of the proprietary metamodel in which
the original version of the model was defined.

• Limited Extensibility. Modeling tools often provide a mechanism to
define extensions for modeling languages. The Unified Modeling Lan-
guage, for instance, introduces UML profiles and stereotypes to allow
developers to extend UML with domain-specific modeling concepts [6].
Transformation tools may provide similar extension mechanisms to let
developers extend the modeling language on which that tool operates.
The expressive power of such mechanisms, however, is much weaker
than that of a pluggable metamodel system because the semantics of
metamodel-specific extension mechanisms are irreversibly linked to the
semantics of their base metamodel, thus obstructing the introduction of
new modeling concepts that are incompatible with that base metamodel.

• Limited Support for Transformations. Hardcoding a metamodel
inside the transformation tool disables transformations between model-
ing languages. This makes it impossible, for instance, to transform a
series of BPEL processes into a UML interaction diagram. Indeed, tools
used for creating such models will lack the ability to communicate de-
sign decisions to each other, thus jeopardizing the consistency of the
application being designed.

• Limited Reusability. Although specialized tools exist that are able
to transform between multiple modeling languages, the set of supported
languages is typically predefined and therefore not extensible. Also,
the logic for executing such transformations is often too much tailored
to the base application, hence obstructing the reuse of transformation
algorithms in other tools.

4.4 Design Goals

The main objective of our research is to build a metamodel-independent trans-
formation tool that supports transformations between models designed in dif-

106 A Framework for Executing Cross-Model Transformations

ferent modeling languages. This gives rise to a number of design goals:

• Pluggable Metamodel System. Developers must be able to define
their own metamodels and feed them to the transformation tool, as such
increasing the applicability of the latter. For example, if our transfor-
mation tool is running on a UML metamodel, it must be able to accept
an ER metamodel or an RDB metamodel and then allow modellers to
design their applications using the UML, ER and RDB modeling lan-
guages. Next to adding metamodels of existing modeling languages,
developers must also be able to define and insert custom metamodels
of domain-specific modeling languages or language extensions that they
have defined themselves.

• Cross-model Transformations. Next to transforming between mod-
els that share a common metamodel, our tool must support transforma-
tions between di↵erent modeling languages [103]. This requires our tool
to be able to work with multiple metamodels simultaneously. When fed
with the ER and the UML metamodel, for instance, it must be possible
to transform a UML class diagram into an ER schema, and vice versa.

• Reusability. Metamodels have a wide-spread applicability beyond the
domain of model transformations as they can be used, for instance, in
model verifiers or code generators. Therefore, the metamodels on which
our tool relies must be reusable in these domains without modification:
we must avoid polluting metamodels with dependencies on components
that are specific to model transformation logic.

• Obliviousness. In order to allow the transformation tool and the meta-
models to evolve independently, a certain amount of obliviousness is
needed in both directions. On one hand, metamodels should be entirely
independent of the transformation tool (as noted in “reusability”); on
the other hand, the transformation tool should not depend on the tech-
nical details of a single hardwired metamodel (as noted in “cross-model
transformations”). Thus, we need to define a common contract on which
the transformation tool relies when a metamodel is fed to it.

Realization. Given these design goals, we have developed Pluto, a framework
with reusable concepts for metamodels and model transformations. Section 4.5
outlines this framework. Its two main functions, metamodel realization and
model transformation, are discussed in sections 4.6 and 4.7, respectively.

4.5 The Pluto Framework – Overview 107

Traceability. The need for horizontal, cross-model transformations in turn
creates a need for cross-model communication so as to guarantee the consis-
tency of the design. Therefore, transformations must be traceable, meaning
that our tool must be able to link target elements to the source element(s)
that triggered the creation of the former. This also means that changes to
a target model must be communicated back to the source model from which
that target model was created.

4.5 The Pluto Framework – Overview

Pluto is a Java framework providing abstract modeling constructs to be reused
by concrete metamodels. It is therefore typically layered on top of concrete
metamodels as shown in figure 4.1. The upper part depicts a set of Pluto

Figure 4.1: Overview of the Pluto framework for metamodeling

constructs providing general functionality for metamodels. The lower part of
figure 4.1 shows how interfaces of the ER metamodel are defined as extensions
of Pluto interfaces. Concrete realizations of these interfaces represent elements
that occur in ER models. Such concrete classes implement these ER-specific
interfaces by inheriting general functionality from abstract Pluto classes and
by filling in ER-specific behaviour where necessary.

It is important to note that Pluto is in itself not a metamodel of meta-
models and neither is it a concrete metamodel. Rather, Pluto should be seen

108 A Framework for Executing Cross-Model Transformations

as an abstract metamodel from which concrete metamodels inherit common
functionality. Therefore, in the Meta Object Facility layering structure [11],
Pluto is situated at the meta-level (M2) rather than the meta-meta-level (M3).

Implementation. The (completely formally specified) implementation of
the framework is worked out with a mix of Java 1.4 [4] and Java 5 [8]. Java
5 introduced among others generics [7]. The implementation only partially
takes advantage of generics. The use of the collections framework has been
refactored to use the generic collections framework, but generic or parame-
terized types are not used. The reason is purely historically, when the first
experiments and implementation steps of this research were performed Java
5 was still in beta. Because the main focus of the research was to develop a
prototype to prove the design goals (section 4.4) and not to build a fully op-
erational transformation tool, we decided not to refactor the implementation
to use generics.

The implementation uses a simplified version of the family of patterns
presented in chapter 2. This version did not di↵erentiate between the di↵erent
kinds of requirements yet. All requirements are checked in a single inspector
canHaveAs↵(T ↵). In this way, the implementation of the framework can be
seen as a preliminary validation of the pattern. In the current implementation,
this inspector is also responsible for checking correct typing in defining for
example the whole-part relation (see section 4.6.1). It is subject to future
research to determine how parameterized types can be used to improve the
implementation of the framework.

The implementation of the framework consists of 56 classes and 43 inter-
faces and counts in total 3205 lines of sources code2. The mean of the McCabe
Cyclomatic Complexity is 1.331 with standard deviation 0.915. The specifi-
cation of the implementation is also completely (formal and informal) worked
out following the rules described in [127].

The remainder of this chapter focuses on two key functions of Pluto.

• Metamodeling. Section 4.6 focuses on the left part of figure 4.1 and
shows how Pluto o↵ers reusable concepts for composition and dependency
management. To illustrate the wide applicability of this transformation
framework, we use the Entity Relationship (ER) metamodel and the
Relational Database (RDB) metamodel as examples instead of the UML
metamodel.

• Transforming Models. Section 4.7 reviews the right part of figure 4.1

2Metrics are calculated with [30].

4.6 Designing Concrete Metamodels as Pluto Extensions 109

and shows how Pluto transforms models between di↵erent modeling lan-
guages. As an example, we show how the ER metamodel can be extended
so as to transform models from the ER modeling language to the RDB
language, and vice versa.

4.6 Designing Concrete Metamodels as Pluto Ex-
tensions

Pluto o↵ers constructs for building consistent, hierarchical composition struc-
tures (section 4.6.1) and provides a reusable dependency management system
(section 4.6.2) that can be reused by developers of concrete metamodels. Both
constructs provide functionality that is paramount for Pluto’s transformation
logic (section 4.7).

4.6.1 Reusable Composition Concepts

The existence of nested whole-part relations typically causes models to be
arranged into hierarchies. The ERModel instance in figure 4.1, for exam-
ple, refers to a number of Relationship instances, and each Relationship

in turn contains a number of relationship ends (represented by instances of
Role). Similar composite structures occur frequently in the majority of avail-
able modeling languages. Without having reusable constructions for managing
model composition, however, implementors of metamodels have to implement
similar structures over and over again. We avoid this repetitive and error-
prone work by integrating reusable functionality for managing hierarchies at
the level of Pluto. This is achieved by structuring its top level classes ac-
cording to the Composite design pattern [83]. This composite structure is
shown in figure 4.2, where instances of WholeModelElement refer to instances
of PartModelElement. The basic version of the Composite pattern is further
extended by the introduction of three subinterfaces that di↵erentiate between
the root node, the intermediate nodes, and the leaves of a model tree:

• RootComposedModelElement is used for elements that are not contained
in other elements, such as the root node of a model. In the ER metamodel
(see figure 4.2), for instance, this interface is extended by the ERModel

interface because ER models cannot be contained in other model ele-
ments.

110 A Framework for Executing Cross-Model Transformations

Figure 4.2: Parent/child and dependee/dependant relations in
Pluto

• BasicModelElement is used to represent those model elements that are
contained in other model elements without containing elements them-
selves. They represent the leaves of a model tree. An example of such a
basic model element is the relationship end of an Entity, as represented
by Role in figure 4.2.

• NonRootComposedModelElement inherits its behaviour from both
WholeModelElement and PartModelElement, meaning that it con-
tains model elements while being contained in another model element.
Concrete realizations of this interface represent internal nodes. The
Relationship interface, for instance, is an internal node because it is
contained in an ERModel (see figure 4.2) while containing a set of Role
instances.

Evaluation. By augmenting the semantics of model composition, we allow
metamodel developers to reuse Pluto’s consistency and validity checks, as such
decreasing the odds for introducing structural integrity violations (e.g. circular
dependencies or detached model elements) during the construction of a new
metamodel.

4.6 Designing Concrete Metamodels as Pluto Extensions 111

4.6.2 Reusable Dependency Management

The whole/part relation of section 4.6.1 is too general to cover di↵erent kinds
of dependencies between model elements. Therefore, this section further de-
composes that relation into two specialized dependency relations. First, the
parent/child relation is used to specify interdependencies. Second, the depen-
dee/dependant relation is used to specify unidirectional dependencies between
di↵erent kinds of model elements.
The Parent/Child Relation. This is a hierarchical one-to-many relation
used for expressing interdependencies between di↵erent kinds of model ele-
ments. The following properties characterize the parent/child relation:

• One-to-Many. A parent can have multiple children, but a child only
has one parent. For example, the realization of the ER metamodel spec-
ifies that a Relationship (parent) contains multiple relationship ends
(i.e. instances of Role), but a Role (child) can only belong to one
Relationship.

• Interdependence. The parent/child relation is used to express the
existence of bidirectional dependencies between di↵erent kinds of model
elements. This means that parents and their children influence each
other:

– Children depend on their parent. Children cannot survive the re-
moval of their parent. In the ER metamodel, for instance, this
means that instances of Role cannot survive the removal of the
Relationship to which they belong. This is exactly what the ER
metamodel must enforce because a role does not make sense when
it is not participating in any relation.

– Parent depends on children. In parent/child relations, the par-
ent also depends on its children. A Relationship, for instance,
is invalid without instances of Role being attached to it; such a
configuration would specify the existence of a relationship without
participants and this is not sensible.

• Transitive. Given three model elements ↵, �, and �, such that ↵ is
a parent of � and � is a parent of �, then ↵ is an indirect parent (or
ancestor) of �.

• Symmetric. A model element ↵ is the parent of � i↵ � is a child of ↵.

112 A Framework for Executing Cross-Model Transformations

Combined with transitivity, we get that ↵ is an ancestor of � i↵ � is a
descendant of ↵.

• Non-reflexive and Acyclic. The data structure induced by the par-
ent/child relation is acyclic. No model element can be its own parent
and a child cannot be the parent of one of its ancestors.

• Tree structure. The non-reflexive, transitive closure of the
parent/child relationship induces an acyclic tree structure on a set of
model elements.

The Dependee/Dependant Relation. This relation models a hierarchical
many-to-many relationship, meaning that a dependant relies on one or more
dependees, which in turn have zero or more dependants. The properties of the
dependee-dependant relation are summarized below:

• Many-to-Many. Other than parent/child interdependencies, where a
child only has one parent, a dependant can have multiple dependees.

• Unidirectional Dependency Relation. Unlike the parent/child rela-
tion, where a parent depends on its children, dependees are independent
of their dependants. In the ER metamodel of figure 4.2, for instance,
an Entity is a dependee of its Role instances (and not a parent) be-
cause the ER specification does not require an Entity to participate in
a Relationship to be valid. The reverse, however, remains unchanged:
the deletion of an Entity is cascaded to its Relationship instances in
order to ensure model consistency.

• Transitive. Similar to the parent/child relation, dependee/dependant
is a transitive relation. In figure 4.2, for instance, ERModel is a dependee
of Entity, which is in turn a dependee of Role. Therefore, ERModel is
an indirect dependee of Role whereas Role is an indirect dependant of
ERModel.

• Non-reflexive, Symmetric, Acyclic. The dependee/dependant re-
lation has the same mathematical properties as the parent/child rela-
tion. By installing a many-to-many dependency relation, however, the
non-reflexive, transitive closure of the dependee/dependant induces an
acyclic lattice structure on a set of related model elements, rather than
a tree.

4.7 Model Transformations 113

Reusable Dependency Management. It is clear that mathematical
properties such as symmetry, transitivity and the abscence of cyclic depen-

dencies require rigorous specifications for managing the dependencies between
di↵erent kinds of model elements in trees and lattices. Without a reusable
infrastructure for dependency management, metamodel implementors would
have to implement these relations over and over again, thus increasing the
possibility of introducing inconsistencies in the metamodel. By integrating
dependency management at the level of Pluto, however, concrete metamod-
els extending this framework inherit (1) fine-grained consistency guarantees
and (2) algorithms that automatically manage dependencies based on lifecycle
changes of model elements, thus easing the implementation of new metamod-
els.

4.7 Model Transformations

Next to o↵ering reusable constructs for building metamodels, Pluto incorpo-
rates concepts for transforming models defined as concrete instances of those
metamodels. These concepts are shown in the right part of figure 4.1. The ba-
sic idea of model transformations in Pluto is shown in figure 4.3, which shows
how transformable behaviour is attached to model elements using the Deco-
rator pattern [83]. These classes decorate model elements with transformable

Figure 4.3: Transformation Overview

behaviour by pointing to a strategy containing an execution plan for creating a
target element. Developers willing to transform some source model to a UML
class diagram, for instance, attach UML-specific transformation strategies to
that decorator, whereas database modellers will select RDB- or ER-specific
strategies. This section first explores how transformation strategies are added
to metamodels via decorators (section 4.7.1) and then shows how these trans-
formation strategies interact with Pluto’s generic transformation algorithm

114 A Framework for Executing Cross-Model Transformations

(section 4.7.2).

4.7.1 Decorating Model Elements with Transformation Strate-
gies

The upper right part of figure 4.1 shows the key interfaces exported by
Pluto that attach transformable behaviour to model elements. There
is a one-to-one mapping between transformation-specific interfaces (e.g.
TransformableModelElement) and basic interfaces for metamodels (e.g.
ModelElement) as shown in figure 4.4. There is also a default implementa-

Figure 4.4: Reusable Transformation Concepts

tion for each transformation-specific interface to be reused by decorators of
concrete metamodels. This is also shown in figure 4.4, where a concrete deco-
rator, TransformableEntity, inherits from a Pluto class in order to decorate
Entity. Such concrete decorators must be created only once for each meta-
model element because they are fully agnostic about technical transformation
details. They only serve as a “bridge” between model elements and their exe-
cution plan. These execution plans provide mappings between source elements
and target elements, so they are encapsulated into transformation strategies,
shown as circles in figure 4.4.
Transformation Strategies. The main responsibility of a strategy is to en-
capsulate an execution plan for the transformation of a source element into
the corresponding model construct of a target language. Figure 4.4, for in-
stance, shows two di↵erent transformation strategies that can be attached to
a TransformableEntity decorator. Each strategy contains a di↵erent exe-
cution plan because they both transform instances of Entity to a di↵erent
target modeling language –UML and RDB, respectively.

Each strategy publishes an operation transform(), which is called by

4.7 Model Transformations 115

Pluto through the decorator to which the strategy is attached. The execution
of such a transformation strategy only has a local e↵ect ; it transforms a single
model element, independent of its surrounding elements. Any dependencies
with related model elements are handled by the dependency relations that
were integrated in Pluto, as discussed in section 4.6.2. Such localized trans-
formations make the implementation of strategies straightforward, as such
making them eligible for code generation. Although not a target of this re-
search project, it should be manageable to add an extra layer above Pluto that
converts model transformation languages into strategies that can be executed
by our transformation algorithm.

4.7.2 Pluto’s Generic Algorithm for Transforming Model Ele-
ments

The previous section explained how transformation strategies are attached
to decorators in order to make model elements transformable. This section
shows how Pluto’s generic algorithm interacts with these strategies in order
to transform model elements. The basic philosophy of this algorithm is to
exonerate the developer from taking care of all the technical “middleware”
concerns of model transformations. Such tasks include determining an execu-
tion order, managing cross-model consistency, ensuring source model validity,
etc. Instead, developers only have to provide strategies containing localized
execution plans, which are called by Pluto whenever they are needed during
the execution of its transformation algorithm.

This general idea is applied in figure 4.5, where instances of Entity are
transformed to instances of Relation. The vertical arrow indicates the ex-
ecution of the algorithm and the horizontal arrow shows the transformation
of the model element. The transformation algorithm is explained in three
steps: (1) transformation preconditions, (2) transformation rules, and (3) the
transformation protocol.
Transformation Preconditions. For the transformation algorithm to run
correctly, we need to make some assumptions about the source model:

V1 The model is valid, meaning that every model element obeys its invari-
ants and that all dependee/dependant relations and parent/child depen-
dencies are wired correctly.

V2 The model is immutable during the transformation. Changes made to
the source model during the execution of a transformation are not re-
flected in the target model.

116 A Framework for Executing Cross-Model Transformations

Figure 4.5: Strategies interact with the Pluto transformation
algorithm

Transformation Rules. Given that our two validity rules, V1 and V2, are
satisfied, we can execute the desired transformation. The generic transfor-
mation algorithm of Pluto uses three rules to specify a transformation order
among a set of transformable model elements:

T1 Model elements can never directly transform other model elements; they
can only transform themselves. It is only possible to start the transfor-
mation of another model element indirectly, as will be explained below.

T2 Elements can only transform themselves after their parent and depen-
dees have been transformed. Thus, an element may have to wait for
other elements before it can transform itself, which is called transforma-
tion preemption, as shown in figure 4.5.

T3 After its transformation, a model element indirectly triggers the trans-
formation of its children and dependants. This is called transformation
propagation (see figure 4.5).

Two-Phase Transformation Protocol. Given our transformation rules,
(T1–T3), by which concrete transformation strategies must abide, every
model element can decide whether or not to transform itself based on local
information, i.e. by determining whether its dependees and parent have been
transformed (T2). Therefore, the transformation of a model element can be
decomposed into two di↵erent transformation steps:

CT Conditional Transformation Request. These requests are sent by
external model elements to the model element that must be transformed.

4.7 Model Transformations 117

These requests are termed conditional because it is not guaranteed that
the transformation will be executed directly. Indeed, the request may
be preempted so as to conform to rule T2. Also, a CT request will
propagate new CT requests to all the dependants and children of the
model element after it has transformed itself (as required by T3). The
implementation of the CT operation is independent of concrete trans-
formations, so we have encapsulated this logic in the Pluto framework.

AT Actual Transformation. Unlike the CT phase, this second operation
does not check preemption constraints and it does not propagate calls to
children or dependants. Instead, it activates the execution plan of the
strategy that was attached to the transformable model element, causing
the target model to be manipulated. Therefore, this operation is private
to the model element and it is called by CT when all preconditions have
been satisfied, i.e. when the parent and the dependees of this model ele-
ment have been transformed such that preemption is no longer required.
This is the only phase that is specific to a model transformation, so these
actual transformations must be provided by the developers by means of
a concrete transformation strategy object, as explained in section 4.7.1.
The other steps of the algorithm are transformation-independent, so
developers can reuse them in concrete transformations without further
configuration.

4.7.3 Illustration

Given a set of preconditions, a set of transformation rules, and the dichotomy
between conditional and actual transformations, we now explain the generic
execution strategy of our transformation algorithm by a simple example. As-
sume a conditional transformation request, CT, arrives at ModelElement in
figure 4.6 and assume that the model is valid according to the transformation
preconditions V1–V2. This section describes the steps taken by the transfor-
mation algorithm of Pluto in order to create a target model for ModelElement
and its related elements. As noted above, this target model can be written
in any other modeling language, depending on the contents of the concrete
transformation strategy instances that were provided by the implementor of
the transformation. This illustration is therefore independent of the chosen
target language.
[Phases 1–6] Preemption of ModelElement. Pluto first checks whether
ModelElement has any parent or dependees that have not executed their trans-

118 A Framework for Executing Cross-Model Transformations

formation, as required by T2. After discovering that ParentME is not trans-
formed, the transformation of ModelElement is preempted and a conditional
transformation request CT is forwarded to ParentME . Pluto repeats the CT
procedure for that parent and finds that ParentME can transform immedi-
ately without being preempted (according to rule T2). Thus, the strategy
attached to that parent is executed and a target element is created. Next, ac-
cording to T3, the conditional transformation request must be propagated to
all children, causing the call to reach ModelElement. Due to the existence of a
dependee that still needs to be transformed, however, ModelElement is again
preempted and a CT request is sent to DependeeME . The latter executes its
transformation AT and propagates a CT request to its children.

Figure 4.6: Illustration of Pluto’s transformation algorithm

[Phase 7] Transformation of ModelElement. Downward propagation of
the CT request from DependeeME eventually reaches ModelElement, one of
the dependants of DependeeME , so Pluto checks whether ModelElement can
transform itself. All preconditions have been satisfied, since both its parent
and its dependee have successfully transformed, so ModelElement can execute
its AT transformation according to T2. To do so, Pluto delegates to the
strategy that was attached to the decorator of ModelElement. This strategy
now manipulates the target model, possibly making use of the elements that
were already created by its parent and dependee.
[Phases 8–9] Propagation from ModelElement. After the execution

4.8 Related Work 119

of ModelElement has completed, Pluto propagates a CT request to all
the children and dependants, causing the transformation algorithm to visit
DependantME and ChildME . These elements can transform themselves with-
out being preempted.
Due to space limitations, we cannot give a more realistic example of this
transformation algorithm. Therefore, we refer to our technical report [70] for
more information about the technical details of this algorithm in the context
of multiple dependees or transitive dependencies between model elements.

4.8 Related Work

In [131] and [140], the applicability of Action Semantics (AS) [109] to model
transformations is studied. The authors conclude that AS can be used for
transforming between UML models, thus allowing for iterative refinement of
UML designs. Another advantage of using AS is that design patterns can be
encoded as a sequence of transformation steps, thus allowing to refactor de-
signs. One shortcoming is that cross-model transformations are not supported
because AS is irreversibly linked to the Unified Modeling Language.

YATL [111] is a language for defining model transformations. It combines
declarative concepts for querying the source model with imperative constructs
for executing the transformation itself. By relying on the Meta Object Facil-
ity [11], YATL provides support for pluggable metamodels, but the transfor-
mation tool does not o↵er reusable concepts for defining those metamodels.
Furthermore, it is not clear how the transformation language can be applied
to concrete instances of such newly introduced metamodels.

MTRANS [112] is a model transformation framework that provides both
a development environment and a language to define model transformations.
This language is defined as an abstraction above XSLT and, therefore, the
transformation architecture of MTRANS is strongly influenced by the XSLT
specification. One major drawback of this dependency is that many-to-one
transformations are not supported because XSLT inherently relies on one-to-
one mappings between source and target elements. Pluto, on the other hand,
is independent of any transformation language and transparently manages
one-to-many and many-to-one dependencies for model transformations.

UMLX [146] and VMT [124] are graphical transformation languages for
MDA, primarily developed in an attempt to increase user-friendliness of model
transformation languages. The major advantage of UMLX and VMT is their
expressiveness, given their limited amount of graphical modeling constructs.

120 A Framework for Executing Cross-Model Transformations

One problem, however, is that these transformation languages are limited
to transforming UML models. As the UMLX compiler is able to compile
transformations into Java code, however, it should be possible to attach this
generated code to our transformation strategies. Indeed, our model transfor-
mation framework fits into a larger framework, Chameleon, [135], which can
be used to transform between programming languages. Concrete examples of
such transformations can be found in the work of [71, 74, 136]. By integrat-
ing Pluto’s support for language transformations with the VMT compiler, we
integrate a visual transformation language with cross-model transformability,
thus solving the problems of the original VMT proposal, which relies on a
hardwired metamodel.

Finally, a large number of transformation languages have been proposed,
for example, Converge [133] and the work of Kuznetsov [95]. These languages
are typically compiled and executed on a transformation tool that relies on
a hardwired metamodel, thus disallowing pluggable metamodels. We are in-
vestigating how these transformation languages can be compiled to our trans-
formation strategy objects, which is beneficial for both paradigms: (1) the
transformation language can be used for cross-model transformations and (2)
the developer is freed from having to program strategies.

4.9 Conclusion

Modeling tools often rely on hardwired, proprietary metamodels, as such ob-
structing cross-model transformations and metamodel reuse. This leads to
inconsistent designs scattered over a variety of modeling tools. We have im-
plemented Pluto, a framework providing reusable concepts for metamodeling
and for model transformations. Pluto eases the definition of new metamod-
els by providing reusable concepts for dependency management and model
composition. Furthermore, Pluto enables cross-model transformations by de-
ferring model-specific transformation logic to strategies containing localized
execution plans.

The decoupling between metamodel-independent constructs o↵ered by
Pluto and model-specific concepts provided by developers decreases the de-
velopment time of new metamodels and increases their consistency because
modellers can focus on metamodel-specific concepts while inheriting common
modeling functionality from Pluto.

Have no fear of perfection.
You’ll never reach it.

– Salvador Dali

Chapter 5

Conclusion

In this chapter, we summarize the main contributions of this dissertation and
discuss possible directions for further research.

5.1 Summary and Contributions

Our research is based on the fundamental observation that developing software
is much more complex than often thought. The underlying driver is that every
software development process involves multiple activities, with each activity
using its own modeling language or its own programming language, in order to
build its deliverable and advance the software system to the next development
activity.

Doing complex work becomes easier with a powerful tool. This is no di↵er-
ent in software development. In this dissertation, we have shown that people
who are involved in such a software development process (analysts, design
engineers and programmers) face a much tougher task when their “tools” are
less “powerful”.

Software development is inherently hard, that is termed “essential com-
plexity” by Brooks in his article, No Silver Bullet [60]. Software development
is unnecessarily harder when language constructs are less expressive. Lower
expressiveness and less abstraction introduce unnecessary and avoidable chal-
lenges that is termed “accidental complexity” by Brooks. This dissertation
provides guidelines in the form of patterns or language extensions to reduce
the accidental complexity in software development.

121

122 Conclusion

A Pattern-based Approach for Properties and Associations

In Object-Oriented programming languages, concepts are represented
by objects. Properties and associations together represent the state of an
object. Constraints on those properties and associations determine when
an object is in a steady state (meets its invariants). On the one hand,
the implementation of those requirements must facilitate redefinitions in
subclasses. On the other hand, methods that change the state of an object
must guarantee that all involved objects are still in a steady state after the
update. To achieve both challenges, the implementation and specification of
the requirements is separated from the actual changing of the state and is
encapsulated in inspectors.

Three types of requirements are distinguished, namely value requirements,
state requirements and transition requirements. The collaboration of the all
methods is defined by a family of patterns. For associations two di↵erent
mutators, that guarantee all involved objects will be left in a steady state
afterwards, are provided.

A disadvantage of patterns, is the presence of (a lot of) boiler plate code.
Advanced languages constructs can avoid this boilerplate code, therefore some
first steps towards the introduction of language constructs are set.

Added Value. A separation of the concerns between the development
of methods describing requirements and the methods describing the state
changes is reached. Three di↵erent kinds of requirements are identified to
facilitate the (re-)definition of requirements at di↵erent positions in the class
hierarchy. Each kind of constraint is encapsulated in its own inspector. A
family of patterns describes how all methods collaborate. Finally, some ideas
are presented to show how the patterns can be replaced by language constructs.

Concepts for Abstracting away Object Reification

Conceptual models introduce accidental complexity when they contain
technical aspects in order to describe real-world facts. Such complexity is
introduced by enforcing (“locking in”) decisions that should have been made
in a later activity in the software development process.

The need for technical solutions arises from the absence of appropriate
“tools” o↵ered by the modeling language that is being used. UML and OCL
lack expressive constructs to reason about event occurrences, even more so
when the historical aspect of such occurrences becomes important.

5.1 Summary and Contributions 123

In this dissertation, we have defined a new operator, the #-operator, that
allows analysts to treat events as full-fledged elements. By assigning a prop-
erty, executionTime, to events, it becomes possible to model historical event
information without the need to introduce irrelevant facts in the conceptual
model.

Furthermore, UML also lacks facilities to reason about objects that are
still relevant for the software system after they have ceased to exist. UML
currently forces the analyst to model the destructor and the consequences of
destruction (i.e., the state represented by properties should no longer change)
explicitly. We claim that UML should be extended with concepts of population
(living objects) and archive (objects that ceased to exist) as they are o↵ered
by EROOS [129].

A conceptual model never describes the whole universe, but is always a
description of a subset of real-world facts. We have illustrated that the decision
to model a given fact as an object or as an event depends on the selected subset
of real-world facts. A guiding principle is defined to assist the analyst in his
decision-making: if the lifetime of a fact is of importance then the fact should
be modeled as an object. Otherwise, if the fact is instantaneous, the fact
should be modeled as an event.

In parallel with our research, OMG has identified a similar need to reason
about events. OCL now contains the ˆˆ-operator. [15, Sect. 7.8.1] The
semantics of this operator are the same as the #-operator: the result gives all
OCLMessages sent. OCL, however, does not assign a property to OCLMessage

reflecting the time of occurrence.

Added Value. We have lifted events to the same level as objects. To
enable the reasoning with events, a new operator, the #-operator, is intro-
duced. The need to distinguish between the di↵erent stages of an object,
namely before and after destruction, is illustrated and the o↵ered solution in
EROOS is proposed as extension for UML. Finally, we have defined a guiding
principle to decide whether a fact should be modeled as an object or as an
event.

A Framework for Executing Cross-Model Transformations

Generally, multiple languages are used during the development of a
software system. Each language is formally defined by a metamodel. These
metamodels serve as the basis to define transformations between the di↵erent

124 Conclusion

models. We started from the observation that di↵erent metamodels share the
same structural constructs and all need to develop the functionality that is
coupled with these concepts over and over. By o↵ering these constructs in a
framework, this work can be avoided.

Next to o↵ering these constructs, the framework now also has the possi-
bility to o↵er metamodel-independent transformation strategies. The knowl-
edge of how to transfer concrete metamodel elements is decoupled from the
managing algorithm, which enables the transformation engineer to concen-
trate on the real problems. Next to the Parent/Child dependency, the
framework also needs to o↵er a second kind of dependency relationship,
namely a Dependee/Dependant dependency to be able to perform metamodel-
independent transformations.

The framework has been validated with a prototype implementation per-
forming a basic transformation between simplified ER-models and relational
models.

Added Value. A framework o↵ering reusable concepts for metamod-
eling eases the task of developing a concrete metamodel. Metamodel
independent constructs can be reused over di↵erent metamodels. Moreover,
these metamodel-independent structural constructs make it possible to define
metamodel-independent transformation algorithms which in turn ease the
task of developing a concrete transformation.

5.2 Directions for Future Work

For each of the presented contributions, we point out some possible directions
for further research.

A Pattern-based Approach for Properties and Associations

The language construct is by definition non-deterministic. The construct
needs to be further elaborated to make it possible to close specifications, or
in other words to make the specification deterministic. Furthermore, the con-
struction now makes it only possible to define the false-part, i.e. values or
states that are not allowed can be excluded. However, it must also be possible
to define a true-part, i.e. values or states that cannot be excluded at any time
or at any place. This is not the same as making the definition deterministic.

Functional requirements can demand to change two or more properties at

5.2 Directions for Future Work 125

the same time, in an atomic way. It has to be investigated how such mutators
can be build based on the pattern. A simple sequence of setters is certainly
not a generic solution as it is possible that changing one of the properties
in isolation is not acceptable, while changing all properties together can still
result in a steady state.

Construction is in fact an example of changing multiple properties at the
same time. Characteristics of the object under construction have no previous
state and are not really changed. But during the construction, the object
may also be attached to one or more other objects. Naturally, these other
objects have a previous state. Moreover construction is a special moment
in the lifetime of an object. There may be special requirements that apply
only that single moment. The process of construction can become even more
complex in the context of inheritance and must be investigated thoroughly.

Concepts for Abstracting away Object Reification

Expressions using the #-operator can become rather long. For example
the set of occurrences often first has to be reduced, based on values of the
arguments, before the actual calculations can be done. The definition of the
#-operator can be enriched with syntactic shorthands to improve the usability
of the operator. Figure 5.1 sketches this idea.

book#loan(myReader,� 30DAY S)
⌘

book#loan() ! select(l | l.reader = myReader and l.duration � 30DAY S)

Figure 5.1: Shorthand to reduce the set of occurrences.

The availability of an event can be restricted. Protocols limit the order,
time or state in which events can be used. The restricted availability is also
know as nonuniform service availability. UML uses state diagrams to model
nonuniform service availability. It must be investigated how the #-operator
relates to state diagrams.

Multiple events can share large parts of their specification. This is
often the case when the events describe similar behavior. For example,
the events deposit, withdraw and transferTo are related to each other.
Inheritance is a technique that enables di↵erent classes to inherit common
components from a base class. Similarly the concept inheritance can be used

126 Conclusion

to describe commonalities between events. For example, an abstract method
transaction could be introduced to specify the common behavior between
the events deposit, withdraw and transferTo. This relation between events
is subject of further investigation.

A Framework for Executing Cross-Model Transformations

The framework presented in chapter 4 proved that developing a metamodel
can benefit from a framework at the same MOF-level. The prototype imple-
mentation has been developed with a subset of the ER-metamodel and rela-
tional database metamodel and some transformations translating ER-models
into relational models. Larger experiments are needed to further investigate
the framework.

The framework is developed with older versions of Java, namely version 1.4
and some elements from version 5.0. Compared to those versions, Java 8 o↵ers
lots of new powerful tools to develop software systems. A new version of the
framework can probably benefit a lot from generic classes, lambda expressions,
and defender methods in interfaces.

Appendices

127

Appendix A

Property Pattern

1 public class Foo {
2
3 public Foo (T ↵ ,R �) throws I l l ega lArgumentExcept ion {
4 r e g i s t e r↵(↵) ;
5 r e g i s t e r � (�) ;
6 }
7
8 /∗∗∗
9 ∗ Property ↵ ∗

10 ∗∗∗/
11
12 private T ↵ ;
13
14 @Basic
15 public T get↵ (){
16 return ↵ ;
17 }
18
19 protected void r e g i s t e r↵(T ↵)
20 throws I l l ega lArgumentExcept ion {
21 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
22 throw new I l l ega lArgumentExcept ion () ;
23 this .↵ = ↵ ;
24 }
25
26 public boolean canHaveAs↵(T ↵){
27 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
28 return fa l se ;
29 i f (! ge tClas sObjec t () . i sProper↵� (↵ , get� ()))
30 return fa l se ;
31 return true ;

129

130 Property Pattern

32 }
33
34 public boolean canHaveAsNew↵(T ↵){
35 i f (! canHaveAs↵(↵))
36 return fa l se ;

37 return . . . ;

38 }
39
40 public f ina l boolean hasProper↵ (){
41 return canHaveAs↵(get↵ ()) ;
42 }
43
44 public void s e t↵(T ↵) throws I l l ega lArgumentExcept ion {
45 i f (! canHaveAsNew↵(↵))
46 throw new I l l ega lArgumentExcept ion () ;
47 r e g i s t e r↵(↵) ;
48 }
49
50 /∗∗∗
51 ∗ Property � ∗
52 ∗∗∗/
53
54
55 private R � ;
56
57 @Basic
58 public R get� (){
59 return � ;
60 }
61
62 protected void r e g i s t e r � (R �)
63 throws I l l ega lArgumentExcept ion {
64 i f (! ge tClas sObjec t () . i sProperValueFor� (�)
65 throw new I l l ega lArgumentExcept ion () ;
66 this . � = � ;
67 }
68
69 public boolean canHaveAs� (R �){
70 i f (! ge tClas sObjec t () . i sProperValueFor� (�) ;
71 return fa l se ;
72 i f (! ge tClas sObjec t () . i sProper↵� (get↵ () , �))
73 return fa l se ;
74 return true ;
75 }
76
77 public boolean canHaveAsNew� (R �){
78 i f (! canHaveAs� (�)

131

79 return fa l se ;

80 return . . . ;

81 }
82
83 public f ina l boolean hasProper� (){
84 return canHaveAs� (get� ())
85 }
86
87 public void s e t � (R �) throws I l l ega lArgumentExcept ion {
88 i f (! canHaveAsNew� (�))
89 throw new I l l ega lArgumentExcept ion () ;
90 r e g i s t e r � (�) ;
91 }
92
93 public COFoo getClas sObjec t (){
94 return COFoo () . g e t In s tance () ;
95 }
96
97 /∗∗∗
98 ∗ Class Methods ∗
99 ∗∗∗/

100
101
102 public stat ic class COFoo implements ClassObject {
103
104 private stat ic COFoo in s t anc e ;
105
106 protected COFoo(){}
107
108 public stat ic COFoo ge t In s tance (){
109 i f (i n s t anc e == null)
110 in s t anc e = new COFoo () ;
111 return i n s t anc e ;
112 }
113
114 public boolean i sProperValueFor↵(T ↵){
115 return . . . ;

116 }
117
118 public boolean i sProperValueFor� (R �){
119 return . . . ;

120 }
121
122 public boolean i sProper↵� (T ↵ , R �){
123 i f (! i sProperValueFor↵(↵))
124 return fa l se ;

132 Property Pattern

125 i f (! i sProperValueFor� (�))
126 return fa l se ;

127 return . . ;

128 }
129 }
130
131 }

Listing A.1: The pattern for a properties ↵ and �

Appendix B

Unidirectional Association
Pattern

1 public class Foo {
2
3 public Foo (T ↵) throws I l l ega lArgumentExcept ion {
4 r e g i s t e r↵(↵) ;
5 }
6
7 public COFoo getClas sObjec t (){
8 return COFoo . g e t In s tance () ;
9 }

10
11 /∗∗∗
12 ∗ Property ↵ ∗
13 ∗∗∗/
14
15 private T ↵ ;
16
17 @Basic
18 public T get↵ (){
19 return ↵ ;
20 }
21
22 protected void r e g i s t e r↵(T ↵)
23 throws I l l ega lArgumentExcept ion {
24 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
25 throw new I l l ega lArgumentExcept ion () ;
26 this .↵ = ↵ ;
27 }
28

133

134 Unidirectional Association Pattern

29 public boolean canHaveAs↵(T ↵){
30 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
31 return fa l se ;
32 i f (! ge tClas sObjec t () . i sProper↵Bar (↵ , getBar ())
33 return fa l se ;
34 return true ;
35 }
36
37 public boolean canHaveAsNew↵(T ↵){
38 i f (! canHaveAs↵(↵))
39 return fa l se ;

40 return . . ;

41 }
42
43 public f ina l boolean hasProper↵ (){
44 return canHaveAs↵(get↵ ()) ;
45 }
46
47 public void s e t↵(T ↵) throws I l l ega lArgumentExcept ion {
48 i f (! canHaveAsNew↵(↵))
49 throw new I l l ega lArgumentExcept ion () ;
50 r e g i s t e r↵(↵) ;
51 }
52
53 /∗∗∗
54 ∗ Unid i r e c t i ona l Assoc ia t i on Bar ∗
55 ∗∗∗/
56 private Bar bar ;
57
58 @Basic
59 public Bar getBar (){
60 return bar ;
61 }
62
63 protected void r e g i s t e rBa r (Bar bar)
64 throws I l l ega lArgumentExcept ion {
65 i f (! ge tClas sObjec t () . i sProperValueForBar (bar))
66 throw new I l l ega lArgumentExcept ion () ;
67 this . bar = bar ;
68 }
69
70 public boolean canHaveAsBar (Bar bar){
71 i f (! ge tClas sObjec t () . i sProperValueForBar (bar))
72 return fa l se ;
73 i f (! ge tClas sObjec t () . i sProper↵Bar (get↵ () , bar)
74 return fa l se ;
75 return true ;

135

76 }
77
78 public boolean canHaveAsNewBar (Bar bar){
79 i f (! canHaveAsBar (bar))
80 return fa l se ;

81 return . . ;

82 }
83
84 public f ina l boolean hasProperBar (){
85 return canHaveAsBar (getBar ()) ;
86 }
87
88 public void setBar (Bar bar) throws I l l ega lArgumentExcept ion {
89 i f (! canHaveAsNewBar (bar))
90 throw new I l l ega lArgumentExcept ion () ;
91 r e g i s t e rBa r (bar) ;
92 }
93
94 /∗∗∗
95 ∗ Class Methods ∗
96 ∗∗∗/
97
98 public stat ic class COFoo implements ClassObject {
99

100 private stat ic COFoo in s t anc e ;
101
102 protected COFoo(){}
103
104 public stat ic COFoo ge t In s tance (){
105 i f (i n s t anc e == null)
106 in s t anc e = new COFoo () ;
107 return i n s t anc e ;
108 }
109
110 public boolean i sProperValueFor↵(T ↵){
111 return . . . ;

112 }
113
114 public boolean i sProper↵Bar (T ↵ , Bar bar){
115 i f (! i sProperValueFor↵(↵))
116 return fa l se ;
117 i f (! i sProperValueForBar (bar))
118 return fa l se ;
119 return matches↵Bar (↵ , bar) ;
120 }
121

136 Unidirectional Association Pattern

122 protected boolean matches↵Bar (T ↵ , Bar bar){
123 return . . . ;

124 }
125 }
126 }

Listing B.1: The pattern for a unidirectional association Foo referring Bar:
class Foo

137

1 public class Bar {
2
3 public Bar (S �) throws I l l ega lArgumentExcept ion {
4 r e g i s t e r � (�) ;
5 }
6
7 /∗∗∗
8 ∗ Property � ∗
9 ∗∗∗/

10
11 private S � ;
12
13 @Basic
14 public S get� (){
15 return � ;
16 }
17
18 protected void r e g i s t e r↵(S �)
19 throws I l l ega lArgumentExcept ion {
20 i f (! ge tClas sObjec t () . i sProperValueFor↵(�))
21 throw new I l l ega lArgumentExcept ion () ;
22 this .� = � ;
23 }
24
25 public boolean canHaveAs� (S �){
26 i f (! ge tClas sObjec t () . i sProperValueFor� (�))
27 return fa l se ;
28 return true ;
29 }
30
31 public boolean canHaveAsNew� (S �){
32 i f (! canHaveAs� (�))
33 return fa l se ;

34 return . . . ;

35 }
36
37 public f ina l boolean hasProper� (){
38 return canHaveAs� (get� ()) ;
39 }
40
41 public void s e t� (S �) throws I l l ega lArgumentExcept ion {
42 i f (! canHaveAsNew� (�))
43 throw new I l l ega lArgumentExcept ion () ;
44 r e g i s t e r � (�) ;
45 }
46
47 public COBar getClas sObjec t (){

138 Unidirectional Association Pattern

48 return COBar () . g e t In s tance () ;
49 }
50
51 /∗∗∗
52 ∗ Class Methods ∗
53 ∗∗∗/
54
55 public stat ic class COBar implements ClassObject {
56
57 private stat ic COBar in s t anc e ;
58
59 protected COBar(){}
60
61 public stat ic COBar ge t In s tance (){
62 i f (i n s t anc e == null)
63 in s t anc e = new COBar () ;
64 return i n s t anc e ;
65 }
66
67 public boolean i sProperValueFor� (S �){
68 return . . . ;

69 }
70 }
71 } ‘

Listing B.2: The pattern for a unidirectional association Foo referring Bar:
class Bar

Appendix C

Bidirectional Association
Pattern

1 public class Foo {
2
3 public Foo (T ↵) throws I l l ega lArgumentExcept ion {
4 r e g i s t e r↵(↵) ;
5 }
6
7 public COFoo getClas sObjec t (){
8 return COFoo . g e t In s tance () ;
9 }

10
11 /∗∗∗
12 ∗ Property ↵ ∗
13 ∗∗∗/
14
15 private T ↵ ;
16
17 @Basic
18 public T get↵ (){
19 return ↵ ;
20 }
21
22 protected void r e g i s t e r↵(T ↵)
23 throws I l l ega lArgumentExcept ion {
24 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
25 throw new I l l ega lArgumentExcept ion () ;
26 this .↵ = ↵ ;
27 }
28

139

140 Bidirectional Association Pattern

29 public boolean canHaveAs↵(T ↵){
30 i f (! ge tClas sObjec t () . i sProperValueFor↵(↵))
31 return fa l se ;
32 i f (! ge tClas sObjec t () . i sProper↵Bar (↵ , getBar ())
33 return fa l se ;
34 i f (hasBar () &&
35 (! ge tClas sObjec t () . i sProper↵� (↵ , getBar () . get� () ,
36 getBar () . ge tClas sObject ()))
37 return fa l se ;
38 return true ;
39 }
40
41 public boolean canHaveAsNew↵(T ↵){
42 i f (! canHaveAs↵(↵))
43 return fa l se ;

44 return . . ;

45 }
46
47 public f ina l boolean hasProper↵ (){
48 return canHaveAs↵(get↵ ()) ;
49 }
50
51 public void s e t↵(T ↵) throws I l l ega lArgumentExcept ion {
52 i f (! canHaveAsNew↵(↵))
53 throw new I l l ega lArgumentExcept ion () ;
54 r e g i s t e r↵(↵) ;
55 }
56
57 /∗∗∗
58 ∗ B i d i r e c t i o n a l Assoc ia t i on Bar ∗
59 ∗ (Con t r o l l i n g c l a s s) ∗
60 ∗∗∗/
61 private Bar bar ;
62
63 @Basic
64 public Bar getBar (){
65 return bar ;
66 }
67
68 public boolean hasBar (){
69 return getBar () != null ;
70 }
71
72 protected void r e g i s t e rBa r (Bar bar)
73 throws I l l ega lArgumentExcept ion {
74 i f (! ge tClas sObjec t () . i sProperValueForBar (bar))
75 throw new I l l ega lArgumentExcept ion () ;

141

76 this . bar = bar ;
77 }
78
79 public boolean canHaveAsBar (Bar bar){
80 i f (! ge tClas sObjec t () . i sProperValueForBar (bar))
81 return fa l se ;
82 i f (! ge tClas sObjec t () . i sProper↵Bar (get↵ () , bar)
83 return fa l se ;
84 i f (bar != null){
85 i f (! ge tClas sObjec t () . i sProper↵� (get↵ () , bar . get� () ,
86 bar . ge tClas sObject ()))
87 return fa l se ;
88 }
89
90 return true ;
91 }
92
93 public boolean canHaveAsNewBar (Bar bar){
94 i f (! canHaveAsBar (bar))
95 return fa l se ;

96 return . . ;

97 }
98
99 public f ina l boolean hasProperBar (){

100 return canHaveAsBar (getBar ()) &&
101 ((getBar()==null) | | (getBar () . getFoo()==this)) ;
102
103 }
104
105 public f ina l boolean canHaveAsNewFooBar (Bar bar){
106 i f (! canHaveAsNewBar (bar))
107 return fa l se ;
108 i f ((bar != null) && ! bar . canHaveAsNewFoo (this))
109 return fa l se ;
110
111 i f (bar != null){
112 i f (bar . hasFoo () &&
113 (! bar . getFoo () . canHaveAsNewBar (getBar ())))
114 return fa l se ;
115 i f (hasBar () && (! getBar () . canHaveAsNewFoo (bar . getFoo ())))
116 return fa l se ;
117 }
118 return true ;
119 }
120
121 public f ina l void setBar (Bar bar)
122 throws I l l ega lArgumentExcept ion {

142 Bidirectional Association Pattern

123 i f (! canHaveAsNewFooBar (bar))
124 throw new I l l ega lArgumentExcept ion () ;
125 Bar oldbarFromThis = getBar () ;
126 Foo oldFooFromArgument = bar !=null ?bar . getFoo () : null ;
127 r e g i s t e rBa r (bar) ;
128 i f (bar != null)
129 bar . r e g i s t e rFoo (this) ;
130 i f (oldFooFromArgument != null)
131 oldFooFromArgument . r e g i s t e rBa r (oldBarFromThis) ;
132 i f (oldBarFromThis != null)
133 oldBarFromThis . r e g i s t e rFoo (oldFooFromArgument) ;
134 }
135
136 public f ina l boolean canHaveAsNewFooBar 2 (Bar Bar){
137 i f (! canHaveAsNewBar (bar))
138 return fa l se ;
139 i f ((bar != null) && ! bar . canHaveAsNewFoo (this))
140 return fa l se ;
141
142 i f ((foo !=null) && (foo . hasBar ()))
143 i f (! f oo . getBar () . canHaveAsNewFoo (null))
144 return fa l se ;
145
146 i f (getBar () != null)
147 i f (! getBar () . canHaveAsNewFoo (null))
148 return fa l se ;
149 return true ;
150 }
151
152 public f ina l void se tBar 2 (Bar bar)
153 throws I l l ega lArgumentExcept ion {
154 i f (! canHaveAsNewFooBar (bar))
155 throw new I l l ega lArgumentExcept ion () ;
156 Bar oldbarFromThis = getBar () ;
157 Foo oldFooFromArgument = bar !=null ?bar . getFoo () : null ;
158 r e g i s t e rBa r (bar) ;
159 i f (bar != null)
160 bar . r e g i s t e rFoo (this) ;
161 i f (oldFooFromArgument != null)
162 oldFooFromArgument . r e g i s t e rBa r (null) ;
163 i f (oldBarFromThis != null)
164 oldBarFromThis . r e g i s t e rFoo (null) ;
165 }
166 /∗∗∗
167 ∗ Class Methods ∗
168 ∗∗∗/
169

143

170 public stat ic class COFoo implements ClassObject {
171
172 private stat ic COFoo in s t anc e ;
173
174 protected COFoo(){}
175
176 public stat ic COFoo ge t In s tance (){
177 i f (i n s t anc e == null)
178 in s t anc e = new COFoo () ;
179 return i n s t anc e ;
180 }
181
182 public boolean i sProperValueFor↵(T ↵){
183 return . . . ;

184 }
185
186 public f ina l boolean i sProperValueForBar Foo (Bar bar ,
187 Foo foo){
188 i f ((bar == null) && (foo == null))
189 return fa l se ;
190 return ((bar == null) | |
191 bar . ge tClas sObject () . isProperValueForFoo (foo))
192 &&
193 ((foo == null) | |
194 foo . getClas sObject () . i sProperValueForBar (bar)) ;
195 }
196
197 public boolean i sProperValueForBar (Bar bar){
198 return . . . ;

199 }
200
201 public boolean i sProper↵Bar (T ↵ , Bar bar){
202 i f (! i sProperValueFor↵(↵))
203 return fa l se ;
204 i f (! i sProperValueForBar (bar))
205 return fa l se ;
206 return matches↵Bar (↵ , bar) ;
207 }
208
209 protected boolean matches↵Bar (T ↵ , Bar bar){
210 return . . . ;

211 }
212
213 public f ina l boolean i sProper↵� (T ↵ , S � ,
214 Bar .COBar c l a s sOb j e c t){
215 i f (! i sProperValueFor↵(↵))

144 Bidirectional Association Pattern

216 return fa l se ;
217 i f (! c l a s sOb j e c t . i sProperValueFor� (�))
218 return fa l se ;
219 return matches↵� (↵ ,� , c l a s sOb j e c t) &&
220 c l a s sOb j e c t . matches↵�Helper (↵ , this ,�) ;
221 }
222
223 protected boolean matches↵� (T ↵ , S � ,
224 Bar .COBar c l a s sOb j e c t){
225 return . . . ;

226 }
227 }
228 }

Listing C.1: The pattern for an association Foo Bar

145

1 public class Bar {
2
3 public Bar (S �) throws I l l ega lArgumentExcept ion {
4 r e g i s t e r � (�) ;
5 }
6
7 /∗∗∗
8 ∗ Property � ∗
9 ∗∗∗/

10
11 private S � ;
12
13 @Basic
14 public S get� (){
15 return � ;
16 }
17
18 protected void r e g i s t e r↵(S �)
19 throws I l l ega lArgumentExcept ion {
20 i f (! ge tClas sObjec t () . i sProperValueFor↵(�))
21 throw new I l l ega lArgumentExcept ion () ;
22 this .� = � ;
23 }
24
25 public boolean canHaveAs� (S �){
26 i f (! ge tClas sObjec t () . i sProperValueFor� (�))
27 return fa l se ;
28 i f (hasFoo () &&
29 (! getFoo () . ge tClas sObjec t () .
30 i sProper↵� (getFoo () . get↵ () , � , g e tClas sObject ())))
31 return fa l se ;
32 return true ;
33 }
34
35 public boolean canHaveAsNew� (S �){
36 i f (! canHaveAs� (�))
37 return fa l se ;

38 return . . . ;

39 }
40
41 public f ina l boolean hasProper� (){
42 return canHaveAs� (get� ()) ;
43 }
44
45 public void s e t� (S �) throws I l l ega lArgumentExcept ion {
46 i f (! canHaveAsNew� (�))
47 throw new I l l ega lArgumentExcept ion () ;

146 Bidirectional Association Pattern

48 r e g i s t e r � (�) ;
49 }
50
51 public COBar getClas sObjec t (){
52 return COBar () . g e t In s tance () ;
53 }
54
55 /∗∗∗
56 ∗ B i d i r e c t i o n a l Assoc ia t i on Foo ∗
57 ∗∗∗/
58 private Foo foo ;
59
60 @Basic
61 public Foo getFoo (){
62 return f oo ;
63 }
64
65 public boolean hasFoo (){
66 return getFoo () != null ;
67 }
68
69 protected void r e g i s t e rFoo (Foo foo)
70 throws I l l ega lArgumentExcept ion {
71 a s s e r t foo == null | | f oo . getBar () == this ;
72 a s s e r t foo !=null | | ! this . hasFoo () | |
73 getFoo () . getBar () != this ;
74 i f (! ge tClas sObjec t () . isProperValueForFoo (foo))
75 throw new I l l ega lArgumentExcept ion () ;
76 this . f oo = foo ;
77 }
78
79 public boolean canHaveAsFoo (Foo foo){
80 i f (! ge tClas sObjec t () . isProperValueForFoo (foo))
81 return fa l se ;
82 i f (foo != null){
83 i f (! f oo . ge tClas sObject () . i sProper↵� (foo . get↵ () ,
84 get� () , ge tClas sObject ()))
85 return fa l se ;
86 }
87 return true ;
88 }
89
90 public boolean canHaveAsNewFoo (Foo foo){
91 i f (! canHaveAsFoo (foo))
92 return fa l se ;

93 return . . ;

94 }

147

95
96 public f ina l boolean hasProperFoo (){
97 return canHaveAsFoo (getFoo ()) &&
98 ((getFoo()==null) | | (getFoo () . getBar()==this)) ;
99

100 }
101
102 public f ina l boolean canHaveAsNewFooBar (Foo foo){
103 i f (foo !=null)
104 return f oo . canHaveAsNewFooBar (this) ;
105 else
106 i f (getFoo () != null)
107 return getFoo () . canHaveAsNewFooBar (null) ;
108 else
109 return canHaveAsNewFoo (null) ;
110 }
111
112 public f ina l void setFoo (Foo foo)
113 throws I l l ega lArgumentExcept ion {
114 i f (! canHaveAsNewFooBar (foo))
115 throw new I l l ega lArgumentExcept ion () ;
116 i f (foo != null)
117 foo . setBar (this) ;
118 else
119 i f (getFoo () != null)
120 getFoo () . setBar (null) ;
121 }
122
123 public f ina l boolean canHaveAsNewFooBar 2 (Foo foo){
124 i f (foo !=null)
125 return f oo . canHaveAsNewFooBar 2 (this) ;
126 else
127 i f (getFoo () != null)
128 return getFoo () . canHaveAsNewFooBar 2 (null) ;
129 else
130 return canHaveAsNewFoo (null) ;
131 }
132
133 public f ina l void setFoo 2 (Foo foo)
134 throws I l l ega lArgumentExcept ion {
135 i f (! canHaveAsNewFooBar (foo))
136 throw new I l l ega lArgumentExcept ion () ;
137 i f (foo != null)
138 foo . s e tBar 2 (this) ;
139 else
140 i f (getFoo () != null)
141 getFoo () . s e tBar 2 (null) ;

148 Bidirectional Association Pattern

142 }
143
144 /∗∗∗
145 ∗ Class Methods ∗
146 ∗∗∗/
147
148 public stat ic class COBar implements ClassObject {
149
150 private stat ic COBar in s t anc e ;
151
152 protected COBar(){}
153
154 public stat ic COBar ge t In s tance (){
155 i f (i n s t anc e == null)
156 in s t anc e = new COBar () ;
157 return i n s t anc e ;
158 }
159
160 public boolean i sProperValueFor� (S �){
161 return . . . ;

162 }
163
164 public boolean i sProperValueForFoo (Foo foo){
165 return . . . ;

166 }
167
168 protected boolean matches↵�Helper (T ↵ ,
169 Foo .COFoo c la s sObjec t ,
170 S �){
171 return . . . ;

172 }
173 }
174 }

Listing C.2: The pattern for an association Foo Bar

Bibliography

[1] Object Management Group. http://www.omg.org/. [Online; accessed
01-December-2013].

[2] JSR 296: Swing Application Framework. https://jcp.org/en/jsr/
detail?id=296, 1998. [Online; accessed 01-December-2013].

[3] JSR 41: A Simple Assertion Facility. https://www.jcp.org/en/jsr/
detail?id=41, 2002. [Online; accessed 01-December-2013].

[4] JSR 59: J2SETM Merlin Release Contents. https://www.jcp.org/en/
jsr/detail?id=59, 2002. [Online; accessed 01-December-2013].

[5] BPEL4WS Language Specification. http://www.ibm.com/
developerworks, 2003. [Online; accessed 22-july-2007].

[6] OMG UML Specification 1.5. http://www.omg.org/technology/
documents/, 2003. [Online; accessed 22-july-2007].

[7] JSR 14: Add Generic Types To The JavaTM Programming Language.
https://www.jcp.org/en/jsr/detail?id=14, 2004. [Online; accessed
01-December-2013].

[8] JSR 176: J2SETM 5.0 (Tiger) Release Contents. https://www.jcp.org/
en/jsr/detail?id=176, 2004. [Online; accessed 01-December-2013].

[9] JSR 201: Extending the JavaTM Programming Language with Enu-
merations, Autoboxing, Enhanced for loops and Static Import. https:
//www.jcp.org/en/jsr/detail?id=201, 2004. [Online; accessed 01-
December-2013].

[10] JSR 221: JDBCTM 4.0 API Specification. https://jcp.org/en/jsr/
detail?id=221, 2006. [Online; accessed 01-December-2013].

149

150 BIBLIOGRAPHY

[11] The Meta Object Facility Core Specification 2.0. http://www.omg.org/
technology, 2006. [Online; accessed 22-july-2007].

[12] UML 2.0 OCL specification (OMG final adopted specification). http:

//www.omg.org/docs/ptc/03-10-14.pdf, 2006. [Online; accessed 01-
march-2006].

[13] Unified Modeling Language specification, version 1.4.2). http://

www.omg.org/docs/formal/04-07-02.pdf, 2006. [Online; accessed 01-
march-2006].

[14] The Promise, the Limits, and the Beauty of Software. https://

www.cs.man.ac.uk/aboutus/events/Turing/07-Grady-Booch/, 2007.
[Online; accessed 07-October-2013].

[15] Object Constraint Language (OCL) version 2.3.1. http://www.omg.org/
spec/OCL/2.3.1, 2012. [Online; accessed 01-december-2013].

[16] Popular Mechanics. http://www.popularmechanics.com/technology/
engineering/news/inside-the-future-how-popmech-predicted-

the-next-110-years-14831802, 2012. [Online; accessed 07-October-
2013].

[17] AndroMDA. http://www.andromda.org/index.html, 2013. [Online; ac-
cessed 11-Februari-2013].

[18] C# Programming Guide. http://msdn.microsoft.com/en-us/
library/vstudio/67ef8sbd.aspx, 2013. [Online; accessed 22-August-
2013].

[19] Contract4J. http://www.polyglotprogramming.com/contract4j,
2013. [Online; accessed 22-August-2013].

[20] Eclipse Modeling Framework Project (EMF). http://

www.eclipse.org/modeling/emf/?project=emf, 2013. [Online;
accessed 11-Februari-2013].

[21] Eclipse Project. http://www.eclipse.org/, 2013. [Online; accessed 22-
August-2013].

[22] Ei↵el Software. http://www.eiffel.com, 2013. [Online; accessed 22-
August-2013].

BIBLIOGRAPHY 151

[23] Enterprise JavaBeans Technology. http://www.oracle.com/
technetwork/java/javaee/ejb/index.html, 2013. [Online; accessed
22-August-2013].

[24] Java. http://www.java.com, 2013. [Online; accessed 11-Februari-2013].

[25] Javadoc Tool Home Page. http://www.oracle.com/technetwork/
java/javase/documentation/index-jsp-135444.html, 2013. [Online;
accessed 22-August-2013].

[26] JSR 335: Lambda Expressions for the JavaTM Programming Language.
https://www.jcp.org/en/jsr/detail?id=335, 2013. [Online; accessed
01-December-2013].

[27] MATLAB The Language of Technical Computing. http://

www.mathworks.nl/products/matlab/index.html, 2013. [Online; ac-
cessed 11-Februari-2013].

[28] MDA technology - Model-driven engineering. http://

www.modeliosoft.com/en/technologies/mda.html, 2013. [Online;
accessed 11-Februari-2013].

[29] MDA Tool for Model Driven Architecture. http://

www.sparxsystems.com.au/platforms/mda tool.html, 2013. [On-
line; accessed 11-Februari-2013].

[30] Metrics. http://metrics.sourceforge.net/, 2013. [Online; accessed
11-Februari-2013].

[31] Microsoft Research Spec#. http://research.microsoft.com/en-us/
projects/specsharp/, 2013. [Online; accessed 22-August-2013].

[32] Object Constraint Language (OCL). http://www.omg.org/spec/OCL,
2013. [Online; accessed 01-December-2013].

[33] OMG’s MetaObject Facility. http://www.omg.org/mof/, 2013. [Online;
accessed 01-December-2013].

[34] Sather. http://www1.icsi.berkeley.edu/~sather/, 2013. [Online; ac-
cessed 22-August-2013].

[35] The Nice Programming Language. http://nice.sourceforge.net/,
2013. [Online; accessed 22-August-2013].

152 BIBLIOGRAPHY

[36] UML Resource Page. http://www.uml.org/, 2013. [Online; accessed
01-December-2013].

[37] Industrial Electronics, IEEE Transactions on. http://

ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4180444, Is-
sue 2, May 1983. [Online; accessed 07-October-2013].

[38] CHIPS magazine. http://www.doncio.navy.mil/CHIPS/
Issue.aspx?ID=39, October-December 2002 Issue. [Online; accessed
03-October-2013].

[39] R. J. Abbott. Program design by informal english descriptions. Com-
mun. ACM, 26(11):882–894, Nov. 1983.

[40] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language:
Towns, Buildings, Construction. Center for Environmental Structure
Berkeley, Calif: Center for Environmental Structure series. OUP USA,
1977.

[41] A. Ampatzoglou, S. Charalampidou, and I. Stamelos. Research state of
the art on gof design patterns: A mapping study. Journal of Systems
and Software, 86(7):1945–1964, 2013.

[42] J. Arlow and I. Neustadt. UML 2.0 and the Unified Process: Practical
Object-Oriented Analysis and Design (2Nd Edition). Addison-Wesley
Professional, 2005.

[43] K. Arnout. From Patterns to Components. PhD thesis, 2004.

[44] S. V. Baelen, J. Lewi, E. Steegmans, H. V. Riel, S. V. Baelen, J. Lewi,
E. Steegmans, and H. V. Riel. Eroos: An entity-relationship based
object-oriented specification method. In Technology of Object-Oriented
Languages and Systems TOOLS 7, pages 103–117. Prentice Hall, Herts-
fordshire, UK, 1992.

[45] S. Bagui and R. Earp. Database Design Using Entity-Relationship Dia-
grams, Second Edition. Auerbach Publications, Boston, MA, USA, 2nd
edition, 2011.

[46] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change (2Nd Edition). Addison-Wesley Professional, 2004.

BIBLIOGRAPHY 153

[47] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Je↵ries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. Manifesto for agile software development, 2001.

[48] P. Bekaert. Behavioral Semantics for EROOS Conceptual Modeling:
Separation of Concerns Through Nondeterminism. PhD thesis, Infor-
matics Section, Department of Computer Science, Faculty of Engineer-
ing Science, June 2006. Steegmans, Eric (supervisor).

[49] P. Bekaert, G. Delanote, F. Devos, and E. Steegmans. Specialization/-
generalization in object-oriented analysis: strengthening and multiple
partitioning. In J.-M. Bruel and Z. Bellahsene, editors, Advances in
Object-Oriented Information Systems,, pages 34–43, 2002.

[50] P. Bekaert and E. Steegmans. Non-determinism in conceptual models. In
K. Baclawski and H. Kilov, editors, Proceedings of the Tenth OOPSLA
Workshop on Behavioral Semantics,, pages 24 – 34, 2001.

[51] P. Bekaert, B. Van Nu↵elen, M. Bruynooghe, D. Gilis, and M. De-
necker. On the transformation of object-oriented conceptual models to
logical theories. In Lecture Notes in Computer Science,, pages 152–166.
Springer, 2002.

[52] P. Bernstein and E. Newcomer. Principles of Transaction Processing:
For the Systems Professional. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[53] J. Bishop. Language features meet design patterns: raising the abstrac-
tion bar. In Proceedings of the 2nd international workshop on The role
of abstraction in software engineering, ROA ’08, pages 1–7, New York,
NY, USA, 2008. ACM.

[54] J. Bloch. E↵ective Java Programming Language Guide. Sun Microsys-
tems, Inc., Mountain View, CA, USA, 2001.

[55] J. Bloch. E↵ective Java (2nd Edition) (The Java Series). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2 edition, 2008.

[56] G. Booch. Object-oriented Analysis and Design with Applications (2Nd
Ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,
USA, 1994.

154 BIBLIOGRAPHY

[57] J. Bosch. Design patterns as language constructs. JOOP, 11(2):18–32,
1998.

[58] J. Boydens. Location Transparency and Transactions as First-Class
Concepts in Object-Oriented Programming Languages. PhD thesis, Infor-
matics Section, Department of Computer Science, Faculty of Engineering
Science, May 2008. Steegmans, Eric (supervisor).

[59] J. Boydens and E. Steegmans. Model Driven Architecture: The next
abstraction level in programming. In L. De Backer, editor, Proceedings
of the First European Conference on the Use of Modern Information and
Communication Technologies,, pages 97–104, 2004.

[60] F. P. Brooks, Jr. No silver bullet essence and accidents of software
engineering. Computer, 20(4):10–19, Apr. 1987.

[61] M. Broy, I. Krüger, A. Pretschner, and C. Salzmann. Engineering Au-
tomotive Software. Proceedings of the IEEE, 95(2), 2007.

[62] F. Budinsky, M. Finnie, P. Yu, and J. Vlissides. Automatic code gener-
ation from design patterns. IBM Systems Journal, pages 151–171, 1996.

[63] M. Campbell-Kelly and W. Aspray. Computer: a history of the infor-
mation machine. Basic Books, Inc., New York, NY, USA, 1996.

[64] C. Chambers, B. Harrison, and J. Vlissides. A debate on language
and tool support for design patterns. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’00, pages 277–289, New York, NY, USA, 2000. ACM.

[65] R. N. Charette. IEEE Spectrum. http://spectrum.ieee.org/green-
tech/advanced-cars/this-car-runs-on-code, 2009. [Online; ac-
cessed 07-October-2013].

[66] A. Clark. Metaclasses and reflection in smalltalk, 1997.

[67] T. Clark and P.-A. Muller. Exploiting model driven technology: A tale
of two startups. Softw. Syst. Model., 11(4):481–493, Oct. 2012.

[68] O.-J. Dahl and K. Nygaard. Simula: An algol-based simulation language.
Commun. ACM, 9(9):671–678, Sept. 1966.

BIBLIOGRAPHY 155

[69] D. de Champeaux, P. America, D. Coleman, R. Duke, D. Lea, G. T.
Leavens, and F. Hayes. Formal techniques for oo software development
(panel). In A. Paepcke, editor, OOPSLA, pages 166–170. ACM, 1991.

[70] S. De Labey, G. Delanote, K. Vanderkimpen, and E. Steegmans.
A framework for executing cross-model transformations based on
pluggable metamodels. http://www.cs.kuleuven.ac.be/publicaties/
rapporten/cw/CW489.pdf, 2007. [Online; accessed 03-September-2013].

[71] S. De Labey, M. van Dooren, and E. Steegmans. ServiceJ. A type system
extension for programming web service interactions. In L. Zhang, K. Bir-
man, and J. Zhang, editors, Proceedings of the Fifth IEEE International
Conference on Web Services,, pages 505–512, 2007.

[72] G. Delanote, J. Boydens, and E. Steegmans. A pattern-based approach
towards expressive specifications for property concepts. In L. Lavazza,
R. Oberhauser, A. Martin, J. Hassine, M. Gebhart, and M. Jäntti, edi-
tors, ThinkMind // ICSEA 2013, The Eighth International Conference
on Software Engineering Advances,, pages 249–257, 2013.

[73] G. Delanote, S. De Labey, K. Vanderkimpen, and E. Steegmans. A
framework for executing cross-model transformations based on pluggable
metamodels. In Proceedings of the Second International Conference on
Software and Data Technologies (ICSOFT07),, pages 315–325, 2007.

[74] G. Delanote and E. Steegmans. Concepts for abstracting away ob-
ject reification at the level of platform independent models (PIMs). In
R. Machado, J. Fernandes, M. Riebisch, and B. Schätz, editors, Proceed-
ings of The Third International Workshop on Model-Based Methodolo-
gies for Pervasive and Embedded Software,, pages 94–102, 2006.

[75] F. Devos. Patterns and Anti-Patterns in Object-Oriented Analysis. PhD
thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium,
May 2004. Steegmans, Eric (supervisor).

[76] F. Devos and E. Steegmans. The Message Paradigm in Object-oriented
Analysis. In G. M. and K. C., editors, ML 2001 - The Unified Modeling
Language,, pages 182–193, 2001.

[77] F. Devos and E. Steegmans. Meta-model patterns in object-oriented
analysis. In 14th Information Resource Management Association Inter-
national Conference,, 2003.

156 BIBLIOGRAPHY

[78] F. Devos and E. Steegmans. Specifying business rules in object-oriented
analysis. Software and Systems Modeling, 4(3):297–309, July 2005.

[79] E. W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–
866, Oct. 1972.

[80] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe. A decade of agile
methodologies: Towards explaining agile software development. J. Syst.
Softw., 85(6):1213–1221, June 2012.

[81] M. Feathers. Working E↵ectively with Legacy Code. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2004.

[82] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[83] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[84] J. Gil and D. H. Lorenz. Design patterns and language design. IEEE
Computer, 31(3):118–120, 1998.

[85] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Im-
plementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983.

[86] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 1992.

[87] F. Hayes and D. Coleman. Coherent models for object-oriented analy-
sis. In Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, pages 171–183, New York,
NY, USA, 1991. ACM.

[88] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Scaling-
up model-based-development for large heterogeneous systems with com-
positional modeling. In Software Engineering Research and Practice,
pages 172–176, 2009.

[89] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, Oct. 1969.

BIBLIOGRAPHY 157

[90] R. Hyde. The Art of Assembly Language. No Starch Press, San Fran-
cisco, CA, USA, 2003.

[91] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast
program verifier. In Proceedings of the 8th Asian Conference on Pro-
gramming Languages and Systems, APLAS’10, pages 304–311, Berlin,
Heidelberg, 2010. Springer-Verlag.

[92] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2004.

[93] M. Karaorman, U. Hölzle, and J. L. Bruno. jcontractor: A reflective
java library to support design by contract. In Proceedings of the Second
International Conference on Meta-Level Architectures and Reflection,
Reflection ’99, pages 175–196, London, UK, UK, 1999. Springer-Verlag.

[94] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[95] M. Kuznetsov. Automated model transformation in mda. In In Collo-
quium on Database and Information Systems, 2005.

[96] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall, Upper Saddle River, NJ,
1998.

[97] G. T. Leavens and Y. Cheon. Design by contract with jml. ftp:

//ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf, 2006. [Online;
accessed 22-August-2013].

[98] S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer. Addison-Wesley
Professional, 5th edition, 2012.

[99] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811–1841, Nov. 1994.

[100] C. Mann. Why software is so bad...and what’s being done to fix it. MIT
Technology Rev., vol. 105, pp. 33-38, 2002.

[101] R. C. Martin. More c++ gems. chapter The Open-closed Principle,
pages 97–112. Cambridge University Press, New York, NY, USA, 2000.

158 BIBLIOGRAPHY

[102] R. C. Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[103] T. Mens, K. Czarnecki, and P. V. Gorp. A taxonomy of model trans-
formation. In Proc. Dagstuhl Seminar on ”Language Engineering for
Model-Driven Software Development”. Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl. Electronic, 2005.

[104] B. Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1997.

[105] B. Meyer. Lecture 7: Patterns, observer, mvc. http:

//se.inf.ethz.ch/old/teaching/ss2007/0050/slides/
07 softarch patterns observer 3up.pdf, 2007. [Online; accessed
09-september-2013].

[106] R. Mitchell, J. McKim, and B. Meyer. Design by contract, by exam-
ple. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 2002.

[107] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[108] P. Naur and B. Randell, editors. Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch, Ger-
many, 7-11 Oct. 1968, Brussels, Scientific A↵airs Division, NATO.
1969.

[109] Object Management Group. ptc/02-09-02: UML 1.5 – Action Semantics,
2002.

[110] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, Dec. 1972.

[111] O. Patrascoiu. YATL:Yet Another Transformation Language. In Pro-
ceedings of the 1st European MDA Workshop, MDA-IA, pages 83–90.
University of Twente, the Nederlands, January 2004.

[112] M. Peltier, J. Bezivin, and G. Guillaume. Mtrans: A general framework
based on xslt for model transformations. WTUML01, Proceedings of
the Workshop on Transformations in UML, 2001.

BIBLIOGRAPHY 159

[113] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy.
Two controlled experiments assessing the usefulness of design pattern
documentation in program maintenance. IEEE Trans. Softw. Eng.,
28(6):595–606, June 2002.

[114] W. Pree. Design patterns for object-oriented software development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[115] B. Randall. The 1968/69 nato software engineering reports. dagstuhl-
seminar 9635: History of software engineering. Schloss Dagstuhl, Ger-
many, August 26–30, 1996.

[116] A. Rensink. Subjects, models, languages, transformations. In Dagstuhl
Seminar Proceedings (04101), pages 1–13, 2005.

[117] W. W. Royce. Managing the development of large software systems:
concepts and techniques. In Proc. IEEE WESTCON. IEEE Press, Au-
gust 1970. Reprinted in Proc. Int’l Conf. Software Engineering (ICSE)
1989, ACM Press, pp. 328-338.

[118] A. L. Rubinger and B. Burke. Enterprise JavaBeans 3.1 (6. ed.).
O’Reilly, 2010.

[119] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-oriented Modeling and Design. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[120] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[121] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, Boston, MA, 2 edition, 2005.

[122] J. Said. Pattern-based approach for object-oriented software design. PhD
thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium,
Sept. 2003. Steegmans, Eric (supervisor).

[123] B. Selic. The pragmatics of model-driven development. IEEE Softw.,
20(5):19–25, Sept. 2003.

[124] S. Sendall, G. Perrouin, N. Guelfi, and O. Biberstein. O.: Supporting
model-tomodel transformations: The vmt approach. Technical report,
University of Twente, 2003.

160 BIBLIOGRAPHY

[125] J. Siegel. Developing in OMGs Model-Driven Architecture. http://

www.cin.ufpe.br/~redis/mda/01-12-01.pdf, 2013. [Online; accessed
03-September-2013].

[126] I. Sommerville. Software Engineering 9. Pearson Education, 2011.

[127] E. Steegmans. Object Oriented Programming with Java. Acco, 2011.

[128] E. Steegmans, P. Bekaert, F. Devos, G. Delanote, N. Smeets, M. van
Dooren, and J. Boydens. Black & White Testing: Bridging Black Box
Testing and White Box Testing. In P. Sterck, editor, Software Testing:
Beheers Optimaal de Risico’s van IT in Uw Business,, pages 1–12, 2004.

[129] E. Steegmans, J. Lewi, S. De Backer, J. Dockx, B. Swennen, and
S. Van Baelen. Object oriented software development with EROOS:
The analysis phase - reference manual version 1.1. EROOS Reference
Manual 1.1, Department of Computer Science, K.U.Leuven, Sept. 1996.

[130] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition,
2009.

[131] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel. Using uml action seman-
tics for model execution and transformation. Inf. Syst., 27(6):445–457,
Sept. 2002.

[132] The Institute of Electrical and Eletronics Engineers. Ieee standard glos-
sary of software engineering terminology. IEEE Standard, September
1990.

[133] L. Tratt and T. Clark. Model transformations in Converge, October
2003. Workshop in Software Model Engineering (WiSME) 2003.

[134] S. Van Baelen. A constraint-centric approach for object-oriented concep-
tual modelling. PhD thesis, Informatics Section, Department of Com-
puter Science, Faculty of Science, May 2007. Steegmans, Eric (supervi-
sor).

[135] M. van Dooren. Abstractions for improving, creating, and reusing object-
oriented programming languages. PhD thesis, Department of Computer
Science, K.U.Leuven, Leuven, Belgium, June 2007. Steegmans, Eric
(supervisor).

BIBLIOGRAPHY 161

[136] M. van Dooren and E. Steegmans. Combining the robustness of checked
exceptions with the flexibility of unchecked exceptions using anchored
exception declarations. ACM SIGPLAN notices, 40(10):455–471, Octo-
ber 2005.

[137] M. van Dooren and E. Steegmans. A higher abstraction level using first-
class inheritance relations. In E. Ernst, editor, ECOOP, volume 4609 of
Lecture Notes in Computer Science, pages 425–449. Springer, 2007.

[138] E. Van Gestel. Moose:a framework uniting data base modelling, object-
orientation and formal specifications, engineeering style. PhD thesis,
Department of Computer Science, K.U.Leuven, Leuven, Belgium, Mar.
1994. Lewi, Joannes (supervisor).

[139] P. Van Gorp. Model-driven Development of Model Transformations.
PhD thesis, Dept. of Mathematics and Computer Science, University of
Antwerp, 2008.

[140] D. Varró and A. Pataricza. UML Action Semantics for model transfor-
mation systems. Periodica Politechnica, 2003. In press.

[141] J. Vlissides. Pattern hatching: design patterns applied. Addison-Wesley
Longman Ltd., Essex, UK, UK, 1998.

[142] Y. Wand and R. Weber. On the ontological expressiveness of information
systems analysis and design grammars. Information Systems Journal,
3(4):217–237, 1993.

[143] J. Warmer and A. Kleppe. The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2 edition, 2003.

[144] E. W.Dijkstra. De software crisis, ontstaan en hardnekkigheid.
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/
EWD829.html, 1982. [Online; accessed 01-December-2013].

[145] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal.
Industrial adoption of model-driven engineering: Are the tools really
the problem? In A. Moreira, B. Schtz, J. Gray, A. Vallecillo, and P. J.
Clarke, editors, MoDELS, volume 8107 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2013.

162 BIBLIOGRAPHY

[146] E. D. Willink. E.d.willink umlx: A graphical transformation language
for mda umlx: A graphical transformation language for mda, 2003.

[147] K. Yue. What does it mean to say that a specification is complete. Pro-
ceedings of the Fourth International Workshop on Software Specification
and Design, 1987.

List Of Publications

• P. Bekaert, G. Delanote, F. Devos, and E. Steegmans. Specialization/-
generalization in object-oriented analysis: strengthening and multiple
partitioning. In J.-M. Bruel and Z. Bellahsene, editors, Advances in
Object-Oriented Information Systems, pages 34-43, 2002.

• E. Steegmans, P. Bekaert, F. Devos, G. Delanote, N. Smeets, M. van
Dooren, and J. Boydens. Black & White Testing: Bridging Black Box
Testing and White Box Testing. In P. Sterck, editor, Software Testing:
Beheers Optimaal de Risicos van IT in Uw Business, pages 1-12, 2004.

• G. Delanote and E. Steegmans. Concepts for abstracting away object
reification at the level of platform independent models (PIMs). In R.
Machado, J. Fernandes, M. Riebisch, and B. Schtz, editors, Proceedings
of The Third International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software, pages 94-102, 2006.

• S. De Labey, G. Delanote, K. Vanderkimpen, and E. Steegmans. A
framework for executing cross-model transformations based on pluggable
metamodels. CW Reports CW489, Department of Computer Science,
KU Leuven, 2007.

• G. Delanote, S. De Labey, K. Vanderkimpen, and E. Steegmans. A
framework for executing cross-model transformations based on pluggable
metamodels. In Proceedings of the Second International Conference on
Software and Data Technologies (ICSOFT07), pages 315-325, 2007.

• G. Delanote, J. Boydens, and E. Steegmans. A pattern-based approach
towards expressive specifications for property concepts. In L. Lavazza, R.
Oberhauser, A. Martin, J. Hassine, M. Gebhart, and M. Jäntti, editors,
ThinkMind // ICSEA 2013, The Eighth International Conference on
Software Engineering Advances, pages 249-257, 2013.

Curriculum Vitae

Geert Delanote was born on December 22th, 1975 in Poperinge (Belgium). He
received a Bachelor degree in computer science (Kandidaat in de Informatica)
and a Master’s degree in computer science (Licentiaat in de Informatica) from
the Katholieke Universiteit Leuven (KU Leuven) in Belgium. He graduated
cum laude in September 2000 with the thesis “Ontwikkeling van een interpre-
tator en simulator voor EROOS specificaties”, supervised by Prof. dr. ir. Eric
Steegmans. He started working as a Ph.D. student at the Software Develop-
ment Methodology research group at the Department of Computer Science at
the KU Leuven in October 2000.

FACULTY OF ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

IMINDS - DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Heverlee
http://distrinet.cs.kuleuven.be

